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Preface

Phylogenies, or evolutionary trees, are the basic structures necessary to think
clearly about differences between species, and to analyze those differences sta­
tistically. They have been around for over 140 years, but statistical, computational,
and algorithmic work on them is barely 40 years old. In that time there have been
great advances in understanding, but much remains to be done. It's a good time
to summarize this work, while it is still compact enough for a single book to cover
it. Alternatively, we could put it differently: work in this field has been going on
for four decades, and no book has yet summarized it; such a book is overdue.

I have tried to cover the major methods for inferring phylogenies, at a level ap­
propriate to a graduate course for biologists interested in using numerical meth­
ods. I have also tried to cover methods of statistical testing of phylogenies, as well
as some methods for using phylogenies for making other inferences. The book
assumes some familiarity with statistics, some with computers, and mathematics
including calculus and an elementary command of matrix algebra.

Phylogenies are inferred with various kinds of data. I have concentrated on
some of the central ones: discretely coded characters, molecular sequences, gene
frequencies, and quantitative traits. There is also some coverage of restriction sites,
RAPDs, and microsatellites. The reader may benefit from enough familiarity with
molecular biology to understand the major features of molecular sequence data,
and some exposure to the theory of quantitative genetics. Other data types that
are less widely used, such as DNA hybridization, are not covered.

I estimate that there are about 3,000 papers on methods for inferring phyloge­
nies. This book refers to a small fraction of those, with less emphasis on studies
that investigate behavior of methods on simulated data or real data. I hope that
the reader will be able to find their way through this literature from these refer­
ences, with creative use of computerized literature searches. My apologies to those
hundreds of my colleagues whose best and most incisive paper was not cited.

Over the years, my understanding of phylogenies has benefitted greatly from
helpful interactions with many of the people who contributed to this field. The
field of inferring phylogenies has been wracked by outrageously excessive con­
troversy, often marked by behavior that would not be condoned in other, more
mature fields of science. In the midst of this there have been many biologists who
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xx

strove to bring the field back to normality, who were eager for an open and friendly
exchange of views. To all of them, my admiration and thanks. They know who
they are (and who they aren't).

I am grateful for the frequent help of the members of my laboratory, partic­
ularly Mary Kuhner, Jon Yamato, Peter Beerli, Lindsey Dubb, Elizabeth Walkup
and Nicolas Salamin. Aside from wise counsel, they frequently took extra work
on themselves which allowed me time for this project. A variety of colleagues
and students have made helpful comments on parts of the manuscript of this
book. Thanks to all of them, particularly Peter Waddell, Jeff Thorne, Mike Steel,
Doug Robinson, Barry Hall, Mike Hendy, Oliver Will, Kevin Scott, Sabin Lessard,
Michael Turelli and Brian O'Meara. Anthony Edwards, Robert Sokal, Charles
Michener, Peter Sneath, F. James Rohlf, John Huelsenbeck, David Swofford, Gary
Olsen, Edward Dayhoff, Walter Fitch, Winona Barker, Mary Mickevich, Arnold
Kluge, Vicki Funk and George Byers gave extremely helpful answers to questions
that came up in writing the book. I am particularly indebted to Elizabeth Thomp­
son and Monty Slatkin for much insight over many years. Many students in my
phylogeny course have found and corrected errors and unclear passages. I am
also grateful to Scott Johnston, of Vectaport, Inc., who has maintained in his Iv­
tools package the Idraw drawing program used for many of the figures in this
book, and who was helpful in answering technical questions. Occasional new re­
sults reported in this book resulted from a number of grants to me, funded by the
National Institutes of Health and the National Science Foundation.

My family made a great contribution to the writing of this book. My son Zach
Rudd Felsenstein was a constant reminder that there are future generations com­
ing who will make good, and entertaining, use of today's science. My stepson Ben
Rudd Schoenberg used his skills in combinatorial geometry to arrange the points
in Figure 4.3 into a symmetric pattern and point out its connection to the Petersen
Graph. My wife, Joan Rudd, encouraged and inspired me, showing how to keep
one's own projects alive in the midst of pressures from all sides. One of her sculp­
tures, Far Flung Fir, graces the cover. She was available both as literary critic and
audience. To her I dedicate this book.

Joe Felsenstein
Seattle

August, 2003



Chapter 1

Parsimony methods

Parsimony methods are the easiest ones to explain; they were also among the first
methods for inferring phylogenies. The issues that they raise also involve many
of the phenomena that we will need to consider. This makes them an appropriate
starting point.

The general idea of parsimony methods was given in their first mention in the
scientific literature: Edwards and Cavalli-Sforza's (1963) declaration that the evo­
lutionary tree is to be preferred that involves "the minimum net amount of evo­
lution." We seek that phylogeny on which, when we reconstruct the evolutionary
events leading to our data, there are as few events as possible. This raises two is­
sues. First, we must be able to make a reconstruction of events, involving as few
events as possible, for any proposed phylogeny. Second, we must be able to search
among all possible phylogenies for the one or ones that minimize the number of
events.

A simple example
We will illustrate the problem with a small example. Suppose that we have five
species, each of which has been scored for 6 characters. In our example, the charac­
ters will each have two possible states, which we call 0 and 1. The data are shown
in Table 1.1. The events that we will allow are changes from 0 ---> 1 and from 1 ---> O.
We will also permit the initial state at the root of a tree to be either state 0 or
state 1.

Evaluating a particular tree
To find the most parsimonious tree, we must have a way of calculating how many
changes of state are needed on a given tree. Suppose that someone proposes the
phylogeny in Figure 1.1. The data set in our example is small enough that we
can find by "eyeball" the best reconstruction of evolution for each character. Fig­
ures 1.2-1.6 show the best character state reconstructions for characters 1 through

1



:2 Chapter 1

Table 1.1: A simple data set with 0/1 characters.

Characters

Species 1 2 3 4 5 6

Alpha 1 0 0 1 1 0
Beta 0 0 1 0 0 0
Gamma 1 1 0 0 0 0
Delta 1 1 0 1 1 1

Epsilon 0 0 1 1 1 0

6. Figure 1.2 shows character 1 reconstructed on this phylogeny. Note that there
are two equally good reconstructions, each involving just one change of character
state. They differ in which state they assume at the root of the tree, and they also
differ in which branch they place the single change. The arrows show the place­
ments of the changes, and the shading shows in which parts of the phylogeny the
two states are reconstructed to exist. Figure 1.3 shows the three equally good re­
constructions for character 2, which needs two changes of state. Figure 1.4 shows
the two reconstructions for character 3, involving one change of state. Figure 1.5
shows the reconstructions (there are two of them) for character 4. These are the
same as for character 5, as these two characters have identical patterns. They re­
quire two changes. Finally, Figure 1.6 shows the single reconstruction for character
6. This requires one change of state.

The net result of these reconstructions is that the total number of changes of
character state needed on this tree is 1 + 2 + 1 + 2 + 2 + 1 = 9. Figure 1.7 shows
the reconstructions of the changes in state on the tree, making particular arbitrary

Alpha Delta Gamma Beta Epsilon

Figure 1.1: A phylogeny that we want to evaluate using parsimony.
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Parsimony methods 3

Epsilon

or

Alpha Delta Gamma Beta Epsilon

Figure 1.2: Alternative reconstructions of character 1 on the phylogeny
of Figure 1.1. The white region of the tree is reconstructed as having
state 0, the shaded region as having state 1. The two reconstructions
each have one change of state. The changes of state are indicated by
arrows.

choices where there is a tie. However, consideration of the character distributions
suggests an alternative tree, shown in Figure 1.8, which has one fewer change,
needing only 8 changes of state. Consideration of all possible trees shows that this
is the most parsimonious phylogeny for these data. The figure shows the loca­
tions of all of the changes (making, as before, arbitrary choices among alternative
reconstructions for some of the characters).

In the most parsimonious tree, there are 8 changes of state. The minimum
number we might have hoped to get away with would be 6, as there are 6 charac­
ters, each of which has two states present in the data. Thus we have two "extra"
changes. Having some states arise more than once on the tree is called homoplasy.
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Alpha Delta Gamma Beta Epsilon

Alpha Delta Gamma Beta Epsilon

Alpha Delta Gamma Beta Epsilon

Figure 1.3: Reconstructions of character 2 on the phylogeny of Figure
1.1. The white regions have state 0, the shaded region state 1. The
changes of state are indicated by arrows.

Rootedness and unrootedness
Figure 1.9 shows another tree. It also requires 8 changes, as shown in that figure.
In fact, these two most parsimonious trees are the same in one important respect
- they are both the same tree when the roots of the trees are removed. Figure
1.10 shows that unrooted tree. The locations of the changes are still shown (and
still involve some arbitrary choices), but they are no longer shaded in to show the
direction of the changes. There are many rooted trees, one for each branch of the
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Epsilon

Alpha Delta Gamma Beta Epsilon

Figure 1.4: Reconstruction of character 3 on the phylogeny of Figure
1.1. The graphical conventions are the same as in the previous figures.

tmrooted tree in Figure 1.10, and all have the same number of changes of state. In
fact, the number of changes of state will depend only on the unrooted tree, and not
at all on where the tree is then rooted. This is true for the simple model of character
change that we are using (0 ;=' 1). It is also true for any model of character change
that has one simple property: that if we can go in one change from state a to state
b, we can also go in one change from state b to state a.

When we are looking at the alternative placements of changes of state, it ac­
tually matters whether we are looking at a rooted or an unrooted tree. In Figure
1.3, there are three different reconstructions. The last two of them differ only by
whether a single change is placed to the left or to the right of the root. Once the
tree is unroated, these last two possibilities become identical. So the rooted tree
has three possible reconstructions of the changes of this state, but the unroated
tree has only two.
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Alpha Delta Gamma Beta Epsilon

or

Alpha Delta Gamma Beta Epsilon

Figure 1.5: Reconstruction of character 4 on the phylogeny of Figure
1.1. This is the same as the reconstruction for character 5 as well. The
graphical conventions are the same as in the previous figures.

Methods of rooting the tree
Biologists want to think of trees as rooted and thus have been interested in meth­
ods of placing the root in an otherwise unrooted tree. There are two methods:
the outgroup criterion and the use of a molecular clock. The outgroup criterion
amounts to knowing the answer in advance. Suppose that we have a number
of great apes, plus a single old-world (cercopithecoid) monkey. Suppose that we
know that the great apes are a monophyletic group. If we infer a tree of these
species, we then know that the root must be on the lineage that connects the cer­
copithecoid monkey to the others. Any other placement would make the apes fail
to be monophyletic, because there would then be a lineage leading away from the
root with a subtree that included the cercopithecine and also some, but not all, of
the apes. We place the root outside of the ingroup, so that it is monophyletic.

The alternative method is to make use of a presumed clocklike behavior of
character change. In molecular terms, this is the "molecular clock." If an equal
amount of change were observed on all lineages, there should be a point on the
tree that has equal amounts of change (branch lengths) from there to all tips. With
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Epsilon

Figure 1.6: Reconstruction of character 6 on the phylogeny of Figure 1.1.

a molecular clock, it is only the expected amounts of change that are equal; the
observed amounts may not be. We hope to find a root that makes the amounts
of change approximately equal on all lineages. In some methods, we constrain
the tree to remain clocklike by making sure that no tree is inferred that violates
this constraint. If instead we infer a tree without maintaining this constraint, we
can try to remedy this by finding, after the fact, a point on the tree approximately
equidistant from the tips. Finding it may be difficult.

Alpha Gamma Beta Epsilon

Figure 1.7: Reconstruction of all character changes on the phylogeny
of Figure 1.1. The changes are shown as bars across the branches, with
a number next to each indicating which character is changing. The
shading of each box indicates which state is derived from that change.
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Alpha Delta Gamma Beta Epsilon

Figure 1.8: Reconstruction of all changes on the most parsimonious
phylogeny for the data of Table 1.1. It requires only 8 changes of state.
The changes are shown as bars across the branches, with a number
next to each indicating which character is changing. The shading of
each box indicates which state is derived from that change.

Branch lengths
Having found an unrooted tree, we might want to locate the changes on it and
find out how many occur in each of the branches. We have already seen that there
can be ambiguity as to where the changes are. That in turn means that we cannot
necessarily count the number of changes in each branch. One possible alternative
is to average over all possible reconstructions of each character for which there
is ambiguity in the unrooted tree. This has the advantage that, although this can

Gamma Delta Alpha

5

2

Beta Epsilon

Figure 1.9: Another rooted tree with the same number of changes of state.
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Alpha

Gamma

Delta

Beta

Epsilon

Figure 1.10: The unrooted tree corresponding to Figures 1.8 and 1.9.

