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Preface

Phylogenies, or evolutionary trees, are the basic structures necessary to think
clearly about differences between species, and to analyze those differences sta-
tistically. They have been around for over 140 years, but statistical, computational,
and algorithmic work on them is barely 40 years old. In that time there have been
great advances in understanding, but much remains to be done. It's a good time
to summarize this work, while it is still compact enough for a single book to cover
it. Alternatively, we could put it differently: work in this field has been going on
for four decades, and no book has yet summarized it; such a book is overdue.

I have tried to cover the major methods for inferring phylogenies, at a level ap-
propriate to a graduate course for biologists interested in using numerical meth-
ods. [ have also tried to cover methods of statistical testing of phylogenies, as well
as some methods for using phylogenies for making other inferences. The book
assumes some familiarity with statistics, some with computers, and mathematics
including calculus and an elementary command of matrix algebra.

Phylogenies are inferred with various kinds of data. I have concentrated on
some of the central ones: discretely coded characters, molecular sequences, gene
frequencies, and quantitative traits. There is also some coverage of restriction sites,
RAPDs, and microsatellites. The reader may benefit from enough familiarity with
molecular biology to understand the major features of molecular sequence data,
and some exposure to the theory of quantitative genetics. Other data types that
are less widely used, such as DNA hybridization, are not covered.

I estimate that there are about 3,000 papers on methods for inferring phyloge-
nies. This book refers to a small fraction of those, with less emphasis on studies
that investigate behavior of methods on simulated data or real data. I hope that
the reader will be able to find their way through this literature from these refer-
ences, with creative use of computerized literature searches. My apologies to those
hundreds of my colleagues whose best and most incisive paper was not cited.

Over the years, my understanding of phylogenies has benefitted greatly from
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Chapter 1

Parsimony methods

Parsimony methods are the easiest ones to explain; they were also among the first
methods for inferring phylogenies. The issues that they raise also involve many
of the phenomena that we will need to consider. This makes them an appropriate
starting point.

The general idea of parsimony methods was given in their first mention in the
scientific literature: Edwards and Cavalli-Sforza’s (1963) declaration that the evo-
lutionary tree is to be preferred that involves “the minimum net amount of evo-
lution.” We seek that phylogeny on which, when we reconstruct the evolutionary
events leading to our data, there are as few events as possible. This raises two is-
sues. First, we must be able to make a reconstruction of events, involving as few
events as possible, for any proposed phylogeny. Second, we must be able to search
among all possible phylogenies for the one or ones that minimize the number of
events.

A simple example

We will illustrate the problem with a small example. Suppose that we have five
species, each of which has been scored for 6 characters. In our example, the charac-
ters will each have two possible states, which we call 0 and 1. The data are shown
in Table 1.1. The events that we will allow are changes from 0 — 1 and from 1 — 0.
We will also permit the initial state at the root of a tree to be either state 0 or
state 1.

Evaluating a particular tree

To find the most parsimonious tree, we must have a way of calculating how many
changes of state are needed on a given tree. Suppose that someone proposes the
phylogeny in Figure 1.1. The data set in our example is small enough that we
can find by “eyeball” the best reconstruction of evolution for each character. Fig-
ures 1.2-1.6 show the best character state reconstructions for characters 1 through
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Table 1.1: A simple data set with 0/1 characters.

Characters
Species |1 2 3 4 5 6
Alpha 10 01 10
Beta 0 601 0 0 O
Gamma |1 1 0 0 0 O
Delta 11 0 1 1 1
Epsilon [0 0 1 1 1 0

6. Figure 1.2 shows character 1 reconstructed on this phylogeny. Note that there
are two equally good reconstructions, each involving just one change of character
state. They differ in which state they assume at the root of the tree, and they also
differ in which branch they place the single change. The arrows show the place-
ments of the changes, and the shading shows in which parts of the phylogeny the
two states are reconstructed to exist. Figure 1.3 shows the three equally good re-
constructions for character 2, which needs two changes of state. Figure 1.4 shows
the two reconstructions for character 3, involving one change of state. Figure 1.5
shows the reconstructions (there are two of them) for character 4. These are the
same as for character 5, as these two characters have identical patterns. They re-
quire two changes. Finally, Figure 1.6 shows the single reconstruction for character
6. This requires one change of state.

The net result of these reconstructions is that the total number of changes of
character state needed on this treeis 1 +2 + 1+ 2+ 2+ 1 = 9. Figure 1.7 shows
the reconstructions of the changes in state on the tree, making particular arbitrary

Alpha  Delta Gamma Beta Epsilon

Figure 1.1: A phylogeny that we want to evaluate using parsimony.
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Alpha  Delta Gamma Beta Epsilon

Alpha  Delta Gamma Beta Epsilon

.

Al

Figure 1.2: Alternative reconstructions of character 1 on the phylogeny
of Figure 1.1. The white region of the tree is reconstructed as having
state 0, the shaded region as having state 1. The two reconstructions
each have one change of state. The changes of state are indicated by
arrows.

choices where there is a tie. However, consideration of the character distributions
suggests an alternative tree, shown in Figure 1.8, which has one fewer change,
needing only 8 changes of state. Consideration of all possible trees shows that this
is the most parsimonious phylogeny for these data. The figure shows the loca-
tions of all of the changes (making, as before, arbitrary choices among alternative
reconstructions for some of the characters).

In the most parsimonious tree, there are 8 changes of state. The minimum
number we might have hoped to get away with would be 6, as there are 6 charac-
ters, each of which has two states present in the data. Thus we have two “extra”
changes. Having some states arise more than once on the tree is called homoplasy.
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Alpha Delta ~Gamma Beta Epsilon

or

Alpha Delta Gamma Beta Epsilon
— LS R

or

Alpha Delta Gamma Beta Epsilon

Figure 1.3: Reconstructions of character 2 on the phylogeny of Figure
1.1. The white regions have state 0, the shaded region state 1. The
changes of state are indicated by arrows.

Rootedness and unrootedness

Figure 1.9 shows another tree. It also requires 8 changes, as shown in that figure.
In fact, these two most parsimonious trees are the same in one important respect
— they are both the same tree when the roots of the trees are removed. Figure
1.10 shows that unrooted tree. The locations of the changes are still shown (and
still involve some arbitrary choices), but they are no longer shaded in to show the
direction of the changes. There are many rooted trees, one for each branch of the
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Alpha  Delta Gamma Beta Epsilon

Alpha  Delta Gamma Beta Epsilon

-

Figure 1.4: Reconstruction of character 3 on the phylogeny of Figure
1.1. The graphical conventions are the same as in the previous figures.

unrooted tree in Figure 1.10, and all have the same number of changes of state. In
fact, the number of changes of state will depend only on the unrooted tree, and not
at all on where the tree is then rooted. This is true for the simple model of character
change that we are using (0 = 1). It is also true for any model of character change
that has one simple property: that if we can go in one change from state a to state
5, we can also go in one change from state b to state a.

When we are looking at the alternative placements of changes of state, it ac-
tually matters whether we are looking at a rooted or an unrooted tree. In Figure
1.3, there are three different reconstructions. The last two of them differ only by
whether a single change is placed to the left or to the right of the root. Once the
tree is unrooted, these last two possibilities become identical. So the rooted tree
has three possible reconstructions of the changes of this state, but the unrooted
tree has only two.
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Alpha  Delta Gamma Beta Epsilon

or

Alpha  Delta Gamma Beta Epsilon

N -7 4
. .
—- . "
PR A — .
N . -

Figure 1.5: Reconstruction of character 4 on the phylogeny of Figure
1.1. This is the same as the reconstruction for character 5 as well. The
graphical conventions are the same as in the previous figures.

Methods of rooting the tree

Biologists want to think of trees as rooted and thus have been interested in meth-
ods of placing the root in an otherwise unrooted tree. There are two methods:
the outgroup criterion and the use of a molecular clock. The outgroup criterion
amounts to knowing the answer in advance. Suppose that we have a number
of great apes, plus a single old-world (cercopithecoid) monkey. Suppose that we
know that the great apes are a monophyletic group. If we infer a tree of these
species, we then know that the root must be on the lineage that connects the cer-
copithecoid monkey to the others. Any other placement would make the apes fail
to be monophyletic, because there would then be a lineage leading away from the
root with a subtree that included the cercopithecine and also some, but not all, of
the apes. We place the root outside of the ingroup, so that it is monophyletic.

The alternative method is to make use of a presumed clocklike behavior of
character change. In molecular terms, this is the “molecular clock.” If an equal
amount of change were observed on all lineages, there should be a point on the
tree that has equal amounts of change (branch lengths) from there to all tips. With
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Alpha  Delta Gamma  Beta Epsilon

~—

Figure 1.6: Reconstruction of character 6 on the phylogeny of Figure 1.1.

a molecular clock, it is only the expected amounts of change that are equal; the
observed amounts may not be. We hope to find a root that makes the amounts
of change approximately equal on all lineages. In some methods, we constrain
the tree to remain clocklike by making sure that no tree is inferred that violates
this constraint. If instead we infer a tree without maintaining this constraint, we
can try to remedy this by finding, after the fact, a point on the tree approximately
equidistant from the tips. Finding it may be difficult.

Alpha  Delta ~Gamma Beta Epsilon

& A

4 L. 13

Figure 1.7: Reconstruction of all character changes on the phylogeny
of Figure 1.1. The changes are shown as bars across the branches, with
a number next to each indicating which character is changing. The
shading of each box indicates which state is derived from that change.



8 Chapter1

Alpha Delta Gamma  Beta Epsilon

Figure 1.8: Reconstruction of all changes on the most parsimonious
phylogeny for the data of Table 1.1. It requires only 8 changes of state.
The changes are shown as bars across the branches, with a number
next to each indicating which character is changing. The shading of
each box indicates which state is derived from that change.

Branch lengths

Having found an unrooted tree, we might want to locate the changes on it and
find out how many occur in each of the branches. We have already seen that there
can be ambiguity as to where the changes are. That in turn means that we cannot
necessarily count the number of changes in each branch. One possible alternative
is to average over all possible reconstructions of each character for which there
is ambiguity in the unrooted tree. This has the advantage that, although this can

Gamma  Delta  Alpha Beta Epsilon

Figure 1.9: Another rooted tree with the same number of changes of state.
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Alpha

Gamma

Delta Epsilon

Figure 1.10: The unrooted tree corresponding to Figures 1.8 and 1.9.

Gamma

1.5 Beta

\ . 1.0
1.0 \
15 L0

Delta Epsilon

Figure 1.11: The tree of Figure 1.1 and Figure 1.7, shown as an unrooted
tree with branch lengths computed by averaging all equally parsimo-
nious reconstructions.

leave fractional numbers of changes in some branches, at least they must add up
to the total number of changes in the tree. This is sometimes called the length of
the tree. Figure 1.11 shows the same tree as Figure 1.7 and Figure 1.1 (not the most
parsimonious tree), using these branch lengths. The lengths of the branches are
shown visually and also given as numbers beside each branch.

Unresolved questions

Although we have mentioned many of the issues involved in using parsimony, we
have not actually given the algorithms for any of them. In every case we simply
reconstructed character states by eyeball, and, similarly, we searched the set of
possible trees by informal means. Among the issues that need to be discussed are
the following:
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o Particularly for larger data sets, we need to know how to count the number
of changes of state by use of an algorithm.

¢ We need to know the algorithm for reconstructing states at interior nodes of
the tree.

o We need to know how to search among all possible trees for the most parsi-
monious ones, and how to infer branch lengths.

o All of the discussion here has been for a simple model of 0/1 characters.
What do we do with DNA sequences, that have 4 states, or with protein
sequences, that have 20?2 How do we handle more complex morphological
characters?

¢ There is the crucial issue of justification. Is it reasonable to use the parsimony
criterion? If so, what does it implicitly assume about the biology?

¢ Finally, what is the statistical status of finding the most parsimonious tree? Is
there some way we can make statements about how well-supported a most
parsimonious tree is over the others?

Much work has been done on these questions, and it is this that we cover in the
next few chapters.



Chapter 2

Counting evolutionary changes

. anting the number of changes of state on a given phylogeny requires us to have
me algorithm. The first such algorithms for discrete-states data were given by
_>min and Sokal (1965) for a model with unidirectional changes, and by Kluge
d Farris (1969) and Farris (1970) for bidirectional changes on a linear ordering
" states. We will discuss here two algorithms that generalize these, one by Fitch
1) and the other by Sankoff (1975) and Sankoff and Rousseau (1975). Both
- e the same general structure. We evaluate a phylogeny character by character.
v each character, we consider it as a rooted tree, placing the root wherever seems
“oropriate. We update some information down a tree; when we reach the bottom,
. number of changes of state is available. In both cases, the algorithm does
" function by actually locating changes or by actually reconstructing interior
- Zes at the nodes of the tree. Both are examples of the class known as dynamic
Jramming algorithms.

.n the previous chapter we found the most parsimonious assignments of ances-
~states, and did so by eyeball. In the present chapter we show how the counting

- changes of state can be done more mechanically.

The Fitch algorithm

Fitch (1971) algorithm was intended to count the number of changes in a bi-
-ating tree with nucleotide sequence data, in which any one of the four bases
<, G, T) can change to any other. It also works generally for any number of
"=, provided one can change from any one to any other. Thjs multistate par-

v model was named Wagner parsimony by Kluge and Farris (1969). Fitch's

“*hm thus works perfectly for the 0 = 1 case as well. (In fact, Farris (1970)
- 2 version of this algorithm for the special case of a linear series of discrete
.~ 1 The algorithm at first seems to be mumbo-jumbo. It is only after under-

g how the Sankoff algorithm works that one can see why it works, and that

- algorithm of the same general class. We will explain the Fitch algorithm

11
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icy Al {a  {A (Gl

[AC \\ [AG*

{ACG)*

/

[AC)

Figure 2.1: An example of the Fitch algorithm applied to a single site.
The sets generated at each node are shown.

by use of an example, which is shown in Figure 2.1. The Fitch algorithm consid-
ers the sites (or characters) one at a time. At each tip in the tree, we create a set
containing those nucleotides (states) that are observed or are compatible with the
observation. Thus, if we see an A, we create the set {A}. If we see an ambiguity
such as R (purine), we create the set {AG}. Now we move down the tree. In al-
gorithmic terms, we do a postorder tree traversal. At each interior node we create
a set that is the intersection of sets at the two descendant nodes. However, if that
set is empty, we instead create the set that is the union of the two sets at the de-
scendant nodes. Every time we create such a union, we also count one change of
state.

In Figure 2.1, we are evaluating a tree with five species. At the particular site,
we have observed the bases C, 4, C, A, and (' in the five species, where we give
them in the order in which they appear in the tree, left to right. For the left two, at
the node that is their immediate comumon ancestor, we first attempt to construct the
intersection of the two sets. But as {C'} N {A} = 0, we instead construct the union
{C}U{A} = {AC} and count 1 change of state. Likewise, for the rightmost pair of
species, their common ancestor will be assigned state { AG}, since { A} N {G} =0,
and we count another change of state. The node below it now can be processed.
{C} =~ {AG} = 0, so we construct the union {C} U {AG} = {ACG} and count a
third change of state. The node at the bottom of the tree can now be processed.
{AC} N {ACGY} = {AC}, so we put {AC} at that node. We have now counted 3
changes of state. A moment’s glance at the figure will verify that 3 is the correct
count of the number of changes of state. On larger trees the moment’s glance will
not work, but the Fitch algorithm will continue to work.

The Fitch algorithm can be carried out in a number of operations that is propor-
tional to the number of species (tips) on the tree. One might think that we would
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~v need to multiply this by the number of sites, since we are computing the to-
number of changes of state over all sites. But we can do better than that. Any
- -c that is invariant, which has the same base in all species (such as 4AAAAA4), will
-+ rrneed any changes of state and can be dropped from the analysis without af-
- <ting the number of changes of state. Other sites, that have a single variant base
~zsent in only a single species (such as, reading across the species, ATAAA), will
Zuire a single change of state on all trees, no matter what their structure. These
17> can be dropped, though we may want to note that they will always generate
~¢ more change of state each. In addition, if we see a site that has the same pat-
. ‘n(say, CACAG) that we have already seen, we need not recompute the number
- changes of state for that site, but can simply use the previous result. Finally, the
~mmetry of the model of state change means that if we see a pattern, such as
T'CA, that can be converted into one of the preceding patterns by changing the
- ur symbols, it too does not need to have the number of changes of state com-
.ted. Both CACAG and TCTC A are patterns of the form zy2yz, and thus both
"Il require at least 2 changes of state. Thus the effort rises slower than linearly
".h the numbers of sites, in a way that is dependent on how the data set arose.
One might think that we could use the sets in Figure 2.1 to reconstruct ancestral
-..ces at the interior nodes of the tree. The sets certainly can be used in that pro-
..>>, but they are not themselves reconstructions of the possible nucleotides, nor
» they even contain the possible nucleotides that a parsimony method would
onstruct. For example, in the common ancestor of the rightmost pair of species,
e set that we construct is { AG}. But a careful consideration will show that if we
-1 C at all interior nodes, including that one, we attain the minimum number of
sanges, 3. But C is not a member of the set that we constructed. At the immedi-
st ancestor of that node, we constructed the set { ACG}. But of those nucleotides,
2lv A or C are possible in assignments of states to ancestors that achieve a parsi-
wnious result.

The Sankoff algorithm

“1e Fitch algorithm is enormously effective, but it gives us no hint as to why it
~orks, nor does it show us what to do if we want to count different kinds of
sranges differently. The Sankoff algorithm is more complex, but its structure is
~ore apparent. It starts by assuming that we have a table of the cost of changes
“ctween each character state and each other state. Let’s denote by ¢;; the cost of
. .ange from state 7 to state j. As before, we compute the total cost of the most
~arsimonious combinations of events by computing it for each character. For a
ziven character, we compute, for each node k in the tree, a quantity Sx(4). This
"~ ‘nterpreted as the minimal cost, given that node k is assigned state i, of all the
_ents upwards from node k in the tree. In other words, the minimal cost of events
" the subtree, which starts at node k and consists of everything above that point.

It should be immediately apparent that if we can compute these values for all
ades, we can compute them for the bottom node in the tree, in particular. If

e

’
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we can compute them for the bottom node (call that node 0), then we can simply
choose the minimum of these values:

S = min Sp(i) (2.1)

and that will be the total cost we seek, the minimum cost of evolution for this
character.

At the tips of the tree, the S(i) are easy to compute. The cost is 0 if the observed
state is state 4, and infinite otherwise. If we have observed an ambiguous state, the
cost is 0 for all states that it could be, and infinite for all the rest. Now all we need
is an algorithm to calculate the S(i) for the immediate common ancestor of two
nodes. This is very easy to do. Suppose that the two descendant nodes are called
['and r (for “left” and “right”). For their immediate common ancestor, node a, we
need only compute

S.(1) = minfe;; + Si(j)] + min e + Se(k)] (2.2)
v :

The interpretation of this equation is immediate. The smallest possible cost given
that node a is in state i is the cost ¢;; of going from state i to state j in the left
descendant lineage, plus the cost S)(j) of events further up in that subtree given
that node [ is in state j. We select the value of j that minimizes that sum. We do
the same calculation in the right descendant lineage, which gives us the second
term of equation 2.2. The sum of these two minima is the smallest possible cost for
the subtree above node ¢, given that node ¢ is in state 1.

This equation is applied successively to each node in the tree, working down-
wards (doing a postorder tree traversal). Finally, it computes all the Sy(i), and
then (2.1) is used to find the minimum cost for the whole tree.

The process is best understood by an example, the example that we already
used for the Fitch algorithm. Suppose that we wish to compute the smallest total
cost for the given tree, where we weight transitions (changes between two purines
or two pyrimidines) 1, and weight transversion (changes between a purine and a
pyrimidine or between a pyrimidine and a purine) 2.5. Figure 2.2 shows the cost
matrix and the tree, with the S(7) arrays at each node. You can verify that these are
correctly computed. For the leftmost pair of tips, for example, we observe states
C and A, so the S arrays are respectively (.0. . o) and (0.2c. >c.oc). Their
ancestor has array (2.5.2.5.3.5,3.5). The reasoning is: If the ancestor has state
A, the least cost is 2.5, for a change to a C on the left lineage and no change on
the right. If it has state C, the cost is also 2.5, for no change on the left lineage
combined with change to an A on the right lineage. For state G, the cost is 3.5,
because we can at best change to C on the left lineage (at cost 2.5) and to state A
on the right lineage, for a cost of 1. We can reason similarly for 7, where the costs
arel+25=35.

The result may be less obvious at another node, the common ancestor of the
rightmost three species, where the result is (3.5.3.5. 3.5. 4.5). The first entry is 3.5
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Cl {A] {c} {A) (G}
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Figure 2.2: The Sankoff algorithm applied to the tree and site of the
previous figure. The cost matrix used is shown, as well as the S arrays
computed at each node of the tree.

ncecause you could have changed to C on the left branch (2.5 changes plus 0 above
hat) and had no change on the right branch (0 changes plus 1 above that). That
zotals to 3.5; no other scenario achieves a smaller total. The second entry is 3.5
cecause you could have had no change on the left branch (0 + 0) and a change to
~ or to G on the right one (each 2.5 + 1). The third entry is 3.5 for much the same
reason the first one was. The fourth entry is 4.5 because it could have changed on
“he left branch from 7" to C' (1 + 0), and on the right branch from T to Aor T to G
2.5+ 1), and these total to 4.5.

Working down the tree, we arrive at the array (6.6.7.8) at the bottom of the
iree. The minimum of these is 6, which is the minimum total cost of the tree for
this site. When the analogous operations are done at all sites and their minimal
zosts added up, the result is the minimal cost for evolution of the data set on the
ree.

The Sankoff algorithm is a dynamic programming algorithm, because it solves
the problem of finding the minimum cost by first solving some smaller problems
and then constructing the solution to the larger problem out of these, in such a way
that it can be proven that the solution to the larger problem is correct. An example
of a dynamic programming algorithm is the well-known least-cost-path-through-
a-graph algorithm. We will not describe it in detail here, but it involves gradually
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working out the costs of paths to other points in the graph, working outwards
from the source. It makes use of the costs of paths to points to work out the costs
of paths to their immedijate neighbors, until we ultimately know the lengths of the
lowest-cost paths from the source to all points in the graph. This does not involve
working out all possible paths, and it is guaranteed to give the correct answer.

An attempt to simplify computations by Wheeler and Nixon (1994) has been
shown by Swofford and Siddall (1997) to be incorrect.

Connection between the two algorithms

The Fitch algorithm is a close cousin of the Sankoff algorithm. Suppose that we
made up a variant of the Sankoff algorithm in which we keep track of an array of
(in the nucleotide case) four numbers, but associated them with the bottom end of
a branch instead of the node at the top end of a branch. We could then develop
a rule similar to equation 2.2 that would update this array down the tree. For the
simple cost matrix that underlies the Fitch algorithm, it will turn out that the num-
bers in that array are always either x or z + 1. This is true because one can always
get from any state to any other with penalty 1. So you can never have a penalty
that is more than one greater than the minimum that is possible at that point on the
tree. Fitch’s sets are simply the sets of nucleotides that have the minimum value z
rather than the higher value of & + 1. A careful consideration of the updating rule
in Sankoff’s algorithm in this case will show that it corresponds closely to the set
operations that Fitch specified. Because it is updating the quantities at the bottom
end rather than at the top end of each branch, the Fitch algorithm is not a special
case of the Sankoff algorithm.

Using the algorithms when modifying trees

Views

For most of the parsimony methods that we will discuss, the score of a tree is
unaltered when we reroot the tree. We can consider any place in the tree as if it
were the root. Looking outward from any branch, we see two subtrees, one at
each end of the branch. Taking the root to be on the branch, we can use the Fitch
or Sankoff parsimony algorithins to move “down” the tree towards that point,
calculating the arrays of scores for a character. There will be arrays at the two
ends of our branch. This can be thought of as “views” summarizing the parsimony
scores in these two subtrees, for the character. Each interior node of the tree will
have three (or more) views associated with it: one for each branch that connects to
that node. Thus in the tree in Figure 2.2, we see one view for the node above and
to the right of the root. It shows the view up into the subtree that has the three
rightmost species. But there are two other views that we could have calculated as
well. One could show the view looking down at that node from the center species,
and the other the view looking down at that node from the branch that leads to the
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Figure 2.3: Two trees illustrating the use of the conditional scores of
the Fitch and Sankoff methods in economizing on computations when
rearranging a tree. The two gray rectangles stand for the views for a
character in the two subtrees. When species M and N are involved in a
rearrangement, the views can be used as if they summarized the data
at a tip. They remain unaltered when M and N are rearranged, and the
rearrangement can be evaluated by doing calculations entirely within
the region outlines by the dashed curve.

two rightmost species. If the node had had four branches connecting to it, there
would have been four views possible.

[t is worth noting that views also exist for likelihood methods and for some
algorithms for distance matrix methods.

Using views when a tree is altered

Both the Fitch and Sankoff algorithms use such views, though they only compute
one view at each internal node, the one that looks up at it from below. We can
calculate views anywhere in the tree, by passing inwards toward that point from
tips. This can be convenient when rearranging or otherwise altering trees. Figure
2.3 shows an example. The two gray rectangles are the views for a character for the
two subtrees (which are the large triangles). When we rearrange the two species M
and N locally, without disrupting the structure of either subtree, we can compute
the parsimony score for the whole tree by using the numbers in the rectangles and
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doing all of our computations within the regions enclosed by the dashed curves.
This enables a fast diagnosis of local rearrangements.

This method of economizing on the effort of computing parsimony scores was
first described in print by Gladstein (1997). His discussion codifies methods long
in use in the faster parsimony programs but not previously described in print.

When we come to discuss likelihood methods later in the book, we will see
views that play a very similar role. They allow similar economies but they are lim-
ited by the fact that as one branch length is changed, others elsewhere in the tree
must also be altered for the tree to be optimal. In some least squares algorithms for
distance matrix methods, there are conditional quantities that behave similarly.

Further economies

There are some additional economies, beyond Gladstein’s method, that help speed
up parsimony calculations. Ronquist (1998a) points out an economy that can have
a large effect when we use a Fitch or Sankoff algorithm and compute views at all
nodes, looking in all directions. We have been discussing the tree as if it were
rooted, but in most cases it effectively is an unrooted tree.

When a tree is modified in one part, all the inward-looking views may need
updating (all those that summarize subtrees that include the modified region).
Ronquist points out that we do not need to go through the entirety of the tree
modifying these views. As we work outward from the modified region, if we
come to a view that looks back in, and that ends up not being changed when it is
reconsidered, we need go no further in that direction, as all further views looking
back in that way will also be unchanged. This can save a considerable amount

of time. We shall see other savings when we discuss tree rearrangement in
Chapter 4.
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How many trees
are there?

The obvious method for searching for the most parsimonious tree is to consider
all possible trees, one after another, and evaluate each. As we continue, we keep
a list of the best trees found so far (that is, of all the trees that are tied for best).
If the current tree is tied with these, it is added to the list. If one that is better is
found, the list is discarded and started anew as consisting of just that tree. When
the process is complete, we will have a list of all the trees that are tied for best.

The only problem with this method occurs when the list of possible trees is
too large for this complete enumeration to work. In general, it is. This chapter
will briefly review the work on counting phylogenies, to show that. The num-
oer of phylogenies depends on what we are calling a phylogeny and which ones
we count as different. In all of the cases that we will discuss, left-right order of
branching does not make any difference — we will count two trees as the same if
they differ only by which subtree is on the left side of a branch and which is on the
right. Figure 3.1 shows two trees that look different, but are not. They share the
same “tree topology” even though they are visually different.

Among the cases that have been considered, one must distinguish between

e Rooted versus unrooted trees
e Labeled versus unlabeled trees
¢ Bifurcating versus multifurcating trees

Trees are described as labeled if their tip nodes have distinct labels. We will always
consider cases in which the interior nodes do not have labels. Bifurcating trees
are those in which every interior node is of degree 3 (it connects to three others)
and every tip node is of degree 1 (it connects to only one other node). They are
called bifurcating because, considered as rooted, there are two branches leading
upward from each interior node. Multifurcating trees can have some interior nodes

19
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Figure 3.1: Two rooted trees that seem to be different, but are the same
tree topology from the point of view of this chapter.

of higher degree. Note that multifurcating trees include all bifurcating trees —
multifurcating trees are allowed to have multifurcations, but they are not forced

to have them.

Rooted bifurcating trees

Figure 3.2 shows the case of bifurcating, labeled, rooted trees, for 2, 3, and 4 tips.
All of the different trees are shown for these cases. But how do we know that
these are all of the possibilities? In fact, there is a simple argument that allows us
to compute the number of different phylogenies for this case and thus know when
there are no more to look for. As elements of this argument will also appear later
in other contexts, it is important to consider it in some detail.

We will consider a building up all possible trees by adding one species at a
time, in a predetermined order (say, the lexicographic order of the species names).
If we have a list of all possible trees of n species and add to each one of them
species n+1,1n all possible places, we will in fact generate all possible trees of n+1
species, each only once. Figure 3.3 shows this process of adding a new species at
all possible places. Since the tree is bifurcating both before and after the addition,
the new species cannot be connected to an existing interior node. It must instead
be connected to a new node, which is placed in the middle of an existing branch.
Thus each internal branch of a tree is the location of a possible species addition.

But how do we know that this process will lead to all possible rooted, bifurcat-
ing, labeled trees? Do we know that each such addition leads to a different such
tree? In fact, both of these are true. We can see this by thinking of the process of
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Figure 3.2: All possible labeled, rooted, bifurcating trees for 2, 3, and 4 tips.

adding species k to a tree that consists of species 1 through k — 1. Consider also
the operation of removing species k from a tree that contains species 1 through &.
These two operations are inverses of each other. Suppose that we have a particu-
lar tree with n species. Remove successively species n, n.—1, n — 2, and so on until
species k + 1 is removed. At this point what is left must be one particular tree with
species 1 through k.

Since the removal operation reverses the addition of the species, there must
then be some particular sequence of places to add species k + 1, k + 2, ... onto
that k-species tree to end up with that n-species tree. Furthermore no other k-
species tree can, when those n — & missing species are added, yield that particular
n-species tree. If there were another k-species tree that could yield it, then that
tree too would be reached by removal of those species from the n-species tree. But
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Figure 3.3: The process of adding a new species in all possible places,
leading to all possible rooted bifurcating trees. For n = 3 the conse-
quences of adding the fourth tip to one of the trees is shown, but for
the others it is only indicated by outgoing arrows.
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-.tis a logical impossibility, as the same sequence of removals cannot result in

v~ different trees. Thus any n-species tree can be reached from one and only one

-ipecies tree.

Therefore, each possible addition sequence leads to a different n-species tree,
“d all such trees can be generated in that way. When we add species to a tree,
- -number of ways in which we can do that are equal to the number of branches,
-luding the branch at the bottom of the tree. There are 3 such branches in a two-

-Tccies tree. Every time that we add a new species, it adds a new interior node,

-5 two new branches. Thus after choosing one of the 3 possible places to add the

- .d species, the fourth can be added in any of 5 places, the fifth in any of 7, and

on. [t will not be hard to see that the n-th can be added in any of 2. — 3 places.
This means that there are

IXO5XTXOXITx13%x - x (20 =3)

‘erent ways to add species so as to construct an n-species tree. Each way leads
a different such tree, and together they lead to all such trees. We thus have a
iple way of computing the number of rooted, bifurcating, labeled trees, without
<nerating all of them. This is not a closed-form formula, but it is not hard to show

ot this is equal to

(20 — 3)!
n=2(1 — 2)!

o cnthough that formula (sometimes called (21 —3)!!) looks simple, the preceding

‘

aression of it as product of successive odd integers is in practice far easier to use.

Table 3.1 shows the resulting numbers, up to 20, and approximate values for
“me number of species beyond that.

The immediate implication of these large numbers is that we cannot hope to

-~amine all rooted, bifurcating, labeled trees in any algorithm for more than about

species. Exhaustive enumeration is probably practical up to about 10 species.
is boundary of practicality will move upwards, but it will do so slowly. It will
_quire a massively paralle] approach using molecular computation methods to
~tup ton = 20, and beyond that the numbers are so much greater than Avo-

:2dro’s Number that even molecular computations may not be possible. For 50

Secies, one is approaching Eddington’s famous number, the number of electrons
- the visible universe.

The counting of trees has been a mathematician’s recreation since the pioneer-
5 work of Cayley (1857, 1889). Ernst Schroder (1870) was the first to compute
umbers in Table 3.1. He used generating function methods, as did Cayley. The
‘mple argument used here is due to Cavalli-Sforza and Edwards (1967). Moon

~970) has reviewed many other counting problems involving labeled trees. But

~artially-labeled cases like those we consider have largely been left to biologists to

unt.
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Table 3.1: The number of rooted, bifurcating, labeled trees for n species,
for various values of n. The numbers for more than 20 species are ap-

proximate.

Species Number of trees
1 1
2 1
3 3
4 15
5 105
6 945
7 10,395
8 135,135
9 2,027,025

10 34,459,425
11 654,729,075
12 13,749,310,575
13 316,234,143,225
14 7,905,853,580,625
15 213,458,046,676,875
16 - 6,190,283,353,629,375
17 191,898,783,962,510,625
18 6,332,659,870,762,850,625
19 221,643,095,476,699,771,875
20 8,200,794,532,637,891,559,375
30 4.9518 x1038
40 1.00985 x10%7
50 2.75292 x 1076

Unrooted bifurcating trees

Most methods of inferring phylogenies infer unrooted trees. As each rooted tree
can have its root removed, there cannot be more unrooted than rooted trees for
a given number of species. In fact, there are fewer, as in an unrooted bifurcating
tree with n tips there are 2n — 3 places that a root could be inserted, to give rise
to rooted bifurcating trees. These are the 2n — 3 branches of the tree. If each of
these were to result in different rooted tree, this would suggest that the number of
unrooted trees was a factor of 2n — 3 smaller than the number of rooted trees. In
fact, this supposition is true.

The easy way to see this is to try a different, and more direct, argument. An
unrooted tree can always be rooted at one of its species, say, the first species. Fig-
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Figure 3.4: An unrooted bifurcating tree with 8 species, rooted by using
species 1 as the root.

= 3.4 shows this particular way of rooting an unrooted bifurcating tree. Suppose
~zt we consider the rooted trees that arise by rooting at the first species in this
=v. With n tips on the unrooted tree, there will then be n — 1 tips on the result-
-z rooted tree (as we now can no longer consider species 1 to be a tip). We have
readv computed the number of rooted bifurcating trees for all possible numbers

- tips. Every rooted tree with n — 1 labeled tips corresponds to one unrooted tree,
"3 every unrooted tree with n tips corrésponds to one rooted tree with n — 1 tips.