Gamma

Alpha 0.5
1.5

2.5

Beta

1.0

1.5
Delta

1.0
1.0

Epsilon

Figure 1.11: The tree of Figure 1.1 and Figure 1.7, shown as an unrooted
tree with branch lengths computed by averaging all equally parsimo­
nious reconstructions.

leave fractional numbers of changes in some branches, at least they must add up
to the total number of changes in the tree. This is sometimes called the length of
the tree. Figure 1.11 shows the same tree as Figure 1.7 and Figure 1.1 (not the most
parsimonious tree), using these branch lengths. The lengths of the branches are
shown visually and also given as numbers beside each branch.

Unresolved questions
Although we have mentioned many of the issues involved in using parsimony, we
have not actually given the algorithms for any of them. In every case we simply
reconstructed character states by eyeball, and, similarly, we searched the set of
possible trees by informal means. Among the issues that need to be discussed are
the follOWing:



10 Chapter 1

• Particularly for larger data sets, we need to know how to count the number
of changes of state by use of an algorithm.

• We need to know the algorithm for reconstructing states at interior nodes of
the tree.

• We need to know how to search among all possible trees for the most parsi­
monious ones, and how to infer branch lengths.

• All of the discussion here has been for a simple model of 0/1 characters.
What do we do with DNA sequences, that have 4 states, or with protein
sequences, that have 20? How do we handle more complex morphological
characters?

• There is the crucial issue of justification. Is it reasonable to use the parsimony
criterion? If so, what does it implicitly assume about the biology?

• Finally, what is the statistical status of finding the most parsimonious tree? Is
there some way we can make statements about how well-supported a most
parsimonious tree is over the others?

Much work has been done on these questions, and it is this that we cover in the
next few chapters.
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Counting evolutionary changes

COlmting the number of changes of state on a given phylogeny requires us to have
~0me algorithm. The first such algorithms for discrete-states data were given by
.-amin and Sokal (1965) for a model with unidirectional changes, and by Kluge
_. Farris (1969) and Farris (1970) for bidirectional changes on a linear ordering
,-.i ::;tates. We will discuss here two algorithms that generalize these, one by Fitch
~ 71) and the other by Sankoff (1975) and Sankoff and Rousseau (1975). Both

:".:l\'e the same general structure. We evaluate a phylogeny character by character.
'::or each character, we consider it as a rooted tree, placing the root wherever seems
:l?propriate. We update some information down a tree; when we reach the bottom,
~~.e number of changes of state is available. In both cases, the algorithm does
._.~ function by actually locating changes or by actually reconstructing interior
~:ates at the nodes of the tree. Both are examples of the class known as dynamic
,'Tc'gl'llmming algorithms.

In the previous chapter we found the most parsimonious assignments of ances­
::-31 states, and did so by eyeball. In the present chapter we show how the counting
_~ changes of state can be done more mechanically.

The Fitch algorithm
~-:e Fitch (1971) algorithm was intended to count the number of changes in a bi­
-,::-cating tree with nucleotide sequence data, in which anyone of the four bases
.-. C, G, T) can change to any other. It also works generally for any number of
~:3.:es, provided one can change from anyone to any other. This multistate par­
-_-:'.onv model was named Wagner parsimony by Kluge and Farris (1969). Fitch's
: :::orithm thus works perfectly for the 0 ;=': 1 case as well. (In fact, Farris (1970)
::;'e a \'ersion of this algorithm for the special case of a linear series of discrete
-:"::25.) The algorithm at first seems to be mumbo-jumbo. It is only after under-
--~-. 'ing how the Sankoff algorithm works that one can see why it works, and that
- ~ an algorithm of the same general class. We will explain the Fitch algorithm

11
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{C} {A}

\/
{AC )*

{C) {A} {G)

\/
{AG )*

/
{ACG)*

/
{AC}

Figure 2.1: An example of the Fitch algorithm applied to a single site.
The sets generated at each node are shown.

by use of an example, which is shown in Figure 2.1. The Fitch algorithm consid­
ers the sites (or characters) one at a time. At each tip in the tree, we create a set
containing those nucleotides (states) that are observed or are compatible with the
observation. Thus, if we see an A, we create the set {A}. If we see an ambiguity
such as R (purine), we create the set {AG}. Now we move down the tree. In al­
gorithmic terms, we do a postorder tree traversal. At each interior node we create
a set that is the intersection of sets at the two descendant nodes. However, if that
set is empty, we instead create the set that is the union of the two sets at the de­
scendant nodes. Every time we create such a union, we also COlmt one change of
state.

In Figure 2.1, we are evaluating a tree with five species. At the particular site,
we have observed the bases C, A, C, A, and G in the five species, where we give
them in the order in which they appear in the tree, left to right. For the left two, at
the node that is their immediate common ancestor, we first attempt to construct the
intersection of the two sets. But as {C} n {A} = 0, we instead construct the union
{C} U{A} = {AC} and count 1 change of state. Likewise, for the rightmost pair of
species, their common ancestor will be assigned state {AD}, since {A} n {G} = 0,
and we count another change of state. The node below it now can be processed.
{C} n {AG} = 0, so we construct the union {C} U {AG} = {ACG} and count a
third change of state. The node at the bottom of the tree can now be processed.
{AC} n {ACG} = {AC}, so we put {AC} at that node. We have now counted 3
changes of state. A moment's glance at the figure will verify that 3 is the correct
count of the number of changes of state. On larger trees the moment's glance will
not work, but the Fitch algorithm will continue to work.

The Fitch algorithm can be carried out in a number of operations that is propor­
tional to the number of species (tips) on the tree. One might think that we would
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:llso need to multiply this by the number of sites, since we are computing the to­
:al number of changes of state over all sites. But we can do better than that. Any
:o;re that is invariant, which has the same base in all species (such as AAAAA), will
:"e,"er need any changes of state and can be dropped from the analysis without af­
:ecting the number of changes of state. Other sites, that have a single variant base
: resent in only a single species (such as, reading across the species, ATAAA), will
~eqllire a single change of state on all trees, no matter what their structure. These
:00 can be dropped, though we may want to note that they will always generate
one more change of state each. In addition, if we see a site that has the same pat­
:ern (say, CACAG) that we have already seen, we need not recompute the number
or changes of state for that site, but can simply use the previous result. Finally, the
:o'"mmetry of the model of state change means that if we see a pattern, such as
-:-CTCA, that can be converted into one of the preceding patterns by changing the
:our symbols, it too does not need to have the number of changes of state com­
?llted. Both CACAG and TCTCA are patterns of the form xyxyz, and thus both
",,"ill require at least 2 changes of state. Thus the effort rises slower than linearly
".,"ith the numbers of sites, in a way that is dependent on how the data set arose.

One might think that we could use the sets in Figure 2.1 to reconstruct ancestral
:orates at the interior nodes of the tree. The sets certainly can be used in that pro­
cess, but they are not themselves reconstructions of the possible nucleotides, nor
jo they even contain the possible nucleotides that a parsimony method would
construct. For example, in the common ancestor of the rightmost pair of species,
: e set that we construct is {AG}, But a careful consideration will show that if we
: ut C at all interior nodes, including that one, we attain the minimum number of
changes, 3. But C is not a member of the set that we constructed. At the immedi­
a e ancestor of that node, we constructed the set {ACG}. But of those nucleotides,
only A or C are possible in assignments of states to ancestors that achieve a parsi­
:J onious result.

The Sankoff algorithm
The Fitch algorithm is enormously effective, but it gives us no hint as to why it
", "orks, nor does it show us what to do if we want to count different kinds of
changes differently. The Sankoff algorithm is more complex, but its structure is
more apparent. It starts by assuming that we have a table of the cost of changes
__ et",,,een each character state and each other state. Let's denote by Cij the cost of
-hange from state i to state j, As before, we compute the total cost of the most
?arsimonious combinations of events by computing it for each character. For a
gi\"en character, we compute, for each node k in the tree, a quantity Sk(i). This
~5 interpreted as the minimal cost, given that node k is assigned state i, of all the
-""ents upwards from node k in the tree. In other words, the minimal cost of events
: the subtree, which starts at node k and consists of everything above that point.

It should be immediately apparent that if we can compute these values for all
. odes, we can compute them for the bottom node in the tree, in particular. If
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we can compute them for the bottom node (call that node 0), then we can simply
choose the minimum of these values:

S = minSo(i), (2.1)

and that will be the total cost we seek, the minimum cost of evolution for this
character.

At the tips of the tree, the S(i) are easy to compute. The cost is 0 if the observed
state is state i, and infinite otherwise. If we have observed an ambiguous state, the
cost is 0 for all states that it could be, and infinite for all the rest. Now all we need
is an algorithm to calculate the S(i) for the immediate common ancestor of two
nodes. This is very easy to do. Suppose that the two descendant nodes are called
land r (for "left" and "right"). For their immediate common ancestor, node a, we
need only compute

Sa(i) = min [Cij + Sl(j)] + min [Cik + ST(k)]
J k

(2.2)

The interpretation of this equation is immediate. The smallest possible cost given
that node a is in state i is the cost Cij of going from state i to state j in the left
descendant lineage, plus the cost Sl (j) of events further up in that subtree given
that node l is in state j. We select the value of j that minimizes that sum. We do
the same calculation in the right descendant lineage, which gives us the second
term of equation 2.2. The sum of these two minima is the smallest possible cost for
the subtree above node a, given that node a is in state i.

This equation is applied successively to each node in the tree, working down­
wards (doing a postorder tree traversal). Finally, it computes all the So(i), and
then (2.1) is used to find the minimum cost for the whole tree.

The process is best understood by an example, the example that we already
used for the Fitch algorithm. Suppose that we wish to compute the smallest total
cost for the given tree, where we weight transitions (changes between two purines
or two pyrimidines) 1, and weight transversion (changes between a purine and a
pyrimidine or between a pyrimidine and a purine) 2.5. Figure 2.2 shows the cost
matrix and the tree, with the S(i) arrays at each node. You can verify that these are
correctly computed. For the leftmost pair of tips, for example, we observe states
C and A, so the S arrays are respectively (00. o. 00, (0) and (0,00.00,00). Their
ancestor has array (2.5,2.5,3.5,3.5). The reasoning is: If the ancestor has state
A, the least cost is 2.5, for a change to a C on the left lineage and no change on
the right. If it has state C, the cost is also 2.5, for no change on the left lineage
combined with change to an A on the right lineage. For state G, the cost is 3.5,
because we can at best change to C on the left lineage (at cost 2.5) and to state A
on the right lineage, for a cost of 1. We can reason similarly for T, where the costs
are 1 + 2.5 = 3.5.

The result may be less obvious at another node, the common ancestor of the
rightmost three species, where the result is (3.5.3.5,3.5,4 ..-). The first entry is 3.5
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C} {A } {C} {A } {G}

008~ ETIEEJ~ EEEEJ

~/ \/
~ ~ Cost matrix:

/ to
A C G Tfrom

~ A a 2.5 1 2.5

/ C 2.5 0 2.5 1

G 1 2.5 0 2.5
~

r r
T 2.5 1 2.5 0

Figure 2.2: The Sankoff algorithm applied to the tree and site of the
previous figure. The cost matrix used is shown, as well as the S arrays
computed at each node of the tree.

~ ccause you could have changed to C on the left branch (2.5 changes plus 0 above
~,at) and had no change on the right branch (0 changes plus 1 above that). That
:0 als to 3.5; no other scenario achieves a smaller total. The second entry is 3.5
_ecause you could have had no change on the left branch (0 + 0) and a change to
.-\. or to G on the right one (each 2.5 + 1). The third entry is 3.5 for much the same
~eason the first one was. The fourth entry is 4.5 because it could have changed on
:he left branch from T to C (1 + 0), and on the right branch from T to A or T to G
_.5 + 1), and these total to 4.5.

Working down the tree, we arrive at the array (6.6.7.8) at the bottom of the
Tee. The minimum of these is 6, which is the minimum total cost of the tree for
:his site. When the analogous operations are done at all sites and their minimal
(osts added up, the result is the minimal cost for evolution of the data set on the
tree.

The Sankoff algorithm is a dynamic programming algorithm, because it solves
(he problem of finding the minimum cost by first solving some smaller problems
and then constructing the solution to the larger problem out of these, in such a way
hat it can be proven that the solution to the larger problem is correct. An example

of a dynamic programming algorithm is the well-known least-cost-path-through­
a-graph algorithm. We will not describe it in detail here, but it involves gradually
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working out the costs of paths to other points in the graph, working outwards
from the source. It makes use of the costs of paths to points to work out the costs
of paths to their immediate neighbors, until we ultimately know the lengths of the
lowest-cost paths from the source to all points in the graph. This does not involve
working out all possible paths, and it is guaranteed to give the correct answer.

An attempt to simplify computations by Wheeler and Nixon (1994) has been
shown by Swofford and Siddall (1997) to be incorrect.