Thus there must be exactly

I1X3x5x7Tx--x(2n—5)

_~rooted bifurcating trees with n labeled tips. This is precisely the number of
ted trees with the factor 2n — 3 removed, which is the same as the number of
ted trees with one fewer species. Thus we can consult Table 3.1 to find that with

= 10 the number of unrooted bifurcating trees will be 2,027,025, and with n = 20

- will be nearly 2.22 x 10%°. It is also possible to get the number of unrooted bi-

~_rcating trees directly from an argument that generates each tree by sequentially

cding tips in all 2n — 3 possible places, much as we did with rooted trees.

Multifurcating trees

== rar, all trees have been bifurcating. Allowing for multifurcating trees introduces
~=w complications. Ernst Schroder (1870) counted the number of rooted trees with
~=sible multifurcations and labeled tips, using generating function methods. A
- mpler, if less elegant, way of getting the same numbers was given by me (Felsen-
=210, 1978a). It seems easier to explain than Schroder’s methods.

[fwe were to try to use the method of adding successive species in all possible
- 2ces, but allow there to be multifurcations, we run into the problem that we
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Figure 3.5: Two rooted trees with different amounts of multifurcation,
showing the numbers of internal nodes and the numbers of branches
each has. The tree on the left has 8 tips, 6 internal nodes, and thus 14
branches. The tree on the right has 8 tips, 2 internal nodes, and thus 10
branches.

cannot tell in how many places the next species can be added without knowing
how many multifurcations there are. Figure 3.5 shows two trees with different
amounts of multifurcations. If we allow a new species to be added so as to split
off from any branch, there are 14 branches in the left tree and 10 in the right tree.
If instead we allow the new species to increase the degree of multifurcation by
splitting off from an internal node, there are, respectively, 6 and 2 of those. Thus
we cannot simply use the argument that counts all placements of the next species.

The easiest way out of this dilemma is to count numbers of trees with different
numbers of internal nodes. Suppose that 7}, ,, is the number of rooted trees with n
labeled tips and m (unlabeled) internal nodes. The number of internal nodes can
be any integer from 1 to n — 1. If we obtain all the trees with n tips and m interior
nodes by adding species n to trees that had one fewer species, we must consider
both the cases in which the new species was added to an internal node, creating
an additional furc, and the cases in which it was added to a branch, creating a
bifurcation and a new internal node. For each of the T,,_, ,,, trees with n — 1 tips
and m internal nodes, there are m places to add the new species at an internal
node. For each of the T,,_; ,,—1 trees with n — 1 species and m — 1 internal nodes,
there are (n—1)+(m —1) = n+m —2 places we can add species n. As before, each
sequence of additions can be shown to generate a distinct tree, and each possible
multifurcating tree can be reached by a sequence of additions.
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Figure 3.6: Table of the numbers of rooted multifurcated trees with
labeled tips that have different numbers of internal nodes. The flow
of the calculation using the recurrence in equation 3.1 is shown for the
last column The djagonal gives the number of bifurcating trees, which
are included. The row at the bottom of the table is the total number of
multifurcating trees for that number of species.

Number of species

2 3 4 5 6 7 8
1 11 1 1 1 1—x1> ]
8 \x 8
3 2 310 25 56 19—y, 246
£ N
I X9
£ 3 15 105 490 1918—x3> 6825
& e 10
= N
. 105 1,260 9,450—x 4= 56,980
o ~
e x 11
8 . 945 17,325—x 5= 190,575
Z. ~
x 12
6 10,395 x 6 270,270
\x 13
N 135,135
Total 1 4 26 236 2,752 39208 660,032
The result is the formula

T = { (n+m—=2)T1m-1 + mThoim ifm>1 (3.1)

Tn—l.m fm=1

Figure 3.6 shows a table of the numbers T, ,,, with the flow of calculations
shown for the rightmost column. The sum of each column is the total number
of rooted trees with labeled tips, T,,. Although there is no closed-form formula
for this quantity, it is easy to compute it by generating the table using equation
3.1. Table 3.2 shows these totals for moderate numbers of species. In my paper
(Felsenstein, 1978a) giving this table, I also gave similar recursions and tables for
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Table 3.2: Number of rooted trees with labeled tips, allowing multifur-
cations. The numbers are tabulated by the number of species.

Species Number of trees
2 1
3 4
4 26
5 236
6 2,752
7 39,208
8 660,032
9 12,818,912

10 282,137,824
11 6,939,897,856
12 188,666,182,784
13 5,617,349,020,544
14 181,790,703,209,728
15 6,353,726,042,486,272
16 238,513,970,965,257,728
17 9,571,020,586,419,012,608
18 : 408,837,905,660,444,010,496
19 18,522,305,410,364,986,906,624
20 887,094,711,304,119,347,388,416
30 7.0717x10*!
40 1.9037x10%
50 6.85x 105
100 3.3388x10'9%

the case in which some of the labels may be located at interior nodes of the tree.
There are, of course, even more trees if we allow that.

1t is possible to go further, making generating functions for these numbers
(as Schroder did), formulas for the asymptotic rate at which the numbers rise,
or counting the numbers of trees with some interior nodes labeled. We will not
attempt to do this for any of the cases in this chapter.

Unrooted trees with multifurcations

We can extend the counting of trees that may be multifurcating from the rooted
to the unrooted case by the same method as before. As we can arbitrarily root an
unrooted tree at species 1, the number of unrooted trees will be the same as the
number of rooted trees with one fewer species.
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Tree shapes

-ven without the labels being visible at the tips, trees differ in “shape.” (In the
-erminology of Harding, 1971, these would be called unlabeled shapes). We may
want to know how many different shapes there are for various numbers of species.
Ae can imagine asking this about bifurcating trees and multifurcating trees, and
1 each of these cases, about rooted and unrooted trees.

Rooted bifurcating tree shapes

- or the case in which the trees are rooted and bifurcating, the basic method of cal-
calation was found by Wedderburn (1922} and rediscovered by Cavalli-Sforza and
~dwards (1967). The key to it is that at the base of the rooted tree is a bifurcation,
~ith m species at the tips of the left-hand subtree, and n — m at the tips of the right
subtree. We are not distinguishing left from right in this argument. Suppose that
- happened to be 5 and n — m happened to be 10. If we already know that there
‘re Sy different tree shapes for 5 species, and Sig tree shapes for 10 species, then
“ere will be S5 x S possible combinations of these, and each of these will be a
--ee of 15 species of a different shape. We can compute the total number of shapes
“5t i species by summing over all values of 1 such that m < n —m. However, we

~wust take special care when 1n = n — m, thatis, when m is exactly half of 7.
In that case, the number of combinations is not $2,, but is the number of differ-

m’

-t unordered pairs of S,, objects, which is Sy, (S, + 1)/2. This differs from Sz
" ccause that quantity would overcount by counting twice all cases where the sub-
-rees on the two sides have different shapes, as each has the same shape as a tree

with those two subtrees switched.
We can start the calculation with the obvious value S; = 1. So the algorithm is:

S, =1
S,I = Slb'” 1 -!—5-2511—2 +'--+S(n—l)/25(n+l)/’2 ifn>1landnisodd
Spn = S18n-1+ 8282+ .+ S5,2(S2 +1)/2 ifn>1and niseven

(3.2)

It is easy to compute a table of the number of different tree shapes for this case.
It is shown in Table 3.3. There are, of course, far fewer shapes than there are trees.
Harding (1971) derives a generating function whose coefficients are the S; and that
zan be used to study the asymptotic rate of growth of the S;.

Figure 3.7 shows the tree shapes up to 6 species. They are arranged in order of
-heir appearance in the terms of equation 3.2. Thus in the section for n = 6, we see
“irst those having a 5:1 split at their base, then those having a 4 : 2 split, then those
with a 3:3 split. Within each of these groups, the left subtrees correspond to the
rees forn = 5, forn = 4, and for n = 3, in the order in which those appear in the
“3ure.
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Table 3.3: Number of different shapes of trees with different numbers
of species, counting unlabeled rooted bifurcating trees, as computed
by Cavalli-Sforza and Edwards’s (1967) algorithm. Numbers for more
than 20 species are shown to 5 significant figures.

Species Number of shapes
1 1
2 1
3 1
4 2
5 3
6 6
7 11
8 23
9 46
10 98
11 207
12 451
13 983
14 2,179
15 . 4,850
16 10,905
17 24,631
18 56,011
19 127,912
20 293,547
30 1.4068 % 10°
40 8.0997x 1012
50 5.1501%10'°

100 1.0196x10%¢

I do not know of any closed-form formula for the numbers in Table 3.3, but
Donald Knuth (1973, p. 388) discusses a generating function that produces these
numbers, in the context of a tree enumerating problem.

Rooted multifurcating tree shapes

We can continue on to the cases in which multifurcations are allowed, and also
to those where the trees are unrooted. Although the methods will be derived by
extending Edwards’s algorithm, these cases have not been considered anywhere in
the literature, mostly from lack of interest in them. These cases will be described in
less detail. When multifurcations are allowed in a rooted tree, the logic is similar to
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Figure 3.7: The rooted bifurcating tree shapes for 2 to 6 species.

-~ bifurcating case, except that at the root of the tree there can be a multifurcation
- re can at interior forks as well, but that takes care of itself). For trees with n
"ZZies, we then must sum over all ways that n objects can be partitioned. We
- Laterested only in those partitions that have the larger numbers of objects on
2ft. If we write a partition by listing the numbers of objects in each set, for
. octs we want to consider the partitions (5.1), (4.2), (4.1.1), (3.3), (3.2,1)
2.2.2). We would not consider the partitions (2.4) or (3,1.2), because the
- of the branches at the fork at the base of the tree is arbitrary, and to avoid
‘counting cases we are keeping them in order of the number of species on
: abtrees. (Strangely, in mathematics ordered partitions are those in which the
~oers are ot constrained to be in order of their size.)
.. each such partition we have a term for the contribution it makes to the
. .r of shapes. Suppose that we are calling the numbers of shapes of rooted
“rurcating trees T'(n). If the sizes of the sets are all different, as is the case for
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Table 3.4: Number of shapes of rooted multifurcating trees for different
numbers of species. Numbers of shapes for more than 20 species are
given to 4 significant figures.

Species  Shapes Species Shapes
2 1 16 2,253,676
3 2 17 7,305,788
4 5 18 23,816,743
5 12 19 78,023,602
6 33 20 256,738,751
7 90 30 4.524x10'3
8 261 40 9.573x10'8
9 766 50 2.237x10%

10 2,312 60 5.565x10%
11 7,068 70 1.445%103°
12 21,965 80 3.871x10%°
13 68,954 90 1.062x 1045
14 218,751 100 2.970x 10>
15 699,534

a partition like (4, 2, 1), the term is the product of the numbers of shapes for each
set. For that partition it would be T'(4) x T(2) x T(1). If two or more sets have
the same size, we must instead use the number of different combinations of that
many objects into sets of this size. So for the partition (5,2, 2,2, 1), the term is

T(2)(T@2)+1)(T(2)+2)
1x2x3

T(5) 7(1)
because there are n{n + 1)(n + 2)/6 ways to write numbers in 3 boxes where each
box gets a number from the range 1 through n and we are not concerned with the
order of the boxes. More generally, when there are k boxes and n numbers, there
aren(n+ 1){(n+2)---(n+k—1)/k! ways.

With this algorithm, the numbers of shapes of rooted multifurcating trees are
as given in Table 3.4.

Unrooted Shapes

To count unrooted shapes, for either bifurcating or multifurcating trees, we need
to find a fork in the tree that is uniquely defined, to temporarily root the tree there.
It is not hard to show that there are at most two internal nodes in an unrooted
tree whose corresponding partition has no set with more than half the species in
it. Thus if we start in a tree with 10 species at a node whose partition would
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Table 3.5: The numbers of bifurcating and multifurcating unrooted tree
shapes. Numbers for more than 20 species are given to 4 significant

figures.
Multifurcating Bifurcating
Species shapes shapes
3 1 1
4 2 1
5 3 1
6 7 2
7 13 2
8 32 4
9 73 6
10 190 11
11 488 18
12 1,350 37
13 3,741 66
14 10,765 135
15 31,311 265
16 92,949 552
17 278,840 1,132
18 847,511 2,410
19 2,599,071 5,098
20 8,044,399 11,020
30 8.913x 10! 3.294x107
40 1.377x 107 1.385x 10!

~.1.1), we can always move to the node that is at the root of the 8-species
tree, which might have the partition (4.4.2). At that point we are at a node
“ose largest partition does not exceed half the species. For many of the possible
. ~rooted trees there is just one such partition, but some have two. For example
- 2 tree has a central branch with 5 species connected to each of its ends, then
- .. partition for the node on the left end of the branch might be (5. 3,2) and that
* ¢ the node on the right end of the branch might be (5.2,2.1). These partitions
- ziude sets for the subtree that is at the other end of that central branch.
The algorithm for computing the numbers of shapes for these two cases (the
- ‘urcating and multifurcating cases) consists again of listing all possible partitions
-7~ objects into three or more sets, where the set sizes are ordered, but in this case
- ignore all those whose largest set contains more than half the species. For
- partitions whose largest set contains less than half the objects, we can take the
=>me products as before, using the numbers of rooted multifurcating or bifurcating
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n=23 n=4
n=>5 n==6

Figure 3.8: The unrooted bifurcating tree shapes for up to six species.

n=3 n=4
n=2>5

¢ X, .
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e

Figure 3.9: The unrooted multifurcating tree shapes for up to six species.
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trees, as appropriate. For the bifurcating case, we of course consider only parti-
tions having three sets. For the partitions whose largest set contains exactly half
the species, we must realize that there is a risk of overcounting: The correct num-
ber to count for such a case is the number of ordered pairs of rooted trees that have
that number of species.

Table 3.5 shows the numbers of shapes for bifurcating and for multifurcating
unrooted trees.

Figure 3.8 shows the unrooted bifurcating tree shapes up to 6 species, and Fig-
ure 3.9 shows the unrooted multifurcating tree shapes up to 6 species.

Labeled histories

LUsually when we consider tree topologies we do not care about the order in time
of the interior nodes of the tree, except to ensure that descendants occur later than
their ancestors. For some purposes connected with coalescent trees of genes within
species (as in Chapter 26), priors on trees (Chapter 18), and distributions of shapes
of trees (Chapter 33), we do care. Edwards (1970) defined a labeled history as a
tree topology where we also record the order of the nodes of the tree in time. Fig-
ure 3.10 shows two trees that are the same tree topology but are different labeled
“istories.

Edwards also worked out formulas to count the number of bifurcating labeled
“istories. Working down a labeled history, each interior node brings together two
of the lineages. At the top of the tree there are n lineages. There are n(n — 1)/2
nossible pairs of lineages that can be combined. Combining two of them, there are
mow n—1,n-1)-1,2 (n—1)(n— 2)/2 pairs that could be combined. If

‘e specify the pair to combine at each stage, we have specified the labeled history

A B D F E C A B D F E C

J || [

\ T

Figure 3.10: Two different labeled histories that are the same tree topology.
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uniquely. The number of possible ways we could do that is the product of the
number of pairs at each of the n — 1 events, so that it is

nn—1 n—-Dn-2) (n—2)(n—-3) 2x1 nl(n —1)!
2 9 2 T T T onmd (3:3)
These can be very large numbers, compared to the number of tree topologies for
the same size of bifurcating tree. When n = 4, there are 15 tree topologies but 18
labeled histories, a small increase. But when n. = 10, the 34,459,425 tree topologies
lead to 2,571,912,000 labeled histories, an increase by a factor of almost 75.

Perspective

Knowing exactly how many tree topologies or tree shapes there are in various
cases is not particularly important, unless one is enumerating them in a computer
program and wants to know whether the program has found each of them exactly
once. The point is that there are very large numbers of them, and these num-
bers rise exponentially. This creates major difficulties for any search strategy that
would work by considering all possible trees. In my 1978 paper I suggested that
one use for the numbers was “to frighten taxonomists.”

The number of multifurcating rooted trees for 20 species led Walter Fitch (per-
sonal communication) to exclaim that for 20 species “we have more than a gram
molecular weight of evolutionary trees,” as it then exceeds 6.023x 1022,

Some further references on counting trees and sampling random trees will be
found in Gordon’s (1987) review of hierarchical classification.
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Finding the best tree
by heuristic search

—we cannot find the best trees by examining all possible trees, we could imagine
-.>rching in the space of possible trees. In this chapter we will consider heuristic
- .l techniques, which attempt to find the best trees without looking at all pos-

~.« trees. They are, of their very nature, a bit ad hoc. They also do not guarantee

.~ to have found all, or even any, of the best trees.

The fundamental technique is to take an initial estimate of the tree and make

- -1l rearrangements of branches in it, to reach “neighboring” trees. If any of

“_-e neighbors are better, we consider them, and continue, attempting more re-
. ‘ngements. Finally, we reach a tree that no small rearrangement can improve.
- .Inatreeis at alocal optimum in the tree space. However, there is no guarantee

"L it is a global optimum. Figure 4.1 shows the problem for the case of search-
- 'n two spatial coordinates. Trees are a rather different case, but tree space is
“—cult to depict in a diagram like this.

[n the diagram, we are trying to maximize a quantity — trying to find the high-
point on the surface. In the case of the parsimony criterion, we are actually try-

0 minimize the number of evolutionary changes of state. We can convert that

"+ a maximization problem by simply placing a minus sign before the number

- _nanges of state, so that 272 becomes —272. Or, alternatively, we could subtract

© »m a large number, so that 272 becomes 10, 000 — 272 = 9, 728. Maximization

- e resulting quantity will minimize the number of changes of state. It is easier

-row the diagram as a maximization problem than as a minimization problem,
~~axima are more visible than minima.

" this diagram, we imagine that we have started with a particular point on the
:1ce and then looked at its four neighbors. One of them is higher, so we move
at point. Then we examine its neighbors. We continue this until we have

2ed to the highest point on the “hill.” However, as the diagram shows, this

37
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end up here

but global maximum is here

If start here

Figure 4.1: A surface rising above a two-dimensional plain (or plane).
The process of climbing uphill on the surface is illustrated, as well as
the failure to find a higher peak by this “greedy” method.

strategy is incapable of finding another point, one that is in fact higher, but that is
not located on the hill where we started. Strategies of this sort are often called the
greedy algorithm because they seize the first improvement that they see.

In this chapter we will examine some of the different kinds of rearrangements
that have been proposed. Many others are possible. The techniques are more the
result of common sense than of using any mathematical techniques. Later in the
chapter we will also discuss some sequential addition strategies used for locating
the starting point of the search. In the next chapter we will discuss branch and
bound methods, a search technique guaranteed to find all of the most parsimo-
nious trees.

Although the discussion here will be cast in terms of parsimony, it is important
to remember that exactly the same strategies and issues arise with the other criteria
for inferring phylogenies, and heuristic search techniques are employed for them
In much the same way.

Nearest-neighbor interchanges

Nearest-neighbor interchanges (NNI) in effect swap two adjacent branches on the
tree. A more careful description is that they erase an interior branch on the tree,
and the two branches connected to it at each end (so that a total of five branches
are erased). This leaves four subtrees disconnected from each other. Four subtrees
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" S

A subtree

L,

is rearranged by dissolving the connections to an interior branch

and reforming them in one of the two possible alternative ways:

N

Figure 4.2: The process of nearest-neighbor interchange. An interior
branch is dissolved and the four subtrees connected to it are isolated.
These then can be reconnected in two other ways.

* be hooked together into a tree in three possible ways. Figure 4.2 shows the
cess. One of the three trees is, of course, the original one, so that each nearest-
. znbor interchange examines two alternative trees. In an unrooted bifurcating
o with n tips, there will be n — 3 interior branches, at each of which we can
sine two neighboring trees. Thus in all, 2(n — 3) neighbors can be examined
-.ch tree. Thus a tree with 20 tips has 34 neighbors under nearest-neighbor
. zhange.
There js some ambiguity about how greedy we ought to be. If we accept the
- neighboring tree that is an improvement, that will not be as good a search
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Figure 4.3: The space of all 15 possible unrooted trees with 5 tips.
Neighbors are connected by lines when a nearest-neighbor interchange
can convert one into the other. The labels A-E correspond to the species
names Alpha through Epsilon in that data set. This symmetric ar-
rangement of nodes was discovered by Ben Rudd Schoenberg (per-
sonal communication), and we thus denote this graph the Schoenberg

graph.

method as looking at all 2(n — 3) neighbors and picking the best one, but it will be
quicker. We could also imagine trying multiple trees tied for best and evaluating
rearrangements on each of them. The most sophisticated heuristic rearrangement
strategies retain a list of all trees tied for best, and rearrange all of them.

Figure 4.3 shows what the space of all 15 possible unrooted trees looks like
for 5 species, where trees that are adjacent by nearest-neighbor interchange are
connected. Figure 4.4 shows the numbers of changes of state that are required for
the data in Table 1.1 for each of these trees. Each tree has 4 neighbors. It will
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10 \ / 10

Figure 4.4: The space of all 15 possible trees, as in Figure 4.3, where
the number of changes of state on the data set of Table 1.1 is shown.
Nearest-neighbor interchanges search for the most parsimonious tree
by moving in this graph.

be a useful exercise for the reader to pick a random starting point on this graph,
and try various variations on nearest-neighbor interchange, using the lines on the
zraph as a guide. Does the process always find the most parsimonious tree, which
requires 8 changes of state?

Subtree pruning and regrafting

A second, and more elaborate, rearrangement strategy is subtree pruning and re-
crafting (SPR). This is shown in Figure 4.5. It consists of removing a branch from
the tree (either an interior or an exterior branch) with a subtree attached to it. The
subtree is then reinserted into the remaining tree in all possible places, each of
which inserts a node into a branch of the remaining tree. In Figure 4.5 the 11-



42 Chapter 4

G C
D
Break a branch, remove a subtree
A
G C B
E— D .
I
K A
H
E— |
J
Add it in, attaching it to one (¥) K
of the other branches
G Y C
4'D Here is the result:

K

Figure 4.5: Subtree pruning and regrafting (SPR) rearrangement. The
places where the subtree could be reinserted are shown by arrows. The
result of one of these reinsertions (at the branch that separates G and C
from the other species) is shown.

species tree has a 5-species subtree removed, and it is inserted into the remaining
tree of 6 species, in one of the 9 possible places. One of these is of course the origi-
nal tree. In general, if a tree of n, + 1y species has a subtree of ny species removed
from it, there will be 2n; — 3 possible places to reinsert it. One of these is the orig-
inal location. In fact, considering both subtrees (the one having n; species and the
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Figure 4.6: Tree bisection and reconnection (TBR). A branch is bro-
ken and the two tree fragments are reconnected by putting in branches
between all possible branches in one and all possible branches in the
other. One of these reconnections and its result are shown here.

ne having n, species, there are (2n; — 3 — 1) + (2n2 — 3 — 1) = 2n — 8 neigh-
oors generated at each interior branch. It is also not hard to show that when an
e\terior branch is broken, there are 2n — 6 neighbors that can be examined. Thus,
as there are n exterior branches on an unrooted bifurcating tree and n — 3 inte-
rior branches, the total number of neighbors examined by SPR will be n(2n — 6)+
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(n 3)(2n—38) = 4» -3)(n—2). However, some of these may be the same neighbor
(to see that, consider n = 4). For the tree shown in Figure 4.5, which has n = 11,
there are thus up to 288 neighbors under SPR. Of course, 2(n — 3) = 16 of them are
the same neighbors that NNI examines. But it is clear simply from the numbers
that SPR carries out a much wider search and is thus more likely to find a better
peak in the space of all trees.

The issues of how greedy to be, whether to delay accepting a new tree until
all SPR rearrangements have been examined, and how many tied trees to retain as
the basis for further rearrangement, arise for SPR just as they do for NNL

Tree bisection and reconnection

Tree bisection and reconnection (IBR) is more elaborate yet. An interior branch is
broken, and the two resulting fragments of the tree are considered as separate
trees. All possible connections are made between a branch of one and a branch
of the other. One such rearrangement is shown in Figure 4.6. If there are n; and
n» species in the subtrees, there will then be (2n1 — 3)(2n2 — 3) possible ways to
reconnect the two trees. One of these will, of course, be the original tree. In this
case there is no general formula for the number of neighbors that will be examined.
It depends on the exact shape of the tree. For the 11-species tree in Figure 4.6
(which is the same one shown in Figure 4.5), for the interior branches there can be
up to 296 neighbors that will be examined. As in the other types of rearrangement,
there are issues of greediness and of how many tied trees to base rearrangement
on. Allen and Steel (2001) calculate how many neighbors there will be under TBR
and SPR rearrangement, and calculate bounds on the maximum number of these
operations needed to reach any tree from any other.

Other tree rearrangement methods

Tree-fusing

The NI, SPR, and TBR methods hardly exhaust the possible tree rearrangement
methods. The repertoire of rearrangement methods continues to expand. Goloboff
(1999) has added two additional rearrangement methods. One is tree-fusing. This
requires two trees that have been found to be optimal or nearly so, and alters them
by exchanging subgroups between the two trees. This requires that both trees have
a subtree on them that contains the same list of species. Thus if one tree has on
it the subtree ((D,F),(G,H)) and another the subtree ((D,G),(F.H)) one could swap
the subtrees. Each tree would thus propose to the other a particular resolution
of that four-species group. The proposals would be expected to be better than
random resolutions of that group, as they were found by heuristic search on that
tree. They thus become candidates of particular interest for resolving the same
group on other trees.



Finding the best tree by heuristic search 45

. .etic algorithms

“her strategy that is related to tree-fusing is use of a genetic algorithm. This is a
lation of evolution, with a genotype that describes the tree, and with a fitness
“ction that reflects the optimality of the tree. Genetic algorithms (or evolutionary
utation) have been widely used to solve complex optimization problems and
- »ften quite effective. Their use in general optimization was inspired largely by
-ork of Holland (1975), though simulations of evolution by biologists and en-
. -.1s date to the mid-1950s (see the historical papers reprinted by Fogel, 1998).
suda (1996) seems to have been first to use a genetic algorithm on phyloge-
-+ He optimized branch lengths on each tree and used a recombination oper-
- - that swapped particularly good subtrees between trees. Lewis (1998) used
~mproach in which trees could mutate by changing branch lengths or doing an
-~ rearrangement, and they could recombine by choosing a subtree in one tree,
- ting those species from the other and inserting the subtree into it. Moilanen
-9) used a recombination operator similar to Lewis’s, and also allowed heuris-
searching using SPR rearrangement. Katoh, Kuma, and Miyata (2001) used
«rations that were TBR rearrangements and recombinations that were swaps of
- trees containing the same set of species. It is not clear whether they did or
. not also optimize branch lengths on each phylogeny. Congdon (2001) used
“rsimony, with a recombination operator similar to that of Lewis.
Genetic algorithms lend themselves easily to parallel computing. Brauer et
2002) used a separate processor for each tree with Lewis’s (1998) approach,
. found that efficient use of computational resources was made. Lemmon and
._inkovitch (2002) divide the trees into separate populations, which can evolve
- ~arallel. Structures in the tree found to be shared by a number of nearby popu-
“ans are protected from change, allowing search to proceed more intensively in
regions of the tree where different populations have found different structures.
“rrleston (2001) uses a population of trees, with a system for taking modifica-
- s that are made in one of them and propagating them to a number of others.
" :re is no recombination operator, but rather this simultaneous adoption of suc-
“2ssful mutations.
Genetic algorithms have been touted as a universal approach to optimization.
2v often can do quite well, but any evolutionary geneticist who has worked on
-2tural selection in multilocus systems, as I have, must have doubts. How well
Z.netic algorithms do is strongly dependent on the amount of interaction in the
i as they determine fitness. It can also depend strongly on the way in which
*= optimization criterion is turned into a fitness. If intelligent decisions are made,
e method may do very well, but the performance is then due as much to these
~telligent decisions as to the inherent strength of genetic algorithms. If, for exam-
z.., we were to try to find factors of a large integer by mutating and recombining
“'t strings in binary numbers, genetic algorithms would be nearly worthless. That
~wv have worked reasonably well in searches for optimal phylogenies must be
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put down to the wisdom of these authors in designing their genotype-phenotype
mapping and their finess scales. It is also important to realize that there is no
connection between the fact that we are analyzing evolution and the use of an
evolutionary algorithm to carry out the optimization. Genetic algorithms are not
inherently more suited to analysis of genetics and evolution than they are to design
of bridges.

Tree windows and sectorial search

We can imagine doing extensive rearrangements, not on the whole tree, but on
a local region of it. Two papers (Sankoff, Abel, and Hein, 1994; Goloboff, 1999)
have explored such approaches. Both take an interior node of the tree and a set
of other nodes connected to it. This defines a region that they call either a window
or a sector. Both approaches use parsimony to evaluate the state of the window.
The branches reaching the edge of the sector or window carry sumumaries of the
number of changes needed in each character looking outward from the window,
those used in the Sankoff algorithm and discussed above in Chapter 2. This allows
us to rearrange the tree locally in this window without ignoring the information
outside it, and without having to retraverse the tree with each rearrangement.

Essentially these methods generalize, and broaden, the method of nearest-
neighbor interchange, hoping to rearrange extensively enough to escape local op-
tima without too great a computational burden. Sankoff, Abel, and Hein (1994)
examine all possible rearrangements of the window, using the branch and bound
approach discussed in Chapter 5. This extensive local rearrangement restricts their
method to a window of less than 20 nodes, often less than 15. Goloboff (1999) uses
the quicker but less exhaustive strategy of TBR rearrangement, and as a result his
method can handle much larger windows — he suggests ones of 35 to 55 nodes.
If the objective is to escape local maxima, using a larger window may be more
important than exhaustively searching the window.

In both cases, when improved trees are found, the window is moved and rear-
rangement proceeds elsewhere in the tree.

Speeding up rearrangements

We saw in Chapter 2 that there were ways of speeding the calculation of the par-
simony score of a tree when it is altered, by only recalculating the views in the
part of the tree that has been changed (Gladstein, 1997). Goloboff (1993b) has sug-
gested another saving that is particularly useful for SPR and TBR rearrangement.
After a subtree is removed, we recalculate all of the views in each of the two now-
separate parts of the tree. We can use the method of Ronquist (1998a) to avoid
recalculating all of them. Then, when we evaluate a possible reconnection of the
trees, we need only look at the views nearest the connection point to compute the
parsimony score of the resulting tree. The overhead of calculating all the views
after the subtree is removed results in much faster evaluation of ways that they
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A-G H-R

Figure 4.7: Goloboff’s (1993b) economy in evaluating rearrangements.
If we divide the tree into two trees by deleting the dashed line and pro-
pose to evaluate their reconnection using the dotted curved arrow, we
can compute views upwards for subtrees A~G and H-R, and views in-
wards for subtrees V-Z and S-U (dark gray boxes). These can be used
to quickly evaluate the resulting tree. It will have the same parsimony
score as the 4-species tree at lower right.

oe reconnected. This results in substantial improvement. Figure 4.7 shows
- ~ethod. Goloboff’s (1993b) and Ronquist’s (1998a) papers can be consulted
~e further improvements of the speed of these algorithms.

~2quential addition

~uve rearrangement strategies assume that we start with a tree. One can, of
-. . start with a randomly constructed tree. But most implementations have
2 with a tree that results from a sequential addition strategy. In Chapter 3, we
-.. that one can arrive at all possible trees by adding the species one at a time,
all possible places. Figure 3.3 depicts the process for rooted trees. A similar
2= axists for unrooted bifurcating trees. An unrooted tree with 3 species has
cranches. The fourth species can be added by having it branch off from the
- . of any of the three branches. In the process, two more branches are added
-ree. For each of these three possibilities, there are then 5 possible ways that

: species can be added, and so on.
- Zoose that we construct the single 3-species tree. Now we try to add the
<secies in all 3 possible places. We evaluate the resulting 4-species trees.
“<..ad of following up on all of these, we simply keep the best one. Then we
- dd the fifth species to all 5 possible places. Keep the one of these trees that
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is best. Now add the sixth species in all 7 possible places, and keep the best one.
This is a greedy algorithm based on sequential addition of species. It seems as if it
must always result in a most parsimonious tree. But in fact it may not, as we will
see by example in the next chapter. Nevertheless, it constructs an approximation
to the best tree.

Sequential addition is one of the chief methods used to obtain initial trees for
rearrangement strategies. Note that the order in which the species are added is
arbitrary. We can imagine adding them in the same order that they appear in the
data or using a random order based on a random number generator. For the data
of Table 1.1, the results of a sequential addition strategy are shown in Figure 4.8.
It results in four tied trees of length 9, a step longer than the most parsimonious
tree. If we try other sequences of addition, some of them do lead us to find the
most parsimonious tree (examples would be B, C, D, E, Aand A, B, D, E, C).

One of the most tempting orders is often the reverse of the order in which the
species appear in the data. This would at first sight appear to be no different in
its properties than adding them in the order in which they appear in the data. But
often biologists place the most distantly related, most “primitive,” and most du-
biously interpretable, species first. So one is far better letting the well-interpreted
species settle down into a tree and then, at the last moment, adding the dubi-
ous species in all possible places. The alternative, allowing the dubious species in
early, is more likely to result in disruption of the tree structure.

The issue of how many trees tied for best to retain is present for sequential ad-
dition strategies, as it is for rearrangement strategies. In fact, the two strategies
may best be combined. One can add a species, then carry out a round of rear-
rangements to see whether it has disrupted the existing topology. By integrating
the rearrangement and sequential addition strategies, one can obtain a method
that searches even more carefully for the best trees.

It is often assumed that using many different orders of species will result in a
fair sampling of starting points for rearrangement. There is no actual mathematical
proof of this, but it seems to behave reasonably well in practice.

Star decomposition

Rather than building up a tree by adding species one at a time, one can start with
all species present, but with the tree totally unresolved. A bifurcating tree can
be achieved by gradually resolving this tree by grouping two lineages at a time.
Figure 4.9 shows this process and also shows that it is not unique. There may
be only one way to reach each bifurcating tree by sequential addition of species
in a given order, but there are multiple ways to decompose an unresolved “star”
phylogeny to reach a given bifurcating tree.