Connection between the two algorithms
The Fitch algorithm is a close cousin of the Sankoff algorithm. Suppose that we
made up a variant of the Sankoff algorithm in which we keep track of an array of
(in the nucleotide case) four numbers, but associated them with the bottom end of
a branch instead of the node at the top end of a branch. We could then develop
a rule similar to equation 2.2 that would update this array down the tree. For the
simple cost matrix that underlies the Fitch algorithm, it will turn out that the num­
bers in that array are always either x or x + 1. This is true because one can always
get from any state to any other with penalty 1. So you can never have a penalty
that is more than one greater than the minimum that is possible at that point on the
tree. Fitch's sets are simply the sets of nucleotides that have the minimum value x
rather than the higher value of x + 1. A careful consideration of the updating rule
in Sankoff's algorithm in this case will show that it corresponds closely to the set
operations that Fitch specified. Because it is updating the quantities at the bottom
end rather than at the top end of each branch, the Fitch algorithm is not a special
case of the Sankoff algorithm.

Using the algorithms when modifying trees

Views
For most of the parsimony methods that we will discuss, the score of a tree is
unaltered when we reroot the tree. We can consider any place in the tree as if it
were the root. Looking outward from any branch, we see two subtrees, one at
each end of the branch. Taking the root to be on the branch, we can use the Fitch
or Sankoff parsimony algorithms to move "down" the tree towards that point,
calculating the arrays of scores for a character. There will be arrays at the two
ends of our branch. This can be thought of as "views" summarizing the parsimony
scores in these two subtrees, for the character. Each interior node of the tree will
have three (or more) views associated with it: one for each branch that connects to
that node. Thus in the tree in Figure 2.2, we see one view for the node above and
to the right of the root. It shows the view up into the subtree that has the three
rightmost species. But there are two other views that we could have calculated as
well. One could show the view looking down at that node from the center species,
and the other the view looking down at that node from the branch that leads to the
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M N

Figure 2.3: Two trees illustrating the use of the conditional scores of
the Fitch and Sankoff methods in economizing on computations when
rearranging a tree. The two gray rectangles stand for the views for a
character in the two subtrees. When species M and are involved in a
rearrangement, the views can be used as if they summarized the data
at a tip. They remain unaltered when M and N are rearranged, and the
rearrangement can be evaluated by doing calculations entirely within
the region outlines by the dashed curve.

two rightmost species. If the node had had four branches connecting to it, there
would have been four views possible.

It is worth noting that views also exist for likelihood methods and for some
algorithms for distance matrix methods.

Using views when a tree is altered
Both the Fitch and Sankoff algorithms use such views, though they only compute
one view at each internal node, the one that looks up at it from below. We can
calculate views anywhere in the tree, by passing inwards toward that point from
tips. This can be convenient when rearranging or otherwise altering trees. Figure
2.3 shows an example. The two gray rectangles are the views for a character for the
two subtrees (which are the large triangles). When we rearrange the two species M
and locally, without disrupting the structure of either subtree, we can compute
the parsimony score for the whole tree by using the numbers in the rectangles and
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doing all of our computations within the regions enclosed by the dashed curves.
This enables a fast diagnosis of local rearrangements.

This method of economizing on the effort of computing parsimony scores was
first described in print by Gladstein (1997). His discussion codifies methods long
in use in the faster parsimony programs but not previously described in print.

When we come to discuss likelihood methods later in the book, we will see
views that playa very similar role. They allow similar economies but they are lim­
ited by the fact that as one branch length is changed, others elsewhere in the tree
must also be altered for the tree to be optimal. In some least squares algorithms for
distance matrix methods, there are conditional quantities that behave similarly.

Further economies
There are some additional economies, beyond Gladstein's method, that help speed
up parsimony calculations. Ronquist (1998a) points out an economy that can have
a large effect when we use a Fitch or Sankoff algorithm and compute views at all
nodes, looking in all directions. We have been discussing the tree as if it were
rooted, but in most cases it effectively is an unrooted tree.

When a tree is modified in one part, all the inward-looking views may need
updating (all those that summarize subtrees that include the modified region).
Ronquist points out that we do not need to go through the entirety of the tree
modifying these views. As we work outward from the modified region, if we
come to a view that looks back in, and that ends up not being changed when it is
reconsidered, we need go no further in that direction, as all further views looking
back in that way will also be unchanged. This can save a considerable amount
of time. We shall see other savings when we discuss tree rearrangement in
Chapter 4.
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How many trees
are there?

TI1e obvious method for searching for the most parsimonious tree is to consider
all possible trees, one after another, and evaluate each. As we continue, we keep
a list of the best trees found so far (that is, of all the trees that are tied for best).
If the current tree is tied with these, it is added to the list. If one that is better is
found, the list is discarded and started anew as consisting of just that tree. When
the process is complete, we will have a list of all the trees that are tied for best.

The only problem with this method occurs when the list of possible trees is
too large for this complete enumeration to work. In general, it is. This chapter
,,"ill briefly review the work on counting phylogenies, to show that. The num­
ber of phylogenies depends on what we are calling a phylogeny and which ones
\\"e count as different. In all of the cases that we will discuss, left-right order of
branching does not make any difference - we will count two trees as the same if
they differ only by which subtree is on the left side of a branch and which is on the
right. Figure 3.1 shows two trees that look different, but are not. They share the
same "tree topology" even though they are visually different.

Among the cases that have been considered, one must distinguish between

• Rooted versus unrooted trees
• Labeled versus unlabeled trees
• Bifurcating versus multifurcating trees

Trees are described as labeled if their tip nodes have distinct labels. We will always
consider cases in which the interior nodes do not have labels. Bifurcating trees
are those in which every interior node is of degree 3 (it connects to three others)
and every tip node is of degree 1 (it connects to only one other node). They are
called bifurcating because, considered as rooted, there are two branches leading
upward from each interior node. Multifurcating trees can have some interior nodes

19
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Figure 3.1: Two rooted trees that seem to be different, but are the same
tree topology from the point of view of this chapter.

of higher degree. Note that multifurcating trees include all bifurcating trees ­
multifurcating trees are allowed to have multifurcations, but they are not forced
to have them.

Rooted bifurcating trees
Figure 3.2 shows the case of bifurcating, labeled, rooted trees, for 2, 3, and 4 tips.
All of the different trees are shown for these cases. But how do we know that
these are all of the possibilities? In fact, there is a simple argument that allows us
to compute the number of different phylogenies for this case and thus know when
there are no more to look for. As elements of this argument will also appear later
in other contexts, it is important to consider it in some detail.

We will consider a building up all possible trees by adding one species at a
time, in a predetermined order (say, the lexicographic order of the species names).
If we have a list of all possible trees of n species and add to each one of them
species n+ 1, in all possible places, we will in fact generate all possible trees of n+ 1
species, each only once. Figure 3.3 shows this process of adding a new species at
all possible places. Since the tree is bifurcating both before and after the addition,
the new species cannot be connected to an existing interior node. It must instead
be connected to a new node, which is placed in the middle of an existing branch.
Thus each internal branch of a tree is the location of a possible species addition.

But how do we know that this process will lead to all possible rooted, bifurcat­
ing, labeled trees? Do we know that each such addition leads to a different such
tree? In fact, both of these are true. We can see this by thinking of the process of
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Figure 3.2: All possible labeled, rooted, bifurcating trees for 2, 3, and 4 tips.

adding species k to a tree that consists of species 1 through k - 1. Consider also
the operation of removing species k from a tree that contains species 1 through k.
These two operations are inverses of each other. Suppose that we have a particu­
lar tree with 17, species. Remove successively species 17" 17, - 1, 17, - 2, and so on until
species k + 1 is removed. At this point what is left must be one particular tree with
species 1 through k.

Since the removal operation reverses the addition of the species, there must
then be some particular sequence of places to add species k + 1, k + 2 , ... onto
that k-species tree to end up with that n-species tree. Furthermore no other k­
species tree can, when those 17, - k missing species are added, yield that particular
n-species tree. If there were another k-species tree that could yield it, then that
tree too would be reached by removal of those species from the n-species tree. But
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Figure 3.3: The process of adding a new species in all possible places,
leading to all possible rooted bifurcating trees. For n = 3 the conse­
quences of adding the fourth tip to one of the trees is shown, but for
the others it is only indicated by outgoing arrows.



How many trees are there? 23

~:1.at is a logical impossibility, as the same sequence of removals cannot result in
:-. '0 different trees. Thus any n-species tree can be reached from one and only one
. -species tree.

Therefore, each possible addition sequence leads to a different 11,-species tree,
-" d all such trees can be generated in that way. When we add species to a tree,
~: e number of ways in which we can do that are equal to the number of branches,
~'lcluding the branch at the bottom of the tree. There are 3 such branches in a two­
~?ecies tree. Every time that we add a new species, it adds a new interior node,
~ Ius two new branches. Thus after choosing one of the 3 possible places to add the
~: . d species, the fourth can be added in any of 5 places, the fifth in any of 7, and
~o on. It will not be hard to see that the n-th can be added in any of 211, - 3 places.

This means that there are

3 x 5 x 7 x 9 x 11 x 13 x ... x (2n - ;3)

iifferent ways to add species so as to construct an n-species tree. Each way leads
~o a different such tree, and together they lead to all such trees. We thus have a
~. Tlple way of computing the number of rooted, bifurcating, labeled trees, without
.,;enerating all of them. This is not a closed-form formula, but it is not hard to show
~:lat this is equal to

(2n - 3)!
2n - 2 (n - 2)!

:::: \'en though that formula (sometimes called (2n - 3) I!) looks simple, the preceding
<"pression of it as product of successive odd integers is in practice far easier to use.

Table 3.1 shows the resulting numbers, up to 20, and approximate values for
~ome number of species beyond that.

The immediate implication of these large numbers is that we cannot hope to
<"amine all rooted, bifurcating, labeled trees in any algorithm for more than about
~O species. Exhaustive enumeration is probably practical up to about 10 species.
-:lUs boundary of practicality will move upwards, but it will do so slowly. It will
~equire a massively parallel approach using molecular computation methods to
~et up to 11, = 20, and beyond that the numbers are so much greater than Avo­
:;adro's Number that even molecular computations may not be possible. For 50
~ ecies, one is approaching Eddington's famous number, the number of electrons
Jl the visible universe.

The counting of trees has been a mathematician's recreation since the pioneer­
, g work of Cayley (1857, 1889). Ernst Schroder (1870) was the first to compute
~umbers in Table 3.1. He used generating function methods, as did Cayley. The
~inlple argument used here is due to Cavalli-Sforza and Edwards (1967). Moon
1970) has reviewed many other counting problems involving labeled trees. But

,_ artially-labeled cases like those we consider have largely been left to biologists to
cmmt.
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Table 3.1: The number of rooted, bifurcating, labeled trees for n species,
for various values of n. The numbers for more than 20 species are ap­
proximate.

Species

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
50

Number of trees

1
1
3

15
105
945

10,395
135,135

2,027,025
34,459,425

654,729,075
13,749,310,575

316,234,143,225
7,905,853,580,625

213,458,046,676,875
6,190,283,353,629,375

191,898,783,962,510,625
6,332,659,870,762,850,625

221,643,095,476,699,771,875
8,200,794,532,637,891,559,375

4.9518 x 10:38

1.00985 x 1007

2.75292 X 1076

Unrooted bifurcating trees
Most methods of inferring phylogenies infer unrooted trees. As each rooted tree
can have its root removed, there cannot be more unrooted than rooted trees for
a given number of species. In fact, there are fewer, as in an unrooted bifurcating
tree with n tips there are 2n - 3 places that a root could be inserted, to give rise
to rooted bifurcating trees. These are the 2n - 3 branches of the tree. If each of
these were to result in different rooted tree, this would suggest that the number of
unrooted trees was a factor of 2n - 3 smaller than the number of rooted trees. In
fact, this supposition is true.

The easy way to see this is to try a different, and more direct, argument. An
umooted tree can always be rooted at one of its species, say, the first species. Fig-
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Figure 3.4: An unrooted bifurcating tree with 8 species, rooted by using
species 1 as the root.

...::e 3,4 shows this particular way of rooting an unrooted bifurcating tree. Suppose
:"'-:1 we consider the rooted trees that arise by rooting at the first species in this

':1.', With n tips on the unrooted tree, there will then be n - 1 tips on the result­
~.~ rooted tree (as we now can no longer consider species 1 to be a tip). We have
~eadycomputed the number of rooted bifurcating trees for all possible numbers
:.: s. Every rooted tree with n - 1 labeled tips corresponds to one unrooted tree,

,=",-, • e\'ery unrooted tree with n tips corresponds to one rooted tree with n - 1 tips.
Thus there must be exactly

1 x 3 x 5 x 7 x . , . x (2n - 5)

":"'-:1"ooted bifurcating trees with n labeled tips. This is precisely the number of
~, -.ted trees with the factor 2n - 3 removed, which is the same as the number of
-, -.ted trees with one fewer species. Thus we can consult Table 3.1 to find that with

= 10 the number of umooted bifurcating trees will be 2,027,025, and with n = 20
: '·:ill be nearly 2.22 x 1020. It is also possible to get the number of umooted bi­

-.,,;,:-.:ating trees directly from an argument that generates each tree by sequentially
.=..:: ~ing tips in all2n - 3 possible places, much as we did with rooted trees.

_1ultifurcating trees
~:': r, all trees have been bifurcating. Allowing for multifurcating trees introduces
- :0',\' complications. Ernst Schroder (1870) counted the number of rooted trees with
:- ::sible multifurcations and labeled tips, using generating function methods. A
'_-:':., ler, if less elegant, way of getting the same numbers was given by me (Felsen­
-::0:'" , 1978a). It seems easier to explain than Schroder's methods.

. we were to try to use the method of adding successive species in all possible
:- ..=..:es, but allow there to be multifurcations, we run into the problem that we
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Figure 3.5: Two rooted trees with different amounts of multifurcation,
showing the numbers of internal nodes and the numbers of branches
each has. The tree on the left has 8 tips, 6 internal nodes, and thus 14
branches. The tree on the right has 8 tips, 2 internal nodes, and thus 10
branches.

cannot tell in how many places the next species can be added without knowing
how many multifurcations there are. Figure 3.5 shows two trees with different
amounts of multifurcations. If we allow a new species to be added so as to split
off from any branch, there are 14 branches in the left tree and 10 in the right tree.
If instead we allow the new species to increase the degree of multifurcation by
splitting off from an internal node, there are, respectively, 6 and 2 of those. Thus
we cannot simply use the argument that counts all placements of the next species.

The easiest way out of this dilemma is to count numbers of trees with different
numbers of internal nodes. Suppose that Tn,m is the number of rooted trees with n
labeled tips and m (unlabeled) internal nodes. The number of internal nodes can
be any integer from 1 to n - 1. If we obtain all the trees with n tips and m interior
nodes by adding species n to trees that had one fewer species, we must consider
both the cases in which the new species was added to an internal node, creating
an additional furc, and the cases in which it was added to a branch, creating a
bifurcation and a new internal node. For each of the Tn-l.rn trees with n - 1 tips
and m internal nodes, there are m places to add the new species at an internal
node. For each of the Tn-1,m-l trees with n - 1 species and m - 1 internal nodes,
there are (n - 1) + (m - 1) = n +m - 2 places we can add species n. As before, each
sequence of additions can be shown to generate a distinct tree, and each possible
multifurcating tree can be reached by a sequence of additions.
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Figure 3.6: Table of the numbers of rooted multifurcated trees with
labeled tips that have different numbers of internal nodes. The flow
of the calculation using the recurrence in equation 3.1 is shown for the
last column The diagonal gives the number of bifurcating trees, which
are included. The row at the bottom of the table is the total number of
multifurcating trees for that number of species.

Number of species

2 3 4 5 6 7 8

1 1 1 1 1 1 1-x1-- 1
Ul .......
Q.) x 8

"1j
2 3 10 25 56 '"0 119- x 2--- 246

~ ........- x 9('j

c:
105 490 '" 6,825;.., 3 15 1,918- x 3---Q.)..... "-.S xlO

...... '" 56,9800
4 105 1,260 9,450- x 4---

l-< .......Q.)

"S
xll

'"~ 5 945 17,325- x 5--- 190,575
Z .......x 12

'"6 10,395- x 6--- 270,270
"-

x13
'" 135,135

Total 1 4 26 236 2,752 39,208 660,032

The result is the formula

T _ { (n + Tn - 2) Tn-l,m-l + Tn, T n - l .m if m > 1 (3.1)
n'1n~ - Tn-l:n~ if Tn = 1

Figure 3.6 shows a table of the numbers Tn,m with the flow of calculations
shown for the rightmost column. The sum of each column is the total number
of rooted trees with labeled tips, Tn. Although there is no closed-form formula
for this quantity, it is easy to compute it by generating the table using equation
3.1. Table 3.2 shows these totals for moderate numbers of species. In my paper
(Felsenstein, 1978a) giving this table, I also gave similar recursions and tables for
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Table 3.2: Number of rooted trees with labeled tips, allowing multifur­
cations. The numbers are tabulated by the number of species.

Species

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
30
40
50

100

Number of trees

1
4

26
236

2,752
39,208

660,032
12,818,912

282,137,824
6,939,897,856

188,666,182,784
5,617,349,020,544

181,790,703,209,728
6,353,726,042,486,272

238,513,970,965,257,728
9,571,020,586,419,012,608

408,837,905,660,444,010,496
18,522,305,410,364,986,906,624

887,094,711,304,119,347,388,416
7.0717x 1041

1.9037 x 1061

6.85x 1081

3.3388x 10195

the case in which some of the labels may be located at interior nodes of the tree.
There are, of course, even more trees if we allow that.

It is possible to go further, making generating functions for these numbers
(as Schroder did), formulas for the asymptotic rate at which the numbers rise,
or counting the numbers of trees with some interior nodes labeled. We will not
attempt to do this for any of the cases in this chapter.

Unrooted trees with multifurcations
We can extend the counting of trees that may be multifurcating from the rooted
to the unrooted case by the same method as before. As we can arbitrarily root an
unrooted tree at species I, the number of unrooted trees will be the same as the
number of rooted trees with one fewer species.
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Tree shapes
EYen without the labels being visible at the tips, trees differ in "shape." (In the
terminology of Harding, 1971, these would be called unlabeled shapes). We may
\\~ant to know how many different shapes there are for various numbers of species.
\Ve can imagine asking this about bifurcating trees and multifurcating trees, and
in each of these cases, about rooted and uillooted trees.

Rooted bifurcating tree shapes
For the case in which the trees are rooted and bifurcating, the basic method of cal­
culation was found by Wedderburn (1922) and rediscovered by Cavalli-Sforza and
Edvlards (1967). The key to it is that at the base of the rooted tree is a bifurcation,
\\~ith m species at the tips of the left-hand subtree, and 7J - m at the tips of the right
subtree. We are not distinguishing left from right in this argument. Suppose that
n happened to be 5 and n - m happened to be 10. If we already know that there

are S5 different tree shapes for 5 species, and SlO tree shapes for 10 species, then
here will be S5 x S10 possible combinations of these, and each of these will be a

tree of 15 species of a different shape. We can compute the total number of shapes
-or n species by summing over all values of m such that m :::: n - m. However, we
:nust take special care when m = n - m, that is, when m is exactly half of n.

In that case, the number of combinations is not S~v but is the number of differ­
ent unordered pairs of Sm objects, which is Sm(Sm + 1)/2. This differs from S~,

ecause that quantity would overcount by counting twice all cases where the sub­
h'ees on the two sides have different shapes, as each has the same shape as a tree
\\~ith those two subtrees switched.

We can start the calculation with the obvious value S1 = 1. So the algorithm is:

Sl 1

Sn SlSn-1 + S2Sn-2 + + S(n-1)/2S(n+1)/2 if n > 1 and n is odd

Sn SlSn-1 + S2Sn-2 + + Sn/2(Sn/2 + 1)/2 if n > 1 and n is even
(3.2)

It is easy to compute a table of the number of different tree shapes for this case.
It is shown in Table 3.3. There are, of course, far fewer shapes than there are trees.
Harding (1971) derives a generating function whose coefficients are the S.i and that
can be used to study the asymptotic rate of growth of the Si.

Figure 3.7 shows the tree shapes up to 6 species. They are arranged in order of
their appearance in the terms of equation 3.2. Thus in the section for n = 6, we see
mst those having a 5 :1 split at their base, then those having a 4: 2 split, then those
'\-ith a 3: 3 split. Within each of these groups, the left subtrees correspond to the
trees for n = 5, for n = 4, and for n = 3, in the order in which those appear in the
~gure.
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Table 3.3: Number of different shapes of trees with different numbers
of species, counting unlabeled rooted bifurcating trees, as computed
by Cavalli-Sforza and Edwards's (1967) algorithm. Numbers for more
than 20 species are shown to 5 significant figures.

Species

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30
40
50
100

Number of shapes

1
1
1
2
3
6

11
23
46
98

207
451
983

2,179
4,850

10,905
24,631
56,011

127,912
293,547

1.4068 x 109

8.0997x 1012

5.1501x1016

1.0196x1036

I do not know of any closed-form formula for the numbers in Table 3.3, but
Donald Knuth (1973, p. 388) discusses a generating function that produces these
numbers, in the context of a tree enumerating problem.

Rooted multifurcating tree shapes
We can continue on to the cases in which multifurcations are allowed, and also
to those where the trees are unrooted. Although the methods will be derived by
extending Edwards's algorithm, these cases have not been considered anywhere in
the literature, mostly from lack of interest in them. These cases will be described in
less detail. When multifurcations are allowed in a rooted tree, the logic is similar to
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Figure 3.7: The rooted bifurcating tree shapes for 2 to 6 species.

::".e bifurcating case, except that at the root of the tree there can be a multifurcation
:..:':ere can at interior forks as well, but that takes care of itself). For trees with n

-?ecies, we then must sum over all ways that n objects can be partitioned. We
':'~2 interested only in those partitions that have the larger numbers of objects on
-:-'2 left. If we write a partition by listing the numbers of objects in each set, for
- ojects we want to consider the partitions (5.1)/ (4.2)/ (4.1,1)/ (3,3)/ (3.2,1)
-=-.' 2.2,2). We would not consider the partitions (2,4) or (3,1,2)/ because the
~ ':'er of the branches at the fork at the base of the tree is arbitrary, and to avoid
"ercounting cases we are keeping them in order of the number of species on

::"'2 subtrees. (Strangely, in mathematics ordered partitions are those in which the
- ":"'clbers are not constrained to be in order of their size.)

:=or each such partition we have a term for the contribution it makes to the
- ...:......ber of shapes. Suppose that we are calling the numbers of shapes of rooted
- '::i£urcating trees T(n). If the sizes of the sets are all different, as is the case for
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Table 3.4: Number of shapes of rooted multifurcating trees for different
numbers of species. Numbers of shapes for more than 20 species are
given to 4 significant figures.

Species Shapes Species Shapes

2 1 16 2,253,676
3 2 17 7,305,788
4 5 18 23,816,743
5 12 19 78,023,602
6 33 20 256,738,751
7 90 30 4.524 x 1013

8 261 40 9.573 x 1018

9 766 50 2.237x 1024

10 2,312 60 5.565x 1029

11 7,068 70 1.445 x 1035

12 21,965 80 3.871 x 1040

13 68,954 90 1.062 x 1046

14 218,751 100 2.970x 1051

15 699,534

a partition like (4,2,1), the term is the product of the numbers of shapes for each
set. For that partition it would be T(4) x T(2) x T(l). If two or more sets have
the same size, we must instead use the number of different combinations of that
many objects into sets of this size. So for the partition (5,2,2,2,1), the term is

T(5) T(2) (T(2) + 1) (T(2) + 2) T(l)
1 x 2 x 3

because there are n(n + l)(n + 2)/6 ways to write numbers in 3 boxes where each
box gets a number from the range 1 through n and we are not concerned with the
order of the boxes. More generally, when there are k boxes and n numbers, there
are n(n + l)(n + 2)··· (n + k - l)/k! ways.

With this algorithm, the numbers of shapes of rooted multifurcating trees are
as given in Table 3.4.

Unroated Shapes
To count unrooted shapes, for either bifurcating or multifurcating trees, we need
to find a fork in the tree that is uniquely defined, to temporarily root the tree there.
It is not hard to show that there are at most two internal nodes in an unrooted
tree whose corresponding partition has no set with more than half the species in
it. Thus if we start in a tree with 10 species at a node whose partition would
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Table 3.5: The numbers of bifurcating and multifurcating unrooted tree
shapes. Numbers for more than 20 species are given to 4 significant
figures.

Multifurcating Bifurcating
Species shapes shapes

3 1 1
4 2 1
5 3 1
6 7 2
7 13 2
8 32 4
9 73 6

10 190 11
11 488 18
12 1,350 37
13 3,741 66
14 10,765 135
15 31,311 265
16 92,949 552
17 278,840 1,132
18 847,511 2,410
19 2,599,071 5,098
20 8,044,399 11,020
30 8.913x10ll 3.294x107

40 1.377x1017 1.385 x lOll

-::e 8.1,1), we can always move to the node that is at the root of the 8-species
~:lbtree, which might have the partition (4,4.2). At that point we are at a node
.. hose largest partition does not exceed half the species. For many of the possible
~LIooted trees there is just one such partition, but some have two, For example
~ a tree has a central branch with 5 species connected to each of its ends, then
:..:'e partition for the node on the left end of the branch might be (5,3,2) and that
:or the node on the right end of the branch might be (5,2,2.1). These partitions
:...clude sets for the subtree that is at the other end of that central branch.