These star-decomposition methods were first used in the clustering literature.
We will see in Chapter 11 that UPGMA and neighbor-Joining methods use this
approach, as does any clustering method that agglomerates groups into larger
groups.
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Figure 4.8. Sequential addition carried out on the data in Table 1.1.
The species names A-E correspond, respectively, to the names Alpha
through Epsilon in Table 1.1. Sequential addition ends up with four
trees tied for best. None of these is actually the most parsimonious
tree.
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Figure 4.9: Defining a tree by star decomposition, illustrating that there
is more than one way to-do so.

Tree space

Rearrangement may be thought of as searching in a space of trees. We have been
concerned mostly with the topology of the tree, but with other methods we will
find it useful to think of the branches of the tree as having lengths, nonnegative
numbers that reflect how much evolution is expected to occur on that branch. For
most of the models of evolution used in this book, a branch of zero length might as
well not be present. Thus if a speciation separates two lineages, and one of these
immediately speciates again, this is not predicted to resultin a different phenotype
than a trifurcation.

Two tree topologies that have branches that can, on being shrunk to zero
length, lead to the same trifurcation are adjacent in tree space. We can shrink one
branch to reach the trifurcation, then insert the other branch as of zero length and
then lengthen it. In that way we can move smoothly from a tree of one topology to
the other. Trees that are adjacent to the same trifurcation can be reached from each
other by a nearest-neighbor interchange (NNI). In this sense the NNI is not just an-
other arbitrary rearrangement method but is fundamental to the structure of tree
space. Figure 4.3 shows the pattern of sharing of subspaces for trees of 5 tips. To
go from one to another in this graph, we can imagine shrinking an internal branch
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Zth until it is of zero length. At that point we have reached a subspace of tri-
- cating trees. We can pass through it into either of two other tree topologies, so
ot as we go through the looking glass we encounter two alternative universes
d we have to choose which one to enter.
The graph has interesting structure. The arrangement in Figure 4.3 was found
* v me by my stepson, Benjamin Schoenberg. [ have named it the Schoenberg graph.
: pointed out another property. Each tree is part of two triangles of trees, a
“angle being the three trees that can be obtained by rearrangements around one
“rerior branch. If we consider these triangles as points in anew graph and cornect
--2se of them that share a tree, we have constructed a dual graph of the graph of
«vs. In the case of order 5, this dual graph has 10 points. Ben noticed that it is a
" mous graph, the Petersen Graph, widely used as a source of counterexamples in
2 ~ph theory. It is sufficiently famous that it is depicted on the cover of the journal
‘cicte Mathematics.
We will see in the chapter on tree distances (Chapter 30} that some tree dis-
- ~ces can be considered to be distances in this tree space. For further discussion
- .he geometry of tree space and the role of the Petersen Graph as a dual of 5-
-recles tree space, see the papers by Billera, Holmes, and Vogtmann (2001) and
sstert et al. (2002) which report work independent of Ben Schoenberg’s.

Search by reweighting of characters

- _.rent characters in the data may well recommend different trees to us. To pre-
. the search from becoming overconcentrated on a limited set of trees, it may
0 to use as starting points different trees that are recommended by various sub-
s of characters. Nixon (1999) has suggested a method for doing this that seems
" nprove the effectiveness of the search. He starts from a tree, and then picks a
dom set of 5% to 25% of the characters for emphasis. They are emphasized by
-reasing the weights of the characters. We will examine character weighting in
“apter 7; in effect, all we need to know here is that Nixon’s reweighting amounts
duplicating each of these characters so that each appears twice or more in the
aset.

Nixon suggests starting from the initial tree and using tree rearrangement
-:hods such as TBR with this modified data set. This will move us to a tree
->nmended by this reweighted data set. After we have reached it, Nixon sug-

- ~.> using the original data set and doing a TBR search from this tree. The effect
-0 carry us to a tree recommended by a subset of the data; then we search from
“* starting point using the full set of characters. Many such reweightings and
-~iches are carried out — Nixon recommends 50-200 such searches. The best
.5 found among these searches are retained.

The method is called the parsimony ratchet. However it is actually not specific to
‘simony methods — a similar technique can be used with any objective function
- :d on character data, including compatibility, distance matrix, and likelihoods.
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Nixon’s method can be modified in many ways. We could use a variety of
different reweighting methods. In Chapter 20 we will discuss the bootstrap and
jackknife methods, which are reweighting methods. Although there is some con-
cern as to exactly how these should be carried out to have their results be in-
terpreted statistically, this need not constrain us in using them in a reweighting
search. In fact, exaggerating the effect of small sets of characters appears help-
ful in the search. So we could use jackknife methods that select only a small set
of characters, fewer than we would use when we investigate the statistical uncer-
tainty of phylogenies.

Likewise, the search strategy can be modified. All that is necessary is to have
a first stage that is some kind of search based on the reweighted characters and
a second stage that starts from. the result and rearranges using the original data.
Nixon finds that using his strategy, more parsimonious trees can be found in the
500-species rbcl plant phylogeny data set.

The search strategy of Rodin and Li (2000) is related to Nixon's reweighting
scheme. They use the bootstrap to choose regions of the tree where the structure is
less well defined, and concentrate their tree rearrangements there. This has many
of the same effects, as it entertains rearrangements to the extent that reweighting of
characters occasionally suggests them. Another method, different in details, has
been presented by Quicke, Taylor, and Purvis (2001). This reweights characters
in a different way, one that emphasizes characters that fit the trees found so far.
It remains to be seen whether this nonrandom reweighting has advantages over
Nixon’s random reweighting.-

Simulated annealing

A well-known method of search in large combinatorial problems is simulated an-
nealing (Metropolis et al., 1953). This uses the Metropolis algorithm (which we will
see again when we discuss Markov chain Monte Carlo methods in Chapters 18 and
27). The Metropolis algorithm simulates statistical mechanics, in that it accepts a
new state if it is better, and also sometimes when it is worse. The result is a wan-
dering among states that is biased toward the better states. The extent of the bias
depends on a “temperature” parameter. Simulated annealing uses the Metropo-
lis algorithm with a gradually decreasing temperature. Thus the state wanders
widely at first but later is more and more strongly biased to wander towards bet-
ter solutions. It will wander widely but finally hill-climb towards a locally good
solution. It is possible to prove that simulated annealing will find the best solu-
tion, if the temperature is lowered slowly enough. However, usually we do not
know how slow is slow enough.

The first paper to describe applying simulated annealing to searches for opti-
mal phylogenies was by Lundy (1985). She dealt with the case of minimum-length
(most parsimonious) trees for continuous characters. Dress and Kriiger (1987) also
used simulated annealing with parsimony on molecular sequences. Their elemen-
tary operations were swaps of subtrees in the tree. Daniel Barker has produced the
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zomputer program searching for the most parsimonious tree by simulated an-
. Goloboff’s (1999) method of “tree-drifting” is another implementation of
.ated annealing to find most parsimonious trees. In deciding which trees to
-2, he uses a Relative Fit Difference measure that can emphasize small differ-
< in parsimony score. Salter and Pear] (2001) applied simulated annealing to
~~um likelihood phylogenies.
- i3 early days yet in the use of randomness for searching for optimal phylo-
s It is not yet clear whether random perturbations of the tree will be more
-. . than random reweighting of the characters — most likely these techniques
:ome to be used together.

-.:story

~earrangements of phylogenies were first discussed by Camin and Sokal

= They seem also to have been employed by Eck and Dayhoff (1966), who

“rst to mention a sequential addition strategy. Kluge and Farris (1969) also

><d a sequential addition strategy. Subtree pruning and regrafting and tree

1 and reconnection were described in print by Swofford and Olsen (1990).

_ .laddison (1991) has discussed the importance of multiple starts for finding

~ . "islands” of most parsimonious trees. Various of these methods have been

i bv others as well, used in computer programs, and circulated as oral
~ before their first description in print.



Chapter 5

Finding the best tree
by branch and bound

We have already seen, in Chapter 3, that there are far too many possible trees to
make it practical to search for the most parsimonious tree by simple exhaustive
search, except with very few species. This is a parallel to computational problems
in strategy in games such as chess, where there are far too many possible games
that might be played to consider them all.

A method that was developed to allow computers to solve for the best strategy
in a game can help us here, the branch and bound method. In effect, it discards
whole classes of strategies that it has determined cannot be correct, without the
need to examine all of their members one by one. The branch and bound method
was discovered in the 1960s (by whom is not entirely clear). It was first applied to
parsimony problems in phylogenetic inference by Hendy and Penny (1982), from
whose paper modern use of branch and bound methods for inferring phylogenies
has sprung.

A nonbiological example

It is not difficult to describe a branch and bound approach to solving a combinato-
rial optimization problem, a relative of the infamous Traveling Salesman Problem.
In this problem, finding the shortest Hamiltonian path (SHP), we have a map with n
cities. The salesman has an airplane and he (he is always a male, for some reason)
can fly directly between any two cities. The problem is to find a route (including a
starting point) that will take him from one city to another until he has reached all
of them, while flying the shortest total distance (he does not return to his starting
point, as he does in the Traveling Salesman Problem). There are n cities that could
be the starting point; for each of those, there are n — 1 that could come next, and so
on. There turn out to be n! possible solutions. We could imagine tracing out all of

54
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Table 5.1: Ten points drawn randomly from a unit square, which are
the geographic coordinates of the “cities” in a shortest Hamiltonian
path problem.

Point X y

110537 0.061

210274 0222
30016 0.837
4| 0.871 0.400
51039 0.740
6 | 0.815 0.531
7 | 0.587 0.946
810992 0.733
9| 0.268 0.481
10 | 0.895 0.068

—~em. In fact, there is a tree of possibilities. There are n possible choices, then for
-ch of those n — 1 subsequent choices, and so on. Table 5.1 and Figure 5.1 show
“pical shortest Hamiltonian path problem with 10 points. Panel (a) shows the
nts, which are also given (numbered arbitrarily) in Table 5.1. They are simply
nts drawn randomly from a two-dimensional unit square.
Panel (b) in Figure 5.1 shows a random route {one that starts at point 1, contin-
< 10 point 2, to point 3, and so on in order). The total length of this route turns
210 be 5.4342. We can imagine various heuristic search methods for finding bet-
- routes. One of them that is fairly obvious is to start from a point, proceed to
“earest neighbor, proceed from that to the nearest neighbor that is not yet in
- path, and continue doing this until all points have been visited. This works
‘or a while but finally leaves you with only a single choice for the last point,
= that may not be very close by. By carrying out this greedy algorithm many
— <=, once from each point, and then choosing the best of these solutions, one can
cetter. In our 10-point example, the average length of the 10 greedy solutions
=ng from the 10 points is 3.6974, a 32% improvement over the random route.
- best of the greedy solutions (actually the best two, as the solution is found
<. once from each of its ends) is of length 2.8027.
This solution is shown in panel (¢) of Figure 5.1. It is close to the optimal so-
1. but it is not the optimal solution. The optimal solution is shown in panel
7 is shown with lines rather than arrows, as one can traverse it in either direc-
N\ote that it is close to the best greedy solution, with one link of the greedy
~on deleted and another link added. This is further evidence that the strat-
~opular among algorithmists of finding solutions to the SHP by rearranging
- =olutions is sound. The length of the optimal solution is also close to that of
~ost greedy solution, as it is 2.7812, only 0.02 shorter. The greedy algorithm
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(@) (b)

() (d)

Figure 5.1: A typical shortest Hamiltonian path problem with 10
points, randomly chosen from a unit square (the ones shown in Ta-
ble 5.1). Panel (a) shows the points. Panel (b) shows an arbitrary route
(the points in numerical order). Panel (c) shows the shortest of the
routes chosen by starting from each point and adding nearest points in
greedy manner. Panel (d) shows the solution found by a branch and
bound method.
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with multiple starts has done very well, but it did not actually find the optimal
solution.

Finding the optimal solution

. can find the optimal solution by exhaustive enumeration. In doing so we tra-

“.rse a search tree of possibilities. The possible solutions can be indicated by the

-_Z aence of points. Thus the first solution (panel b) is (1,2, 3,4, 5,6, 7, 8, 9, 10),

. vest greedy solution is (3,5, 7, 8, 6, 4, 10, 1, 2, 9), and the optimal solution is (7,

©19,2,1,10,4,6,8). There are in all 10! = 3. 628. 800 possible solutions. We can
< of arranging them in lexicographical (dictionary) order:

1,2,3,4,5,6,7,8,9,10)
(1,2,3,4,5,6,7,8,10,9)
(1,2,3,4,5,6,7,9,8, 10)
(1,2,3,4,5,6,7,9, 10, 8)
1,2,3,4,5,6,7,10,8,9)
(1,2,3,4,5,6,7,10,9, 8)

(10,9,8,7,6,5,4,3,2,1)

“.n million rows of this table can be organized into a search tree based on
“1ig initial parts of the solutions. Thus the first two entries are adjacent tips on
. - .arch tree, as they share (1, 2, 3, 4, 5, 6, 7, 8). The first six entries are a cluster
-\ adjacent tips; they are shown in Figure 5.2. The first (leftmost) branch at
. ~ottom of this search tree leads to all solutions that start with point 1. The
- _ranch leads to all solutions that start with point 2, and so on. Within these
“wees there are further branchings, corresponding to what the second point in
- nution is to be. This branching continues all the way up to the top of the
- tree; in the figure we can see the top leftmost part of the tree with the first
< lutions shown. For simplicity, we ignore the fact that the solutions come in

. .irs, as one can travel a route in either direction.
~ exhaustive search of solutions can be done by traversing this tree from left
- 2~t and keeping track of the best solution found so far. When this is done for
- >ta in our 10-point example, the solution in panel (d) of Figure 5.1 is found;
- ruaranteed to be the best possible one. This took 10.85 seconds of computer
amy Digital Alphastation 400 4/233. The program needed to look at all 10!
- ns to do this. Unfortunately, factorials blow up faster than exponentially as
- oblem size increases. For 15 points there are 15! = 1. 307,674, 368,000, so
“is exhaustive search would probably take about 3,909,906 seconds, or a bit
“X weeks. (My computer is already long obsolete as you read this, but all
~uld need to do is add a few more points to the problem to overwhelm your

"z computers.)
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(1,2.3,4,56.7.8.10.9) (1.2,3,4,5,6,7.9,10.8) (1.2.3,4,5.6,7,10.9.8)
(1,2,34,5.6.7.8,9.10) 1(LZ&Q&é]BﬁJO)l(LZ&%SﬁJJOﬁS)[
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Figure 5.2: Search tree for the solutions of a 10-point shortest Hamilto-
nian path problem.
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NP-hardness

-2t the shortest Hamiltonian path problem is one of the best-known members
- famous class of computationally difficult problems. The number of possi-
solutions rises as the factorial of the number of points, n. This is faster than
xponential rise, so that when plotted on a graph whose vertical scale is log-
. Jndc, it rises faster than linearly. That is the plot of the number of possible
.tions, but we might be able to find a method of solving the SHP whose com-
“:onal time does not rise that fast. For example, we would be in very good
se if we could find one whose computational time rose only linearly with »,
“1en when we doubled the number of points, we would only double the com-
-sional time. Even if we had an algorithm whose time rose as the square of the
~ cer of points, n?, we would not be in such bad shape: A doubling of »n would
_ uadruple the computational time.
> thus might want to ask, Under what circumstances does a problem have
- .ation whose computational time is a polynomial function of the number of
=< (such as 30n% + 2n? + 6)? No matter what polynomial function it is, an
nential function like e¢” will overtake it for large enough n. Thus a problem
1 polynomial time is better than one with exponential time, provided one has
-zlently large value of n.
_ cer the last 20 years, computer scientists have been able to establish that there
~..ss of problems that are all equally hard, in the sense that either they all have
“ymial solutions, or none of them does. These are the NP-complete problems.
“theory is summarized in texts on computational complexity, such as the one
-zrey and Johnson (1976). The NP-complete problems include many of the
-: Jamous problems in computer science. Another class of problems that is rel-
- are the NP-hard problems. These are problems that do not have polynomial-
- solutions if the NP-complete problems do not, but which might not have
= even if the NP-complete problems did.
"~ -2 theory is a bit unusual, because it is not actually known whether
-2 .nplete problems are solvable in polynomial time. They might be. If even
- them is found to be solvable in polynomial time, it can be proven that all
- .m can be solved in polynomial time! (Some of this proof is done by show-
“at there is a way of transforming an algorithm that solves one problem into
" zrrithm that solves another). Perhaps tomorrow morning someone will find
. of solving one of the NP-complete problems in polynomial time. That per-
il immediately become the most famous figure in contemporary computer
.~ e, because she will have shown that all of the NP-complete problems can be
-..in polynomial time.
... so far, a lot of very crafty computer scientists have devoted a lot of time to
'~ a polynomial-time algorithm for some NP-complete problem, and they
. a:l failed. To me that indicates that we probably are not going to see
- nomial-time algorithm for any of the NP-complete problems during our
~35. So I am going to assume that a proof that a problem is NP-complete
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or NP-hard is equivalent to a proof that it cannot be solved in polynomial time,
and that our algorithms will run in exponential time, or worse.

The shortest Hamiltonian path problem is one of those that has been proven to
be NP-hard. An associated decision problem (Yes or no — Is there a solution to this
SHP that has length less than X?) is known to be NP-complete. So no algorithm
that we can reasonably expect to discover can run in polynomial time. Of course
that does not prevent us from discovering one that runs in exponential time but
runs rather rapidly on moderate-sized cases. We might, for example, find one
that runs in 0.0000001e” seconds. It would run quickly on small and moderate-
sized cases, but it too would ultimately be defeated by the exponential growth of
execution time as the problem size grew.

Branch and bound methods

In spite of its being NP-hard, there are ways to considerably speed up the SHP. The
simplest is branch and bound. We have already seen that we can search exhaus-
tively by traversing the search tree of solutions. But we need not actually traverse
all of it. As we go up the tree, building up a solution, we can keep track of the to-
tal length of that part of the solution so far. We also will be keeping track of the
best solution found so far, and how long it is. Suppose that the best solution so far
has length 2.932. As we go up a branch on the seaxch tree, before we reach the end
of the branch, we notice that the total length of this partial solution has reached
3.193. Any further points that we add to the solution can do nothing but increase
that length. We therefore know that no solution in that subtree of the search tree
can be any better. This is the “bound” in the branch and bound method. We can
cut our losses by ceasing further movement into that subtree and backing out. If
we have backed out when there are still a considerable number of points left to be
added to the solution, we have saved a lot of work.

The result is an algorithm that branches (searching all parts of the search tree)
but also uses its bound to greatly economize on the amount of work. Implement-
ing this branch-and-bound search, we find that for the numerical example it does
indeed arrive at the correct solution, and much faster than straight exhaustive
search. It takes 0.46 seconds instead of 10.85, a better than 20-fold improvement.

Phylogenies: Despair and hope

Branch and bound has speeded up the solution greatly, but it has not actually es-
caped from the constraints of the NP-hardness proof. In fact, branch and bound
algorithms too have a complexity that is exponential — it's just that they have im-
proved the coefficient in front of the formula and maybe on the sjze of the expo-
nent. (For example, they might in some case have computation time proportional
to €03 instead of e’>"))

The parsimony problem for nucleotide sequences is one of a number of phx-
logeny problems that are known to be NP-hard. (Finding the best tree or trees 1-
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NP-hard, knowing what is the number of changes on the best tree is NP-complete.)
The proof of these was given by Foulds and Graham (1982; Graham and Foulds,
-982). These phylogeny problems are exarmples of finding a Steiner tree in a graph.
[he set of all sequences is a graph, where adjacent points are connected if the se-
Juences differ at one site. A Steiner tree is a tree of minimal length connecting
> given set of points in a graph. Many Steiner tree problems are known to be
NP-complete or NP-hard. (Generally, the problem of knowing the length of the
—ee is NP-complete, and the problem of finding the tree is NP-hard.) W. H. E.
Day and co-workers have provided NP-completeness proofs for a variety of phy-
.geny criteria, most of which we introduce in later chapters. These include Wag-
er parsimony on a linear scale (Day, 1983), Camin-Sokal and Dollo parsimony
Day, Johnson, and Sankoff, 1986), compatibility (Day and Sankoff, 1986), least
squares distance matrix methods (Day, 1986), a variant on the minimum evolu-
“on distance matrix method (Day, 1983), and polymorphism parsimony (Day and
~ankoff, 1987).

There would seem to be reason for pessimism. But it is important to recall that
<xponential run time is not necessarily typical. The NP-hardness proof shows only
2nat, given that no algorithm achieves polynomial time, for any problem size there
‘reinstances of it that will take exponential time. Bitf these need not be biologically

. asonable cases. The worst-case complexity of the problem is exponential. But
hat is the biological-average-case complexity?

In fact, it seems that some NP-hard problems (such as tinding trees by compat-
> ity, a method we consider later in this book) are very rapidly solved by branch
1d bound methods for typical biological cases. Other problems (such as parsi-
~ony) do not have such fortunate behavior.

Branch and bound for parsimony

e use of branch and bound algorithms to speed up exhaustive search for most
- rsimonious trees is closely analogous to the algorithm that we have just de-
-“ribed for the shortest Hamiltonjan path problem. The search tree is the tree of
- 2es that we have already described in Chapter 4 (see also Figure 3.3). It is the tree

- possibilities that results from adding the species to a tree in their numerical or-
2z, at each stage choosing one of the possible places to add that species. Thus we
-. .t with species 1 and 2 in a two-species tree, add species 3 in one of the 3 pos-
- 2le places, then add species 4 in one of the 5 possible places, and so on. Figure
=~ chows this tree of trees, for a five-species case where the species are labeled A,
- (, D, and E. There are 15 possible tips, the 15 bifurcating trees, plus the interior
- des of the search trees which are 8 other incomplete trees.

We can imagine traversing this search tree. At each point on it, we have a par-
> (or a complete) tree. We can evaluate the number of changes that this tree re-
“res on our data. This could be used in a branch and bound method, as was done

- the SHP example. In their paper introducing the branch and bound method for
- logenies, Hendy and Penny (1982) have made some useful suggestions for
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Figure 5.3: Search tree for most parsimonious tree in a five-species case.

improving the bound. Figure 5.3 shows the search tree, with all 15 unrooted bifur-
cating trees for 5 species. These are tied together by interior nodes that show all 3
four-species trees, and at the root is the single possible three-species tree. Figure
5.4 shows the same search tree with the trees themselves replaced by the number
of changes of state that they require for the data in Table 1.1. The branch-and-
bound traversal starts from the bottom of the search tree. In order to rule out as
many trees as possible, as quickly as possible, it is helpful to find good trees soon.
Orme strategy would be to search the nodes of the next level in the tree in order
of the number of changes that their trees require. So we start at the bottom node
(which requires 5 changes). At the next level we have nodes that require 8, 7, and
9 changes, respectively. If we make a preliminary visit to all three of them and
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—ure 5.4: Search tree for most parsimonious tree for five species, us-
= the data of Table 1.1. Trees are shown in Figure 5.3. Dashed lines
- those not traversed by a branch and bound method. The species
~es in the data set correspond to labels A through E in Figure 5.3.

“ this, then we can plan to traverse the tree starting with the one that re-
" changes. Proceeding up to it, we discover at the next leve] that there are 5
- Zles trees, requiring 9, 9, 9, 9, and 11 changes, respectively.

we have candidate trees (the ones requiring 9 changes). We will be inter-
2av region of the tree whose bound is 9 or less. We will be uninterested in
- rany region of the search tree that has all of its members requiring more
:nges. We proceed on to the next subtree, the one whose interior node

- ~ changes, so that its bound is 8. This has 5 five-species trees attached
- those require 10, 8, 10, 11, and 11 changes. Now we have a new candi-
. requiring only 8 changes (and we discard the earlier ones that required
 now interested in bounds of 8 or less. Finally, we start to examine the
three subtrees, whose interior node requires 9 changes. Its bound is 9.
wlv we know that none of the 5 trees attached to that interior node are of

' I must require at least 9 changes, and we have already found a tree that

- nlv 8 changes. Hence we never travel along the branches of the search

. ....d beyond there (and they are therefore shown in Figure 5.4 as dashed

are done, having examined only 10 of the 15 possible five-species trees.



The saving is not great in this example, but it can become enormous in larger
cases. The saving is greater the less homoplasy there is in the data. In cases in
which there are many conflicts between information from different characters and
much parallelism and convergence, the branch-and-bound strategy does not per-
torm particularly well.

Improving the bound

In the search tree of Figure 5.4, the bound is calculated simply by asking how
many changes the partial tree at that node requires. This is a lower bound in the
sense that it cannot be higher than the number of changes on any of the trees found
farther out in the search tree. If we have found full trees that have as few as (say) 58
changes, then finding a partial tree that has 60 of them is sufficient reason to stop
there and back out of that part of the search tree. None of the trees beyond that
partial tree can have less than 60 changes, so none are candidates for being most
parsimonious trees. We would like to calculate this lower bound on the number of
changes so that it is as large as possible, and thus eliminate subtrees of the search
tree as soon as we can, saving effort. There are further methods that help do this.

Using still-absent states

In many cases, we will be examining an interior node of the search tree corre-
sponding to a partially constructed tree. Suppose that this tree has species A, B,
D, and F on it. But species C and E have not yet been added to the tree. Suppose
that the partial tree requires 48 changes. This will come from some of the charac-
ters that vary among species A, B, D, and . But some of the characters will not
vary until species C and E are added. We may be able to look at those species and
see that, after they are added, there will be at least 11 more characters varying. In
that case, no matter where they are added to the tree, the bound will be at least
48 + 11 = 59. We can thus improve the bound considerably.

If we are dealing with 0/1 characters, that calculation is correct, but if the char-
acters have multiple states, the bound can be made better by taking the multiple
states into account. If a character has two states among species A, B, D, and F, but
two more among C and E, then adding it will increase the number of changes by
at least 2, not 1. Thus what we want to add to calculate the bound is the number of
absent states, summed over all characters. This method of improving the bound
is based on the paper by Foulds, Hendy, and Penny (1979). It has long been in
use in branch and bound programs for inferring phylogenies, but this use was not
described in print until the paper by Purdom et al. (2000).

Using compatibility

Another method of increasing the bound is to use not only the states in the indi-
vidual characters but also the conflict between different characters. For two-state
(0/1) characters, one can easily judge whether or not they can both have evolved
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same phylogeny with only one change each. We will cover this in more
‘1 Chapter 8. For now, we need only note that the two characters are compat-
ey can evolve on the same phylogeny with only one change each, and that
. ‘< asimple test for this. If among all the species, all four of the combinations
© .« 10.0).(0.1).(1,0), and (1.1) are found, the characters are not compatible.
- or fewer are found, they are compatible.
t means that, when we consider the characters that are not yet varying on
~+~*ial tree, we can improve our lower bound on the number of changes of
- we add all species to that partial tree, and in doing so now have variation
- incompatible characters that did not vary before, those characters must
= >:least 3 changes of state with them. Each character individually will require
- .re change of state, and the pair will conflict, which means that one of them
ave at least one additional change of state. If there are disjoint pairs of
" ratible characters, each pair must bring with it 3 changes of state.
> method of computing the lower bound was developed by Foulds, Hendy
nny (1979; see also Hendy, Foulds, and Penny, 1980). It was soon after ap-
. to speeding up branch and bound methods, but the application to branch
- . und search for most parsimonious phylogenies was first described by Pur-
- % al. (2000). If the species that remain to be added have & pairs of characters
'« incompatible, and that do not now vary among the species on our partial
~ must add 3k changes to the bound. Organizing the characters into pairs
"<+ is as large as possible can be done fairly quickly.
“‘reasing the bound as much as possible is important in getting a branch and
- method to run quickly. Hendy and Penny (1982) discovered that order
-. ..les was important, in particular that the most different species should be
.2 as soon as possible. Purdom et al. (2000) describe improvements in speed
. .tinually re-evaluating the order of addition during the search. Penny and
<+ (1987) describe a different branch and bound algorithm that adds charac-
~. at a time rather than species.

1les limiting the search

* ner approach that has considerable promise is to rule out regions of the search
.advance. Estabrook (1968) gave a rule which constrained the ancestral char-
< for the particular case of Camin-Sokal parsimony, a parsimony method that
~o explained in Chapter 7. This might be used to speed branch and bound
. Estabrook’s rule was rediscovered by Nastansky, Selkow, and Stewart
"7 They later (1974) presented an improved method that restricted the search
- -or. However, these methods cannot be used with more general types of par-
“v
drey Zharkikh (1977; see also Ratner et al., 1995) has discovered some in-
-."ng rules that allow us to determine that certain groups must be on all most
~‘monious trees. Using them, we can reduce the size of the branch and bound



66 Chapter 5

search, sometimes greatly. Zharkikh has a number of interesting rules, but we will
use only two of them here. They apply to parsimony problems where there are
unordered states (as in the case of nucleotide sequences).

Zharkikh’s algorithm follows these rules:

1. If there are two or more species in the data set that have the same characters,
eliminate all but one of them. Repeat this until all species are distinct.

2. Eliminate all characters (sites) at which there are not or more two states that
both occur in more than one species. These cannot affect the discovery of the
most parsimonious tree and serve only to confirm that that one species is in
fact a species. Now return to step 1 unless no such sites have been found.

3. Look at all states of all characters. For each one, let the state define the mem-
bers of a group S. Calculate the number of states (over all characters) that are
shared by all members of the group S but that do not appear anywhere else.
Call this number ny(S). Compute the distances between all pairs of species i
and j that are in S. The distance is in this case the number of characters that
differ between the species. If the largest value of D;; among all these pairs
of species is less than ng(S), then the group S must appear on all most par-
simonious trees. It can now be collapsed to a single fictional species, which
has its state computed from a Fitch parsimony algorithm. Thus any states
that are shared by all members of the group appear in the new species, and
otherwise its state is an ambiguity between some of the possibilities within
the group.

4. Unless all these three steps have all failed, return to step 1.

Zharkikh's paper has some additional rules that help identify pairs of species
that cannot be in the same group, and he suggests that these allow us to take
any character state that is shared between them and, on the assumption that this
similarity is convergence, recode them as different states. The present rules can
work very well when the data are relatively clean. If all characters can be recon-
structed as having unique and unreversed changes on the same tree, then it will
work wonders. It will, in fact, find all of the structure in the tree, without need for
branch-and-bound! However, when the data set is noisy, the rules may fail to de-
fine any groups at all. It is not clear how useful these rules will be in practice, but
they are viable candidates for taking advantage of structure that is present in the
data to simplify the branch and bound search. It is possible that more powerful
“pre-processing” rules can be developed to supplement these. Other approache
are possible: Bandelt et al. (1995) show that the most parsimonious trees are con-
tained within their “median network”, and this could form the basis of a method
for finding all of them.

Note that even though Zharkikh’s rules are wonderfully effective in soir .
cases, they do not solve the NP-completeness problem. They do not work wit
all data sets, and thus leave us with exponential run times for many cases.
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Ancestral states
and branch lengths

“2constructing ancestral states

~ankoff and Fitch algorithms get us a count of the total cost of the tree, in

_-ted changes of state. In and of themselves, they do not tell us what were the
* tructed states at the interior nodes of the tree. But it is possible to use the
“ers in the Sankoff algorithm, or the sets in the Fitch algorithm, to make such

© -+ parsimonious reconstruction. The states that, in the Sankoff algorithm,
- e the smallest costs at the root node of the tree are the states that parsimony

- .a reconstruct for that node. Having assigned them, let us work out what the

. = for reconstructing the ancestral states at nodes that lie successively further

o tree.

~ ppose that we have assigned a state to a node and ook at one of the nodes

“_« lately above it. Figure 6.1 shows the logic, where state 2 is the state that
en assigned. If the state reconstructed above it were the state 1, the total
“curred would be ) + S(1). If it were state 2, the cost would be cgy + S(2),
Zrwould of course be S(2), as ¢coo = 0). The logic is similar for the other two

--Ioilities. The state or states that achieve the smallest total cost will be the ones
C.inimize ¢o; + S(1).
“us we can assign reconstructed states in the nodes immediately above the

: mmost one, on the right and on the left. If there is a multifurcation, we can

- n them in all of the lineages.

—-ntinuing in this fashion, we can backtrack up the tree, assigning nodes far-
-nd farther up, until we reach the tips, where the states may have been ob-
-d. If a tip has an ambiguity in its state, we can use the same method to esti-

- its state. The only problem that will arise in this process is what to do about

- We have acted as if they will never occur. There are basically two ways to

67



68 Chapter 6

\
Sty 502y S(3) | S(4)

Figure 6.1: The logic of the reconstruction of ancestral states. The
shaded state is the one that has been reconstructed at the lower of
these two nodes. To decide what to reconstruct above it, we choose
the smallest of ¢a; + 5(7).

handle them. In one, whenever there is a tie, we resolve it in each of the possible
ways, one after the other, each generating a traverse further up the tree. The result
will be to generate all possible combinations of ancestral states. This may in some
cases involve an exponential number of operations.

The other way is to keep all the possibilities, and carry out a slightly extended
version of the algorithm. We assign to the higher node all of the states that can
achieve minimum cost, coming from any of the allowable states at the lower node.
This is not computationally burdensome but leaves us with less knowledge. We
might, for example, know that a node has either state A or state C, and the one
above it also either state A or state C, without knowing which goes with which. In
some cases all four combinations might be possible, in some cases only two of or
three of them.

Figure 6.2 shows the second type of reconstruction, for the tree in Figure 2.2
(which had a higher cost for transversions than for transitions). Note that by fol-
lowing the arrows one could work out all combinations of ancestral states. In this
example there are three possible combinations.

We can do similar operations in the Fitch algorithm. There the assignment
algorithm is simply to take the set of states at the lower node (call this set L) and
the set that remains at the upper node after the Fitch algorithm was used (call this
set U). The reconstructed states at the upper node will be their intersection LNU if
that set is not empty, and LUU if it is empty. However, this will work only if L has
but one element. If it has more than one, we must apply this algorithun separately
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Figure 6.2: Assignment of possible states, in parsimonious state recon-
structions, for the site in Figure 2.2. The parsimonious reconstructions
are shown by the arrows, with the costs of the changes shown. The
states that are possible at the nodes of the tree are those whose boxes
in the array of numbers are solid, with the other boxes being made of
dashed lines.

schelement in L. I will leave it to the reader to apply this method to the tree
--jure 2.1. The correct answer is that the interior nodes of the tree can all be
“~.. A or C, except for the upper-rightmost interior node, which can be either A
or G.
. ~is algorithm reconstructs states at the ancestral node more correctly than the
- ximate method of Maddison, Donoghue, and Maddison (1984). Even so, it
~ave a large statistical error. Wayne Maddison (1995) has used probability
~..s of character evolution to compute how often parsimony reconstructions
-7..cs at interior nodes are wrong.
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Accelerated and delayed transformation

In some cases it may be desirable to pick one of the tied assignments of locations
of the changes. Swofford and Maddison (1987) describe accelerated transformation
and delayed transformation, two methods of assignment that attempt to maximize
reversals or maximjze parallelisms, respectively. (The algorithm for ancestral state
assignment by Farris (1970) was a form of accelerated transformation.) These have
become known as ACCTRAN and DELTRAN after the names of the correspond-
ing options in Swofford’s program PAUP*. Working up from a root, ACCTRAN
assigns changes as soon as possible, while DELTRAN tries to delay them until
further up the tree.