The algorithm for computing the numbers of shapes for these two cases (the
'-::ifurcating and multifurcating cases) consists again of listing all possible partitions
0: n objects into three or more sets, where the set sizes are ordered, but in this case
'. 'e ignore all those whose largest set contains more than half the species, For
:':,e partitions whose largest set contains less than half the objects, we can take the
~ame products as before, using the numbers of rooted multifurcating or bifurcating
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Figure 3.8: The unmated bifurcating tree shapes for up to six species.
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Figure 3.9: The unmated multifurcating tree shapes for up to six species.
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trees, as appropriate. For the bifurcating case, we of course consider only parti­
tions having three sets. For the partitions whose largest set contains exactly half
the species, we must realize that there is a risk of overcounting: The correct num­
ber to count for such a case is the number of ordered pairs of rooted trees that have
that number of species.

Table 3.5 shows the numbers of shapes for bifurcating and for multifurcating
lmrooted trees.

Figure 3.8 shows the unrooted bifurcating tree shapes up to 6 species, and Fig­
ure 3.9 shows the unrooted multifurcating tree shapes up to 6 species.

Labeled histories
Usually when we consider tree topologies we do not care about the order in time
of the interior nodes of the tree, except to ensure that descendants occur later than
their ancestors. For some purposes connected with coalescent trees of genes within
species (as in Chapter 26), priors on trees (Chapter 18), and distributions of shapes
of trees (Chapter 33), we do care. Edwards (1970) defined a labeled history as a
tree topology where we also record the order of the nodes of the tree in time. Fig­
ure 3.10 shows two trees that are the same tree topology but are different labeled
histories.

Edwards also worked out formulas to count the number of bifurcating labeled
histories. Working down a labeled history, each interior node brings together two
of the lineages. At the top of the tree there are n lineages. There are n(n - 1)/2

ossible pairs of lineages that can be combined. Combining two of them, there are
now [n - l][(n - 1) - 1]/2 = (n - l)(n - 2)/2 pairs that could be combined. If
,-e specify the pair to combine at each stage, we have specified the labeled history

A B D F E c A B D F E c

Figure 3.10: Two different labeled histories that are the same tree topology.
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uniquely. The number of possible ways we could do that is the product of the
number of pairs at each of the n - 1 events, so that it is

n(n-1) (n-1)(n-2) (n-2)(n-3)
2 2 2

2 x 1
2

n!(n - I)!
2n - 1

(3.3)

These can be very large numbers, compared to the number of tree topologies for
the same size of bifurcating tree. When n = 4, there are 15 tree topologies but 18
labeled histories, a small increase. But when n = 10, the 34,459,425 tree topologies
lead to 2,571,912,000 labeled histories, an increase by a factor of almost 75.

Perspective
Knowing exactly how many tree topologies or tree shapes there are in various
cases is not particularly important, unless one is enumerating them in a computer
program and wants to know whether the program has found each of them exactly
once. The point is that there are very large numbers of them, and these num­
bers rise exponentially. This creates major difficulties for any search strategy that
would work by considering all possible trees. In my 1978 paper I suggested that
one use for the numbers was "to frighten taxonomists."

The number of multifurcating rooted trees for 20 species led Walter Fitch (per­
sonal communication) to exclaim that for 20 species "we have more than a gram
molecular weight of evolutionary trees," as it then exceeds 6.023 x 1023 .

Some further references on counting trees and sampling random trees will be
found in Gordon's (1987) review of hierarchical classification.
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Finding the best tree
by heuristic search

~ \\-e cannot find the best trees by examining all possible trees, we could imagine
xarching in the space of possible trees. In this chapter we will consider heuristic
=,-.:l"c1l techniques, which attempt to find the best trees without looking at all pos­
=:~ Ie trees. They are, of their very nature, a bit ad hoc. They also do not guarantee
--':'5 to have found all, or even any, of the best trees.

The fundamental technique is to take an initial estimate of the tree and make
=::1all rearrangements of branches in it, to reach "neighboring" trees. If any of
:'-:ese neighbors are better, we consider them, and continue, attempting more re­
.=.::Tangements. Finally, we reach a tree that no small rearrangement can improve.
:c- ch a tree is at a local optimum in the tree space. However, there is no guarantee
::-.at it is a global optimum_ Figure 4.1 shows the problem for the case of search­
--.g in two spatial coordinates. Trees are a rather different case, but tree space is
':':..:'Scult to depict in a diagram like this.

In the diagram, we are trying to maximize a quantity - trying to find the high­
0:'- point on the surface. In the case of the parsimony criterion, we are actually try­
_-.g to minimize the number of evolutionary changes of state. We can convert that
_-_:0 a maximization problem by simply placing a minus sign before the number
~ -hanges of state, so that 272 becomes -272. Or, alternatively, we could subtract
: ~om a large number, so that 272 becomes 10,000 - 272 = 9,728. Maximization
: :he resulting quantity will minimize the number of changes of state. It is easier

-:: show the diagram as a maximization problem than as a minimization problem,
.:.s :naxima are more visible than minima.

In this diagram, we imagine that we have started with a particular point on the
-ziace and then looked at its four neighbors. One of them is higher, so we move
0:: :hat point. Then we examine its neighbors. We continue this until we have
.:...:....-:-tbed to the highest point on the "hill." However, as the diagram shows, this

37
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end up here but global maximum is here

If start here

Figure 4.1: A surface rising above a two-dimensional plain (or plane).
The process of climbing uphill on the surface is illustrated, as well as
the failure to find a higher peak by this "greedy" method.

strategy is incapable of finding another point, one that is in fact higher, but that is
not located on the hill where we started. Strategies of this sort are often called the
greedy algorithm because they seize the first improvement that they see.

In this chapter we will examine some of the different kinds of rearrangements
that have been proposed. Many others are possible. The techniques are more the
result of common sense than of using any mathematical techniques. Later in the
chapter we will also discuss some sequential addition strategies used for locating
the starting point of the search. In the next chapter we will discuss branch and
bound methods, a search technique guaranteed to find all of the most parsimo­
nious trees.

Although the discussion here will be cast in terms of parsimony, it is important
to remember that exactly the same strategies and issues arise with the other criteria
for inferring phylogenies, and heuristic search techniques are employed for them
in much the same way.

Nearest-neighbor interchanges
Nearest-neighbor interchanges (NNI) in effect swap two adjacent branches on the
tree. A more careful description is that they erase an interior branch on the tree,
and the two branches connected to it at each end (so that a total of five branches
are erased). This leaves four subtrees disconnected from each other. Four subtrees
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is rearranged by dissolving the connections to an interior branch
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Figure 4.2: The process of nearest-neighbor interchange. An interior
branch is dissolved and the four subtrees connected to it are isolated.
These then can be reconnected in two other ways.

:-'.:" be hooked together into a tree in three possible ways. Figure 4.2 shows the
:- -,)Cess. One of the three trees is, of course, the original one, so that each nearest­
-:=:ghbor interchange examines two alternative trees. In an unrooted bifurcating
::-:2"C with n tips, there will be n - 3 interior branches, at each of which we can
:= mLine two neighboring trees. Thus in all, 2(n - 3) neighbors can be examined
- ~ each tree. Thus a tree with 20 tips has 34 neighbors under nearest-neighbor
- :erchange.

There is some ambiguity about how greedy we ought to be. If we accept the
-:~: neighboring tree that is an improvement, that will not be as good a search
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Figure 4.3: The space of all 15 possible umooted trees with 5 tips.
Neighbors are connected by lines when a nearest-neighbor interchange
can convert one into the other. The labels A-E correspond to the species
names Alpha through Epsilon in that data set. This symmetric ar­
rangement of nodes was discovered by Ben Rudd Schoenberg (per­
sonal communication), and we thus denote this graph the Schoenberg
graph.

method as looking at all2(n - 3) neighbors and picking the best one, but it will be
quicker. We could also imagine trying multiple trees tied for best and evaluating
rearrangements on each of them. The most sophisticated heuristic rearrangement
strategies retain a list of all trees tied for best, and rearrange all of them.

Figure 4.3 shows what the space of all 15 possible unmoted trees looks like
for 5 species, where trees that are adjacent by nearest-neighbor interchange are
connected. Figure 4.4 shows the numbers of changes of state that are required for
the data in Table 1.1 for each of these trees. Each tree has 4 neighbors. It will
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Figure 4.4: The space of all 15 possible trees, as in Figure 4.3, where
the number of changes of state on the data set of Table 1.1 is shown.
Nearest-neighbor interchanges search for the most parsimonious tree
by moving in this graph.

be a useful exercise for the reader to pick a random starting point on this graph,
and try various variations on nearest-neighbor interchange, using the lines on the
oraph as a guide. Does the process always find the most parsimonious tree, which
requires 8 changes of state?

Subtree pruning and regrafting
_-\ second, and more elaborate, rearrangement strategy is subtree pruning and re­
grafting (SPR). This is shown in Figure 4.5. It consists of removing a branch from
'he tree (either an interior or an exterior branch) with a subtree attached to it. The
subtree is then reinserted into the remaining tree in all possible places, each of
\\-hich inserts a node into a branch of the remaining tree. In Figure 4.5 the 11-
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Figure 4.5: Subtree pruning and regrafting (SPR) rearrangement. The
places where the subtree could be reinserted are shown by arrows. The
result of one of these reinsertions (at the branch that separates G and C
from the other species) is shown.

species tree has a 5-species subtree removed, and it is inserted into the remaining
tree of 6 species, in one of the 9 possible places. One of these is of course the origi­
nal tree. In general, if a tree of nl +112 species has a subtree of n2 species removed
from it, there will be 2nl - 3 possible places to reinsert it. One of these is the orig­
inallocation. In fact, considering both subtrees (the one having nl species and the
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Figure 4.6: Tree bisection and reconnection (TBR). A branch is bro­
ken and the two tree fragments are reconnected by putting in branches
between all possible branches in one and all possible branches in the
other. One of these reconnections and its result are shown here.

one having n2 species, there are (2nl - 3 - 1) + (2n2 - 3 - 1) = 2n - 8 neigh­
" ors generated at each interior branch. It is also not hard to show that when an
exterior branch is broken, there are 2n - 6 neighbors that can be examined. Thus,
35 there are n exterior branches on an unrooted bifurcating tree and n - 3 inte­
:ior branches, the total number of neighbors examined by SPR will be n(2n - 6)+
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(n-3)(2n-8) = 4(17 -3)(n-2). However, some of these may be the same neighbor
(to see that, consider '11 = -1). For the tree shown in Figure 4.5, which has 11 = 11,
there are thus up to 288 neighbors under SPR. Of course, 2(n - 3) = 16 of them are
the same neighbors that NNI examines. But it is clear simply from the numbers
that SPR carries out a much wider search and is thus more likely to find a better
peak in the space of all trees.

The issues of how greedy to be, whether to delay accepting a new tree until
all SPR rearrangements have been examined, and how many tied trees to retain as
the basis for further rearrangement, arise for SPR just as they do for NNI.

Tree bisection and reconnection
Tree bisection and reconnection (TBR) is more elaborate yet. An interior branch is
broken, and the two resulting fragments of the tree are considered as separate
trees. All possible connections are made between a branch of one and a branch
of the other. One such rearrangement is shown in Figure 4.6. If there are n1 and
n2 species in the subtrees, there will then be (2n1 - 3)(2n2 - 3) possible ways to
reconnect the two trees. One of these will, of course, be the original tree. In this
case there is no general formula for the number of neighbors that will be examined.
It depends on the exact shape of the tree. For the II-species tree in Figure 4.6
(which is the same one shown in Figure 4.5), for the interior branches there can be
up to 296 neighbors that will be examined. As in the other types of rearrangement,
there are issues of greediness and of how many tied trees to base rearrangement
on. Allen and Steel (2001) calculate how many neighbors there will be under TBR
and SPR rearrangement, and calculate bounds on the maximum number of these
operations needed to reach any tree from any other.

Other tree rearrangement methods

Tree-fusing
The NNI, SPR, and TBR methods hardly exhaust the possible tree rearrangement
methods. The repertoire of rearrangement methods continues to expand. Goloboff
(1999) has added two additional rearrangement methods. One is tree-Jusing. This
requires two trees that have been found to be optimal or nearly so, and alters them
by exchanging subgroups between the two trees. This requires that both trees have
a subtree on them that contains the same list of species. Thus if one tree has on
it the subtree ((D,F),(G,H)) and another the subtree ((D,G),(F,H)) one could swap
the subtrees. Each tree would thus propose to the other a particular resolution
of that four-species group. The proposals would be expected to be better than
random resolutions of that group, as they were found by heuristic search on that
tree. They thus become candidates of particular interest for resolving the same
group on other trees.
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:;enetic algorithms
-_....other strategy that is related to tree-fusing is use of a genetic algorithm. This is a
<:mlation of evolution, with a genotype that describes the tree, and with a fitness
-...:..:-:ction that reflects the optimality of the tree. Genetic algorithms (or evolutionary
.. .···:vlltntion) have been widely used to solve complex optimization problems and
~:e often quite effective. Their use in general optimization was inspired largely by
::-e "'ork of Holland (1975), though simulations of evolution by biologists and en­
=-_ eers date to the mid-1950s (see the historical papers reprinted by Fogel, 1998).