These options can be implemented in our algorithm by at each stage choosing
the state that is tied for best and that has changed most (or least) from the state be-
low it. The result need not be unique — there may be more than one choice at each
stage that satisfies this criterion. Accelerated transformation (ACCTRAN) forces
changes to occur as far down the tree as possible, and thus maximizes reversals.
Delayed transformation (DELTRAN) forces changes to occur as far up the tree as
possible, and replaces reversals by parallelisms.

Branch lengths

Branch lengths are numbers that are supposed to indicate for a given branch how
many changes of state have occurred in the branch. They are regarded by many
biologists as simple observations. But they are never simple. In the first place,
as we have already seen in Chapter 1, there may be ambiguities as to where the
changes in a character actually are. When there are ambiguities, what should we
do? Figure 6.3 shows an imaginary case that has many different reconstructions of
changes of state. It is a bit of a worst case.

Lorentzen and Sieg (1991) have insisted that parsimony analysis should prop-
erly result in the display of all possible assignments of states to ancestral nodes
(and thus all possible placements of changes of state) for each character. Their
objective may find little support outside of the pulp and paper industry.

The simplest way to obtain branch lengths seems to be to average the number
of reconstructed changes in each branch, averaging over all possible reconstruc-
tions of the evolution of the character. This is done for each character, and the re-
sult is summed over all characters. Figure 6.4 shows the resulting branch lengths
for the tree of Figure 6.3. Such average branch lengths always sum to the number
of changes of state reconstructed by parsimony.

One strange property of such average branch lengths is shown in Chapter 1,
where there were three different reconstructions of the placement of changes of
state in character 2 (see Figure 1.3). That tree was a rooted tree. However, when
the tree is considered as unrooted, there are then only two reconstructions possi-
ble. One pair of reconstructions differed only in assigning a change to one side of
the root or the other. Thus when we average the branch lengths in all possible re-
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Figure 6.3: Multiple reconstructions of the placement of changes of
state, all tied for most parsimonious, in a simple 0/1 character.

“=rructions for the rooted case, we will get different lengths than if we average
~ in the unrooted case!
~n algorithm for computing branch lengths by averaging over all assignments
-=2tes tied for most parsimonious is given by Hochbaum and Pathria (1997). It
Zinamic programming method that makes one pass through the tree; it can
-_<2 partial results so that one does not have to do one pass through the tree for
- branch. It infers the average number of changes per branch more easily than
~ore complicated generating function methods of Rinsma, Hendy, and Penny
and Carter et al. (1990).
~nother problem with reconstructed changes is that they must frequently un-
-“mate how many changes have occurred. If two sister species have the same
=d state (with none of their other relatives having it), parsimony automati-
reconstructs this as a single change of state in the lineage leading to this pair
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Figure 6.4: The branch lengths resulting from averaging all possible
reconstructions of this character. Lengths in the diagram are propor-
tional to the branch lengths, except for the branches of zero length.

of species. But it is also possible, if less parsimonious, for the change to have oc-
curred in parallel in both of the lineages. It is less probable that this happened,
but it is not ruled out. Instead of contributing 1 to the number of changes in the
shared lineage, it might be more reasonable to contribute 0.9 to it, and 0.1 to each
of the daughter lineages. Parsimony never does this. It does not correct for the
unobserved changes.

In Chapter 16 we will see how probability models of character evolution can
be used to infer ancestral states. Using probability models, Penny et al. (1996) and
Galtier and Boursot (2000) calculate how often parsimony misses state changes in
branches.

In reconstructing branch lengths, we would like to have them be the average
lengths. We would like to reconstruct by averaging not over all most parsimo-
nious reconstructions, but over all possibilities in proportion to the probability of
their occurrence. We must correct the branch lengths that are reconstructed by par-
simony, to allow additional events. This inflates the branch lengths beyond their
parsimony values. Doing so for parsimony reconstructions is a complex task, bu:
we shall see that in distance matrix and likelihood methods, this correction occurs:
automatically.
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Variants of parsimony

: tar we have discussed only parsimony methods in which there is symmet-
change among two or more states. However, we have also introduced the
* ~ff algorithm, which is capable of dealing with a much more diverse collec-
- parsimony methods. In this chapter, we will review a number of parsimony
-0ds other than Wagner parsimony.

~amin-Sokal parsimony

~1and Sokal (1965) introduced this, perhaps the simplest parsimony method.
-~umes that we know which is the ancestral state. In its simplest form there are
szates, 0 and 1, and change can only happen from state 0 to state 1; reversals
~possible. Figure 7.1 shows a 0/1 character, with its reconstruction on a given
:cording to Camin-Sokal parsimony. Reconstruction of ancestral states and
..ng of changes of state according to Camin-Sokal parsimony are quite simple.
an use the Sankoff algorithun, with an infinite cost of 1 — 0 changes, but this
. “ecessary. All that is necessary is to note that if a node has any 0 states in
~mediate descendants, then it must have state 0. Otherwise (when all of its
-diate descendants are in state 1), it must be in state 1. One need only carry
- nostorder tree traversal, going down the tree. A node is assigned state 1 if
of its immediate descendants have state 1, and none of them have state 0. It is
med an unknown state if all its immediate descendants have unknown state;
~vise, it is assigned state 0. The changes are immediately apparent: There is
-~ every node that has state 1 while its immediate ancestor has state 0.
.2 application of Camin-Sokal parsimony is in the evolution of small dele-
- in DNA, when we have reason to believe that they will not spontaneously
. If we can code each deletion as present or absent in each sequence, then
~-Sokal parsimony would be appropriate. In more complex cases, where
~'ns overlap and we cannot be entirely sure whether any one of them is
tor absent, it would not be appropriate.

73
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4 changes

Figure 7.1: A simple 0/1 character reconstructed on a tree according to
Camin-Sokal parsimony. Four 0 — 1 changes of state are required.

Camin-Sokal parsimony infers a rooted tree. The penalty depends on where
the root is assumed to be. Thus it will favor the placement of the root in some
particular part of the tree.

Estabrook (1968) gave an interesting method for delimiting the set of most par-
simonious trees in Camin-Sokal parsimony (see also Nastansky, Selkow, and Stew-
art, 1973, 1974). This can form the basis for a branch-and-bound algorithm. As the
focus of most work shifted to Wagner parsimony after this time, there was unfor-
tunately no further development of this method.

Parsimony on an ordinal scale

Farris (1970) gave algorithms for counting changes, and for inferring ancestral
states, when characters were on an ordinal scale. This is the case of discrete states
arranged in a linear order, with change allowed between adjacent states and all
these changes counted equally. Interestingly, Farris’s algorithm also covers the
case when the possible states are in a linear continuum, with changes counted bv
measuring the absolute values of the differences between the states at the two ends
of a branch. Thus if we have states such as 0.342, 1.974, and 2.569 at the tips of the
tree and we see a branch with states 0.873 at one end and 1.734 at the other, we
count the total change in that branch as [1.734 — 0.873| = 0.861.

Farris’s algorithm assigns states and counts changes in two passes through the
tree, one downward and one back up. The downward pass is, in effect, an applica-
tion of the Sankoff algorithm. Suppose that at a node of the tree, the function th--
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¢ -he conditional cost, the function needed by the Sankoff algorithm, is f(x).
out that f(x) is always of the form:

e+ (ze—xz) x <1y
flx) = c e < <a, (7.1)
c+(x—xz) >

.2 values z¢ and z, that are left and right ends of the interval of most par-
Js state assignments at that node. In other words, the conditional cost is
within aninterval [z¢. z,] and rises linearly from both ends of the interval,

pes of —1and 1.
1=+ case, we can use the Sankoff algorithm to show that when two adjacent
* 1 bifurcating tree have intervals [z7. 23] and [z5,.r4], with 23 > 24, if the
s overlap (z3 < 73), then the immediate ancestor can be assigned interval
sa).min(ze. xy),. If they do not overlap (z3 > x2), then the interval is
“hat separates the two disjoint intervals ([z2. x3]). (In the former case, one
< .cro change. In the latter case, one counts an amount of change 3 — x3.)

- _tifurcating trees, the rules are more complicated but still result in a single
seing constructed on the downward pass at each internal node of the tree.
~“ord and Maddison (1987) gave a detailed exposition of Farris’s algo-

-d provided a proof of its correctness. They discussed the issue of re-

- ..ng ancestral states when there are multiple possible reconstructions and

-2 the accelerated transformation and delayed transformation (ACCTRAN
_TRAN) reconstructions. Farris’s reconstruction, which was an ACC-
~cthod, has become known as Farris optimization.

_..0 parsimony

' Quesne (1974) suggested a parsimony method that is based on “Dollo’s
1ilo, 1893). This law, which Dollo called the “Law of Phylogenetic Irre-
. " states (in one form) that a complex character, once attained, cannot be
0 that form again. Thus once a complex character is lost, it cannot re-
.cept in noticeably different form. There are many exceptions to this law,
many different statements of it in the literature. Le Quesne suggested al-
Nat do not quite implement what he intended to; this was pointed out
wcessary algorithms given by Farris (1977a).
simplest form, Dollo parsimony assumes that there are two states, 0 and
=laying the role of the complex derived state. 0 is the ancestral state.
- d to evolve only once, but it is allowed to revert to state 0 multiple
- number of these reversions is the quantity being minimized. This can
.mately implemented in Sankoff’s algorithm by assigning a large cost to
sages and a considerably smaller cost to 1 — 0 changes. It is possible to
2~ more directly as well, using an algorithm similar to the Fitch algorithm,
- 0 passes, one down the tree and one back up.

‘

a
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Figure 7.2: A simple 0/1 character reconstructed on a tree according to
Dollo parsimony. Three 1 — 0 losses are required.

Figure 7.2 shows the same tree and data as in the previous figure, reconstructed
according to Dollo parsimony. In the branch leading to the upper-left from the
bottommost fork, it is necessary to assume that state 1 arises. All occurrences
of state 0 above that are assumed to arise by losses 1 — 0. There are 3 losses
required to explain these data. Dollo parsimony has been most widely applied as
a crude model of the gain and loss of restriction sites in DNA. We will discuss that
application and its validity in a later chapter.

Like Camin-Sokal parsimony, Dollo parsimony is inherently a rooted method.
It assigns different penalties to differently rooted trees, so that it allows us to infer
not only the unrooted tree topology, but the placement of the root as well.

Polymorphism parsimony

A third variant of parsimony assumes that apparent parallel changes of state are
not really independent. They occur because the alleles that are needed are alreadyv
segregating in both populations. The parsimony method based on this assumes
that a state of polymorphism for two alleles is attained in a population; beyond
that point, all occurrences of either state 1 or state 0 are to be explained by losses
of one allele or the other. Polymorphism is assumed to arise only once in each
character. But this parsimony method does not minimize the number of losses.
Instead, it assumes that retention of the polymorphism along branches of the tree
is to be minimized. One counts the number of branches that are reconstructed a=
being polymorphic for both states and minimizes the sum of that number over al

characters.
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Figure 7.3: A simple 0/1 character reconstructed on a tree according to
polymorphism parsimony. Five occurrences of retention of polymor-
phism are required. The region of the tree that has the polymorphic
state is shaded gray.

_e polymorphism parsimony method was first used in a numerical example
suted by me for the use of Inger (1967); it was called by the less euphonious
. "heteromorphism parsimony.” It was first described completely in print by
“211978) and by me (1979). Figure 7.3 shows the reconstruction of the character
- solymorphism parsimony would make.
1lvmorphism parsimony can be used for morphological characters, but it
- ts most natural application in explaining changes in karyotype due to chro-
- e inversions. [t is very unlikely that the same inversion will arise twice,
“versions can coexist in the same population, and one would explain appat-
- rallel gains of the same inversion by assuming that the inversion arose only
- >ut that polymorphism might have persisted long enough to explain differ-
.unts.
“o algorithms necessary for implementing the polymorphism parsimony
1 are discussed in the references given above. Interestingly, it is not sim-
implement polymorphism parsimony using the Sankoff algorithm. One can
© state corresponding to polymorphism, but one must be able to assign a
v to the retention of polymorphism. Thus one must use a version of the
* algorithm that will allow us to assign a penalty for persistence in a state
-t change!
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Unknown ancestral states

All three of the variants described in this chapter require us to know which state is
the ancestral one in each character. What if we do not know this? We can imagine

inferring the ancestral state by parsimony. We could count, for character i, N/,

the number of changes if 0 is the ancestral state, and J\"l(i), the number of changes
if 1 is the ancestral state. This requires two evaluations per character. Then we
simply choose the smaller of these two numbers. Thus the total number of changes

in the tree is _ _
N = Z min (A’é". N](')) (7.2)
i

The estimate of the ancestral state for each character is, of course, whichever state s
gives the smaller value of N9 Tt should be immediately apparent that the amount
of effort involved in inferring ancestral states is twice as great if there are two
possible states.

Multiple states and binary coding

Camin and Sokal’s (1965) original method assumed that each character could have
multiple states, arranged in a linear order, such as

-1—0—=1—-2
A corresponding assumption for undirected change would be
~1l=0—=1e2

Both assumptions can be addressed by the proper choice of costs in Sankoff’s al-
gorithm. For the first, we would use the cost matrix:

To:| -1 0 1 2
From :
-1 - X X X
0 1 - 1 =
1 x oo — 1
2 x o X -

while for the latter, we would instead assume:

To:| -1 0 1 2

From :
! - 1 o<
0 1 - 1
| 1 ~ 1 - 1
2 | oC oC 1 —
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New characters

4 Original a b oc d e
\ -1 1 0 0 0 0
(4

> 3 o lo 0o 0 0 o
1 o 1 0 0 0

c\ / d
-1 1 > o 1 1 0 o
a\ /147 310 1 0 1 0
0 4 o 1 1 0 1

Figure 7.4: A character with 6 states, connected in a character state
tree that shows which states can be reached from which other states.
The set of binary (0/1) characters that is equivalent to this is shown.
These binary characters will have the same number of character state
changes as the original multistate character. The new characters are
labeled with letters, which are also shown next to the corresponding
branches on the original character state tree.

a1 cost matrices can be set up for other cases with multiple states.
—owever, there is an alternative method of treating such cases without using
~znkoff algorithm. Sokal and Sneath (1963) invented additive binary coding for
o= that are arranged in a linear order. This was generalized by Kluge and Farris
-~ to cope with branching sequences of states, which have been called character
crees. The general idea is that a set of 0/1 characters can be produced that
=vs have the same number of changes of state as do the original characters,
-7 evaluated on the same tree. Figure 7.4 shows a simple character state tree
"~ the set of binary characters, called binary factors, that are equivalent to it. The
~-ral method of producing this binary recoding is to make a new 0/1 character
-ach branch in the character state tree. Each state of the original multistate
“zcter is then assigned a 1 in this 0/1 character if it is connected more closely to
-nd of the branch, a 0 if it is connected more closely to the other. Thus the new
-~ has states 2 and 4 connected to one end of branch ¢ on the character state
and states —1, 0, 1, and 3 connected to the other end of that branch. States 2
© < are then assigned state 1 in the new character ¢, and states —1, 0, 1, and 3
=signed state 0. Similarly, the new state b has the original states 1, 2, 3, and 4
-~=cted to one end of branch b, and —1 and 0 connected to the other end of the
=20 b. It should be immediately apparent that no two of the original character
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Figure 7.5: A character with six states, connected in a rooted charac-
ter state tree. Also a phylogeny with the states of this character given
at the tips. There is no way to assign states z and y and satisfy the
requirements of Dollo parsimony.

states will have the same set of binary factors. When one moves along a branch in
the character state tree, exactly one of the new characters will change, namely the
one corresponding to that branch.

In the above example, all the arrows on the character state tree were bidirec-
tional, and the binary factors were evaluated by Wagner parsimony. If change is
unidirectional along any arrow on the character state tree, one should evaluate the
corresponding binary factor by Camin-Sokal parsimony instead.

Unfortunately, binary recoding is not possible for unordered multistate charac-
ters such as bases in DINA, where every state can change to every other, producing
loops in the character state tree.

Dollo parsimony and multiple states

Aninteresting paradox arises when we attempt to extend Dollo parsimony to char-
acters with multiple states. Recall that Dollo parsimony is inherently a rooted
method. Figure 7.5 shows a character state tree (essentially a rooted version of the
one in the preceding figure). It also shows a phylogeny that we wish to evaluate,
along with the states at the four tips of the tree. How can we reconstruct states
such as x and y so as to satisfy the requirement that each derived state originate
no more than once? In fact, we can’t. If states z and y are taken to be 1, for exam-
ple, then states 2 and 3 must both have arisen twice. If z and y are both taken to be
2, then state 3 must have arisen twice (and 2 must have reverted to 1 an extra time
as well). A similar problem arises if we take both z and y to be state 3. The reader
can try other possibilities. All have similar problems, or worse.

The only way out is to relax some of the requirements of Dollo parsimony anc
to assume that a state may have arisen more than once. However, then we mus:
have some way of deciding how much to penalize a tree for an extra origin, com-
pared to extra losses. Interestingly, if we try to escape from the problem by usin -



Variants of parsimony 81

snary recoding, it will reconstruct some states in the ancestor that are nonexis-
-t These problems were discussed by me (Felsenstein, 1979) in a paper on the
- ationship between methods.

Polymorphism parsimony and multiple states

.:h polymorphism parsimony, there are fewer complications when characters
»ve multiple states. The main problem comes with counting the number of states
-~regating. Consider the situation in Figure 7.4. Suppose that we have a branch

»_has states 3 and 4 segregating in it. Do we count this as one polymorphism or

~e? The character state tree seems to imply that if the genetic material for states

d 4 are present, states 1 and 2 will also be present. Presumably, in that case
- will want to count the polymorphism threefold, for the 3 extra states that are

Zregating.

{t we use binary factors, we can do this automatically. Using the binary coding

“igure 7.4, we would have states 01010 and 01101 present at these five binary

. ors. This means that there would be 3 polymorphisms instead of one.

“ransformation series analysis

sZe multiple states are often analyzed by Wagner parsimony, we may fre-
-..tly suspect that the states in morphological or behavioral characters reflect
“ underlying determination that implies a character state tree. Sometimes the
. is of the phenotypes suggest features of the tree; sometimes they do not. In
s tter case we might want to find that character state tree that would allow evo-
n of the character on the given phylogeny with the fewest changes of state. We
even want to go further, and adjust the phylogeny and the character state tree

- - each other.
_ais has been proposed by Mickevich (1982), who called this transformation

- nalysis. She had a specific algorithm that involved assessing which states
nearest neighbors on the tree, and connecting those to make an estimate of

.haracter state tree. Starting with initial guesses of the character state trees,

-ould infer an initial phylogeny, infer new character state trees from that, and

ed iteratively until the estimates of both trees ceased to change.

- = the phylogeny in Figure 7.5, the three states 2, 3, and 4 are observed. The

o lter state tree 2 «— 3 —— 4 would fit that phylogeny, with no homoplasy.

night alternatively not want to force change to be unidirectional, so that an

~cted character state tree 2 — 3 — 4 would be inferred instead.

.+ papers by Mickevich and Weller (1990) and Mickevich and Lipscomb
discuss further issues, including use of prior biological information about
aracters to constrain the inference of the character state tree. An analo-

- ipproach has been suggested to biogeography (Mickevich, 1981) and to elec-

- cetic alleles (Mickevich and Mitter, 1981). When the character values exist
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on a numerical scale that constrains their order, transformation series analysis will
confront the character coding problems which are discussed in Chapter 24.

As trees become larger and morphological and behavioral characters are an-
alyzed in greater detail, there are bound to be more algorithms proposed to find
the combination of character state trees and phylogeny that, taken together, re-
sult in the fewest changes of state. Statistical modeling approaches should also
be possible. The algorithmic challenges may be formidable, given the large num-
ber of character state trees that are possible with even a modest number of states.
It seems best to reserve the name transformation series analysis for the general
problem rather than a particular algorithm.

Weighting characters

In all parsimony methods discussed so far, we have counted changes equally no
matter in what character they occurred. Systematists have frequently discussed
“weighting” characters. In parsimony methods weighting assumes a concrete
form. We can have a set of weights, wy, we,ws.....w, for the n characters. A
change in character & is counted by adding an amount w, to the total penalty.

This approach has two uses. If we want to drop a set of characters from the
analysis (for example, to examine the effect that they are having on the result), we
could set 1y = 0 for the indices i of all of these characters and leave w; = 1 for all
other characters j. Or we may want to allow our method to be differently sensitive
to different characters. We shall see in a later chapter that these different weights
correspond to different rates of evolution. For example, we might be analyzing
DNA coding sequences, and we might wish to take most seriously change in posi-
tion 2 of each codon, take change in position 1 a bit less seriously, and take change
in the often-synonymous third codon position a lot less seriously. We might then
assign weights 3, 4, and 1 to the three codon positions. The sequence of weights of
sites would then be: 3,4,1,3,4,1,3,4,1,3,4,1, ...

This would cause the method to avoid changes in the second codon position
as much as possible, avoid changes in the first codon almost as strongly, but place
much less emphasis on avoiding change in the third codon position. Another
heterogeneity that is often used to weight changes differentially is the difference
In rate between transitions and transversions. It has long been recognized that
transversions occur at a lower rate than transitions. Transversion parsimony is basec
on the concern that, across deeper branchings, transitions may have reached sat-
uration, leaving the transversions bearing most of the information. It is the parsi-
mony algorithm in which all transitions have weight 0, and all transversions hav.
weight 1. Weighting methods have also been empirically derived, based on the
distribution of numbers of changes of state across a random sample from all pos-
sible phylogenies (the profile parsimony of Faith and Trueman, 2001), and across .
distribution of phylogenies obtained by bootstrap sampling of all characters (t-
weighting method of Kjer, Blahnik, and Holzenthal, 2001).
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corithms for weighting characters were first clearly discussed by Farris
-~ 1) in the first paper on numerical weighting algorithms.

~LIcessive weighting and nonlinear weighting

“'s0 possible to weight changes of state differentially according to how many
- -1 there are. This possibility is raised, and an algorithm given, by Farris
~ . If the weight on character i were w;, and there were n; changes of state
< character on a particular tree, we would normally expect to penalize the
v;. Farris’s approach is to use a function f(n) and penalize the character
This raises the possibility of diminishing returns when penalizing addi-
changes of state on a character, or even of increasing returns that penalize
~ditional state more. Farris recommends the use of weights that drop rather

_ with increasing probability of change of the character.
her way of thinking of this scheme is that when there are n; changes, we

- reach of them by an amount g(n;) = f(n;)/n;.

“Cessive weighting
- suggested a successive weighting algorithm for searching for most parsi-
- trees under these nonlinear weighting schemes. One starts with equal
. - for all changes and searches for the tree 77 that minimizes the total num-
-d hence the weighted number of changes as well). Looking at T3, one cal-
- 1 new weight per change for each character, based on the total number of
't changes on T4. Thus if character 37 changes 4 times, one sets the weight
“ge in that character to wyr = ¢(4). Armed with this new set of weights
> ~ge (one for each character) we set out to find the tree 75 that minimizes
vhted sum of changes. Having found it, we now count how many changes
. 2racter shows on tree T, and use it to set new weights w; = g(n;). These
used to search for a new tree, 15.

-rocess continues until it does not change the tree. This generally happens
- tickly. The final tree has the property that the weights based on the number
- .25 of each character on that tree cause us to find the same tree again. Table
- the process for the simple example of the data in Table 1.1. There are
“~le trees for these 5 species, as the trees are unrooted. Considering the
- of changes in each character, there are 5 patterns of changes. Thus 3 of
2eshave2,2,2, 1,1, and 1 changes on characters 1 through 6. No matter
- these 3 trees we are looking at, the weights that will be assigned to the
““_r< for the next round of search will be the same: g(2), ¢(2), 9(2), g(1), g(1),
. We call these trees type IV and represent them by one row in Table 7.1.
vample we use the function ¢(n) = 1/(n + 2) (though, as there are only 2s

- actually does not matter what weighting function we use).
“g with any tree (say one of the 3 trees of type IV), we use the weights
.. ov that tree, which would be (0.25, 0.25, 0.25, 0.333, 0.333, 0.333) and com-
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Table 7.1: A simple example of successive weighting using the data
of Table 1.1. There are 15 possible unrooted bifurcating trees, which
fall into 5 types according to how many changes they have in each
character. The table shows the total weighted number of changes when
each tree type is evaluated using the weights implied by the 5 different

tree types.
Number | Have pattern | Type Tree type used for weights
of trees of changes | of tree 1 Il Jatl v \Y
1 (1,1,1,22,1) | T | 2333 2250 2167 2417 2.083
2 (1,21,2,21) II 2.667 2500 2500 2.667 2.333
‘ 2 (2,1,2,2,2,1) I 3.000 2917 2667 2917 2.583
3 (2,2,2,1,1,1) v 2.833 2.667 2500 2.500 2.333
7 (2,2,22,2,1) Vv 3.333 3.167 3.000 3.167 2.833

pute the total sum of weighted changes for each of the 5 types of tree. For example,
type II will require

0.25 + 2(0.25) + 0.25 + 2(0.333) + 2(0.333) + 0.333 = 2.667

weighted changes. We can consider all the tree types using these character weights
by looking down column IV of this table. The tree that has the smallest sum of
weights is the first one, tree type 1. In fact, in all 5 columns, tree type I is the best.
Thus if we start successive weighting with tree type 1V, we arrive at tree . As tree
type I recommends itself, the process terminates there. Farris (1969b) discussed
using for starting weights a formula based on work by Le Quesne (1969). The
formula considered how many other characters a given character was compati-
ble with. In the present case, this would yield the same result as starting with
unweighted characters, and would start with tree type L

With such a small example, we cannot see many aspects of the behavior of
the method. For example, successive weighting can make it difficult to detect
ties. Suppose that we had a case where two characters were in conflict. On tree |
character 1 had one change, and character 2 had 2 changes. On tree II character 1
had 2 changes, and character 1 had one change. Therefore, if we initially look at
tree I, we are told character 1 is of high weight, and this causes us to continue to
prefer tree I to tree II. The case of Table 7.2 shows this problem. For four species
there are three possible unrooted trees. If we have two 0/1 characters that favor
((A,B),(C,D)} and two that favor ((A,D)(B,C)), we get the situation in this table.
Starting with tree III we have an even choice between tree I and tree II. 1f we
choose tree I, it recommends itself over tree II. Similarly, tree IT recommends itself
over tree I. The final outcome depends on the initial tree, and once one has reached
one of trees I or 11, the other seems less desirable.
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Table 7.2: An example of successive weighting that would show the
difficulty it has in detecting ties. The table shows the total weighted
number of changes when each tree type is evaluated using the weights
implied by the different tree types.

Number Pattern Type | Tree type used for weights
of trees | of changes: | of tree I II 111

1 (1,1,2,2) I 1.667 1.833 1.5

1 (2,2,1,1) I 1.833  1.667 1.5

1 (2,2,2,2) 1 2333  2.333 2

‘onsuccessive algorithms

" alternative to successive weighting is to allow the weights to be functions of the
~mber of changes in the character, but to do the search nonsuccessively. Goloboff
~+3a, 1997; see also David Maddison, 1990) has proposed using functions much
- those Farris used, but choosing the weights used for a tree based on the num-
- of changes on that tree. Thus if tree i has n;; changes in character j, the total
“alty for tree 7 will be

J

Z ”'ij g (IL;’]’)

- < corresponds to evaluating each tree using its entry in the diagonal of Table
Going down that diagonal from upper-left to lower-right, we find that the
~alties of the trees are 2.333, 2.500, 2.667, 2.500, and 2.833. The best of these is
3. giving the same final result as before. In general, the results need not be
=ame, though if we start at the best tree by this criterion (as Goloboff, 1993a,
-=7t3), then it can be shown that the successive method will not choose any other
- vrovided g(n) is a decreasing function of n.
~arris (1969b) and Goloboff (1993a, 1997) argue that we should prefer functions
that decrease with n. One example of a specific weighting function that is de-
~ing and that was applied by a nonsuccessive weighting algorithm is threshold
-~ mony {Felsenstein, 1981a), which uses the function

g(n) =min[n. T|/n

= T is a threshold value. This is the same as counting all characters that have
~ than T changes as if they had exactly 7" changes. We shall see in Chap-
“hat there is a rationale for weighting functions like this, when one uses a
num Jikelihood framework for inferring phylogenies. The minimum phyloge-
mber criterion of Goldberg et al. (1996) is a nonsuccessive weighting proce-
unusual for putting its weight on the character with the highest number of
zes of state. Most biologists would feel happier with an emphasis on the fit
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of the characters that change most slowly. The Strongest Evidence weighting pro-
cedure of Salisbury (1999) is also, in effect, a nonsuccessive weighting procedure,
as it evaluates the weight of each character with reference to the distribution of
numbers of changes of state obtained if we permute taxa on the present tree.
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_ompatibility

“2ve seen, some systems of character weighting have as their objective to
- ~Zinformation from the noisier characters and to emphasize the information
ie characters that have the least homoplasy. The simplest such system
2. to use only information from characters that have no homoplasy — that
.« perfectly. Of course, we cannot predict in advance which characters
be.
nethod of finding out is to take each tree, compute the number of changes
—at each character requires on it, and score each character as either com-
with the tree or not. We define a character as being compatible with a
-z can evolve on that tree with no homoplasy. We then find that tree that
5 the number of compatible characters. This criterion was first proposed
2 <omewhat implicitly) by Le Quesne (1969). If a character has k states in
-~ chen it is easy to assess whether it is compatible with a tree: we simply
ner it requires k — 1 changes of state on that tree. It must require at least
;ause one of the states will be ancestral, and the other £ — 1 must arise at
-e each. If it requires more than k — 1, then one of the states will arise more
e on the tree.
ved this way, compatibility is a close relative of parsimony methods. In cer-
<25 it 1s also derivable from weighted parsimony methods. We have seen,
~-evious chapter, that threshold parsimony involves counting the number
- <us up to a threshold value, T, and beyond that, counting the character as
< venalty T'. If the characters all have two states and we set the threshold to
- -2e threshold method will actually be the same as a compatibility method.
.»5y to show: On any given tree there might be 7, characters that require
zes, np that require 1, and n — 1y — n; that require more than one change.
“~ penalty will then be ny42(n—mng—mn1). That turns out to be 2n—2ny—n;.
. ~umbers n and ng are always the same on all trees that we might look

87
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Table 8.1: The data set of Table 1.1 with an added species all of whose
characters are 0.

Characters

Species |1 2 3 4 5 6
Alpha 1 0 0 1 1 0
Beta 0 01 0 0 O
Gamma |1 1 0 0 0 0
Delta 11 0 1 1 1
Epsilon |O 0 1 1 1 0
Omega |0 0 0 0 0 O

at (characters that require 0 changes having only one state, and thus requiring 0
changes no matter what the tree), it follows that in minimizing the thresholded
number of changes of state, we are necessarily maximizing the number of charac-
ters ni.

Thus an appropriately weighted parsimony method, one in which the weights
of changes drop away strongly with the number of changes in that character, is the
same as a compatibility method.

The problems of searching among all possible trees, and of evaluating the
thresholded number of changes of state, are the usual ones, and we will not go
into them further here. However, in some cases we can use a table of pairwise
compatibility among characters to go more directly to the correct tree. We need to
look first at the way compatibility among characters is tested.

Testing compatibility

In a number of cases, a different approach can be used. In the case of two states
(such as 0 and 1) with no ambiguous or missing data, we can test directly whether
two characters could be compatible with the same tree. This then leads to a verv
different algorithm for finding the best tree. The test was introduced by E. O
Wilson (1965). The test is extremely simple. For any pair of characters that we wish

Table 8.2: The compatibility test for characters 1 and 2 of the data of Table 8.1

0|
1

HE
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“zble 8.3: The compatibility test for characters 1 and 4 of the data of Table 8.1

o
X X| o
X X[

- we consider each species in turn. Four possible combinations of states are

", as the first of these characters can be either 0 or 1, and the second can also

~- 0 or 1. We note which of the four combinations have occurred. Table 8.2

v

~ 2.1e four combinations, for characters 1 and 2 of the data in Table 8.1. This
. 2ds one species to the simple example with 0/1 characters that we used in

-~ 1. There are three of the state combinations that occur. Wilson's test says
" four boxes are marked, then the two characters are not compatible, in the

-~ .t they cannot co-occur on the same phylogeny without at least one of the
s changing twice. If three or fewer boxes are marked, then the characters

- natible: There exists a phylogeny with which both of them are compatible.
* 3 shows the compatibility test for characters 1 and 4 in the data of Table
.~2 characters are not compatible. Proceeding in this way, we can test every

saracters for compatibility. Figure 8.1 shows the resulting compatibility

- zable showing for all pairs of characters which ones are compatible with

~ovediscussion has assumed a Wagner parsimony model, with the ances-
unknown. If we know which state is ancestral in both characters, the test
- =.ightly. If state 0 were the ancestral state in both characters, we would
- oox for the state combination (0,0) whether or not it was present in the
v that the test is the same.

‘rectness of Wilson's test is easy to establish. If three of the boxes in the
marked, then we can connect them together by two links. This corre-
2 tree with the species grouped into three clusters, connected by those

- _ach link corresponds to the origin of one state.
-~ ink from (1,0) to (0,0) corresponds to state 0 arising in the first character
"~ _ tor the other way around). The reader will quickly see that if one box
2. no states need arise; if two or three of them are checked, no more
-igin of each state need occur, but if all four boxes are checked, then of

2 of the states in one of the characters must arise twice.

Cairwise Compatibility Theorem

-2:on for making a compatibility matrix is to use it to choose as large
- set of characters, all of which can be compatible with the same tree.
- _litv matrix does not at first sight tell us that; it shows us which pairs
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of characters are compatible, although without ensuring us that the different pairs
that are compatible with each other are all compatible with the same tree.

In fact, there is a remarkable theorem that guarantees us that. [t does not have
a standardized name, but I like to call it the

Pairwise Compatibility Theorem. A set S of characters has all pairs of
characters compatible with each other if and only if all of the characters
in the set are jointly compatible (in that there exists a tree with which
all of them are compatible).