:a. suda (1996) seems to have been first to use a genetic algorithm on phyloge­
- s. He optimized branch lengths on each tree and used a recombination oper­
~:or that swapped particularly good subtrees between trees. Lewis (1998) used
:..... approach in which trees could mutate by changing branch lengths or doing an
::~R rearrangement, and they could recombine by choosing a subtree in one tree,
.:.e eting those species from the other and inserting the subtree into it. Moilanen
~.) 9) used a recombination operator similar to Lewis's, and also allowed heuris­

:::...: searching using SPR rearrangement. Katoh, Kuma, and Miyata (2001) used
::::~utations that were TBR rearrangements and recombinations that were swaps of
O'J.btrees containing the same set of species. It is not clear whether they did or
':':d not also optimize branch lengths on each phylogeny. Congdon (2001) used
?usimony, with a recombination operator similar to that of Lewis.

Genetic algorithms lend themselves easily to parallel computing. Brauer et
:.:. (2002) used a separate processor for each tree with Lewis's (1998) approach,
:...,d fOlffid that efficient use of computational resources was made. Lemmon and
... 1ilinkovitch (2002) divide the trees into separate populations, which can evolve
:--, arallel. Structures in the tree fOlffid to be shared by a number of nearby popu­
..a.:ions are protected from change, allowing search to proceed more intensively in
:: e regions of the tree where different populations have found different structures.
~harleston (2001) uses a population of trees, with a system for taking modifica­
::ons that are made in one of them and propagating them to a number of others.
~ere is no recombination operator, but rather this simultaneous adoption of suc­
:essful mutations.

Genetic algorithms have been touted as a universal approach to optimization.
--=ney often can do quite well, but any evolutionary geneticist who has worked on
~atural selection in multilocus systems, as I have, must have doubts. How well
~enetic algorithms do is strongly dependent on the amount of interaction in the
:oci as they determine fitness. It can also depend strongly on the way in which
:he optimization criterion is turned into a fitness. If intelligent decisions are made,
.. e method may do very well, but the performance is then due as much to these
:.ntelligent decisions as to the inherent strength of genetic algorithms. If, for exam­
?le, we were to try to find factors of a large integer by mutating and recombining
jit strings in binary numbers, genetic algorithms would be nearly worthless. That
.. ey have worked reasonably well in searches for optimal phylogenies must be
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put down to the wisdom of these authors in designing their genotype-phenotype
mapping and their fitness scales. It is also important to realize that there is no
connection between the fact that we are analyzing evolution and the use of an
evolutionary algorithm to carry out the optimization. Genetic algorithms are not
inherently more suited to analysis of genetics and evolution than they are to design
of bridges.

Tree windows and sectorial search
We can imagine doing extensive rearrangements, not on the whole tree, but on
a local region of it. Two papers (Sankoff, Abel, and Hein, 1994; Goloboff, 1999)
have explored such approaches. Both take an interior node of the tree and a set
of other nodes connected to it. This defines a region that they call either a window
or a sector. Both approaches use parsimony to evaluate the state of the window.
The branches reaching the edge of the sector or window carry summaries of the
number of changes needed in each character looking outward from the window,
those used in the Sankoff algorithm and discussed above in Chapter 2. This allows
us to rearrange the tree locally in this window without ignoring the information
outside it, and without having to retraverse the tree with each rearrangement.

Essentially these methods generalize, and broaden, the method of nearest­
neighbor interchange, hoping to rearrange extensively enough to escape local op­
tima without too great a computational burden. Sankoff, Abel, and Hein (1994)
examine all possible rearrangements of the window, using the branch and bound
approach discussed in Chapter 5. This extensive local rearrangement restricts their
method to a window of less than 20 nodes, often less than 15. Goloboff (1999) uses
the quicker but less exhaustive strategy of TBR rearrangement, and as a result his
method can handle much larger windows - he suggests ones of 35 to 55 nodes.
If the objective is to escape local maxima, using a larger window may be more
important than exhaustively searching the window.

In both cases, when improved trees are found, the window is moved and rear­
rangement proceeds elsewhere in the tree.

Speeding up rearrangements
We saw in Chapter 2 that there were ways of speeding the calculation of the par­
simony score of a tree when it is altered, by only recalculating the views in the
part of the tree that has been changed (Gladstein, 1997). Goloboff (1993b) has sug­
gested another saving that is particularly useful for SPR and TBR rearrangement.
After a subtree is removed, we recalculate all of the views in each of the two now­
separate parts of the tree. We can use the method of Ronquist (1998a) to avoid
recalculating all of them. Then, when we evaluate a possible reconnection of the
trees, we need only look at the views nearest the connection point to compute the
parsimony score of the resulting tree. The overhead of calculating all the views
after the subtree is removed results in much faster evaluation of ways that they
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Figure 4.7: Goloboff's (1993b) economy in evaluating rearrangements.
If we divide the tree into two trees by deleting the dashed line and pro­
pose to evaluate their reconnection using the dotted curved arrow, we
can compute views upwards for subtrees A-G and H-R, and views in­
wards for subtrees V-Z and S-U (dark gray boxes). These can be used
to quickly evaluate the resulting tree. It will have the same parsimony
score as the 4-species tree at lower right.

_. e reconnected. This results in substantial improvement. Figure 4.7 shows
-~ ::1ethod. Goloboff's (1993b) and Ronquist's (1998a) papers can be consulted
- :::ome further improvements of the speed of these algorithms.

:equential addition
--::: a. ave rearrangement strategies assume that we start with a tree. One can, of

~:::e, start with a randomly constructed tree. But most implementations have
-- -:e:l with a tree that results from a sequential addition strategy. In Chapter 3, we
- - oed that one can arrive at all possible trees by adding the species one at a time,
_:.:- i1 all possible places. Figure 3.3 depicts the process for rooted trees. A similar

.::e,,5 exists for unrooted bifurcating trees. An umooted tree with 3 species has
-.::::-::: ranches. The fourth species can be added by having it branch off from the

- .:.~e of any of the three branches. In the process, two more branches are added
::-e tree. For each of these three possibilities, there are then 5 possible ways that

. _ :-e'\t species can be added, and so on.
::-...;. pose that we construct the single 3-species tree. ow we try to add the

....:-..:.-: 5pecies in all 3 possible places. We evaluate the resulting 4-species trees.
_-:"---:5 ead of following up on all of these, we simply keep the best one. Then we

- :::- add the fifth species to all 5 possible places. Keep the one of these trees that
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is best. Now add the sixth species in all 7 possible places, and keep the best one.
This is a greedy algorithm based on sequential addition of species. It seems as if it
must always result in a most parsimonious tree. But in fact it may not, as we will
see by example in the next chapter. Nevertheless, it constructs an approximation
to the best tree.

Sequential addition is one of the chief methods used to obtain initial trees for
rearrangement strategies. Note that the order in which the species are added is
arbitrary. We can imagine adding them in the same order that they appear in the
data or using a random order based on a random number generator. For the data
of Table 1.1, the results of a sequential addition strategy are shown in Figure 4.8.
It results in four tied trees of length 9, a step longer than the most parsimonious
tree. If we try other sequences of addition, some of them do lead us to find the
most parsimonious tree (examples would be B, C, D, E, A and A, B, D, E, C).

One of the most tempting orders is often the reverse of the order in which the
species appear in the data. This would at first sight appear to be no different in
its properties than adding them in the order in which they appear in the data. But
often biologists place the most distantly related, most "primitive," and most du­
biously interpretable, species first. So one is far better letting the well-interpreted
species settle down into a tree and then, at the last moment, adding the dubi­
ous species in all possible places. The alternative, allowing the dubious species in
early, is more likely to result in disruption of the tree structure.

The issue of how many trees tied for best to retain is present for sequential ad­
dition strategies, as it is for rearrangement strategies. In fact, the two strategies
may best be combined. One can add a species, then carry out a round of rear­
rangements to see whether it has disrupted the existing topology. By integrating
the rearrangement and sequential addition strategies, one can obtain a method
that searches even more carefully for the best trees.

It is often assumed that using many different orders of species will result in a
fair sampling of starting points for rearrangement. There is no actual mathematical
proof of this, but it seems to behave reasonably well in practice.

Star decomposition
Rather than building up a tree by adding species one at a time, one can start with
all species present, but with the tree totally unresolved. A bifurcating tree can
be achieved by gradually resolving this tree by grouping two lineages at a time.
Figure 4.9 shows this process and also shows that it is not unique. There may
be only one way to reach each bifurcating tree by sequential addition of species
in a given order, but there are multiple ways to decompose an unresolved "star"
phylogeny to reach a given bifurcating tree.

These star-decomposition methods were first used in the clustering literature.
We will see in Chapter 11 that UPGMA and neighbor-Joining methods use this
approach, as does any clustering method that agglomerates groups into larger
groups.
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Figure 4.8: Sequential addition carried out on the data in Table 1.1.
The species names A-E correspond, respectively, to the names Alpha
through Epsilon in Table 1.1. Sequential addition ends up with four
trees tied for best. None of these is actually the most parsimonious
tree.
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Figure 4.9: Defining a tree by star decomposition, illustrating that there
is more than one way to do so.

Tree space
Rearrangement may be thought of as searching in a space of trees. We have been
concerned mostly with the topology of the tree, but with other methods we will
find it useful to think of the branches of the tree as having lengths, nonnegative
numbers that reflect how much evolution is expected to occur on that branch. For
most of the models of evolution used in this book, a branch of zero length might as
well not be present. Thus if a speciation separates two lineages, and one of these
immediately speciates again, this is not predicted to result in a different phenotype
than a trifurcation.

Two tree topologies that have branches that can, on being shrunk to zero
length, lead to the same trifurcation are adjacent in tree space. We can shrink one
branch to reach the trifurcation, then insert the other branch as of zero length and
then lengthen it. In that way we can move smoothly from a tree of one topology to
the other. Trees that are adjacent to the same trifurcation can be reached from each
other by a nearest-neighbor interchange (NNI). In this sense the NNI is not just an­
other arbitrary rearrangement method but is fundamental to the structure of tree
space. Figure 4.3 shows the pattern of sharing of subspaces for trees of 5 tips. To
go from one to another in this graph, we can imagine shrinking an internal branch
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:ength until it is of zero length. At that point we have reached a subspace of tri­
:l.lrcating trees. We can pass through it into either of two other tree topologies, so
:-Itat as we go through the looking glass we encounter two alternative universes
~nd we have to choose which one to enter.

The graph has interesting structure. The arrangement in Figure 4.3 was found
:or me by my stepson, Benjamin Schoenberg. I have named it the Schoenberg graph.
3en pointed out another property. Each tree is part of two triangles of trees, a
:riangle being the three trees that can be obtained by rearrangements around one
:...,terior branch. If we consider these triangles as points in a new graph and connect
:nose of them that share a tree, we have constructed a dual graph of the graph of
:.:-ees. In the case of order 5, this dual graph has 10 points. Ben noticed that it is a
:~mous graph, the Petersen Graph, widely used as a source of counterexamples in
Japh theory. It is sufficiently famous that it is depicted on the cover of the journal
J:5crete Mathematics.

We will see in the chapter on tree distances (Chapter 30) that some tree dis­
:3nces can be considered to be distances in this tree space. For further discussion
.:: the geometry of tree space and the role of the Petersen Graph as a dual of 5­
~?ecies tree space, see the papers by Billera, Holmes, and Vogtmann (2001) and
3astert et al. (2002) which report work independent of Ben Schoenberg's.

Search by reweighting of characters
Jmerent characters in the data may well recommend different trees to us. To pre­
. ent the search from becoming overconcentrated on a limited set of trees, it may
.-elp to use as starting points different trees that are recommended by various sub­
:-e:s of characters. Nixon (1999) has suggested a method for doing this that seems

_____ :0 improve the effectiveness of the search. He starts from a tree, and then picks a
:~ndom set of 5% to 25% of the characters for emphasis. They are emphasized by
_""".::reasing the weights of the characters. We will examine character weighting in
.:::: apter 7; in effect, all we need to know here is that Nixon's reweighting amounts
:0 duplicating each of these characters so that each appears twice or more in the
'::'~ta set.