The theorem is true for 0/1 characters or any characters having at most two
states per character. It is not true, as we shall see, for data with missing states or
for nucleotide sequence data having four states. The Pairwise Compatibility The-
orem has been proven for a number of different cases in three papers by George
Estabrook, F. R. McMorris, and their colleagues (Estabrook, Johnson, and McMor-
ris, 1976a, 1976b; Estabrook and McMorris, 1980). The Jast of these papers provides
a particularly simple proof. For characters with two states it was earlier proven by
Buneman (1971).

If we consider the set of species in which one of the states (say, 1) occurs, the
test of compatibility between two characters amounts to saying that the two sets
of species (one for each character) S and T are either disjoint, so that SNT = 0, or
S CT,orS 2T. Letus say that in this case the two sets are part of an hierarchical
structure. If the two sets overlap but neither is contained within the other, then
all regions of the set of species exist, so that all four state combinations exist. The
Pairwise Compatibility Theorem then amounts to the assertion that if all pairs of
subsets are able to fit into an hierarchical structure, then when taken together they
are all part of an hierarchical structure. This is nearly obvious, although a formal
proof is not a bad idea (see Buneman, 1971).

1 23 456

Figure 8.1: A compatibility matrix for the data set of Table 1.1. Shaded
boxes are those for which the pair of characters are compatible.
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Figure 8.2: The graph corresponding to the compatibility matrix in Fig-
are 8.1, Points are characters, and lines between them indicate that that
pair is compatible.

-_iques of compatible characters

- . 8.2shows a graph corresponding to the compatibility matrix in Figure 8.1.

Jharacter is represented by a point, and lines are drawn between each point

- I uthers with which that character is compatible. A set of characters that are

“- “wise compatible corresponds in this graph to a set of points that form a

* Hoints that are all mutually connected. A maximal clique is a clique to which

it can be added and have the result be a clique. In the graph in Figure 8.2,

-_7 of characters {1, 2, 3} is a clique but not a maximal clique (since 6 can be

.7 . {1,2,3, 6} is a maximal clique. The other maximal clique in the graph

3, 6}. Le Quesne’s criterion directs us to find the largest maximal clique,

- nthis case is {1, 2, 3, 6}. By the pairwise compatibility theorem, there must

-ree for each of these cliques, and the characters that are in the clique all are
- atible with that tree.

‘need to find the largest clique. In the graph of Figure 8.2 we can do this

" vection. More generally we need to use an algorithm. One such is Bron and

" ch’s (1973) clique-finding algorithm, which is a branch-and-bound proce-

It makes use of an incidence matrix of the graph: In effect, this is just the

> ziibility matrix. It may find cliques that are tied for size, and will find all

* < finding of trees by compatibility using cliques has led to the method some-
being called a clique method. This is often done by opponents of the tech-
- who prefer that name because it implies that the proponents of it are a mere

principle, the finding of the largest clique is not easy: Day and Sankoff (1986)
<hown that the task is NP-hard. Practice is, however, different. A bad case
2 >rsimony methods is (for two-state data) a data set that is a box filled with
= 0s and 1s. But for compatibility that case is an easy one. Few if any pairs
-racters will then be compatible. The cliques will be small and will easily
~nd by algorithms such as Bron and Kerbosch’s. When the data sets are
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very clean (the opposite case), then almost all characters will be in a single large
clique, which the algorithm again finds easily. In fact, biological data rarely, if
ever, generate compatibility matrices that cause the algorithm any difficulty. Thus
in practice, though not in theory, compatibility methods run much more quickly
than do parsimony methods.

It may be possible to go even faster. Gusfield (1991) has presented an algo-
rithm for testing a set of 0/1 characters for joint compatibility and creating the tree
from them if they are compatible. It requires an amount of computation only pro-
portional to the product of the number of species and the number of characters.
This is less effort than checking the compatibilities of all pairs of characters. How-
ever, it requires that we know which set of characters we want to check; it does
not solve the problem of finding the largest clique of characters.

Finding the tree from the clique

Once we have the largest clique or cliques, we still need to estimate the phylogeny.
This is done simply by using each character to successively subdivide the species.
This algorithm was described by Meacham (1981) and is known as tree popping.
Each character defines a partition of the set of species into those that have state 0
and those that have state 1 for the character. In the data set of Table 8.1, with the
clique {1, 2, 3, 6}, the first character divides the species into two sets according
to the state of that character. Tt divides the species into {Alpha, Gamma, Delta}
and {Beta, Epsilon, Omega}. Implicitly, there is to be a branch on the tree between
these two sets, with character 1 changing once along that branch. The second char-
acter sets apart the set {Gamma, Delta}; in effect it subdivides the first set of that
pair. Because character 2 separates { Gamma, Delta} from the other species, it im-
plicitly leaves { Alpha} connected with {Beta, Epsilon, Omega}. We then continue
this process of subdivision of one set or the other. Each such subdivision can intro-
duce at most one branch. Some characters may not divide the species sets further,
but serve to reinforce them and place one more change along a branch. When a
new branch is inserted, the character shows which species are separated by that
new branch.

Figure 8.3 shows the process, resulting in a tree. This is not the same as the
most parsimonious tree. It is not hard to show that with five or fewer species and
0/1 data with unknown ancestral states, the parsimony and compatibility trees
will always be the same. This case has 6 species and is the simplest one I know in
which the parsimony and compatibility methods yield different trees.

In general, compatibility trees and most parsimonious trees will not be the
same when the weights of changes do not depend on how many there are in the
character.
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Alpha
Beta

Beta
Character 1

Camma Epsilon

Omega
Delta mess
Epsilon

Omega Character 2

Beta
Epsilon

Omega

Character 3

Character 6

~reels:
Gamma Al}|)ha Orr|1ega Beta
/ Epsilon
Delta P

Figure 8.3: The “tree popping” process of sequentially subdividing the
set of species, according to the characters in a clique. The result in this
case is a tree that is compatible with all the characters in the clique.
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Table 8.4: A data set that has all pairs of characters compatible, but
that cannot have all characters compatible with the same tree. This
violates the Pairwise Compatibility Theorem, owing to the unknown
(”?7) states.

Alpha 0 0

Beta } 0

Gamma | ?
1
1

?

1
Delta 0 ?
Epsilon | 1

Other cases where cliques can be used

~ O = O

—_

Estabrook, Johnson, and McMorris (1976b) have shown that when we have multi-
state characters, where the states are related by a character state tree, the Pairwise
Compatibility Theorem works. We have already seen (in Chapter 7) that in such
cases we can recode the characters into a set of 0/1 characters, called the binary
factors. Persuade yourself that two characters are compatible if and only if their
binary factors are all pairwise compatible. Then if a set of characters are all pair-
wise compatible, so are all pairs of binary factors of those characters. It follows
that the Pairwise Compatibility Theorem works for characters that have binary
factors.

This makes compatibility methods usable on many kinds of morphological
characters, including the important case of characters that are in a linear series
of states.

Where cliques cannot be used

The clique framework cannot be used if there are missing data or if there are more
than two states that are not related in a character state tree, and hence cannot be
recoded into binary factors. That includes the important case of nucleotide se-
quences. Table 8.4 shows a data set for which all pairs of characters are compati-
ble. It has three missing states (coded ”?”). In computing the compatibility of each
pair of characters, we ignored each species that had a ”?” in either member of the
pair of characters. There is in fact no tree with which this set of characters are all
compatible. I leave it to readers to persuade themselves of that. For that matter,
perhaps they can find a case with fewer ”?” states that would serve as an example
here. I can't.

Benham et al. (1996) have investigated computational methods for cases with
ambiguous states. For the case of a series of states in a directed linear scale, they
describe a polynomial-time algorithm for testing the compatibility of a set of such
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“=0le 8.5: Fitch’s set of nucleotide sequences that have each pair of sites
mpatible, but that are not all compatible with the same tree.

Alpha
Beta
Gamma
Delta
Epsilon

“zracters. For the more general case, they show that the problem is NP-complete.
- net et al. (1999) give algorithms for testing joint compatibility that allow for the
- ossibility of polymorphic states in some of the species.
For the case of nucleotide sequences Estabrook and Landrum (1976) have
~=monstrated a test for compatibility of two nucleotide sites. But Fitch (1975,
~ 200-205) had already given the crucial counterexample, showing a set of nu-
-otide sequences for which all pairs of sites are compatible, but for which there
n0 tree with which all of the sites can be compatible. The data set is shown in
0le 8.5
In such a case we cannot make use of the Pairwise Compatibility Theorem, and
~~us cannot use cliques of graphs to find largest cliques of jointly compatible char-
- zers. We might use the cliques to suggest candidates for largest cliques of jointly
-~mpatible characters, as jointly compatible characters must always be pairwise
mpatible as well. But as the relationship does not run the other way, the largest
jue of jointly compatible characters might be a subset of a clique of pairwise
mpatible characters, even of one that is not the largest clique in the graph.
In such cases we could always revert to treating compatibility as a kind of
~zrsimony. For any proposed tree we can count the number of characters that
:n evolve with the minimal number of changes on that tree. This number of
mpatible characters is then used as the criterion that we try to maximize by
--arching tree space in the usual way.

Perfect phylogeny
12 unavailability of the Pairwise Compatibility Theorem for the case of un-
-dered multistate characters has led to much work on the perfect phylogeny prob-
-m. This involves testing whether a set of such characters are jointly compatible,
:nd if so, constructing the tree they imply. Bodlaender, Fellows, and Warnow
1-92) and Steel (1992) proved that finding out whether characters are jointly com-
-ztible is NP-complete (see also earlier work by Buneman, 1974, and Meacham,
=33).

Algorithms have been found to test compatibility of a set of unordered multi-
:rate characters and construct the tree, in cases where the number of possible states
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is bounded. In those cases the problem is solvable in polynomial time. Agarwala
and Ferndndez-Baca (1994) found an algorithm for the case with no more than r
states that scales as 2°7(nk* + &*). Kannan and Warnow (1994) found an algorithm
for the four-state case that scales as n?k when there are n species and k characters.
They later (Kannan and Warnow, 1997) found one for r states that scales as 22" k?n.
As they point out, improvement of the exponent of & is particularly important, as
sequence lengths in real data sets can be long. In all of these cases, the algorithms
evaluate the joint compatibility of a given set of characters. They do not search for
the largest set of jointly compatible characters. Finding the largest set of jointly
compatible characters is still NP-hard. Dress, Moulton, and Steel (1997) have de-
fined a generalized notion of compatibility, which they call strong compatibility.
When it holds between all pairs of characters, the Pairwise Compatibility Theo-
rem is applicable, and they can be proven to be jointly compatible. In that case, a
clique algorithm would be applicable.

Once the set of jointly compatible characters is found, finding the tree can be
done in time linear in the number of compatible characters. Bonet et al. (1998)
produce algorithms to refine a given partially-unresolved tree using a set of com-
patible characters.

Using compatibility on molecules anyway

Although the failure of the Pairwise Compatibility Theorem for nucleotide se-
quence data seems to force us to use the more difficult perfect phylogeny methods,
one can also use compatibility in a simpler way. One can simply score each site as
compatible with the given tree or not, and then try to find the tree that maximized
the number of compatible sites. This is slower than perfect phylogeny algorithms,
but is simpler. But there is another way to escape all these problems and use the
Pairwise Compatibility Theorem on nucleotide sequences.

Recall that the rationale for discarding incompatible sites is that they are in-
ferred to be ones that change at a high rate and thus have little information. Even
one extra change of state is enough to convict a site in this case. If so, then why
do we allow sites that have three different nucleotides present to remain? A site
that has some species A, some C, and some T will require two changes of state,
even when it is compatible with the tree. If we are interested in using a compati-
bility framework, I do not see why we would not want to discard that site as well.
If we do so, then the only sites on which we base our analysis are going to be
those that have two (or fewer) different nucleotides present. And for those, the
Pairwise Compatibility Theorem will work! Thus we simply reduce our data to
the sites that have two states, use the original Wilson compatibility test, make a
compatibility matrix, and find largest cliques. The result will be a procedure that
runs quickly (if there are no ambiguities in the data such as gaps in the sequence).
Whether it is biologically reasonable will, of course, depend on whether we want
to convict a site on that small an amount of evidence.
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statistical properties of
oarsimony

“zurstand why parsimony methods should or should not be used, we need to
" _r them, not as arbitrary algorithms, but as statistical methods, with inves-
" statistical properties. Although many justifications for parsimony meth-
- “ase themselves in philosophical frameworks that are nonstatistical, in this
2~ we shall consider the statistical framework only. There are two general
- we could proceed. One would be to ask whether the parsimony method is
_.7wn statistical estimator and therefore has the desirable statistical properties
.-zt method. The other is to consider the statistical properties of parsimony
2.1y We will start with the former approach.

-:kelihood and parsimony

-tempts to show that parsimony methods are derivable from a known sta-
-~ estimation method have used the same one: maximum likelihood. The
-. such framework was introduced by Farris (1973b). I have argued (1973b)
-t does so by introducing too many quantities that need to be estimated, and
- nerefore it does not guarantee us that the method will be statistically well-
:d. A second argument by Farris (1977a) introduces fewer quantities, but

10 many for comfort.
. ~aveintroduced a different argument (Felsenstein, 1981a; see also Felsenstein,
‘hat avoids this problem and yields some insight into character weighting
. when parsimony is expected to work. Suppose that we have a set of charac-
-ach of which has two states, 0, and 1. We have a tree that has branches whose
Z11sin time are given, and we also have branch lengths, which result from mul-
g the length of branch ¢ in time by a multiplier, to allow different branches
- ve different evolutionary rates. In effect, branch length is a pseudo-time scale

97
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that reflects the rate of change of the characters. Let the probability of change of
character ¢ in branch j of the tree be »; per unit branch length, and let the branch
length be #;. If we have a symmetric model of change between the two states, it is
not hard to show that the net probability, at the end of branch j, that this branch
shows a change from 0 to 1 (or from 1 to 0, whichever is appropriate) is

Prob(1]0.¢;) = = (1 -e2"7") (9.1)

R [ =

When r,; is small, this is to a good approximation simply r;¢;, and the probabil-
ity that the state does not change is approximately 1 — r;t;. When r;t; is large, the
probability of change to the other state approaches 1/2. Thus we have a symmet-
rical random process of change between the two states. Once one reaches a state,
there is a constant chance of change, and the probability of change, as well as the
probabilities of different kinds of change, do not depend on how you reached that
state or how long ago you reached it. A random process that has this property
is known as a Markov process. In more general versions of two-state Markov pro-
cesses, one can have unequal probabilities of being in the two states, and the rate
of change can differ among characters and among branches of the tree.

The likelihood of a tree is the probability of the data given that tree. We will
discuss it more extensively in Chapter 16. Let us calculate the likelihood of a tree
on a given data set. We shall see that in certain limiting cases, this becomes closely
related to the total number of weighted changes of state. That gives a justification
of the use of parsimony.

We start by computing the likelihood, L, the probability of the data (given the
tree and the model):

L = Prob(Data] Tree)

dﬁrs (L 1[_3[{ rity if this character changes > (9.2)
recon-

= 21 | 1—=rt; ifitdoesnot change

structions

The first product is over characters. We assume that the evolutionary processes
that effect character change in different characters are independent, so that the
likelihood is simply the product of a series of terms. The terms have different
values of i, the index for the characters. Each of these terms in the product is
a sum over all possible ways that states can be assigned to the interior nodes of
the tree (the hypothetical ancestors). This is indicated by the word reconstructions
under the summation sign, to indicate this complicated summation over many
possibilities. The summation is used because these alternative possibilities are
mutually exclusive events.

Within the summation we calculate the probability of the events that occur in
that particular reconstruction. The reconstruction starts with a 1/2 because that is
the probability of the particular state (whether state 0 or state 1) that occurs at the
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1 of the tree. Then there is a term for each branch in the tree. The branches
~1exed by ;, which runs from 1 to B. We are also assuming that the events
crent branches are independent. Given the starting state at the base of each
-, the occurrence of a change is independent of whether there is a change in
-other branch. Thus the probability is a product of terms, each r;#; or 1 -- 115,
~ding on whether there is or is not a change in that branch.
show the correspondence between this expression and the number of
.5 of state in parsimony reconstructions, we have to make some more as-
~uons. We will assume that all the »;#; are small. That, in turn, implies that
a1 approximate the innermost product of (9.2) by

B

[Tt (9.3)

1

j=1

1,; is the number of changes of state (there will be 0 or 1 of them) in branch
~aracter ¢. This can be done because the terms 1 — 1;¢; are then close to 1. To
“ree of approximation we need, they can be replaced by 1.
1other approximation involves the terms in the sum over reconstructions.
the r;t; are small, then all the terms in the sum are small, and they will
~a great deal in magnitude. If there are no two of them tied in size, then
: of the value of the summation will be contributed by one or a few terms.
> involving a product of many small quantities »;t; will tend to make a tiny
Oution compared to terms with one or two of these quantities. Thus we
wplace the sum over reconstructions with a single term, involving the one
~struction that achieves the highest probability for that character. If there are
~r more tied terms, we need to multiply by a quantity T3, the number of tied
< in character i. Though we will not dwell on it, it can be shown that these
~_tles will not affect the argument that we will make about parsimony.
. th a single reconstruction chosen for each character, the likelihood in equa-
.2 now looks much simpler. Dropping the factors of 1/2 that are the same for

chars branches

L~ ] [T ™ (9.4)
i=1 j=1

~ine the logarithm, which is useful because it changes products into sums.
ng the tree that maximizes the log of the likelihood is equivalent to finding

. ee that maximizes the likelihood, as the larger a quantity is, the larger its
thm is. Taking the negative of the Jogarithm gives us

chars branches

—InL o~ Y Y ony () (9.5)
j=1

i=1

- aenly, we have reached parsimony. Note that this is simply a weighted par-
© nv osum. In maximizing the likelihood, we minimize the negative of the
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log-likelihood. And that quantity is the sum, over all the changes on the tree
(whose locations are indicated by the n;;) of penalties of the form — In(r;#;). Thus
we have made enough approximations to prove that the weighted parsimony tree
with these weights is always the same tree as the maximum likelthood tree.

The weights

In this case we have a formula for the weights. They are no longer arbitrary but
now can be related to probabilities of events. The weight of a given change is now
the negative logarithm of the probability that that particular character changes in
that particular branch. Note that if the r; is small for a character, it thereby has a
higher weight (as its logarithm is smaller, and therefore the negative of its loga-
rithm is larger). This dependence on the logarithm of rate of change contradicts
an “obvious” method of assignment of weights that is often used. It seems nat-
ural, if a character has half as large a rate of change as another, to assign it twice
the weight. But that would be a weighting function of 1//;, not —In(r;). In fact,
it is when a character has a probability of change as low, in a given branch, as the
square of the probability of change of another, that we assign it twice the weight.
We do that because In(+?) = 2In(r). This is actually intuitively sensible: we as-
sign a change in one character twice the weight of another when it has the same
probability for one change as two changes in the other character do.

But notice another, rather horrifying, fact about the weights. They depend not
just on the rates of change, r;, but also on the branch lengths, ;. Thus we are sup-
posed to accord higher weights to changes that occur in shorter branches of the
tree. This too makes sense. We find a tree less implausible if the changes occur
in long branches rather than in short ones, and this weighting expresses that un-
derstanding. However, when we evaluate a tree we typically do not have branch
lengths for it. That leaves us somewhat uncertain how to proceed in practice.

Farris (1969b), in the first modern paper on character weighting, discussed
which functions of probability of change would be desirable for use as weights.
He did not derive weights from a relationship between likelihood and parsimony
as done above.

Unweighted parsimony

If the rates of change become very small, another simplification emerges. As thev
become smaller, the ratio of the weights to each other becomes more equal. In
the limit, the method is simply unweighted parsimony. Suppose, for example,
that we have three characters, with different rates of change. One of them has
two changes, the other two have one change. The rit; and the resulting weights
(their negative logarithims) are given in Table 9.1. We can see that two changes in
character 2 incur less total penalty than one change in character 3. In this case, a
weighted parsimony method might prefer a tree with more changes, provided that
they were located in character 2 rather than in character 3. When we consider the
same sort of case, identical except with only 10% as great a probability of change
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Table 9.1: Probabilities of change and resulting weights for an imaginary case

Character  r;t; Changes Total weight
1 0.01 1 4.605
2 0.01 2 9.210
3 0.00001 1 11.519

21 character (in Table 9.2), characters 2 and 3 now have equal total penalties.
:nother reduction of the probability of change by a factor of 10 (in Table 9.3),
acter 3 incurs less total penalty. In fact, it is easy to show that with enough re-
=1 of the rates, all by the same factor, one must in the limit have the ratios of
- cights for a single change approach 1. In this case, the ratios of the weights
le changes in characters 1 and 3 started out at 2.5, with reduction by a fac-
210 became 2, and with a further reduction became only 1.75. With enough
.don of rates of change, these ratios approach 1.
*u1s unweighted parsimony receives its justification from the assumption of
“ow rates of change. Note that we did not assume that rates of change in dif-
- characters were equal. Unweighted parsimony will make a maximum like-
! estimate of the tree if rates of change (or branch lengths) are small enough,
2iough the different characters may have very different rates of change. This
-rv good property to have, because we are often unable to say what the rela-
tes of change of different characters will be in advance.

tations of this justification of parsimony
~~in problem with this justification for parsimony is that it assumes a low
- change in all characters. That corresponds to our jntuition — that if we are
- to find an explanation that minimizes the number of something, we must
. it event an implausible one. But the difficulty is that in many data sets,
“ae parsimony method is used, the number of changes found is too large to
“-istent with this view.

“wle 9.2: The same case as in Table 9.1 with one-tenth the rate of
‘hange in each character

Character rt; Changes Total weight
1 0.001 1 6.908
2 0.001 2 13.816

3 0.000001 1 13.816
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Table 9.3: The same case as in Table 9.2 with one-tenth less again

Character 1t Changes Total weight
1 0.0001 1 9.210
2 0.0001 2 18.421
3 0.0000001 1 16.118

For morphological characters one might imagine that the high rate of observed
change arises from ignoring characters that do not vary in our data set or in a larger
data set from which it is drawn. But even this supposition will not wash. For if
that were the only reason for the observation of so much change, we would expect
the change to occur only once per character. In other words, we would expect
to find data sets that had all characters perfectly compatible with each other (or
most of them perfectly compatible, at any rate). This is not found. If it were, there
would be little need to explore different algorithms for inferring phylogenies.

Farris’s proofs

The pioneering attempt to connect parsimony with likelihood was by ]. S. Farris
(1973a). I have discussed (Felsenstein, 1973b) my reasons for believing that his
argument does not entirely succeed. Farris’s proofs are like the one sketched here,
except that they do not sum over all possible reconstructions of the states at the
interior nodes of the tree. They also do not need the assumptions that [ have
made about low rates of change in each character. They arrive at formulas for the
character weights that resemble those presented here. What Farris is estimating is
not the tree, but the tree together with the states at the interior nodes and at a great
many points along the branches (the “evolutionary hypothesis”). This introduces
a great many additional quantities that are being estimated.

The strength of these proofs is that, if they are successful, parsimony inherits
the known good behavior of likelihood methods. The limitation of Farris’s proof
is that likelihood often is found to misbehave as the number of quantities being
estimated rises, especially if it is proportional to the amount of data. We shall
see in the remainder of this chapter a particular misbehavior that characterizes
parsimony and that occurs even in some cases to which Farris’s proof applies.
This suggests that his proofs are not enough to serve as a general justification for
parsimony.

I (Felsenstein, 1973b) and Farris (1977a) put forward alternative arguments,
ones that assume that the probability of change in each branch of the tree is small
for all characters. They are thus similar to the argument above. Like i, they as-
sume rarity of change, and thus they do not prove a general correspondence be-
tween maximum likelihood and parsimony estimates of the phylogeny. Goldman
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~ has discussed Farris’s (1977a) argument in some detail, giving a similar

- though I have described Farris’s (1973b, 1977a) arguments as based on max-

.ikelihood, they are actually Bayesian. However Farris (1973b) assumes a

- ior distribution, and then argues that the maximum posterior probability in
< sian argument yields the same estimate as maximum likelihood.

-ommon mechanism

et al. (1994) and Tuffley and Steel (1997) have made an illuminating con-
" between parsimony and likelihood. They loosened the assumptions about
i of change to the maximum extent possible. They allowed each character
-« different probability of change in each branch of the tree. This is called
- of no commion mechanisni. There is no rate of change for a branch that ap-
-.ross all characters, and no rate of change for a character that applies to all
~ws. Instead, the rate of change is arbitrarily different in each combination
‘h and character. Thus when there are n species and p sites, there will be
» parameters in all, one for each character in each branch.
~meral the proof of the no-common-mechanism result is not obvious, but in
~icular case it is easy to see the connection between parsimony and likeli-
" Mis is the case with symmetric change between two states (states 0 and 1)
~..re there is only one possible assignment of states to interior nodes in the
- .rsimonious tree. When the likelihood is computed under such a model, it
¢ a form quite close to equation 9.2:

L c}ﬁs 1 ﬁ { Dis if this character changes (9.6)
P24 T =y if it does not change '
~umber of branches in the tree. In the previous case, there was a common

- ~sm at work in all branches and all characters, with rates of change specific

<cters but not to combinations of branches and characters. In that case,
~ability of change was given by equation 9.1. In the case of no common
- sm, instead of r;t; we have a quantity subscripted by the combination 7.

- 275 a net probability of change along the branch, which is some number in

- cal0.1/2).

- _Zuation 9.1 shows the probability of change to be a monotonic function
- propriate branch length, maximizing the likelihood with respect to that
ength will yield the same result as maximizing it with respect to the net
‘tv of change p,;, provided that we keep that quantity in the interval

- This invariance is well-known as the “functional property of maximum
d.” Examining equation 9.6 as a function of one of the p;; shows imme-
nat it is a mutltiple of either p;; or 1 — p;;. It is linear in p,;, so that the

-m of the likelihood with respect to p;; will be either at 0 or at 1/2.
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Thus the p;; for all branches that show a change should be 1/2, and those for
the branches that do not change should be 0. The upshot is that (with the extra
factor of 1/2, which is for the initial state) the maximum likelihood is

m—=+1
L = (%) (9.7)

where m is the number of changes of state in the particular reconstruction of states
at the interior nodes of the tree. To maximize the likelihood, we find the tree that
minimizes the parsimony score. Thus in this case, likelihood and parsimony will
always recommend the same tree.

When there is more than one possible reconstruction of the character, things
are more complicated. As the likelihood terms that contain one of the p;; are now
summed over different reconstructions of that character, the likelihood is still lin-
ear in p;;, so that it is still the case that the maximum likelihood values of p;; are
either 0 or 1/2 (or else are all values including those). By choosing one recon-
struction that is one of the most parsimonious ones and letting those branches that
have changes have p;; = 1/2 and all others have p;; = 0, we can again achieve
the likelihood shown above in equation 9.7. In that case, all other reconstructions
contribute nothing to the likelihood. What is less obvious is whether, by having
more branches have nonzero p;;, and thus having contributions from more possi-
ble state reconstructions, we can make the likelihood higher.

The proof by Penny et al. (1994) and Tuffley and Steel (1997) is elegant and not
simple, and I cannot explain it here (or anywhere, for that matter). It does rule out
higher values of the likelihood in the two-state and multistate cases. In the r-state
case, the maximum likelihood is

1 m+1
L = <l—> (9.8

where m is the number of changes reconstructed by parsimony. As in the two-state
case, this maximum value can be achieved by choosing one of the most parsimo-
nious state reconstructions and setting p;; = 0 in all branches that do not have a
change of state and setting p;; = (r — 1)/ in those that do have a change.

The no-common-mechanism result is a remarkable connection between likeli-
hood and parsimony; it is important to know what it does and does not mean.
It does show that there is a statistical model in which likelihood and parsimonv
always infer the same trees. Previously, we knew only that they would choose
identical trees when expected rates of change were small. In the no-common-
mechanism model, rates of change can be anything but small. As we will see be-
low, in some situations parsimony methods can have undesirable statistical prop-
erties such as inconsistency (convergence to the wrong tree as the number of char-
acters increases). Likelihood with the no-common-mechanism model will sharc
these undesirable properties. The number of parameters inferred in that mode«
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is high: the product of the number of branches and the number of characters.
Thus, as the number of characters rises, so does the number of parameters. This is
the “infinitely many parameters” problem that causes misbehavior of likelihood
methods in other case as well. Thus the identification of parsimony with likeli-
~ood is not enough to ensure that it behaves well.

The no-common-mechanism model has been developed only for cases in
which the r states are symmetric. If we have asymmetric change between states
whose equilibrium frequencies are unequal, this cannot be accommodated in the
oresent no-common-mechanism model. Thus that model is not totally general. We
-u far lack a clear understanding of how much further this model can be general-
zed and still preserve this connection between likelihood and parsimony. For a
-autious assessment of the connections between likelihood and parsimony, see the
-1per by Steel and Penny (2000). An earlier attempt by Sober (1985) to prove, for

3-species rooted tree, that maximum likelihood will always choose the same tree
as parsimony, has been criticized as invalid by Forster (1986). He pointed out that
the argument implicitly assumed that the trees compared always had the same
nterior branch length.

Likelihood and compatibility

"\ have shown that there is a likelihood justification of parsimony methods when
“ates of change are small. There is a similar one for compatibility (Felsenstein,
1179, 1981a). Recall that in compatibility methods any character that requires more
- 1n one step on a given tree is counted as not fitting that tree, in effect lending
-0 valid phylogenetic support to that tree. The way to have such a character in
<elihood inference is to have a possibility that a character is pure noise. This
2>uld be so by having it be massively misinterpreted, but a simpler possibility is
2nat it has a very high rate of evolution. In this section, we will argue backwards
~om the desired result to obtain the model that gives it.
Consider a model with two states, 0 and 1, and probabilities of change given by
- Juation 9.1. We previously explored the effects of having small rates of change.
~uppose that for some character the rate of change r; is very large. The equation
aen shows that the probability of changing from 0 to 1 in a branch of length ¢; is
2, regardless of the size of ¢;. It follows that the probability of changing from 0 to
is also 1/2 (as the two probabilities must add up to 1). From this we can quickly
-1ow that no matter what the pattern of 1s and 0s in a character, the probability
I that pattern is 1/2", where n is the number of species. This is true whatever the
e (as long as at least n — 1 of the terminal branches of the tree are nonzero in
~ ngth).
Suppose that each character has one of two possible rates, »; and oo, where 7
< small, and that we do not know in advance which rate it has. If the probability
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that the character has the infinitely high rate of change is p, then the probability of
the observed pattern of data D) at that character is

: " :
Prob (D /' T) p <§> + (1 —p) Prob(D " T.r;) (9.9)

where the rightmost term has already been given by equation 9.2. Now suppose
that of the two terms on the righthand side of equation 9.9, for any given tree, in
each character one or the other contributes almost all of the likelihood, and that the
term for the high rate is the one that contributes most of the probability whenever

there is more than one step in the character. Recall that when its rate of change r;
is small, the contribution of the character to the likelihood is

branches

[T ey (9.10)

-

Prob (DW|T, ;) ~

(NN

J

If it is always true that for any tree that has two changes in a character, that charac-
ter is better explained by having a high rate of change, then for any two branches
j and k (the ones that have the changes)

1 1\"

(1 =p) 5 (ritg) (ritx) < p <§> (9.11)
Thus if the term 3 is smaller than any one of the rt terms but larger than the
product of any two of them, it will turn out that the likelihood for the full set of

characters, for any tree, is

chars $(1-p) if this character does not change on tree T
L = H %(1 — p) ritj if this character changes only once, in branch
= p(L)” if it changes more than once

(9.12

An argument simjlar to the previous one then shows that the maximum likelihooc
tree is the one that selects the largest set of compatible characters. It is equivaler:
to a threshold parsimony method with threshold set to 2. As we have already seer
this finds the largest set of characters that can evolve with only one change. Nor
that this does not allow a character that has more than two states to be counted ¢ -
compatible.

This argument justifying compatibility works only when the probability p th:-
a character has infinite rate of change is small.
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“rsimony versus compatibility

~<neral, compatibility methods assume that most characters will change only

~. having a Jow rate of evolution. A small fraction will change quite frequently
thus have almost no phylogenetic information. When this is true, the largest

“te of characters will be quite large, and almost no characters will show 2
“ges.

"hus compatibility assumes that the quality of characters varies greatly, most

_em being quite good. By contrast, parsimony assumes that although rates of
- ;e are low, some characters that still have phylogenetic information will show
splasy.

~trictly speaking, these justifications work only for data sets in which the frac-

- of characters showing homoplasy is small. If there are many homplasious
-acters (ones showing parallelisms ot reversals), we are not in the situation as-

~zd by these proofs of equivalence between either parsimony or compatibility
- _xelihood.

_onsistency and parsimony

" “iracter patterns and parsimony

-~ ~agh no property of a statistical estimator is accepted by all statisticians as es-
~..,, one of the more important ones is consistency. An estimator is consistent
< ne amount of data gets larger and larger (approaching infinity), the estima-

nverges to the true value of the parameter with probability 1. If it converges
nething else, we must suspect the method of trying to push us toward some

- e conclusion. In1978 I presented (Felsenstein, 1978b) an argument that parsi-

* is, under some circumstances, an inconsistent estimator of the tree topology.

~ut the same time James Cavender (1978) found the same worst case for par-
=+, though he did not say so very loudly.

- investigating this, we do not try to establish whether parsimony is or is not
Jimum likelihood method. We simply accept that it is a statistical estimator
e sort, and try to establish its properties. The easiest way to do this is to

- "2 its behavior in a simple model case. We start with a four-species tree, on

~ a series of characters are all evolving, independently, according to exactly

>me model of evolution. If the characters are sites in a nucleotide sequence,

- ~pecies can exhibit one of the states A, C, G, or T. There are then 11 = 256

ole outcomes of a site. These range from AAAA to TTTT. They have come to

_.1ed patterns. If we had characters with two states (0 and 1) instead of four
+ we would instead have 2* = 16 possible patterns, ranging from 0000, 0001,

011, 0100, ..., 1111.

‘th four species, there are only three unrooted tree topologies. For each of
we can imagine working out how many changes of state are necessary for

" cattern to evolve on that tree. Figure 9.1 shows part of the table for four

‘

’



108 Chapter 9

A C A B A B
<
AAAA 0 0 0
AAAC 1 1 1
AAAG 1 1 1
AAAT 1 1 1
AACA 1 1 1
AACC 1 2 2
AACG 2 2 2
AACT 2 2 2
AAGA 1 1 1
AAGC 2 2 2
AAGG 1 2 2
AAGT 2 2 2
AATA 1 1 1
AATC 2 2 2
AATG 2 2 2
AATT 1 2 2
ACAA 1 1 1
ACAC 2 1 2
ACAG 2 2 2
ACAT 2 2 2
ACCA 2 2 1
ACCC 1 1 1
TTIT 0 0 0

Figure 9.1: The table of nucleotide patterns (some of the 256 possible
patterns are shown) tor four species. For each, the number of changes
of state needed on each of the three possible unrooted tree topologies
are shown. Those patterns that have different numbers of changes of
state on different tree topologies are highlighted.
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A C A B A B
B>_<D c: :D D>_<C
0000 0 0 0
0001 1 1 1
0010 1 1 1
0011 1 2 2
0100 1 1 1
0101 2 1 2
0110 2 2 1
0111 1 1 1
1000 1 1 1
1001 2 2 1
1010 2 1 2
1011 1 1 1
1100 1 2 2
1101 1 1 1
1110 1 1 1
1111 0 0 0

Figure 9.2: The table of character patterns for a two-state character for
four species. For each, the number of changes of state needed on each
f the three possible unrooted tree topologies are shown. Those pat-
turns that have different numbers of changes of state on different tree
copologies are highlighted.

“.ide states and the three tree topologies. Note that for most of the nucleotide
s, there is no difference between the number of changes of state on different
~ologies. In the figure, the rows that do have different numbers of changes
.2 tor different tree topologies are emphasized by larger type size and bolder
..ce. There are 36 such rows in the full table. Figure 9.2 shows the same table,
"1 ;all of it this time, for two states. Here too, the rows that show differences
:n tree topologies are emphasized. All 6 of them are visible.
. that the patterns that are of the form ..ryy. ryry, or zyyz (where z and y
- two symbols) are the only ones that can affect the count of the numbers
nges of state in a parsimony method. These are commonly called phyloge-
= informative characters, but that terminology is somewhat misleading. The
“haracters are informative when methods such as distance matrix methods
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or likelihood methods are used. With nucleotide sequences, patterns like zryz
turn out not to affect a parsimony method. That one, for example, can evolve on
any tree with 2 changes of state.

Observed numbers of the patterns

Having made the tables in either of these figures, we can imagine collecting data.
Each site (or character) in our data table will show one of the possible patterns. The
effect of the site (character) on the outcome of a parsimony method will depend
only on which pattern it has, and not at all on where it is in the data. It follows
that all that we need to know about a data set, in order to determine which phy-
logeny it leads us to estimate, is how many times each pattern occurs in it. We
can summarize a data set by a list of 256 (or in the 0/1 discrete character case, 16)
numbers. The numbers are integers that add up to the size of the data set. Having
those numbers, we can figure out from them the number of changes of state that
each tree requires. Suppose we know, for example, that pattern AACC requires 1
change on the first tree and 2 changes on the second tree. If we know that there are
12 instances of this pattern observed in our data set, we know that they contribute
12 x 1 = 12 changes to the first tree and 12 x 2 = 24 changes to the second tree. I-
this way, we can sum the total changes for each tree, given the list of numbers o-
times that each pattern is seen.

Note that the three classes of patterns rayy, ry2y, and xyyzr each can be com-
bined. Since AACC, AAGG, CCTT, and all other patterns of the form zzyy requi-
1, 2, and 2 changes of state on the three trees, we need not pay attention to an: -
thing but the total number of times that zxyy occurs, the total number of timc-
zyry occurs, and the total number of times ayya occurs. Let us call these 7, .

Ny yay, a0d Ngyy .. To discover which tree is favored by parsimony, we need or
count the changes of state for the sites with these classes of patterns. Then t-
changes of state for the first tree are

na;Lyy Ko 2n:cy.1'y + 27L3:yy:c = Q(nx‘ryy TLa:yry - n:cyy\r) —n, LYY (9
Yy

Similarly, the total contribution of changes of state to the other two trees turns ¢
to be

2,y Neyay F 2Nayye = 2000y + Rayey F Nryye) = Nayay (¢
and
2”11‘;/11 + 2nzy:ry T Nayyz = 2(”13:;1./;1/ + Ngyay + nn;yya.‘) — Nyyys (9.

Since the first term (on the right side) of each of these expressions is the sam
follows that the one that is smallest will depend on which of the three nun
Nrryys Naeyey, AN 11y, i largest. That determines which tree will be preferre
parsimony. If there is a tie, then two (or three) trees will be tied.
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A C

p p
q
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Figure 9.3: A tree with probabilities of change next to each branch. This
tree is the example that will used to investigate conditions for parsi-
mony to be consistent.

- served fractions of the patterns

- that we could have done the same calculations using frequencies rather than
~oers. If we calculated the fraction of all sites (characters) that showed patterns
" 255 xayy, and similarly for the other two classes, we would concentrate on the
. observed fractions of characters: f,.yy = Naayy/N, fryay = Nayxy/N, and
Nayy. Y, where N is the total number of sites (or characters) in the data.
ree that the parsimony method selects is simply determined by which of the

= fractions frayy, foyey and foyy. is largest.

* ‘ne that we knew the true tree, and that it was not merely a tree topology, but
-« with branch lengths. Suppose further that we have a probabilistic model
. olutionary change of the characters. We consider what happens when this
< model operates independently in each character. From such a model one
- lculate the expected frequencies of each of the 16 (or 256) character patterns.
" ~r the simple case with two states, 0 and 1, and a symmetric model of change
en them, we can write the formula for the probability that the character
2es in a branch of the tree, given the length of the branch. We have already
- . Is formula (equation 9.1), but there is a way of avoiding it that is convenient.
-ose that we know for each branch, not its length, but the net probability that
-..aracter will change in that branch. Figure 9.3 shows an unrooted tree which
>e the critical example for this argument. Next to each branch is the net prob-
= of change along it, in this case either p or ¢. Note that p and ¢ cannot be
. er than 0.5, as even an infinjtely long branch has a chance of only 1/2 that the
-_ at the end of the branch is different than the state at the beginning.
e have not specified the position of the root of the tree. It turns out that the
~~bility of any character pattern on this tree is the same no matter where the
- is put. With this tree and this simple probabilistic model of character change,
2an calculate the fraction of times that each character pattern is expected to be
For pattern 0011, we can start at the leftmost of the two interior nodes of the
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Figure 9.4: One way in which the character pattern 0011 can be
achieved. Starting at the root (arrow), which has state 0, there is no
change in any of the left three branches of the tree. There is change
in both of the right two branches. There are three other scenarios for
achieving 0011, corresponding to other assignments of states to the un-
observed interior nodes of the tree.

tree. Consider the four possible ways that we could assign states to the left and
right interior nodes. These are, of course, 00, 01, 10, and 11. The probability of
the pattern 0011 will be the sum of the probabilities of all four of these ways of
achieving this pattern. Figure 9.4 shows this scenario. Starting at the root, which
is the left interior node of the tree, the probability that we find 0 there is 1/2 (as
the model is symimetric, and has presumably been operating in all previous evolu-
tion). The probability of no change in the upper-left branch is (1 —p), of no change
in the lower-left branch is (1 — ¢), and of no change in the interior branch is (1 —¢).
Given the state (0) of the right interior node, there has been change in both of the
right branches. These have probabilities p and ¢.

We are assuming independence of the evolutionary processes in different lin-
eages and in different segments of a single lineage, given the states at the start of
each branch. So we can combine these probabilities by multiplication to get

(1-=p)(1-q)(1—q)pg

[N

There are three other combinations of states that could have existed at the unob-
served interior nodes. For each we can derive a probability in an analogous wav
The result is
Poon = 5 [(1=p) (L= @)*pg + (1= p)*(1 = 0)*a + p°¢* + pa(1 - p)(1 — g)°]
(9.1#
This is the probability of 0011, but there is also the pattern 1100. Together the-
make up the class of patterns zzyy. They have (by the symmetry of our mode!
equal probabilities, so the total probability of pattern zzyy is given by doublin:
the quantity in equation 9.16, which simply removes the 1/2.

N =
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Ve can also do the same for the other two patterns classes ayry and xyyz. The
S s
c= (1= = a)g(1 = )1 = p) +¢(1 — a)p] + pal(1 — ¢)*(1 ~ p) + ¢°p]
= (1= p)alal = g)p+a(l - )1 = p)] +p(1 = @)p(1 = q)* + (1 = p)g’]

(L=p)al(1 = p)g® + p(1 = @)*] + p(1 = @)|g(1 = @)p + ¢(1 — ¢)(1 = p)]
(9.17)

i

- 1ot hard to find, after a bit of tedious algebra, which of these is largest. Af-
- compute Piyuy — Pryye, it turns out to simplify into (1 — 2g) [¢*(1 — p)?
. —)?p?|. This is never negative and is positive as long as ¢ < 1/2, and ei-
0 or p > 0, all of which apply except in trivial cases. So pattern ryyx can
~ have the highest expected frequency. Taking the difference P,y — Pryay,

. . adition that this is positive simplifies (after a struggle) into

(1-29) [¢1—q)—p°] >0 (9.18)

sndition 1 — 2¢ > 0 being trivial, this basically simplifies to ¢(1 — ¢) > p?.

- nsistency
w have a condition under which, for our simple tree with an idealized model
ution, the expected proportion of zxyy patterns is greater than that of zyxy
r patterns. This becomes very relevant when the number of characters (or
secomes very large. For it is in that case that the observed frequency of
~attern is expected to converge to its expected frequency. To be more precise,
~w of Large Numbers guarantees us that, as the number of characters grows
~ v large, that the probability becomes 1 that zzyy is the most frequent of
- natterns.
"~ asin this case, when g(1 — ¢) > p?, we can guarantee that with enough char-
~. we will arrive at an estimate of the tree that has the correct tree topology.
_te what happens when this condition does not hold. In that case, xyzy pat-
- 1ave the highest expected frequency, and we can guarantee that with enough
“:ters, the tree estimate is certain to be wrong!
-ure 9.5 shows the regions of values of p and ¢ that guarantee consistency or
“~istency.
e that we are not simply saying that in some cases parsimony methods can
~rong answers. Any method is subject to statistical error. But an inconsistent
1becomes more and more certain to give a particular kind of wrong answer
e characters are collected. It is pulling us toward the wrong answer.
"2 Intuitive explanation of what is happening here is fairly simple. With long
.~vs leading to species A and C, the probability of parallel changes that arrive
. same state (which is roughly p?) becomes greater than the probability of
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Figure 9.5: Values of p and ¢ that guarantee consistency or inconsis-
tency of the estimate of the tree topology by parsimony. Values of 0.5
of either parameter correspond to infinitely long branches.

an informative single change in the interior branch of the tree (which is roughiv
q). Thus we have, in these cases, two changes in long branches that are, taken
together, actually more probable than one change in a short branch. The situation
may be described as one in which “long branches attract” each other. The region
of the parameter space in which this occurs is sometimes called the Felsenstein zo.
(Huelsenbeck and Hillis, 1993; this is something like having a black hole namec
after you).

Penny, Hendy, and Steel (1991) have given the general conditions for inconsis-
tency of parsimony in the 4-species, 2-state model, with all branch lengths allowe -
to be different.

When inconsistency is not a problem

Note that as you approach the lower-left corner of Figure 9.5, along any diagor .
at any angle other than vertically, you ultimately find yourself inside a regior
consistency. This happens because if we multiply p by « and ¢ also by o, p-
multiplied by o while g(1 — ¢) is multiplied by « (this is more nearly true as ¢ g
small). Thus ultimately, with a small enough value of ¢, the consistency condit
will hold.

This argument is slightly oversimplified. Reducing the rate of change of a ¢'
acter by multiplying it by a factor « is not quite the same as multiplying p bs
For the symmetrical two-state case, equation 9.1 shows how p depends on the -
of change ;. To be more precise, we should have two different branch lengths
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Figure 9.6: A tree showing the species and the nucleotides that are
present at its tips and the hypothetical nucleotides that existed at that
site at its interior nodes. The net probabilities of change are given next
to each branch.

. If we reduce the overall rate of change r;, which we here assume is the
= for all characters, we can use equation 9.1 to frace out a curve of pairs of
 values, using t; to compute p and t» to compute . However the net result
- vsame, since for small rates of change equation 9.1 shows that the probability
~nge is approximately r;t;. Thus simply multiplying p and ¢ by a factor o is

2 oximately correct when all these quantities are small.
=~ other words, if the tree is short enough, even large ratios of the length of the
" to the short branches do not cause inconsistency. This is in accord with what
- maximum likelihood derivations showed: When branches are short, parsi-
 is a maximum likelthood method, and it shares the property of consistency

- ikelihood methods will have.

- nucleotide sequence case

: milar proof can be made in the case of nucleic acid sequences, which have
2. = The answer is qualitatively the same, but the region of inconsistency is
-r. This happens because parallel changes along the two long branches are
-2 7 2ly to result in the same base. To investigate the case, we need a probability
- T of base change. The simplest one, as we will see in Chapters 11 and 13,
Jukes-Cantor model. This simply assumes that when a base changes, it is
v likely to change to each of the three alternatives. In Chapter 11 we will
p a formula that is the counterpart of equation 9.1. For the moment we
:need it. Instead of branch lengths, we can assign to each branch of the tree
~2obability p or ¢ of a net change. Equation 11.17 will show how those depend
..ch length. All we need to do for the moment is keep in mind that when
langes occur, starting from the same state, there is probability 1/3 that the
is the same.
“'gure 9.6 shows an unrooted tree with tips whose pattern is of the class zzyy.
- culate the probability of getting this pattern of nucleotides at the tips, we
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could sum over all 16 possibilities for = and w. For example, the probability of
starting with z = C and evolving the pattern given that w = Ais (1/4)(1 — p)(1 —
)(q/3)(1 — p)(1 — g). The symmetry of the model means that some choices of z
and w have the same probability. For example, if = and w: are, respectively, C and
G, this yields the same probability as if they are respectively C and T, and also
the same probability as if they are T and A. Taking all of these into account the
probability of the pattern turns out to be

| ;1 2 1 5. Loy,
Prob[CCAA = 1—8(1 —p)(1 = ¢)"pg + 5704 (I=-p)1—q)+ Tl 1 (1—q)
7o 1o o
topP et 12(1 p) (1 —q)%y (9.19)

There are 11 other patterns that make up the pattern type rryy, and each of those
has the same pattern probability, so that

2 , 4 .
Prob[ezyy] = (1 —p)¢(l—q) +§p(1—p)q(1—q)2 : §P(1—P)f12(1—CJ)
2 L. o
+5=p'a’ (1) + —p’q’ (9.20)

Similarly, we can work out the probabilities of the pattern classes ryry and xyy.r.
These turn out to be

ORI 2 2 2 2 4 5
Prob [ryry] = g(l —-p) ¢ (l—q)+ 51)(1 -p)g (Y —q)+ ﬁp(l - g
1 2 3 2 2 20 2 2.3
t3p (1-4q) +gPa (l~q)+§pq (9.21)
. 1 ) 2 . B .
Probloyyr, = (1 p°¢" + 2p(1 = p)all —q)* + S0 - p)g®
1, .6 . 2
+opal =)+ (- ) - g;)zqg (9.22)

Equations 9.20, 9.21, and 9.22 can be shown to be equivalent to expressions that I
have published (Felsenstein, 1983a).

The condition for consistency of the estimate of the phylogeny for this case can
be obtained, but is not very illuminating;:

)< 180+ 24¢° + /243 — 56747 + 64347 — 288 ¢!

9.
9—24q+ 3242 9.23)

Figure 9.7 shows the regions of consistency and inconsistency for this case.
Note that near the lower-left corner of the square the region of inconsistency is
noticeably narrower than in Figure 9.5. This comes about because, while the con-
dition for consistency in the two-state case is approximately p? < ¢, the condition
for the Jukes-Cantor DNA model is approximately p? < 3¢, which is easier to sat-
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Figure 9.7: The regions of consistency and inconsistency for the Jukes-
Cantor DNA model. Branch lengths are expressed in terms of the prob-
zbility that the state is different at one end of the branch from the other.
This probability has a maximum value of 0.75.

The explanation for this difference is simply that the probability of arriving

“= same state by independent evolution in the two-state case is approximately

~en p and ¢ are small, while in the Jukes-Cantor case it is p?/3, as parallel

“zes arrive at the same state only one-third of the time. It should be evident

-ith more states, the conditions for inconsistency are harder to satisfy.

~cel and Penny (2000) have given a fairly general proof that as the number
- ssible states in each character rises, ultimately parsimony will be consistent.

- proof encompasses any number of species and fairly asymmetrical models

1ange.

rer situations where consistency is guaranteed

=bove conditions for inconsistency suggest that long branches and unequal

“ch lengths predispose towards inconsistency. This has been examined more
zelv in some special cases.

~im (1996) examined the consistency of inference of topology in a region of a
- surrounded by four subtrees. FHe examined a number of special cases, find-
“hat there were exceptions to many proposed generalizations about when par-

ny would be consistent. His examples suggested that inconsistency some-
re in the tree could occur more easily, the more species there were in the anal-

S \teel (2001) has given a more generalized proof, for the model of symmetric
nge among r states, that with sufficient]ly short branches the parsimony and
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A B C D E A B C D E

Figure 9.8: A clocklike tree that generates data on which parsimony is
not consistent. The true tree is shown and one of the trees that will tend
to be found as the number of characters becomes large. There are four
of these trees, each with a different lineage attracted to species E.

compatibility methods will be consistent. His conditions for consistency are suf-
ficient conditions—they do not rule out consistency in other cases, with longer
branches. They become more difficult to satisfy as the number of species is made
larger. I had earlier shown (Felsenstein, 1979) that in the limit as all branch lengths
become small at the same rate, parsimony and likelihood will pick the same tree
topology.

Does a molecular clock guarantee consistency?

From the examples given above, it would be a tempting generalization to conclud-=
that parsimony can be inconsistent only if there is no molecular clock. The molec-
ular clock, which is discussed in more detail later in this book, is the assumptic
that lineages have evolved at equal rates. Under a molecular clock, the true tre
has branch lengths that cause the tips to all lie equally distant from the root.
have suggested (Felsenstein, 1983b) that imposing a molecular clock is sufficic -
to assure us that parsimony is consistent.

Hendy and Penny (1989) have shown that this is not so. There are clockli.
trees on which parsimony is inconsistent. Their example is of the sort shown
Figure 9.8. One or more of the long branches leading to the species A, B, C, or
becomes attracted to the long branch that leads to species E. Using their Hadamse
transform method of calculation (which we will discuss in Chapter 17), they cc-
compute the probabilities of all 32 possible patterns of 0/1 data. They could st
that if branch length x is short enough, that many other trees, including ones -
which these long branches attract, will be more parsimonious than the true tre
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Figure 9.9: A clocklike five-species tree with a pair of short internal
branches, making a case similar to that of Figure 9.8. For branch
lengths b = 0.02 and b = 0.03, evolution of various lengths of DNA
were simulated using a Jukes-Cantor model. The graph on the right
shows the number of times that parsimony found the correct unrooted
tree when analyzing 1,000 replicate data sets. For b = 0.02, the infer-
ence appears to be inconsistent.

Figure 9.9 shows a computer simulation to verify this phenomenon. It involves

- ocklike five-species tree with the same topology as the first tree in the previous

-~ zure. One pair of internal branches has length b = 0.02 or b = 0.03, with other

=nches adjusting their lengths accordingly. I have simulated the evolution of

- ——erent lengths of DNA molecule, using these branch lengths and a Jukes-Cantor
del of evolution. All sites evolved at the same rate.

The graph in Figure 9.9 shows different lengths of DNA for these two values of

~= branch length, plotting the number of times that the correct tree was obtained

“2n using parsimony to analyze the data. There were 1,000 replicates for each

mbination of branch lengths and number of sites of DNA. The figure shows how

—=nv of these resulted in the correct unrooted tree topology. For the two different

~~=nch length values, 0.02 and 0.03, the results are noticeably different. When the

—= branch length is 0.03, the fraction of the time that parsimony produces the

Tect tree increases gradually as we consider cases with more and more sites.

- continued to rise to 100%, parsimony would be consistent. When the true

nch length is 0.02, the fraction of times that parsimony obtains the true tree

=. This implies that parsimony would be inconsistent in this case. In both bases

- curves change slowly—it will take a great amount of sequence data to see the

—.t1ing behavior. Presumably this is because correctly and incorrectly interpreted

= are nearly equal in their effects, and it is only with large amounts of data that
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Figure 9.10: A tree in the Farris zone. The two long branches are on
the same side of the interior branch. Long branch attraction will cause
the topology to be inferred correctly by parsimony more often than by
likelihood; in this case, the bias happens to be in favor of the correct

topology.

the influence of one overcomes the other. With larger values of the branch length
b, the fraction of correct trees rises much more rapidly towards 100%.

This simulation confirms the pattern found by Hendy and Penny (1989).
Zharkikh and Li (1993) have given a different proof of Hendy and Penny’s result,
and have made more extensive numerical study of which five-species trees are in-
ferred inconsistently by parsimony. It will take much more experience before we
have a good understanding of the cases of a molecular clock in which parsimony
is misleading, but for the moment we can suggest that they are ones in which long
branches are separated by short ones, as in the nonclocklike cases.

The Farris zone

Waddell (1995, pp. 391 ff.), Yang (1996), Siddall (1998b), and Steel and Penny
(2000) have pointed out a case in which parsimony methods outperform likelihood
methods. Siddall named the region of tree space where this effect occurs the Farris
zone. (This case has also been called the “anti-Felsenstein-zone” by Waddell, 1995,
and the “inverse-Felsenstein zone” by Swofford et al., 2001). Figure 9.10 shows a
tree that displays this behavior. In this zone, the tree has long branches that are
connected to the same node. As Yang (1996) has noted, long branch attraction in a
parsimony method helps guarantee that this relationship is correctly inferred. In
effect, the inherent bias of parsimony happens to be pointing in the right direction,
toward the correct tree topology. Siddall (1998b), Farris (1999), and Pol and Siddall
(2001) consider this a case favoring parsimony methods over likelthood. Swofford
et al. (2001) argue persuasively that in this case the evidence favoring the correct
topology is being given too much weight by parsimony but is evaluated correctly
by likelihood.

They note that when the interior branch in Figure 9.10 has infinitesimal length
{(such as 0.000001), no characters will actually change in that branch. In their sim-
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Table 9.4: Properties of the Felsenstein and Farris zones, showing the
difference between them

Felsenstein zone  Farris zone

Parsimony consistent? No Yes
Likelihood consistent? Yes Yes

Correct tree if very
short internal branch
.. using parsimony? No Yes

.. using likelihood? Random Random

:lons, with 10,000 sites of DNA sequence, parsimony infers the correct tree al-
<t 100% of the time, in spite of a total lack of evidence as to the tree topology.
contrast, likelihood infers the correct tree topology 1/3 of the time, as would
: ren if the tree topology were chosen randomly from among the three possi-
_es. Pol and Siddall (2001) present simulation results for 10 species trees that
> 4 long and 6 short branches. In their trees the long branches are in adjacent
. This results in parsimony doing better than likelihood. As they lengthen
. .ong branches, both do worse, as expected. At a certain length, parsimony
< prey to a long branch attraction effect, causing likelihood to outperform it
nd that length. They argue that their results show evidence of “long branch
<lsion,” but I find their evidence unconvincing. They do not find evidence of
. msistency of maximum likelihood.
Jne is tempted to think of the two zones as counterparts, one favoring like-
d and distance methods, the other favoring parsimony methods. Siddall
3b) has viewed them this way. But they are very different phenomena. Ta-
.4 shows some of their properties: If the two zones were counterparts, the
- would show the same pattern when we switched zones while at the same
» switching methods. They are not counterparts. One is a zone where parsi-
i has the disadvantage of inconsistency, the other a zone where that method
- he advantage of bias toward a tree that happens to be correct. Neither of these
- _e forlikelihood in the opposite zone. We will see in Chapter 16 that likelihood
—~0ds will be consistent in both zones; likelthood also does not push us to the
~ ctanswer even when there is little chance of having any relevant evidence.

~ome perspective

. inconsistency of parsimony has been the strongest challenge to its use. It
- mes difficult to argue that parsimony methods have logical and philosophi-
2riority, if one accepts that consistency is a highly desirable property. Some
- 0ls of statistical thought (notably Bayesians) reject the relevance of consis-
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tency and might not be troubled by this argument, though they do insist on use of
probabilistic models. If we accept the relevance of consistency, the resulting pic-
ture has a pleasing coherence. The arguments of the earlier part of this chapter,
as to what assumptions lead a likelihood method to become the same as a parsi-
mony method, suggest that it is low probability of change in the branches of the
tree that are needed. These are the same assumptions that work against inconsis-
tency. Likelihood recommends parsimony, and parsimony is consistent if the rate
of evolutionary change per branch of the tree is sufficiently small.

If it escapes the clutches of long branch attraction, parsimony is a fairly
well-behaved method. It is close to being a likelihood method, but is simpler
and faster. It is robust against violations of the assumption that rates of change
at different sites are equal. (It shares this with its likelihood doppelganger.) Thus
parsimony will work particularly well for recently diverged species whose branch
lengths are not long.

But when the inconsistency caused by long branch attraction is a problem, then
if one wants to continue using parsimony, one will need an alternative logical
framework.
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A digression on history and
philosophy

- will be useful to pause at this point and ask about the history and philosophical
“Jderpinnings of the process of inferring phylogenies. Phylogenies have been in-
red by systematists ever since they were discussed by Darwin and by Haeckel,
.~ we concentrate here only on algorithmic methods, those that are well-defined
“sugh to be carried out by a computer. It will not be surprising that these devel-
>2d only once computing machinery was available.

How phylogeny algorithms developed

- okal and Sneath

-tained numerical work on phylogenies started in about 1963. Computers had
m available to biologists for about six years by then, in the form of central-
2d “mainframes” that took input from punched cards and printed the results on
. oer printouts. During that period a number of lines of work had started that
re influential in the development of numerical phylogenies. Chief among these
=5 the development of numerical taxonomy by Peter Sneath and Robert Sokal
~ure 10.1). Starting in the late 1950s, as mechanical methods of computation
~‘tially, punched card machines) first became available to academics, they in-
pendently developed numerical clustering methods for biological classification
_‘ichener and Sokal, 1957; Sokal and Michener, 1958; Sneath, 1957a, 1957b). In
“2 original paper of Michener and Sokal (1957), the purpose of the clustering was
t simply to classify, but to infer the phylogeny. There is thus a good case to be
de that this was the first paper on numerical inference of phylogenies (Figure
2 is from that paper). The interpretation as a phylogeny was made by Mich-
=1; Sokal saw it as a classification that did not necessarily have any validity as a

123
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Figure 10.1: Peter Sneath (left) in Madison, Wisconsin in 1959, and
Robert Sokal (right) at the International Entomological Congress in
1964. Sneath was a medical microbiologist at the University of Le-
icester and Sokal was an evolutionary entomologist at the University
of Kansas when they co-founded numerical taxonomy and introduced
and popularized many of its techniques and concepts. (Photos cour-
tesy of Peter H. A. Sneath and Robert R. Sokal.)

phylogeny. In their subsequent work Sokal and Sneath did not interpret their trees
as phylogenies.

They soon combined forces to explain and promote the use of numerical clas-
sification, especially in their widely noticed book Numerical Taxononty (Sokal and
Sneath, 1963). Explaining many methods and providing examples, they argued
that classification should be based on phenetic principles, with measures of over-
all similarity of organisms used to make the classification, without any considera-
tion of phylogenetic relationships. Their book was an important early exposition
of clustering methods; it is regarded as a founding work by mathematicians, statis-
ticians, and psychometricians interested in mathematical clustering.

In systematics their views were regarded by many as outrageous and oversim-
plified; there was an intense debate between them and proponents of the more
traditional “evolutionary systematics” school of classification, notably Ernst Mayr
and George Gaylord Simpson. Few of the latter were converted and phenetic clas-
sification remained a minority view. But a variety of people interested in numer-
ical approaches to evolution were influenced by their methods, which had an im-
portant effect in preparing people to think algorithmically.

Numerical approaches to morphological evolution were increasingly being at-
tempted (e.g. Olson and Miller, 1958). The late 1950s also saw great progress in
molecular biology. The first wave of protein sequences were determined almost
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F1c. 5. Diagram of relationships for the genus Proferiades obtained by the weighted variable
group method.

Figure 10.2: The first phylogeny inferred by numerical methods (Mich-
ener and Sokal, 1957). The tree, of morphological characters of bees,
was inferred by a clustering method. (Reprinted by permission of the
authors and of the Society for the Study of Evolution).

- multaneously with the birth of numerical classification. It was soon recognized
“zt these sequences could be a source of information on the phylogenies of or-
z=nisms and of genes (Zuckerkandl and Pauling, 1962).
(T am indebted to Robert Sokal and Charles Michener for discussing their joint
rk. This section is based in part on those recollections.)

= dwards and Cavalli-Sforza
ne of the foundations of numerical work on phylogenies was the remarkably cre-
“ve work of Anthony Edwards and Luca Cavalli-Sforza (Figure 10.3) (Edwards
~d Cavalli-Sforza, 1963, 1964). Both had been students of the famous statistician
~d population geneticist R. A. Fisher. They were trying to make trees of human
“opulations from gene frequencies of blood group alleles. It was natural in popu-
“fion genetics to think of gene frequencies as establishing a system of coordinates
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Figure 10.3: Luca Cavalli-Sforza (standing) with Anthony Edwards in
Italy in 1963, and Anthony Edwards (right, in Cambridge, England,
in 1970). Edwards and Cavalli-Sforza were both at the University of
Pavia when they collaborated in founding numerical phylogenetics,
seeing it as a problem in statistical inference and introducing the parsi-
mony, likelihood, and distance matrix methods for inferring phyloge-
nies. (Left photo by Motoo Kimura, courtesy of Mrs. Hiroko Kimura;
right photo by the author.)

in a space, and for evolutionary forces to create a distribution in this space. As-
suming a branching, treelike genealogy of human populations, the two co-workers
arrived at different methods for inferring the tree. Edwards thought of the space
of gene frequencies; he realized that the points that represented the populations
could be connected by a tree, and that the branches of the tree would correspond
to paths in that space, connecting both the known points (the tips of the tree) and
the unknown ones. He wondered whether the best tree would be the one that
tied these points together with the minimum amount of string.

Cavalli-Sforza took a different approach. He had been working on divergence
of gene frequencies in local populations in the Po valley of northern Italy, where
random genetic drift seemed to be the main force bringing about different gene
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Figure 10.4: The first numerical phylogeny produced by parsimony.
The tree of human populations, inferred by Cavalli-Sforza and Ed-
wards (1965) from human blood group polymorphism gene frequen-
cies by parsimony. This tree was presented at the 1963 International
Congress of Genetics and was printed in its Proceedings volume two
years later, and is reprinted by permission of the authors.

-quencies in different locales. He was interested in pairwise distances between
" gene frequencies of local populations, calculated so as to take into account that
- etic drift would more easily cause large differences in gene frequency for alleles
- had intermediate gene frequencies. As small local effective population sizes
Ud cause a lot of genetic drift, he wanted to allow a treelike genealogy with
>nch lengths that could vary greatly from branch to branch and would predict
. amount of genetic drift on that branch. The result was a least squares method,
“which the tree predicted a table of distances between populations, and these
_-ve compared to the actual distances by a least squares measure, which was to

. minimized.
Having arrived at two different methods, Cavalli-Sforza and Edwards were
. 7zled and tried to find a way to reconcile them. As both were students of R. A.
~-2er, they immediately wondered whether Fisher’s great method of maximum
ihood could be employed. If so, it would surely validate one method or the
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F16. 1. Topology of the minimum-evolution tree uniting fifteen human populations ;
constructed on the basis of the frequency of blood-group alleles.

Figure 10.5: The 1963 gene frequency tree inferred by parsimony, as
it appears when the tree topology is plotted onto a map of the world
(Edwards and Cavalli-Sforza, 1964). Reprinted by permission of the
Systematics Association.

other. They worked out a likelihood approach to the problem, and were startled
to discover that it was not equivalent to either of their two methods!

In their 1963 abstract, they stated the parsimony method for the first time.
In the 1964 paper, they presented their parsimony and likelihood methods, dis-
cussing mostly the likelihood method. They deferred the least squares method to
a later paper (Cavalli-Sforza and Edwards, 1967). Figure 10.4 shows the tree of hu-
man populations that they inferred by parsimony, presented at the International
Congress of Genetics in 1963, and which was published in 1965. Figure 10.5 is the
same tree, plotted onto a map of the world (and thus losing much of its branch
length information). This was the first publication of a parsimony tree.

Edwards and Cavalli-Sforza’s paper of 1964 is remarkable in that it introduces
the parsimony method, the likelihood method, and the statistical inference ap-
proach to inferring phylogenies, all in one paper. It could have introduced the
distance matrix method as well, but did not. Although Michener and Sokal (1957)
had published earlier, this paper has at least an equal claim to be the founding pa-
per for the numerical inference of phylogenies. However, it did not discuss the
algorithmics of parsimony, and the likelihood method turned out to be unwork-
able in the form they presented.

[Anthony Edwards was kind enough to discuss the history of his work with
Luca Cavalli-Sforza with me, and this section is partly based on his recollections.
He has also published his account of this work (Edwards, 1996).]
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Figure 10.6: Left, Joseph H. Camin in the mid-1970s. Photo courtesy
of the Snow Entomological Division, Natural History Museum, Uni-
versity of Kansas, thanks to George W. Byers. Right, a member of the
Caminalcules, from the paper by Sokal (1983). Reprinted by permis-
sion of the Society of Systematic Biology.

_amin and Sokal and parsimony
“hough Edwards and Cavalli-Sforza introduced parsimony, modern work on it
- ~.ings from the paper of Camin and Sokal (1965). In Sokal and Sneath’s (1963)
ok, they had maintained that phylogenies could not be inferred reliably enough
e the bases for classifications. As part of his studies of classification methods,
- ~al wanted to have a set of organisms whose true phylogeny was known. The
- way to have them seemed to be to have a practicing systematist evolve some
““ficial organisms, whose complete history would then be known.