.\Jixon suggests starting from the initial tree and using tree rearrangement
-:-.ethods such as TBR with this modified data set. This will move us to a tree
:i:'-ommended by this reweighted data set. After we have reached it, Nixon sug­
.::::s·s using the original data set and doing a TBR search from this tree. The effect
s ro carry us to a tree recommended by a subset of the data; then we search from
:--at starting point using the full set of characters. Many such reweightings and
:,arches are carried out - Nixon recommends 50-200 such searches. The best

-:-2es found among these searches are retained.
The method is called the parsimony ratchet. However it is actually not specific to

:: .:crsimony methods - a similar technique can be used with any objective function
:: ,,-sed on character data, including compatibility, distance matrix, and likelihoods.
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ixon's method can be modified in many ways. We could use a variety of
different reweighting methods. In Chapter 20 we will discuss the bootstrap and
jackknife methods, which are reweighting methods. Although there is some con­
cern as to exactly how these should be carried out to have their results be in­
terpreted statistically, this need not constrain us in using them in a reweighting
search. In fact, exaggerating the effect of small sets of characters appears help­
ful in the search. So we could use jackknife methods that select only a small set
of characters, fewer than we would use when we investigate the statistical uncer­
tainty of phylogenies.

Likewise, the search strategy can be modified. All that is necessary is to have
.a first stage that is some kind of search based on the reweighted characters and
a second stage that starts from the result and rearranges using the original data.
Nixon finds that using his strategy, more parsimonious trees can be found in the
500-species rbcl plant phylogeny data set.

The search strategy of Rodin and Li (2000) is related to Nixon's reweighting
scheme. They use the bootstrap to choose regions of the tree where the structure is
less well defined, and concentrate their tree rearrangements there. This has many
of the same effects, as it entertains rearrangements to the extent that reweighting of
characters occasionally suggests them. Another method, different in details, has
been presented by Quicke, Taylor, and Purvis (2001). This reweights characters
in a different way, one that emphasizes characters that fit the trees found so far.
It remains to be seen whether this nonrandom reweighting has advantages over
Nixon's random reweighting.·

Simulated annealing
A well-known method of search in large combinatorial problems is simulated an­
nealing (Metropolis et aI., 1953). This uses the Metropolis algorithm (which we will
see again when we discuss Markov chain Monte Carlo methods in Chapters 18 and
27). The Metropolis algorithm simulates statistical mechanics, in that it accepts a
new state if it is better, and also sometimes when it is worse. The result is a wan­
dering among states that is biased toward the better states. The extent of the bias
depends on a "temperature" parameter. Simulated annealing uses the Metropo­
lis algorithm with a gradually decreasing temperature. Thus the state wanders
widely at first but later is more and more strongly biased to wander towards bet­
ter solutions. It will wander widely but finally hill-climb towards a locally good
solution. It is possible to prove that simulated annealing will find the best solu­
tion, if the temperature is lowered slowly enough. However, usually we do not
know how slow is slow enough.

The first paper to describe applying simulated annealing to searches for opti­
mal phylogenies was by Lundy (1985). She dealt with the case of minimum-length
(most parsimonious) trees for continuous characters. Dress and Kruger (1987) also
used simulated annealing with parsimony on molecular sequences. Their elemen­
tary operations were swaps of subtrees in the tree. Daniel Barker has produced the
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_ "3 computer program searching for the most parsimonious tree by simulated an­
-,,=~:.ina. Goloboff's (1999) method of "tree-drifting" is another implementation of
- -:Jated annealing to find most parsimonious trees. In deciding which trees to

::2Ft, he uses a Relative Fit Difference measure that can emphasize small differ­
- :23 in parsimony score. Salter and Pearl (2001) applied simulated annealing to

-.:.Unum likelihood phylogenies.
=: is early days yet in the use of randomness for searching for optimal phylo­

_:::-..:e5. It is not yet clear whether random perturbations of the tree will be more
_-..:':'-Jl than random reweighting of the characters - most likely these techniques

---: Lome to be used together.

History

_ :~ rearrangements of phylogenies were first discussed by Camin and Sokal
--~ . They seem also to have been employed by Eck and Dayhoff (1966), who
::-::- :"Jst to mention a sequential addition strategy. Kluge and Farris (1969) also

.=-:.~ ed a sequential addition strategy. Subtree pruning and regrafting and tree
. --c':~on and reconnection were described in print by Swofford and Olsen (1990).

--:.': \laddison (1991) has discussed the importance of multiple starts for finding
.:. :2d "islands" of most parsimonious trees. Various of these methods have been
:::-:ed by others as well, used in computer programs, and circulated as oral
.:_=on before their first description in print.
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Finding the best tree
by branch and bound

We have already seen, in Chapter 3, that there are far too many possible trees to
make it practical to search for the most parsimonious tree by simple exhaustive
search, except with very few species. This is a parallel to computational problems
in strategy in games such as chess, where there are far too many possible games
that might be played to consider them all.

A method that was developed to allow computers to solve for the best strategy
in a game can help us here, the branch and bound method. In effect, it discards
whole classes of strategies that it has determined cannot be correct, without the
need to examine all of their members one by one. The branch and bound method
was discovered in the 1960s (by whom is not entirely clear). It was first applied to
parsimony problems in phylogenetic inference by Hendy and Penny (1982), from
whose paper modem use of branch and bound methods for inferring phylogenies
has sprung.

A nonbiological example
It is not difficult to describe a branch and bound approach to solving a combinato­
rial optimization problem, a relative of the infamous Traveling Salesman Problem.
In this problem, finding the shortest Hamiltonian path (SHP), we have a map with n
cities. The salesman has an airplane and he (he is always a male, for some reason)
can fly directly between any two cities. The problem is to find a route (including a
starting point) that will take him from one city to another until he has reached all
of them, while flying the shortest total distance (he does not return to his starting
point, as he does in the Traveling Salesman Problem). There are n cities that could
be the starting point; for each of those, there are n - 1 that could come next, and so
on. There tum out to be n! possible solutions. We could imagine tracing out all of

54
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Table 5.1: Ten points drawn randomly from a unit square, which are
the geographic coordinates of the "cities" in a shortest Hamiltonian
path problem.

Point x y
1 0.537 0.061
2 0.274 0.222
3 0.016 0.837
4 0.871 0.400
5 0.399 0.740
6 0.815 0.531
7 0.587 0.946
8 0.992 0.733
9 0.268 0.481

10 0.895 0.068

- - 2:11. In fact, there is a tree of possibilities. There are n possible choices, then for
-=.:...:h of those n - 1 subsequent choices, and so on. Table 5.1 and Figure 5.1 show

:::.', ical shortest Hamiltonian path problem with 10 points. Panel (a) shows the
-: ':'" ts, which are also given (numbered arbitrarily) in Table 5.1. They are simply
-: :... ts drawn randomly from a two-dimensional unit square.

?anel (b) in Figure 5.1 shows a random route (one that starts at point I, contin­
~ :0 point 2, to point 3, and so on in order). The total length of this route turns
_: :0 be 5.4342. We can imagine various heuristic search methods for finding bet­

-=: :outes. One of them that is fairly obvious is to start from a point, proceed to
-, :-:earest neighbor, proceed from that to the nearest neighbor that is not yet in
--= :- ath, and continue doing this until all points have been visited. This works

-=:.:. ror a while but finally leaves you with only a single choice for the last point,
- :. :hat may not be very close by. By carrying out this greedy algorithm many

-- :-~, once from each point, and then choosing the best of these solutions, one can
::-erter. In our 10-point example, the average length of the 10 greedy solutions

'::-:'J'lg from the 10 points is 3.6974, a 32% improvement over the random route.
-, -= ~ est of the greedy solutions (actually the best two, as the solution is found

.:2. once from each of its ends) is of length 2.8027.
-=-:L.is solution is shown in panel (c) of Figure 5.1. It is close to the optimal so­

. _:1, but it is not the optimal solution. The optimal solution is shown in panel
- :: is shown with lines rather than arrows, as one can traverse it in either direc-

- :\ote that it is close to the best greedy solution, with one link of the greedy
_::con deleted and another link added. This is further evidence that the strat­

_ ?opular among algorithmists of finding solutions to the SHP by rearranging
'-=: ~olutions is sound. The length of the optimal solution is also close to that of

::'2St greedy solution, as it is 2.7812, only 0.02 shorter. The greedy algorithm
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(a)

•
•

• I

•
•

•

•

• •

(c)

(b)

•

(d)

Figure 5.1: A typical shortest Hamiltonian path problem with 10
points, randomly chosen from a unit square (the ones shown in Ta­
ble 5.1). Panel (a) shows the points. Panel (b) shows an arbitrary route
(the points in numerical order). Panel (c) shows the shortest of the
routes chosen by starting from each point and adding nearest points in
greedy manner. Panel (d) shows the solution found by a branch and
bound method.



Finding the best tree by branch and bound 57

',,'ith multiple starts has done very well, but it did not actually find the optimal
30lution.

Finding the optimal solution
, 'e can find the optimal solution by exhaustive enumeration. In doing so we tra­
'crse a search tree of possibilities. The possible solutions can be indicated by the
~ quence of points. Thus the first solution (panel b) is (1,2,3,4,5,6,7,8,9, 10),
::'-:.e best greedy solution is (3,5, 7, 8, 6, 4, 10, 1,2,9), and the optimal solution is (7,
~ 3,9,2, I, 10,4,6,8). There are in alllO! = 3,628,800 possible solutions. We can
,-, , of arranging them in lexicographical (dictionary) order:

(1,2,3,4,5,6,7,8,9,10)
(1,2,3,4,5,6,7,8, 10,9)
(1,2,3,4,5,6,7,9,8,10)
(1,2,3,4,5,6,7,9,10,8)
(1,2,3,4,5,6,7,10,8,9)
(1,2,3,4,5,6,7,10,9,8)

(10,9,8,7,6,5,4,3,2,1)

--'" 3,6 million rows of this table can be organized into a search tree based on
- -~~g initial parts of the solutions. Thus the first two entries are adjacent tips on
__-'" 3earch tree, as they share (I, 2, 3, 4, 5, 6, 7, 8). The first six entries are a cluster
: 3L\, adjacent tips; they are shown in Figure 5.2, The first (leftmost) branch at

'-'" bottom of this search tree leads to all solutions that start with point 1. The
-:: : branch leads to all solutions that start with point 2, and so on. Within these
-_:':rees there are further branchings, corresponding to what the second point in
-'" 30lution is to be. This branching continues all the way up to the top of the
~~:-(h tree; in the figure we can see the top leftmost part of the tree with the first

30lutions shown. For simplicity, we ignore the fact that the solutions come in
-::.: pairs, as one can travel a route in either direction.

,-\11 exhaustive search of solutions can be done by traversing this tree from left
:-:sht and keeping track of the best solution found so far. When this is done for

'-:, .:lata in our 10-point example, the solution in panel (d) of Figure 5.1 is found;
-" ;uaranteed to be the best possible one. This took 10.85 seconds of computer
-'" on my Digital Alphastation 400 4/233. The program needed to look at alllO!

":','ons to do this. Unfortunately, factorials blow up faster than exponentially as
- - ?roblem size increases. For 15 points there are l5! = 1,307,674,368,000, so
- -: :his exhaustive search would probably take about 3,909,906 seconds, or a bit

:::- 3ix weeks. (My computer is already long obsolete as you read this, but all
- '.-:ould need to do is add a few more points to the problem to overwhelm your

-_~-=, t computers.)
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Figure 5.2: Search tree for the solutions of a lO-point shortest Hamilto­
nian path problem.
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::\P-hardness
~ iact, the shortest Hamiltonian path problem is one of the best-known members
: a famous class of computationally difficult problems. The number of possi­

:-.e solutions rises as the factorial of the number of points, n. This is faster than
:...""'. exponential rise, so that when plotted on a graph whose vertical scale is log­
::::-:.~hmic, it rises faster than linearly. That is the plot of the number of possible
".:-:utions, but we might be able to find a method of solving the SHP whose com­
:-'.::ational time does not rise that fast. For example, we would be in very good
<':ipe if we could find one whose computational time rose only linearly with 11"

. _:- then when we doubled the number of points, we would only double the com­
:- .::ational time. Even if we had an algorithm whose time rose as the square of the
- .:...1ber of points, 11,2, we would not be in such bad shape: A doubling of n would

-..:\. quadruple the computational time.
\e thus might want to ask, Under what circumstances does a problem have

::0 ution whose computational time is a polynomial function of the number of
: :.,.,ts (such as 3011,:3 + 211,2 + 6)? No matter what polynomial function it is, an
= .onential function like en will overtake it for large enough n. Thus a problem

.":.: a polynomial time is better than one with exponential time, provided one has
:::::'ficiently large value of n.