A University of Kansas entomological systematist, Joseph Camin, agreed to do
-5, and evolved the Caminalcules, cartoon organisms with affinities to schmoos
Figure 10.6). As they evolved, they were traced from one sheet of paper to

- other, the ancestors being carefully labeled and filed. Camin and Sokal prepared
> ata matrix encoding the forms of the Caminalcules as a series of characters with

- <orete states, as had been advocated in Sokal and Sneath’s book. These would
given to students and to systematists and their taxonomic decisions studied.
»min noticed that the students who seemed to be doing best in reconstructing the
“>wn phylogeny were those who minimized the number of changes of state of
> characters. Sokal and he then published (Camin and Sokal, 1965) a description

- the algorithms necessary to evaluate the number of changes of a given tree, and
sonstruct and rearrange the tree to search among topologies. This was the first
“sonably complete account of a parsimony method; it was widely noticed and
wlated most further work on parsimony. A FORTRAN computer program
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written by Roland Bartcher was available (on decks of punched cards) and listings
were published (Bartcher, 1966) and some copies were sent to other researchers
— though this was the era in which different computers often had incompatible
FORTRAN compilers.

Camin and Sokal’s parsimony method assumed that one might have a charac-
ter with multiple states, that these were arranged in a linear order, and that one
knew which state was the ancestral one. It also assumed that change was irre-
versible. Thus the sequence of states would look something like this:

Their paper is the first to apply the word “parsimony” to the method, and it states
that “the correctness of our approach depends on the assumption that nature is,
indeed, parsimonious,” an assertion that has been rejected by most subsequent
workers.

Camin and Sokal’s parsimony method seems to have been derived indepen-
dently of Edwards and Cavalli-Sforza’s. Although Edwards discussed his parsi-
mony method with Sokal at the International Congress of Genetics in 1963, the
connection to the Camin-Sokal method may not have been obvious. Sokal points
out that Camin, who was not aware of Edwards’s work, suggested the criterion to
him when they were working on this project.

[t is interesting that Sokal, who was skeptical that numerical phylogenies could
be of any value, nevertheless played such a central role in the development of nu-
merical phylogenetic methods. One is reminded of the role the statistician Karl
Pearson played in the development of quantitative genetics. Pearson did not be-
lieve that Mendelian genetics could explain variation in quantitative characters;
to bolster this view he and his students worked out consequences of variation at
Mendelian loci, in order to show that the resulting patterns did not fit the data.
They ended up contributing to the successful explanation of variation in quantita-
tive characters by the effects of Mendelian genetics.

(I am indebted to Robert Sokal for discussions of the history of the Camin and
Sokal paper, on which this section is partly based.)

Eck and Dayhoff and molecular parsimony

In the 1960s the molecular sequence data that were available were mostly protein
sequences. As these sequences accumulated, Margaret Dayhoff (shown in Figure
10.7) at the National Biomedical Research Foundation began to accumulate them
in a database that was distributed in printed form, the Atlas of Protein Sequence and
Structure. Her work was the ancestor of the modern sequence databases (together
with the DNA sequence database project of Walter Goad). From the very outset
she took a determinedly evolutionary view of this information. She was interested
in developing methods for inferring phylogenies. In the second edition of the
Atlas, in 1966, she and R. V. Eck (Eck and Dayhoff, 1966) published a description
of algorithms for the parsimony analysis of protein sequences. These were based
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Figure 10.7: Left, Margaret O. Dayhoff in about 1966. A pioneer of
molecular sequence databases and an early researcher on gene fami-
lies, she and R. V. Eck published in 1966 the first molecular phylogeny
produced by numerical methods. Right, Walter Fitch in 1975. He
published the first major paper on distance matrix methods, invented
the algorithm for counting changes in DNA parsimony, and has made
many other contributions to the study of molecular evolution. (Photos
courtesy of Edward Dayhoff and Walter Fitch.)

a model in which each of the 20 amino acids was allowed to change to any of
2 19 others in a single step.
They described a sequential addition strategy that used an approximate evalu-
1of the merit of connecting the sequence to each pre-existing branch, and they
> describe what seems to be a phase of local rearrangements. Although the al-
‘thm for counting changes was described only sketchily, this is not only the
-. molecular sequence parsimony method, it is the first introduction of a parsi-
v method with unordered states, in which each state is allowed to change to
- other in one step.

‘ch and Margoliash popularize distance matrix methods

- as the parsimony method was most effectively publicized, not by its first
-ription, but by the subsequent publication by Camin and Sokal, so too dis-
“Ze matrix methods were popularized most effectively, not by Cavalli-Sforza
1 Edwards, but by the work of Fitch and Margoliash (1967). Emanuel Mar-
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Fig. 3 (right above). A gene phylogeny as reconstructed from
observable mutations in several heme-containing globins. Sece
Fig. 2 for details. The percent “standard deviation” (7) for
this tree is 1.323,

Figure 10.8: The phylogeny inferred by Fitch and Margoliash (1967)
using their distance matrix method on cytochrome sequences. This is
one of the first distance matrix phylogenies published. (Reprinted with
permission from Science, vol. 155, issue 3760, page 282. Copyright 1967
American Association for the Advancement of Science.)
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~oliash was interested in analyzing evolutionary relationships of cytochrome c se-
-tences, which were becoming numerous. Walter Fitch (Figure 10.7), a biochemist
. the University of Wisconsin, developed a distance matrix method based on least
-Juares. The distances were fractions of amino acids different between the partic-
ar pair of sequences. The least squares was weighted, with greater observed
~'stance given less weight. Although not discussed in explicitly statistical terms,
““is was implicitly based on the realization that large distances would be more
“-one to random error owing to the stochasticity of evolution.
Fitch and Margoliash described not only the least squares criterion that they
-ed, but some of the details of the algorithm. This involved a method of clus-
- ~ing populations based on their distances, which was justified on grounds of
-2 molecular clock. In subsequent references to this work, “the Fitch-Margoliash
>thod” has sometimes been considered to be any method making use of their
righted least squares criterion to choose among trees, and sometimes it has been
-=idered to be their detailed algorithm. Thus, sometimes the “Fitch-Margoliash
.-hod” has been criticized as sensitive to departure from a molecular clock, and
metimes it has been praised for its insensitivity to the assumption of a molecu-
“clock. Both views are correct, depending on which “Fitch-Margoliash method”
- = ing discussed.
[ prefer to refer to the Fitch-Margoliash criterion, the weighted formula. Their
-ziled algorithm is not widely used, but the criterion has prospered. Figure 10.8
ws the phylogeny published in Fitch and Margoliash’s original paper: It is
- arkably accurate, with some problems involving rattlesnakes and primates.
Some further confusion has resulted from some comments in the Fitch and
~goliash paper identifying parsimony as the basis of their method; it is not at
* parsimony method.
* is interesting that Fitch, after introducing a major distance matrix method,
"2 on to make important developments in application of parsimony to molecu-
2quences, while Dayhoff, who had done the first molecular parsimony paper,
- on to use distance matrix methods for most of her subsequent work.

“lson and Le Quesne introduce compatibility

“oted behavioral ecologist E. O. Wilson, an active student of systematics of
contributed to the development of numerical phylogenetics in a brief note
~on, 1965), which showed how one could test whether two 0/1 characters
compatible, in the sense that both could evolve without reversals or paral-
=m on the same phylogeny. This was the test that looks across species to see
—er all four combinations of the two characters (00, 01, 10, and 11) occur. If
« 0 not, the two characters are compatible. Camin and Sokal (1965) had a
complex way of assessing compatibility and used it in some of the steps of
sarsimony method.
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A chemical engineer who was an amateur entomologist, Walter Le Quesne,
built on this to suggest that one should find the tree that had as many characters
as possible compatible with it (Le Quesne, 1969). He did not use the word “com-
patibility” or actually state the criterion explicitly, though he made it clear that the
number of “uniquely derived characters” was the measure of the extent to which a
proposed phylogeny fit the data. Like Camin and Sokal, he used a table of compat-
ibilities between all pairs of characters. The algorithm he used was approximate,
involving dropping those characters that were incompatible with the most other
characters. This is not guaranteed to find the largest possible set of mutually com-
patible characters. The detailed algorithmics of doing so were worked out later,
by George Estabrook and his colleagues (see Chapter 8).

Jukes and Cantor and molecular distances

Although Fitch and Margoliash (1967) had made the first molecular application of
distance matrix methods, they used a distance that was a simple fraction of amino
acids that differed between the species. This was uncorrected for the effects of mul-
tiple replacements. The first distance correcting for this was the DNA sequence
distance of Jukes and Cantor (1969). They did so in the midst of an extensive dis-
cussion of the evolution of proteins. In that era, it was hard to get methodological
papers published, but much easier to publish extensive discussions of data, so no
separate paper was written discussing the formulas.

The authors were at the University of California, Berkeley. Thomas Jukes was
a pioneer of molecular evolution, one of the great experts on the evolution of the
genetic code. Charles Cantor, who later became well-known for his work in devel-
oping pulse-field gel electrophoresis, was at that time Jukes’s graduate student.

Farris and Kluge and unordered parsimony

Although Camin and Sokal had given impetus to work on parsimony, their
method assumed irreversible change. Most users of morphological and molec-
ular parsimony would prefer not to assume either irreversibility, or that it was
known which character state was the ancestral one. However, the barrier to hav-
ing a parsimony method that allowed reversible change and did not assume that
the ancestral state was known was mostly algorithinic. Eck and Dayhoff (1966
had apparently had an algorithm but did not explain it precisely. With Camin-
Sokal parsimony it is easy to assign states to hypothetical ancestors. If a node has
two descendants, whose states are s, and s, then one assigns to the node the state
that is the most recent common ancestor of those two states. For example, if the
states are ordered 0 — 1 — 2 — 3 and 0 is the ancestral state, and the two de-
scendants have states 2 and 3, then their common ancestor must have state 2 in 2
parsimony reconstruction.

With unordered parsimony the matter is much less clear, and this stymied de-
velopment of these methods. This problem was overcome by Kluge and Furr-



A digression on history and philosophy 135

Figure 10.9: James S. Farris in 1983. His work in 1969 and 1970 gave
algorithms for counting the number of changes on a tree with char-
acters from a linear scale that did not assume that the ancestral state
was known. He gave the first clear description of numerical character
weighting and has made many other contributions to inference of phy-
logenies. He has been the main figure in founding the Willi Hennig
Society and persuading phylogenetic systematists that the parsimony
criterion plays a central role in the philosophical justification of their
field. (Photo courtesy of Vicki Funk.)

#~9) and Farris (1970} in two papers that presented algorithms for reconstruct-
- changes on a given tree, as well as algorithms for searching among trees for the
- parsimonious tree. They named the criterion Wagner parsimony in honor of
-0 Wagner, whose groundplan divergence method (Wagner, 1961) helped stimulate
~< on phylogeny algorithms.! Arnold Kluge was a faculty member of the Mu-
- 1 of Zoology and the Department of Zoology of the University of Michigan,
-an Arbor. ]. 5. Farris (shown in Figure 10.9) was a student in that department,
“hugh by the time the papers were published he had become a faculty mem-
n the Department of Biological Sciences of the State University of New York
~zony Brook.
~auge and Farris described algorithms, which were primarily due to Farris,
v aluating the smallest number of changes of state required by a data set on a

" ner may also be the only contemporary systematist who has been mentioned in a Hollywood
\wwo Leaf (1971), starring Walter Matthau and Elaine May.
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given tree. Farris’s algorithm is similar to the one later introduced by Fitch (1971)
except that it is limited to states that are arranged in a linear order. Kluge and
Farris also described a sequential addition strategy for adding species to a tree.

Farris (1969b) also gave the first clear description of numerical weighting
procedures, introducing a “successive weighting” method that reconsidered the
weights as the tree construction proceeded.

Fitch and molecular parsimony

It remained for Walter Fitch (1971) to provide an algorithm for evaluating the num-
ber of changes of state on a tree when there were four unordered states, namely
the states A, C, G, and T in a DNA sequence. We have already described Fitch’s
algorithm. His paper completed the description of methods for construction of
phylogenies from nucleotide sequences by parsimony.

Further work

It is interesting to note that, from the first papers by Sneath and by Sokal to Fitch’s
work of 1971, only 14 years had elapsed (from Edwards and Cavalli-Sforza’s 1963
abstract, only 8 years). Although many of these authors were unaware of each
others” work, the nearly-simultaneous rise of computers and of molecular biology
had created the conditions for numerical phylogenetic techniques to be introduced
and rapidly applied.

For the subsequent history of the field, the reader is referred to the references
in this book. For some sense of the bitter controversies that arose, see the book by
Hull (1988), the reaction to it (Farris and Platnick, 1989), and my own brief account
(Felsenstein, 2001a).

What about Willi Hennig and Walter Zimmerman?

The story [ have told above is not a very well-known one, though it reflects the
influences as I remember them. Many systematists are likely instead to attribute
the development of parsimony methods to Willi Hennig (1950, 1966) rather than
to Edwards and Cavalli-Sforza or Camin and Sokal. They fee] that parsimony is
introduced implicitly, or even explicitly, in Hennig’s book.

Hennig is justly famous for his strong and clear advocacy of phylogenetic clas-
sification and for clearly stating a method for reconstructing phylogenies based
on morphological characters. His methods spring from the earlier paper of the
botanist Walter Zimmerman (1931). An account of Zimmerman's life and his phy-
logenetic work is given by Donoghue and Kadereit (1992).

Hennig was the major advocate of monophyletic classification, and his work
had an important effect in clarifying thought about classification and inferring
phylogenies. However, neither he nor Zimmerman specified what to do if there
was conflict between evidence from different characters. Neither introduced the
parsimony method, or any other algorithmic approach. Hennig (1966, p. 121) did
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--v that “it becomes necessary to recheck the interpretation of [the] characters” to
. ermine whether parallelism has occurred, ox whether the characters in different
-. ocies are not homologous. But he does not give any specific algorithm. He does
22w (1966, p. 121) that “the more certainly characters interpreted as apomorphous
>t characters in general) are present in a number of different species, the better
nded is the assumption that these species form a monophyletic group.” (Farris,
- .uge, and Eckardt (1970) argue, giving the original German, that Hennig ought to
“ze been translated as saying that “the more characters certainly interpretable as
- »morphous ...”). In any case, Hennig gave no numerical method for assessing
Some systematists have asserted that the parsimony method is implied by Hen-
<'s (1966, p. 121) “auxiliary principle.” For instance, Farris (1983, p. 8) says that

I shall use the term in the sense I have already mentioned: most par-
simonious genealogical hypotheses are those that minimize require-
ments for ad hoc hypotheses of homoplasy. If minimizing ad hoc hy-
potheses is not the only connotation of “parsimony” in general use-
age, it is scarcely novel. Both Hennig (1966) and Wiley (1975) have
advanced ideas closely related to my useage. Hennig defends phylo-
genetic analysis on the grounds of his auxiliary principle, which states
that homology should be presumed in the absence of evidence to the
contrary. This amounts to the precept that homoplasy ought not be
postulated beyond necessity, that is to say parsimony.

~_anig’s discussion of his auxiliary principle is concerned with the case in which

*'v one character can certainly or with reasonable probability be interpreted as

morphous.” He was concerned with whether one ought to infer a relationship
sed only on a single character, and says (1966, p. 121) that

I[n such cases it is impossible to decide whether the common charac-
ter is indeed synapomorphous or is to be interpreted as parallelism,
homoiology, or even as convergence. | have therefore called it an “aux-
iliary principle” that the presence of apomorphous characters in dif-
ferent species “is always reason for suspecting kinship [i.e. that the
species belong to a monophyletic group], and that their origin by con-
vergence should not be assumed a priori” (Hennig 1953). This was
based on the conviction that “phylogenetic systematics would lose all
the ground on which it stands” if the presence of apomorphous char-
acters in different species were considered first of all as convergences
(or parallelisms), with proof to the contrary required in each case.

One can have considerable sympathy for Hennig’s position here, without inter-
(ing it as a rule for reconciling conflicts among characters. Indeed, in this case
- "+ directed at cases where there is only one character providing the evidence,
~ hence no possible conflict. Hennig is concerned with whether one ought to
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accept the evidence of one character, where there is no other character providing
support, and concludes that to be self-consistent, one ought to accept its evidence
at face value. It is not obvious how to get from this “auxiliary principle” to the
parsimony criterion.

Farris, Kluge, and Eckardt (1970) were the first authors to attempt a formal
cornection between Hennig’s methods and numerical parsimony methods. After
careful discussion of other steps in the logic, they confronted the issue of how to
deal with character conflict. They cited as their axiom AIV Hennig’s statement,
cited above, that the more apomorphic (derived) characters a group shares, the
better founded is the assumption that it is monophyletic. But then they note (Far-
ris, Kluge, and Eckardt, 1970, p. 176) that

Unfortunately, AIV is not sufficiently detailed to allow us to select a
unique criterion for choosing a most preferable tree. We know that
trees on which the monophyletic groups share many steps are prefer-
able to trees on which this is not so. But AIV deals only with single
monophyletic groups and does not tell us how to evaluate a tree con-
sisting of several monophyletic groups. One widely used criterion—
parsimony—could be used to select trees. This would be in accord
with ATV, since on a most parsimonious tree OTUs [tips] that share
many states (this is not the same as the OTUs’ being described by many
of the same states) are generally placed together. We might argue that
the parsimony criterion selects a tree most in accord with ATV by “av-
eraging” in some sense the preferability of all the monophyletic groups
of the tree. Other criteria, however, may also agree with AIV.

This honest assessment may serve as a caution to those who wish to derive
parsimony directly from Hennig’s work.

Hennig and Zimmerman did not invent parsimony. But they did put forward
clear principles for inferring phylogenies when there was no conflict between dif-
ferent characters. And they were the primary figures in placing monophyletic clas-
sification at the forefront of taxonomic thinking. As such, they played an essential
role in preparing systematists for algorithmic methods.

Different philosophical frameworks

This book has been written from a statistical viewpoint. Methods have been evalu-
ated according to their properties as statistical estimators, with due consideration
of criteria such as consistency. There are many scientists (particularly systema-
tists) who reject this as the proper framework for evaluating methods of inferring
phylogenies. It is worth briefly examining their reasoning, as otherwise the reader
might mistake these frameworks for a statistical one. These nonstatistical views
have tended to be held by some systematists of the “phylogenetic systematics”
school.
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Hypothetico-deductive

“lany of the early expositions of phylogenetic systematics in English adopted a

“vpothetico-deductive view. According to it, characters falsify potential phyloge-
“ies if they cannot evolve in a unique and unreversed fashion on them. We can

".50 say that two characters falsify each other if there is no tree on which they can
~th evolve in unique and unreversed fashion.

In an influential article, Wiley (1975) identified this approach with the scientific
~cthods advocated by Karl Popper (1968a, b), and with Hennig’s phylogenetic
- stematics. Although he mentioned parsimony only in passing, he declared (p.
_13) that “the phylogenetic hypothesis which has been rejected the least number

times is preferred over its alternates.”

A more detailed discussion of this view was given by Gaffney (1979), who de-

ed parsimony from the hypothetico-deductive method, which he describes as

.2mplified in the work of Popper (1968a, b). He says that “the use of derived char-
cter distributions as articulated by Hennig (1966) appears to fit the hypothetico-
 ductive model best.” When he deals with character conflict, Gaffney (1979, pp.
->-99) finds parsimony to be directly derivable from his hypothetico-deductive
Svroach:

In any case, in a hypothetico-deductive system, parsimony is not
merely a methodological convention, it is a direct corollary of the fal-
sification criterion for hypotheses (Popper, 1968a, pp. 144-145). When
we accept the hypothetico-deductive system as a basis for phylogeny
reconstruction, we try to test a series of phylogenetic hypotheses in the
manner indicated above. If all three of the three possible three-taxon
statements are falsified at least once, the least-rejected hypothesis re-
mains as the preferred one, not because of an arbitrary methodolog-
ical rule, but because it best meets our criterion of testability. In or-
der to accept an hypothesis that has been successfully falsified one or
more times, we must adopt an ad hoc hypothesis for each falsification
.... Therefore, in a system that seeks to maximize vulnerability to criti-
cism, the addition of ad hoc hypotheses must be kept to a minimum to
meet this criterion.

To Gaffney (1979, p. 98) this ought not be a controversial matter: “It seems to

*hat parsimony, or Ockham’s razor, is equivalent to ‘logic’ or ‘reason’ because
. method that does not follow the above principle would be incompatible with
- kind of predictive or causal system.”

Eldredge and Cracraft (1980, p. 69) are careful to point out that

“Falsified” implies that the hypotheses are proven false, but this is not
the meaning we (or other phylogenetic systematists) wish to convey. [t
may be that the preferred hypothesis will itself be “rejected” by some
synapomorphies.
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The hypothetico-deductive approach to parsimony is also the basis for the dis-
cussion in the book by Wiley (1981, p. 111):

In other words, we have no external criterion to say that a particular
conflicting character is actually an invalid test. Therefore, saying that
it is an invalid test simply because it is unparsimonious is a statement
that is, itself, an ad hoc statement. With no external criterion, we are
forced to use parsimony to minimize the total number of ad hoc hy-
potheses (Popper, 1968a: 145). The result is that the most parsimonious
of the various alternates is the most highly corroborated and therefore
preferred over the less parsimonious alternates.

It is also invoked by Farris (1983, p. 8):

Wiley [(1975)] discusses parsimony in a Popperian context, character-
izing most parsimonious genealogies as those that are least falsified
on available evidence. In his treatment, contradictory character distri-
butions provide putative falsifiers of genealogies. As I shall discuss
below, any such falsifier engenders a requirement for an ad hoc hy-
pothesis of homoplasy to defend the genealogy. Wiley’s concept is then
equivalent to mine.

One might note that these discussions do not distinguish clearly between par-
simony and compatibility methods. With small numbers of species, there is no
difference between these methods. (For example, with 0/1 characters where an-
cestral character states are not specified, parsimony and compatibility methods
will be identical unless there are at least 6 species.) When Wiley {1981, p. 111)
speaks of accepting the hypothesis that “requires the fewest ad hoc hypotheses
about invalid character tests,” we are faced with the issue of how to count invalid
character tests. If we count an entire column of the character state table (a character
which can take alternative character states) as valid or invalid, then in maximizing
the number of valid tests we are carrying out a compatibility method. However,
to most phylogenetic systematists a “character” is a unique derivation of a char-
acter state. When a character state arises three times on a phylogeny, the issue is
whether we are to count that as one invalid character test or two, and whether the
decision is implicit in the works of Popper, William of Ockham, or Hennig. This
question is not directly dealt with in any of the philosophical writings of phyloge-
netic systematists.

Phylogenetic systematists have tended to back parsimony and denounce com-
patibility. This seems to come, not from any philosophical principle, but from
the feeling that compatibility discounts a character’s value too rapidly, that there
is still good information to be had from characters that have been observed tc
change more than once on a tree. It has also been a result of the greater readi-
ness of advocates of parsimony to ally themselves with phylogenetic systematists
in the taxonomic wars.
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Logical parsimony
Beatty and Fink (1979) took a different approach to the logical foundations of parsi-
mony methods. They discussed the application of Popper’s framework and were

sxeptical that it was the proper justification for parsimony. They concluded (p.
50) that

We can account for the necessity of parsimony (or some such consid-
eration) because evidence considerations alone are not sufficient. But
we have no philosophical or logical argument with which to justify the
use of parsimony considerations — a not surprising result, since this
issue has remained a philosophical dilemma for hundreds of years.

-~ effect they propose relying on parsimony as its own justification, though they
"~ suggest that the ultimate criterion is predictiveness of classifications, and that
" s will be settled by empirical experience.

Kluge and Wolf (1993, p. 196) seem to come to the same conclusion. Listing a
-“les of methods that they have been criticizing, they comment:

Finally, we might imagine that some of the popularity of the afore-
mentioned methodological strategies and resampling techniques, and
assumption of independence in the context of taxonomic congruence
and the cardinal rule of Brooks and McLennan (1991), derives from the
belief that phylogenetic inference is hypothetico-deductive (e.g. Nel-
son and Platnick, 1984: 143-144), or at least that it should be. Even the
uses to which some might put cladograms, such as “testing” adapta-
tion (Coddington, 1988), are presented as hypothetico-deductive. But
this ignores an alternative, that cladistics, and its uses, may be an ab-
ductive enterprise (Sober, 1988). We suggest that the limits of phylo-
genetic systematics will be clarified considerably when cladists under-
stand how their knowledge claims are made (Rieppel, 1988; Panchen,
1992).

Kluge and Wolf have thus cut loose from the hypothetico-deductive frame-
rx, but they continue to consider parsimony as the foundation of their infer-
»3. Their position can be described as a “logical-parsimony” view, as they take
~-imony itself as the basic principle, rather than deriving it from other (Poppe-
- falsificationist, or hypothetico-deductive) arguments.

2ober (1988), whom Kluge and Wolf cite with approval, does not take parsi-
v as its own justification, but justifies parsimony in terms of statistical infer-
<. presenting a derivation that he believes shows that parsimony is generally a
-imum Jikelihood method. He is quite pointedly critical of Popperian falsifica-
“sm. His basic criticism (p. 126) of Popper is that

Popper’s philosophy of science is very little help here, because he has
little to say about weak falsification. Popper, after all is a hypothetico-
deductivist. For him, observational claims are deductive consequences
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of the hypothesis under test ... Deductivism excludes the possibility
of probabilistic testing. A theory that assigns probabilities to various
possible observational outcomes cannot be strongly falsified by the oc-
currence of any of them. This, I suggest, is the situation we confront in
testing phylogenetic hypotheses. (AB)C is logically consistent with all
possible character distributions (polarized or not), and the same is true
of A(BC). [Emphasis in the original]

Thus, cut loose from a Popperian foundation, parsimony must either rely on a
statistical justification, or stand on its own. Sober chooses the former; Kluge and
Wolf, the latter.

Logical probability?

More recently Kluge (1997a) has preferred to describe his position as using “log-
ical probability.” In spite of the name, it is distinct from any parametric statis-
tical framework. Siddall and Kluge (1997) have argued against “probabilism,”
the statistical approach to inferring phylogenies, identifying it as “verification-
ist,” whereas they prefer to be “refutationist.” Kluge (1997a, b, 1998) prefers to
base inferences on the “degree of corroboration,” a measure due to Karl Popper.
Popper’s formula includes terms such as Prob (D |T) and Prob (D), where D is
the data, and T the hypothesis about the tree. (I have omitted the symbol # for
the “background knowledge” because it appears in every term.) The first term is
the likelihood. The second cannot be computed unless we sum over all possible
trees, weighting each by its prior probability. Thus Popper’s formula assumes a
Bayesian inference framework, as only in that case are prior probabilities of trees
assumed to be available. As Popper was an opponent of Bayesianism (Eliott Sober,
personal communication) his corroboration formula seems fundamentally at odds
with his other views.

De Queiroz and Poe (2001) and Faith and Trueman (2001) have argued against
Kluge's use of Popper’s measure of degree of corroboration. De Queiroz and Poe
conclude that likelihood is compatible with Popper’s approach, but that parsi-
mony can only be justified by it if further assumptions allow us to compute the
relevant probabilities. They did not discuss whether Popper’s measure requires a
Bayesian framework, but they do note a statement by Popper (1959) that likelihood
is an adequate measure of the degree of corroboration when the term Prob (D) is
small enough to be ignored. They argue that Prob (D) can be ignored as it does
not affect which hypothesis is preferred. Their view has been opposed by Kluge
(2001), who quotes Popper (1959) saying that he intends his calculation of corrobo-
ration to be applied only to “the severest tests we have been able to design.” Kluge
cites Tuffley and Steel’s no-common-mechanism result as establishing a direct con-
nection between parsimony and likelihood. He does not give any direct argument
that evaluating parsimony constitutes the severest test available.

Faith and Trueman (2001) make a broader argument that Popper’s corrobo-
ration formula is compatible with the use of many measures of goodness-of-fit,
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icluding likelihood, parsimony and others. They reject the notion that there is
direct connection between Popperian corroboration and parsimony. They pay
onsiderable attention to the term for Prob (D). They do not see it as requiring a
“ayesian approach, but propose that the PTP randomization procedure of Archie
1989) and Faith and Cranston (1991) be used to evaluate it, as the probability that
e goodness-of-fit for a tree would occur when the data are randomized so that
~.wvlogenetic structure is eliminated. This randomization procedure is discussed
crther in Chapter 20. It is not obvious to me that Popper’s term for Prob (D) is
zended to allow this type of randomization, rather than a Bayesian calculation.
In Kluge’'s framework, shared derived states (synapomorphies) are regarded as
nprobable when not predicted by a tree, and thus the tree that requires the fewest
- .hem has the highest value of Popper’s corroboration measure. De Queiroz and
~ > point out that these probabilities cannot be calculated unless more is known
‘vut probabilities of change in the characters in various branches of the tree. Faith
d Trueman (2001), in a similar discussion, point to Prob (D) as ill-defined in
“ logical parsimony framework. [ would add that it is not clear that it can be
ulated in any framework other than a Bayesian one.
Consideration of the cases in which parsimony is inconsistent will make it ap-
ent that the probability of a synapomorphy given the wrong tree can some-
¢s be higher than its probability given the right tree. Therefore, a count of the
~ber of synapomorphies cannot, by itself, allow us to calculate Prob (D |T) or
_~per’s measure. We also would need to know whether we are in one of these
mvenient cases, and we would need to consider other aspects of the data D in
sition to the number of synapomorphies. This “logical probability” lacks the
~ails necessary to make it actually be a probability. In their absence, it would be
-z¢r for the approach to be called a logical-parsimony approach.
Farris (1999, 2000a) invokes Popper’s corroboration measure, arguing that it is
«mized when likelihood is maximized. He then points to Tuffley and Steel’s
-7) no-common-mechanism result and argues that when a sufficiently realistic
del of variation of evolutionary rates among sites is adopted, parsimony ob-
“> the same tree as likelihood and hence the tree favored by Popper’s measure.
-e already noted that in such cases the inference can be inconsistent. In such
.<e Popper’s formula is corroborating the wrong tree! If more is known about
. distribution of evolutionary rates, one might be able to use a more specific

‘el that achieved consistency. In that case the likelihood method would not be
-tical to parsimony.

!

_ ticisms of statistical inference

* ~cates of the hypothetico-deductive and logical-parsimony frameworks are
2din one important respect: They reject statistical inference as a correct model
aferring phylogenies. The basic objection most often heard is that statistical

- oaches require us to know too much about the details of the evolutionary
vss. For example, Farris (1983, p.17) declares that:
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The statistical approach to phylogenetic inference was wrong from the
start, for it rests on the idea that to study phylogeny at all, one must
first know in great detail how evolution has proceeded.

Siddall and Kluge (1997) make a similar argument. Siddall (2001, p. 396), oppos-
ing the views of De Queiroz and Poe (2001), makes a strong distinction between
“frequency probability (i.e. ‘implicit probabilistic assumptions’) and legical proba-
bility [i.e., that the hypothesis of fewer ad hocisms is the one in which we should
have a higher degree of rational belief].”

One can have similar doubts about any statistical inference: If we toss coins,
are the different tosses really independent and really identical processes? We must
always temper our detailed statistical conclusions with a skepticism of the model
from which they arise. In the case of tossing coins, the model may be so close
to true that we accept it as given. Systematics lies close to the other end of the
scale: The models are only rough approximations of reality, and it is worth re-
membering that and worrying about it. Of the statistical methods we use, some
(such as maximum likelihood) make use of all details of the model. Others, such as
bootstrapping, use empirical information about the level of conflict of the charac-
ters, and thus they may rely on the characters being independent and chosen from
some pool of characters, but they rely less on the details of a probability model of
evolution.

However, there is always some reliance on the model. Critics of the statisti-
cal approach from the logical-parsimony school usually believe that they have a
method (parsimony) that makes only noncontroversial assumptions. When par-
simony is examined as a statistical method, this does not prove to be the case —
there are implicit assumptions about rates of change in different lineages. From
within the logical-parsimony framework it seems difficult to examine the assump-
tions of parsimony.

A second criticism of statistical inference rejects the use of at least some kinds
of statistical methods, based on the fact that evolutionary events are historical, and
therefore not repeatable:

“As an aside, the fact that the study of phylogeny is concerned with
the discovery of historical singularities means that calculus probability
and standard (Neyman-Pearson) statistics cannot apply to that histori-
cal science ....” (Kluge, 1997a).

In a later paper, Kluge (2002) expands on this argument, declaring that “the prob-
abilities of the situation peculiar to the time and place of the origin of species are
unique.”

One wonders whether this position is tenable. Suppose that we toss a coin 100
times and get 58 heads. We can regard the experiment as repeatable and infer the
probability of heads. But suppose that, after we finish tossing, the coin rolls to the
floor and then down a drain and disappears forever. Are not the 100 tosses now
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storical singularities? Yet clearly nothing important has changed that prevents
» from inferring the probability of heads!
Although I have made clear where my own loyalties lie, in the end questions
. ‘e these must be settled by the readers of this book.

~he irrelevance of classification

* far in this book I have said little or nothing about classification. Almost all
- stematists have considered taxonomy, the naming of organisms and their place-
=t in an hierarchical classification, to be the basic task of systematics. The
wstruction and maintenance of a system of classification has been loudly de-
“‘med as the most important objective of systematics, its unifying theme. This
~nhasis has been made by systematists of all three major schools, evolutionary-
- :ematic, phylogenetic, and phenetic. Textbooks emphasize the point, and after-
“ner speakers concentrate on it. And yet ... attending the annual meeting of a
~temporary systematic society, such as the Society of Systematic Biology, will
-~cal that few of the speakers are concerned with classification. They spend
.r time making estimates of the phylogeny and using them to draw conclu-
1s about the evolution of interesting characters. They use phylogenies a great
:1. But, having an estimate of the phylogeny in hand, they do not make use of
classification.
This is a major shift in interest, and textbooks, after-dinner speeches, histori-
of science, and philosophers of science have not yet caught up. There has
1 a major shift away from interest in classification. The after-dinner speakers
“mselves do not practice what they preach. The delimitation of higher taxa is
.onger a major task of systematics, as the availability of estimates of the phy-
Zeny removes the need to use these classifications. Thus the outcome of the wars
- " classification matters less and less. A phylogenetic systematist and an evolu-
rary systematist may make very different classifications, while inferring much
same phylogeny. If it is the phylogeny that gets used by other biologists, their
“erences about how to classify may not be important.
[ have consequently announced that I have founded the fourth great school
- zlassification, the It-Doesn’t-Matter-Very-Much school. Actually, systematists
ed with their feet” to establish this school, long before I announced its exis-
-e.
The terminology is also affected by the lingering emphasis on classification.
-V systematists believe that it is important to label certain methods (primarily
simony methods) as “cladistic” and others (distance matrix methods, for ex-
‘~le) as “phenetic.” These are terms that have rather straightforward meanings
n applied to methods of classification. But are they appropriate for methods of
-rring phylogenies? ] don’t think that they are. Making this distinction implies
-7 something fundamental is missing from the “phenetic” methods, that they
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are ignoring information that the “cladistic” methods do not. In fact, both meth-
ods can be considered to be statistical methods, making their estimates in slightly
different ways.

Similarly, we might infer the mean of a normal distribution from the sample
mean or from the sample median. These differ in their statistical properties, but
both are legitimate statistical estimates. Surprisingly many systematists use ter-
minology for phylogeny methods which denies a similar legitimacy to distance
matrix methods. Unfortunately, the passions that animate debates over classifica-
tion have carried over into the debates over methods of inferring phylogenies. In
this book we will give the terms “cladistic” and “phenetic” a rest and consider all
approaches as methods of statistical inference of the phylogeny.
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Jistance matrix methods

“r family of phylogenetic methods has been the distarnce matrix methods, intro-
o by Cavalli-Sforza and Edwards (1967) and by Fitch and Margoliash (1967;
:0 Horne, 1967). They were influenced by the clustering algorithms of Sokal
= ath (1963). The general idea seems as if it would not work very well: cal-
- 2 measure of the distance between each pair of species, and then find a tree
- ~edicts the observed set of distances as closely as possible. This leaves out
“o'mation from higher-order combinations of character states, reducing the
matrix to a simple table of pairwise distances. One would think that this
-~ ave out so many of the subtleties of the data that it could not possibly do a
"..ble job of making an estimate of the phylogeny.
“puter simulation studies show that the amount of information about the
<eny that is lost in doing this is remarkably small. The estimates of the phy-
are quite accurate. Apparently, it is not common for evolutionary processes
tnot the simple models that we use for them) to leave a trace in high-order
itions of character states without also leaving almost the same information
~airwise distances between the species.
- best way of thinking about distance matrix methods is to consider dis-
: as estimates of the branch length separating that pair of species. Each dis-
1fers the best unrooted tree for that pair of species. In effect, we then have
2. number of (estimated) two-species trees, and we are trying to find the n-
tree that is implied by these. The difficulty in doing this is that the indi-
- distances are not exactly the path lengths in the full n-species tree between
nwo species. They depart from it, and we need to find the full tree that does
- [ub of approximating these individual two-species trees.

>nch lengths and times

<ance matrix methods, branch lengths are not simply a function of time.
_flect expected amounts of evolution in different branches of the tree. Two

147
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branches may reflect the same elapsed time (as when they are sister lineages in a
rooted phylogeny), but they can have different expected amounts of evolution. In
effect, each branch has a length that is a2 multiple r; of the elapsed time t;. The
product r;¢; is the branch length. This allows different branches to have different
rates of evolution.

The least squares methods

We start by describing the least squares methods, which are some of the best-justified
ones statistically. The distances themselves also need some discussion, as they
must have particular mathematical and statistical properties to work with these
methods. We also describe one variant, the minimum evolution methods, and two
quicker but more approximate distance matrix methods: UPGMA clustering and
the neighbor-joining method.

The fundamental idea of distance matrix methods is that we have an observed
table (matrix) of distances (D;;), and that any particular tree that has branch
lengths leads to a predicted set of distances (which we will denote the d;;). It
does so by making the prediction of the distance between two species by adding
up the branch lengths between the two species. Figure 11.1 shows a tree and the
distance matrix that it predicts. We also have a measure of the discrepancy be-
tween the observed and the expected distances. The measure that is used in the
least squares methods is

Q = > wy(Diy —dy,)? (11.1)

i=1 =1

where the w;; are weights that differ between different least squares methods.
Cavalli-5forza and Edwards (1967) defined the unweighted least squares method
in which w;; = 1. Fitch and Margoliash (1967) used w;; = 1/D7?;, and Beyer et
al. (1974) suggested w;; = 1/D;;. We are searching for the tree topology and the
branch lengths that minimize Q. For any given tree topology it is possible to solve
for the branch lengths that minimize @ by standard least squares methods.

The summation in equation 11.1 is over all combinations of 7 and j. Note that
when i = j, both the observed and the predicted distances are zero, so that no
contribution is made to . One can alternatively sum over only those j for which

j#i

Least squares branch lengths

To find the branch lengths on a tree of given topology using least squares we must
minimize ¢. The expression for @ in equation 11.1 is a quadratic in the branch
lengths. One way that it can be minimized is to solve a set of linear equations.
These are obtained by taking derivatives of @ with respect to the branch lengths,
and equating those to zero. The solution of the resulting equations will minimize
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Figure 11.1: A tree and the distances it predicts, which are generated
by adding up the lengths of branches between each pair of species.

2 equation 11.1 the d;; are sums of branch lengths. Figure 11.2 shows the

- tree with variables for the branch lengths. If the species are numbered in

~abetic order, d;4 will be the expected distance between species A and D, so

~.tis vy 4 vy + 4. The expected distance between species B and E is 125 =

V7 — U

- ppose that we number all the branches of the tree and introduce an indicator

sle 2451, which is 1 if branch k lies in the path from species i to species j and
-~crwise. The expected distance between 7 and j will then be

di]‘ = Z Iij.k' Uk (112)
k

~tion 11.1 then becomes

2
Q= Z Z wij (Dij - Zl‘u.kl‘k> (11.3)
el -
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Figure 11.2: The same tree as the previous figure, with the branch
lengths as variables.

If we differentiate Q with respect to one of the v’s such as 14, and equate the deriva-
tive to zero, we get the equation

d n
% =23 Ny ik <D7j*;;z:ij_kz_:k> =0 (11.4)

=1 j:j3Ei

The —2 may be discarded.

One way to make a least squares estimate of branch lengths is to solve this set of
linear equations. There are both exact and iterative methods for doing this. In the
case of Cavalli-Sforza and Edwards’s original unweighted least squares methods,
where the weights w;; are all 1, the equations are particularly simple. This will
lead us to a nice matrix form, and the more general case can then be put in that
form. (The reader who is prone to panic attacks at the sight of matrices should
skip the rest of this subsection and the one on generalized least squares as well.)
For the unweighted case, for the tree in Figures 11.1 and 11.2, the equations are:

Dip+Dac+Dap+Dap = 4oy —va+uvg—va+ 5+ 206 + 207
Dasp+ Dpc+Dpp+ Dpes = w1 o dra+ vy +va+ 05+ 206 + 307
Day-+Dpe+Dep+ Do = w1+ vp +4vs+va + o5+ 3 + 2u7
Dap+Dpp+Dep+Dpr = v1 vy +vy+4vy + vs + 2u + 3y
Dsg+Dpp+Dep+Dpg = v +vo+vs+ vy + 4dvs + 3vg + 207
Dac+ Dag + Dpc

+Dpg+ Dep+ DpE = 22Uy 4 2y 4 3vg + 20y + 3vs + Gvg + Loy
Dap+ Dap+ Dpc

+Dep + Dpg +Dpr = 2uy + 3ty + 2u3 + 3y + 2us + dug + By

(11.5)
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Dag
Dac
Dyap
Dag
Dpc
Dgp
Dpe
Dcp
DcE
DpE
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(11.6)

~ = coefficients 25, can then be arranged in a matrix, each row corresponding to
~= D,; in that row of d and containing a 1 if branch k occurs on the path between
~=cies i and j. For the tree of Figures 11.1 and 11.2,

L

o OO0 O D O = = =

e B e B e B S R == I s B e B

o = 2 C O = o2 O P O

— O = O = O O = O O

— = o = O C = © O O

— O P = © = = O = O

e T S T B o S S o S S S e S

(11.7)

=< that the size of this matrix is 10 (the number of distances) by 7 (the number
-ranches). If we stack up the v; into a vector, in order of i, equations 11.5 can be
-ressed compactly in matrix notation as:

X7d =

(XTX) v

(11.8)

~tiplving on the left by the inverse of X7 X, we can solve for the least squares

~chlengths:

v = (X™X)' x7d

(11.9)
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This a standard method of expressing least squares problems in matrix notation
and solving them. When we have weighted least squares, with a diagonal matrix
of weights in the same order as the D;;:

[was 0 0 0 0 0 0 0 0 0o |
0 wae 0 0 0 0 0 0 0 0
0 0 wap 0 0 0 0 0 0 0
0 0 0 waAr 0 0 0 0 0 0
—_— 0 0 0 0 wee 0 0 0 0 0
0 0 0 0 0 WRD 0 0 0 0
0 0 0 0 0 0 WRE 0 0 0
0 0 0 0 0 0 0 wep 0 0
0 0 0 0 0 0 0 0 UWCE 0
| O 0 0 0 0 0 0 0 0 WpE |
(11.10)
then the least squares equations can be written
Xfwd = (X'WX)v (11.11)
and their solution
v = (XTWX)™ xTwd (11.12)

Again, this is a standard result in least squares theory, first used in least squares
estimation of phylogenies by Cavalli-Sforza and Edwards (1967).

One can imagine a least squares distance matrix method that, for each tree
topology, formed the matrix XTX (or XTWX), inverted it, and obtained the es-
timates in 11.9 (or 11.12). This can be done, but it is computationally burden-
some, even if not all possible topologies are examined. The inversion of the matrix
XTWZX takes on the order of n® operations for a tree of n tips. In principle, this
would need to be done for every tree topology considered. Gascuel (1997) and
Bryant and Waddell (1998) have presented faster methods of computation that
compute the exact solutions of the least squares branch length equations, taking
advantage of the structure of the tree. They cite earlier work by Vach (1989), Vach,
and Degens (1991), and Rzhetsky and Nei (1993). For a tree with n tips these fast
methods save at least a factor of n (and for the unweighted cases, n*) operations.

[ have presented (Felsenstein, 1997) an iterative method for improving branch
lengths. It uses a “pruning” algorithm similar to the one which we will see in the
next chapter for likelihood. It computes distances between interior nodes in the
tree and tips, and between interior nodes. These distances depend on the current
estimates of the branch lengths. Using these new distances, improved estimates
of branch lengths can then be obtained. The method is of the “alternating least
squares” type, in which least squares estimates of some variables are obtained,
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. 1 the values of the others, and this is done successively for different variables
ich lengths, in the present case). They converge fairly rapidly on the correct
>s. Although they are iterative, they do enable us to constrain the branch

~hs to be nonnegative, which may be helpful as negative branch lengths have

- vlogical interpretation.
his algorithm uses, at each node in the tree, arrays of distances from there to

.~ other node. These can play the role that the conditional score arrays play in

_itch and Sankoff algorithms for computing the parsimony score of a tree. Like

-2, these arrays can be used to economize on computations when rearranging

.:ee. This is of less use in the least squares distance matrix methods than it is in

~arsimony methods, because the branch lengths in a subtree typically do not
in completely unaltered when other regions of the tree are changed. We will
similax quantities when we discuss likelihood methods.

- .ding the least squares tree topology

-3 able to assign branch lengths to each tree topology, we need to search among
wpologies. This can be done by the same methods of heuristic search that
- discussed in Chapter 4. We will not repeat that discussion here. No one
- et presented a branch-and-bound method for finding the least squares tree
- :tlv. Day (1986) has shown that finding the least squares tree is an NP-complete
>.em, so that polynomial-time algorithms for it are unlikely to exist.
\nte that the search is not only among tree topologies, but also among branch
-.1s. When we make a small change of tree topology, the branch lengths of
esulting tree should change mostly in the regions that are altered, and rather
2lsewhere. This means that the branch lengths from the previous tree provide
- 1th good starting values for the branch lengths on the altered tree. My own
“ive algorithm for estimating branch lengths (Felsenstein, 1997) retains partial
‘mation at interior nodes of the tree. Thus we not only retain the previous
_.h lengths, but we do not need to recompute the partial information at the
1or nodes, at least not the first time they are used. Another iterative algorithm
dmating branch lengths is described by Makarenkov and Leclerc (1999).
e defer coverage of the highly original least squares method of De Soete
31 unti] the next chapter, as it uses quartets of species.

’

e statistical rationale

‘mpetus behind using least squares methods is statistical. If the predicted dis-
‘s are also expected distances, in that each distance has a statistical expectation
Il to its prediction on the true tree (equal to the sum of the intervening branch
zths), then we can imagine a statistical model in which the distances vary inde-
~dently around their expectations and are normally distributed around them.
' were true, the proper least squares estimate would minimize the sum of
. zres of the standardized normal deviates corresponding to the different dis-
s. The deviation of an individual distance from its expectation would be
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D;; — E(D,;), and the variance of this quantity would be Var (D;;). We can make
a squared standardized normal variate by dividing the square of the deviation by
the variance. The sum of squares would then be

2
Z > v;—)])] (11.13)

i=1 jij#ti

The expectation E(D;;) is computed from the predicted distance, the result of
summing branch lengths between the species. The variance in the denominator
depends on the details of the process that produced these distances. In effect,
Cavalli-Sforza and Edwards’s least squares methods are assuming equal variances
for all the distances, and Fitch and Margoliash are assuming that the error (and
hence the standard deviation) is proportional to the distance. Fitch and Margo-
liash approximate the variance (the square of that standard deviation) by using
the square of the observed distance.

The problem with this framework is the assumption that the observed dis-
tances vary independently around their expectations. If the distances are derived
from molecular sequences, they will not vary independently, as random evolu-
tionary events on a given internal branch of the tree can simultaneously inflate
or deflate many distances at the same time. The same is true for distances for re-
striction sites and gene frequencies. DNA hybridization techniques would seem
to be likely to satisfy the assumption, however. Their errors have much more to
do with experimental error than with random evolutionary events. But alas, DNA
hybridization values are computed by standardizing them against hybridizations
of a species against its own DNA, and those standards are shared by multiple hy-
bridization values. The result is a lack of independence even in this case.

Fortunately, it can be shown that least squares methods that do not have cor-
rections for the correlations among data items will nevertheless at least make con-
sistent estimates, that they will converge to the true tree as the size of data sets
becomes large, even if the covariances are wrongly assumed to be zero and the
variances are wrongly estimated. All that is necessary is that the expectations be
correct.

I have discussed this approach to justifying distance matrix methods (Felsen-
stein, 1984), pointing out that it does not require that there be any paths through
the data space to the observed data that exactly achieve the estimated branch
lengths. For a contrary view see Farris’s arguments (Farris, 1981, 1985, 1986) and
my reply (1986).

Generalized least squares

The least squares methods as formulated above ignore the correlations between
different distances. It is possible to modify the methods, in straightforward fash-
ion, so that they take the correlations into account. This should be statistically
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“ rable. However, one pays a large computational cost for taking the corre-
. -2s into account. Chakraborty (1977) presented a least squares method for
:under a molecular clock. He assumed that the covariances of distances were
“ortional to the shared path length on the paths connecting the two pairs of
~'es. This would be true if evolution were a Poisson process, in which there
. random events occurring along the paths, with variances and covariances de-
~ined by the number of events. This is approximately true for small amounts of
~gence. However, he estimated the divergence times by ordinary unweighted
- =quares, using the covariances only in the computation of the standard errors
. »divergence times.
.asegawa, Kishino, and Yano (1985) used an explicit model of DNA evolution
-“ive expressions for the variances and covariances of the distances, and they
-.d a generalized least squares method on this. Bulmer (1991) used the Poisson
.. 3 approximation, basing a generalized least squares analysis on it.
" ese methods require more computation than ordinary least squares. The
- .lons are similar to 11.12 and 11.9, but the diagonal array of weights, W, must
~-vlaced by the inverse of the covariance matrix of the distances:

XTv-ld = (XTV™IX) v (11.14)

- neir solution .
v = (XIvIX)T xTvoid (11.15)
inverse of the covariance matrix V is inversion of an n(n + 1)/2 x n(n +
- matrix. For 20 species, for example, this would be a 190 x 190 matrix. This
- be done for each tree topology examined. Matrix inversion requires an effort
-artional to the cube of the number of rows (or columns) of the matrix. Thus
‘ive cost of finding branch lengths for a least squares tree of given topology
1 be proportional to n®. However, Bryant and Waddell (1998) have described

» efficient algorithm that reduces the cost to n*.

stances

aer for distances that are used in these analyses to have the proper expecta-
- it is essential that they are expected to be proportional to the total branch
_-1 between the species. Thus, if in one branch a distance X is expected to ac-
.ate and on a subsequent branch a distance Y, then when the two branches
. aced end-to-end the total distance that accumulates must be expected to be
1. It need not be X + Y in every individual case, but it must be in expec-
~. It is not proper to use any old distance measure, for this property may be
1g. If the distances do not have this linearity property, then wrenching con-
"~ between fitting the long distances and fitting the short distances arise, and
-ee is the worse for them.
“e will give an example of how distances may be computed to make them
~lv with this requirement, using DNA sequences as our example.
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Figure 11.3: The Jukes-Cantor model of DNA change. The rate of
change between all pairs of nucleotides is ©/3 per unit time.

The Jukes-Cantor model—an example

The simplest possible model of DNA sequence evolution is the model of Jukes
and Cantor (1969). In this model, each base in the sequence has an equal chance
of changing. When one changes, it changes to one of the three other bases with
equal probability. Figure 11.3 shows a diagram of this model. The result is, of
course, that we expect an equal frequency of the four bases in the resulting DNA.
The quantity u that is the rate of change shown on all the arrows is the rate of
substitution between all pairs of bases. Note that although this is often miscalled a
rate of “mutation,” it is actually the rate of an event that substitutes one nucleotide
for another throughout a population, or at any rate in enough of the population
that it shows up in our sampled sequence. In certain cases of neutral mutation, the
rates of substitution and of mutation will be the same.

To calculate distances we need to compute the transition probabilities in this
model. Note that this does not mean the probabilities of transition rather than
transversion,; it is much older mathematical terminology, meaning the probability
of a transition from one state (say C) to another (say A). The easiest way to com-
pute this is to slightly fictionalize the model. Instead of having a rate . of change
to one of the three other bases, let us imagine that we instead have a rate —111 of
change to a base randomly drawn from all four possibilities. This will be exactly
the same process, as there then works out to be a probability /3 of change to each
of the other three bases. We have also added a rate /3 of change from a base to
itself, which does not matter.

If we have a branch along which elapsed time is ¢, the probability in this fiction-
alized model that there are no events at all at a site, when the number expected to
occur is Fut, is the zero term of a Poisson distribution. We can use that distribution
because we take time to be continuous, and the branch of time # consists then of
a vast number of tiny segments of time dt each, each having the small probability
3u dt of an event. The probability of no event is then

—qul

e
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Differences
per site

0 0.7945
Branch length

Figure 11.4: The expected difference per site between two sequences
in the Jukes-Cantor model, as a function of branch length (the prod-
uct of rate of change and time). The process of inferring the branch
length from the fraction of sites that differ between two sequences is
also shown.

probability of at least one event is the complement of this,

* »21is an event, no matter how many there are, the probability that the last one
ced in a particular nucleotide is then 1/4. So, for example, the probability of
- ne end of a branch that started with A is

1 .
Prob(C 4 u.1) = 5 (1 - e"s“> (11.16)

- “ere are three other nucleotides to which the A could have changed, the prob-
.v that this site is different at the two ends of the branch is the sum of three

N quantities, being
Dg = %(1—5 *) (11.17)
- e 11.4 shows this curve of difference against ut. Note that it plateaus at 3/4.
< is what we expect; when a sequence changes by so much that it is unrelated

-< initial sequence, there are still 1/4 of the sites at which it happens to end up

e same state as when it started.

Note that if we try to use the difference per site, which is the vertical axis of
2ure 11.4, it will certainly rise linearly with branch length. As it flattens out at
- it will accumulate less and less difference with successive branches traversed.
" ¢ have two branches that each would, individually, lead us to expect 0.20 dif-

1ce from one end of the branch to the other, when combined they will in fact
~ " lead to an expected distance of 0.34666. The differences will not be additive

T L
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The easiest way to find an additive distance is simply to use the difference per
site to estimate ut itself. The value ut is the product of the rate of change and the
time. It is the expected number of changes along the branch, counting both those
that end up being visible to us, and those that do not. We call the value of ut for
a branch the branch length. The values of ut on each branch will, by definition,
add perfectly. Figure 11.4 shows this estimation. Starting with a value 0.49 of
the difference, the dashed arrows show the process of estimating «f. The resulting
estimate, 0.7945, is in effect the difference corrected for all the events that are likely
to have occurred, but could not be seen. They include changes that overlay others,
or even reversed their effects.

The formula for this estimation is easily derived from equation 11.17. It is:

~ 3 4
D = ut = f In (1 3D5> (11.18)

This is actually a maximum likelihood estimate of the distance, it turns out.
Its one tiresome aspect is that it becomes infinite when the difference between
sequences becomes greater than 3/4. That cannot occur in the data if infinitely
long sequences follow the Jukes-Cantor model, but it can certainly happen for
finite-length sequences, simply as a result of random sampling.

Although the result of these calculations is called a distance, it does not neces-
sarily satisfy all the requirements that mathematicians make of a distance. One of
the most important of these is the Triangle Inequality. This states that for any three
points A, B, and C,

Dac < Dip+ Dpe (11.19)

A simple example of violation of the Triangle Inequality is three DNA sequences
100 bases in length, with 10 differences between the A and B, and 10 differences
between B and C, those being at different sites. Thus A and C differ at 20 sites. Us-
ing equation 11.18, Dyp = Dge = 0.107326 and Dy = 0.232616, which violates
the inequality. Thus we can call the number a distance in a biological sense, but
not in a mathematical sense. Fortunately, most distance matrix methods do not
absolutely require the Triangle Inequality to hold.

Why correct for multiple changes?

The Jukes-Cantor distance does not simply compute the fraction of sites that differ
between two sequences. Like all the distances we will encounter, it attempts a cor-
rection for unobserved substitutions that are overlain or reversed by others. Why
is this necessary? The first impulse of many biologists is to use the uncorrected
differences as distances. This is dangerous.

An example is given in Figure 11.5. The original tree is shown on the left.
Under the Jukes-Cantor model, the uncorrected fractions of sequence difference
predicted from this tree are shown in the table in the center. If these are used with
the unweighted least squares method, the tree on the right is obtained. It has the
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A B Cc D

0.0 0.57698 0.59858 0.70439 |
0.57698 0.0 024726 059858
0.59858 0.24726 0.0 0.57698
070439 0.59858 057698 0.0 ‘

B C

oNnw

Figure 11.5: An example of distortion of tree topology when uncor-
rected distances are used. The true tree is on the left, the expected un-
corrected sequence differences under a Jukes-Cantor model are shown
in the table in the center. The least squares tree from those differences
is shown on the right. It incorrectly separates B and C from A and D.

-ong topology, most likely because the tips A and D are trying to get close to
1 other harder than either is to get close to B or C. There is a battle between the
2z and short distances, with the lack of correction making the long distances try
-der to shorten the corresponding branches.

The example is what we would see if we used infinitely long sequences, but
“~out correction of the distances for multiple changes. Despite the infinitely
"z sequences, we get an incorrect topology. Of course, if the corrected Jukes-
“ror distance were used, there would be a perfect recovery of the true tree, as

distances would be the sums of branch lengths along that tree. By contrast, if

2se the Jukes-Cantor correction, we approach the true branch lengths as more
- more DNA is sequenced, and the correct left-hand tree is found.

One case in which correction is unnecessary is when the trees are clocklike. The
-oer is the common ancestor of two species, the greater will be the expected dif-
-nce between their sequences. Correction for multiple changes will not alter

-anking of the distances, and distance matrix methods that assume a clock will

- 1o tind the same topology whether or not there is correction of the distances.
“<isky and Sitnikova (1996) show this in simulations, where failure to correct

- nroblems when there is a molecular clock.

iInimum evolution

1g seen the computational methods and biological justification of the least
_=res methods, we now look at distance matrix methods that do not use the
-~ =quares criterion. Some use other criteria; others are defined by an algorithm
sonstructing the tree and do not use an explicit criterion.
“ne ainimum evolution method (ME) uses a criterion, the total branch length
“< reconstructed tree. It is not to be confused with the “minimum evolu-
method of Edwards and Cavalli-Sforza (1964) which was the first parsimony
d. One might think that the minimum evolution tree should simply be a
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tree all of whose branches are of length 0. That would be the case if the tree were
unconstrained by the data. In the minimum evolution method the tree is fit to the
data, and the branch lengths are determined, using the unweighted least squares
method. The least squares trees are determined for different topologies, and the
choice is made among them by choosing the one of shortest total length. Thus this
method makes partial use of the least squares criterion. In effect it uses two cri-
teria at the same time, one for choosing branch lengths, another for choosing the
tree topology.

This minimum evolution method was first used by Kidd and Sgaramella-Zonta
(1971), who used the sum of absolute values of branch lengths. lts present-day use
comes from its independent invention by Rzhetsky and Nei (1992, 1993, 1994).
They used the sum of branch lengths. Trees with negative branches thus tend
to attract the search, and heuristic tree rearrangement may spend considerable
time among them. Kidd and Sgaramella-Zonta suggested that if there is any tree
topology that has all positive estimated branch lengths, then the best solution by
their method would also have no negative branch lengths.

Rzhetsky and Nei showed that if the distances were unbiased estimates of the
true distance (many distances are not unbiased) then the expected total length of
the true tree was shorter than the expected total length of any other. However, this
is not the same as showing that the total length is always shortest for the true tree,
as the lengths vary around their expectation. It would be impossible for it to be
frue that the total length is always shorter for the true tree, as that would establish
that this particular criterion always triumphs over statistical noise! Their resuit
is meaningful if one reduces all the information in the data to one quantity, the
estimated length of the tree. Even then, having its expectation be least for the true
tree is not the same as showing that the use of the minimum evolution criterion
makes a maximum likelihood estimate given the tree length. For that we would
need to know that this quantity was normally distributed, and had equal variances
for all tree topologies. It is not clear whether minimum evolution methods always
have acceptable statistical behavior. Gascuel, Bryant, and Denis (2001) have found
cases where minimum evolution is inconsistent when branch lengths are inferred
by weighted least squares or by generalized least squares.

Minimum evolution requires an amount of computation similar to least
squares, since it uses least squares to evaluate branch lengths for each tree topol-
ogy. The methods of Bryant and Waddell {1998) for speeding up least squares cal-
culations will thus speed up minimum evolution methods as well. Kumar (1996)
has described search methods that improve on Rzhetsky and Nei’s. Rzhetsky and
Nei (1994) describe the use of bootstrap support of branches (which I describe in
Chapter 20) to guide the search for branches where the tree topology should be re-
considered. Desper and Gascuel (2002) have found that using a “greedy” search of
tree topologies and a somewhat approximate version of minimum evolution led
to great increases in speed with good accuracy of the resulting trees.
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An early variant on Minimum Evolution that did not use least squares to infer
the branch lengths was given by Beyer et al. (1974; Waterman et al., 1977). They
instead required that the path lengths between all pairs of species remain longer
than, or equal to, the observed distances. This makes the inference of branch
lengths a linear programming problem. Their inequality is justified in the case
of closely related molecular sequences, where the total branch length will approx-
‘mate a parsimony criterion. Like a parsimony criterion, their method may fit

oranch lengths that are substantially shorter than is plausible when the sequences
are quite different.

Clustering algorithms

e methods mentioned so far optimize a criterion such as the sum of squares,
arching among all trees for the tree with the best value. Another class of distance
—atrix methods does not have an explicit criterion, but instead applies a particu-
-1 algorithm to a distance matrix to come up with a tree more directly. This can
quite a lot faster, but it has the disadvantage that we are not sure that the dis-
‘nce information is being used fully, and we are not sure what are the statistical
-operties of the method.
These methods are derived from clustering algorithms popularized by Sokal
“d Sneath (1963). Chief among them is the UPGMA method, whose name is an
~-onym for its name in their classification of clustering methods. UPGMA can be

.=d to infer phylogenies if one can assume that evolutionary rates are the same
-all lineages.

~PGMA and least squares

"2 can constrain the branch lengths so that they satisfy a “molecular clock.” Trees
- are clocklike are rooted and have the total branch length from the root up to
_tip equal. They are often referred to as being ultrametric. When a tree is ultra-
fric, it turns out to be extremely simple to find the least squares branch lengths.
> total branch length from a tip down to any node is then half the average of the
“ances between all the pairs of species whose most recent common ancestor is
“-:node. Thus if a node leads to two branches, one of which leads on upwards
2.l mammals and the other on upwards to all birds, the estimate of the total
“2ch length down to the node is half the average of the distances between all
d, mammal) pairs. The weights w;; are used to weight this average.
“he branch lengths are then the differences between these total branch lengths.
“ev give a negative branch length, it may be necessary to set that branch length
ro, which combines two nodes, and recompute the associated sums of branch

z*hs. Farris (1969a) was the first to note this relationship between averages and
"~ squares branch lengths.
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A clustering algorithm

Done this way, finding ultrametric trees has the same search problems as other
phylogeny methods. However, there is a simple algorithm that can be used to
quickly construct a clocklike phylogeny—the UPGMA or average linkage method.
It is not guaranteed to find the least squares ultrametric phylogeny, but it often
does quite well. This algorithm was introduced by Sokal and Michener (1958) —
it belongs to the class of phenetic clustering methods that were predecessors of
most modern phylogeny methods. It has been rather extensively criticized in the
phylogeny literature, but if a clock is thought to be a reasonable assumption (and it
often is if the species are closely related), then UPGMA is a well-behaved method.

The algorithm works on a distance matrix and also keeps track, for each species
or group, of the number, 11;, of species in the group. These are initially all 1. The
steps in the algorithm are:

1. Find the i and j that have the smallest distance, D;;.
2. Create a new group, (ij), which has n;;) = »; + n; members.

3. Connect 7 and j on the tree to a new node [which corresponds to the new
group (ij)]. Give the two branches connecting 7 to (ij) and j to (7j) each
length D;;/2.

4. Compute the distance between the new group and all the other groups (ex-
cept for 7 and j) by using:

n; ny
Diijyw = . Dy + , D
n; NG n; T n;

5. Delete the columns and rows of the data matrix that correspond to groups i
and j, and add a column and row for group (/).

6. If there is only one item in the data matrix, stop. Otherwise, return to step 1.

This method is easy to program and takes about n® operations to infer a phy-
logeny with n species. Each time we look for the smallest element in the distance
matrix, we need a number of operations proportional to n?, and we do this n — 1
times. However, we can speed things up by a large factor by simply retaining a list
of the size and location of the smallest elements in each row (or column). Finding
the smallest element in the matrix then requires a number of operations propor-
tional to n rather than n?. With each clustering, this list of minima can be updated
in a number of operations proportional to n, so that the whole algorithm can be
carried out in a number of operations proportional to n?. It can be shown never to
give a negative branch length.

An example

Using immunological distances from the work of Sarich (1969) we can show the
steps involved in inferring a tree by the UPGMA method. The amount of work
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“ceded is so small that we can carry out the clustering by hand. Here is the original
“istance matrix, which has the distances corrected logarithmically to allow for a
~resumed exponential decay of immunological similarity with branch length.

dog bear raccoon weasel scal sealion cat  monkev

dog 0 32 43 51 50 48 93 148
bear 32 0 26 34 29 33 84 136
raccoon | 48 26 0 42 44 44 92 152
weasel 51 34 42 0 44 38 86 142
scal 50 29 14 44 0 24 89 142
sea lion | 48 33 44 38 24 0 90 142
cat 98 84 92 86 39 90 0 148
monkey | 148 136 152 142 142 142 148 0

We start by looking for the smallest distance. In this table it is marked by a
«, and the elements of those rows and columns are indicated in boldface and by
-erisks at the borders of the table.

dog bear vraccoon weascl seal sealion cat monkey

dog 0 32 48 51 50 48 98 148
bear 32 0 26 34 29 33 84 136
raccoon | 48 26 0 42 44 44 92 152
weasel 51 34 42 0 44 38 86 142
seal 50 20 44 44 0 [24] 89 142
sealion | 48 33 44 38 |24 0 90 142
cat 98 84 92 86 89 90 0 148
monkey | 148 136 152 142 142 142 148 0

nbining the rows for seal and sea lion, we average their distances to all other
~—cles. After we do this, we infer the immediate ancestor of seal and sea lion
e 12 units of branch length from each, so that the distance between them is
- The new combined row and column (marked SS) replaces the seal and sea
» rows and columns. This reduced table has its smallest element marked by a
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box. It involves bear and raccoon, and those rows and columns are boldfaced and
indicated by asterisks:

dog bear raccoon weasel SS  cat monkey

dog 0 32 48 51 49 98 148

+ bear 32 0 34 31 84 136

x raccoon | 48 0 42 44 92 152
weasel 51 34 42 0 41 86 142
SS 49 31 44 41 0 895 142
cat 98 84 92 86 895 0 148
monkey | 148 136 152 142 142 148 0

Again, we average the distances from bear and from raccoon to all other
species, and we infer their common ancestor to have been 13 units of branch length
below each of them. We replace their rows and columns by a new one, BR:

dog BR weasel S8 cat  monkev
dog 0 40 51 49 98 148
+ BR 40 0 38 88 144
weasel 51 38 0 41 36 142
x SS 49 [375] 41 0 895 142
cat 98 88 86 89.5 0 148
monkey | 148 144 142 142 148 0

The smallest element in this table was 37.5, between BR and SS. The ancestor
of these two groups is inferred to be 18.75 units of branch length below these four
species. It is thus 5.75 below the ancestor of bear and raccoon, and 6.75 below the
ancestor of seal and sea lion. You should refer to Figure 11.6 to see the branches
and branch lengths that are added to the tree by each step. Each of the groups BR
and SS is a group with two species, so the proper average is again a simple average
of their distances to other species:

* *

dog BRSS weasel cat  monkey

dog { 0 445 51 98 148
+ BRSS [445 0 8875 143
« weasel | 51 0 86 142

cat | 98 88.75 86 0 148
moikey | 148 143 142 148 0
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Now the smallest distance, 39.5, is between BRS5 and weasel. One is a group
of four species, the other a single species. In averaging their distances to all other
species, we do not do a simple average, but weight the distance to BRSS four times
zs much as the distance to weasel. For example, the distance of the new group to
dogis (4 x 44.5 + 51)/5 = 45.8. The new row and column are called BRSSW and

replace BRSS and weasel.
* *
dog BRSSW cat 1monkey
+ dog 0 (458] 98 148
+ BRSSW 0 88.2 1428
cat 98 88.2 0 148
monkev 148 142.8 148 0

Now dog joins BRSSW, and the average of those rows and columns is again a
cighted av