Oyer the last 20 years, computer scientists have been able to establish that there
- :: .::lass of problems that are all equally hard, in the sense that either they all have

: _:. ornial solutions, or none of them does. These are the NP-complete problems,
--,o:r theory is summarized in texts on computational complexity, such as the one
: Garey and Johnson (1976). The NP-complete problems include many of the
- _::: famous problems in computer science. Another class of problems that is rel­
_ :...,t are the NP-hard problems. These are problems that do not have polynomial­
--:-.e solutions if the NP-complete problems do not, but which might not have
-=.. even if the NP-complete problems did.

The theory is a bit unusual, because it is not actually known whether
::-'-complete problems are solvable in polynomial time. They might be. If even

-,0 of them is found to be solvable in polynomial time, it can be proven that all
. :...~em can be solved in polynomial time! (Some of this proof is done by show-

-;: :.: at there is a way of transforming an algorithm that solves one problem into
- =':oorithm that solves another). Perhaps tomorrow morning someone will find
-a\" of solving one of the NP-complete problems in polynomial time. That per-

=- \\"ill immediately become the most famous figure in contemporary computer
:-",o:-1ce, because she will have shown that all of the NP-complete problems can be
.""ed in polynomial time.

3ut so far, a lot of very crafty computer scientists have devoted a lot of time to
- ijcg a polynomial-time algorithm for some NP-complete problem, and they

2 all failed. To me that indicates that we probably are not going to see
:- "ll\"nomial-time algorithm for any of the P-complete problems during our
"=::mes. So I am going to assume that a proof that a problem is NP-complete
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or NP-hard is equivalent to a proof that it cannot be solved in polynomial time,
and that our algorithms will run in exponential time, or worse.

The shortest Hamiltonian path problem is one of those that has been proven to
be NP-hard. An associated decision problem (Yes or no - Is there a solution to this
SHP that has length less than X?) is known to be NP-complete. So no algorithm
that we can reasonably expect to discover can run in polynomial time. Of course
that does not prevent us from discovering one that runs in exponential time but
runs rather rapidly on moderate-sized cases. We might, for example, find one
that runs in O.OOOOOOlen seconds. It would run quickly on small and moderate­
sized cases, but it too would ultimately be defeated by the exponential growth of
execution time as the problem size grew.

Branch and bound methods
In spite of its being NP-hard, there are ways to considerably speed up the SHP. The
simplest is branch and bound. We have already seen that we can search exhaus­
tively by traversing the search tree of solutions. But we need not actually traverse
all of it. As we go up the tree, building up a solution, we can keep track of the to­
tal length of that part of the solution so far. We also will be keeping track of the
best solution found so far, and how long it is. Suppose that the best solution so far
has length 2.932. As we go up a branch on the search tree, before we reach the end
of the branch, we notice that the total length of this partial solution has reached
3.193. Any further points that we add to the solution can do nothing but increase
that length. We therefore know that no solution in that subtree of the search tree
can be any better. This is the "bound" in the branch and bound method. We can
cut our losses by ceasing further movement into that subtree and backing out. If
we have backed out when there are still a considerable number of points left to be
added to the solution, we have saved a lot of work.

The result is an algorithm that branches (searching all parts of the search tree)
but also uses its bound to greatly economize on the amount of work. Implement­
ing this branch-and-bound search, we find that for the numerical example it does
indeed arrive at the correct solution, and much faster than straight exhaustive
search. It takes 0.46 seconds instead of 10.85, a better than 20-fold improvement.

Phylogenies: Despair and hope
Branch and bound has speeded up the solution greatly, but it has not actually es­
caped from the constraints of the NP-hardness proof. In fact, branch and bound
algorithms too have a complexity that is exponential- it's just that they have im­
proved the coefficient in front of the formula and maybe on the size of the expo­
nent. (For example, they might in some case have computation time proportional
to eO.03n instead of eO.5n .)

The parsimony problem for nucleotide sequences is one of a number of phy­
logeny problems that are known to be P-hard. (Finding the best tree or trees i~
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'-:P-hard, knowing what is the number of changes on the best tree is NP-complete.)
The proof of these was given by Foulds and Graham (1982; Graham and Foulds,
1982). These phylogeny problems are exar<1ples of finding a Steiner tree in a graph.
The set of all sequences is a graph, where adjacent points are connected if the se­
quences differ at one site. A Steiner tree is a tree of minimal length connecting
a given set of points in a graph. Many Steiner tree problems are known to be
'-:P-complete or NP-hard. (Generally, the problem of knowing the length of the
tree is NP-complete, and the problem of finding the tree is NP-hard.) W. H. E.
Day and co-workers have provided NP-completeness proofs for a variety of phy­
logeny criteria, most of which we introduce in later chapters. These include Wag­
ner parsimony on a linear scale (Day, 1983), Camin-Sokal and Dollo parsimony
Day, Johnson, and Sankoff, 1986), compatibility (Day and Sankoff, 1986), least

squares distance matrix methods (Day, 1986), a variant on the minimum evolu­
:ion distance matrix method (Day, 1983), and polymorphism parsimony (Day and
Sankoff, 1987).

There would seem to be reason for pessimism. But it is important to recall that
exponential run time is not necessarily typical. The NP-hardness proof shows only
:hat, given that no algorithm achieves polynomial time, for any problem size there
;"Ire instances of it that will take exponential time. But these need not be biologically
,easonable cases. The worst-case complexity of the problem is exponential. But
'. 'hat is the biological-average-case complexity?

In fact, it seems that some NP-hard problems (such as finding trees by compat­
:bility, a method we consider later in this book) are very rapidly solved by branch
a d bound methods for typical biological cases. Other problems (such as parsi­
:-nony) do not have such fortunate behavior.

Branch and bound for parsimony
-:he use of branch and bound algorithms to speed up exhaustive search for most
,_ arsimonious trees is closely analogous to the algorithm that we have just de­
:,cribed for the shortest Hamiltonian path problem, The search tree is the tree of
~ees that we have already described in Chapter 4 (see also Figure 3.3). It is the tree
,): possibilities that results from adding the species to a tree in their numerical or­
ier, at each stage choosing one of the possible places to add that species, Thus we
:,:art with species 1 and 2 in a two-species tree, add species 3 in one of the 3 pos­
s:ble places, then add species 4 in one of the 5 possible places, and so on, Figure
7.3 shows this tree of trees, for a five-species case where the species are labeled A,
3. C, D, and E. There are 15 possible tips, the 15 bifurcating trees, plus the interior
:-:odes of the search trees which are 8 other incomplete trees.

We can imagine traversing this search tree. At each point on it, we have a par­
::al (or a complete) tree. We can evaluate the number of changes that this tree re­
-:'.lires on our data. This could be used in a branch and bound method, as was done
_, the SHP example. In their paper introducing the branch and bound method for
:< dogenies, Hendy and Penny (1982) have made some useful suggestions for
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Figure 5.3: Search tree for most parsimonious tree in a five-species case.

improving the bound. Figure 5.3 shows the search tree, with allIS unrooted bifur­
cating trees for 5 species. These are tied together by interior nodes that show all 3
four-species trees, and at the root is the single possible three-species tree. Figure
5.4 shows the same search tree with the trees themselves replaced by the number
of changes of state that they require for the data in Table 1.1. The branch-and­
bound traversal starts from the bottom of the search tree. In order to rule out as
many trees as possible, as quickly as possible, it is helpful to find good trees soon.
One strategy would be to search the nodes of the next level in the tree in order
of the number of changes that their trees require. So we start at the bottom node
(which requires 5 changes). At the next level we have nodes that require 8, 7, and
9 changes, respectively. If we make a preliminary visit to all three of them and
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?i ure 5.4: Search tree for most parsimonious tree for five species, us­
~'lo the data of Table 1.1. Trees are shown in Figure 5.3. Dashed lines
3.re those not traversed by a branch and bound method. The species
:-:ames in the data set correspond to labels A through E in Figure 5.3.

- r this, then we can plan to traverse the tree starting with the one that re-
-~ - changes. Proceeding up to it, we discover at the next level that there are 5
_?2cies trees, requiring 9,9,9,9, and 11 changes, respectively.

'.: we have candidate trees (the ones requiring 9 changes). We will be inter­
: -"""' any region of the tree whose bound is 9 or less. We will be uninterested in

- "':-'J any region of the search tree that has all of its members requiring more
- - .=hanges. We proceed on to the next subtree, the one whose interior node

changes, so that its bound is 8. This has 5 five-species trees attached
.:.=-. those require 10, 8, 10, 11, and 11 changes. Now we have a new candi­
=~, requiring only 8 changes (and we discard the earlier ones that required
-: 3.re now interested in bounds of 8 or less. Finally, we start to examine the
- :.."--.e three subtrees, whose interior node requires 9 changes. Its bound is 9.

- :::':::'3.tely we know that none of the 5 trees attached to that interior node are of
_ : .-\11 must require at least 9 changes, and we have already found a tree that
-.= only 8 changes. Hence we never travel along the branches of the search
- =: :ead beyond there (and they are therefore shown in Figure 5.4 as dashed

- ,'e are done, having examined only 10 of the 15 possible five-species trees.
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The saving is not great in this example, but it can become enormous in larger
cases. The saving is greater the less homoplasy there is in the data. In cases in
\\-hich there are many conflicts between information from different characters and
much parallelism and convergence, the branch-and-bound strategy does not per­
form particularly well.

Improving the bound
In the search tree of Figure 5.4, the bound is calculated simply by asking how
many changes the partial tree at that node requires. This is a lower bound in the
sense that it cannot be higher than the number of changes on any of the trees found
farther out in the search tree. If we have found full trees that have as few as (say) 58
changes, then finding a partial tree that has 60 of them is sufficient reason to stop
there and back out of that part of the search tree. None of the trees beyond that
partial tree can have less than 60 changes, so none are candidates for being most
parsimonious trees. We would like to calculate this lower bound on the number of
changes so that it is as large as possible, and thus eliminate subtrees of the search
tree as soon as we can, saving effort. There are further methods that help do this.

Using still-absent states
In many cases, we will be examining an interior node of the search tree corre­
sponding to a partially constructed tree. Suppose that this tree has species A, B,
D, and F on it. But species C and E have not yet been added to the tree. Suppose
that the partial tree requires 48 changes. This will come from some of the charac­
ters that vary among species A, B, D, and F. But some of the characters will not
vary until species C and E are added. We may be able to look at those species and
see that, after they are added, there will be at least 11 more characters varying. In
that case, no matter where they are added to the tree, the bound will be at least
48 + 11 = 59. We can thus improve the bound considerably.

If we are dealing with O/l characters, that calculation is correct, but if the char­
acters have multiple states, the bound can be made better by taking the multiple
states into account. If a character has two states among species A, B, D, and F, but
two more among C and E, then adding it will increase the number of changes by
at least 2, not 1. Thus what we want to add to calculate the bound is the number of
absent states, summed over all characters. This method of improving the bound
is based on the paper by Foulds, Hendy, and Penny (1979). It has long been in
use in branch and bound programs for inferring phylogenies, but this use was not
described in print until the paper by Purdom et al. (2000).

Using compatibility
Another method of increasing the bound is to use not only the states in the indi­
vidual characters but also the conflict between different characters. For two-state
(0/1) characters, one can easily judge whether or not they can both have evolved
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:':-:e same phylogeny with only one change each. We will cover this in more
_=::.:.' in Chapter 8. For now, we need only note that the two characters are compat­

. ~ 'hey can evolve on the same phylogeny with only one change each, and that
-=-:2 is a simple test for this. If among all the species, all four of the combinations
- :0:3. es (0.0), (0, 1). (1,0), and (1. 1) are found, the characters are not compatible.
:.:-..:-ee or fewer are found, they are compatible.

-=-: at means that, when we consider the characters that are not yet varying on
-.": ~ artial tree, we can improve our lower bound on the number of changes of
-= :2. If we add all species to that partial tree, and in doing so now have variation

- -:- -0 incompatible characters that did not vary before, those characters must
- _- ~ at least 3 changes of state with them. Each character individually will require
- = ::1ore change of state, and the pair will conflict, which means that one of them

- .::.::: have at least one additional change of state. If there are disjoint pairs of
- :,-::1patible characters, each pair must bring with it 3 changes of state.

--=-:Lis method of computing the lower bound was developed by Foulds, Hendy
-.::. ?elmy (1979; see also Hendy, Foulds, and Penny, 1980). It was soon after ap-

:- ::-.::. to speeding up branch and bound methods, but the application to branch
- .::. ~ ound search for most parsimonious phylogenies was first described by Pur­

: =--_ et al. (2000). If the species that remain to be added have k pairs of characters
-.=.: are incompatible, and that do not now vary among the species on our partial

-::-:: -.\-e must add 3k changes to the bound. Organizing the characters into pairs
- :':-:at k is as large as possible can be done fairly quickly.

=-. reasing the bound as much as possible is important in getting a branch and
- ...:....d method to run quickly. Hendy and Penny (1982) discovered that order
- :o~ ecies was important, in particular that the most different species should be

_:. ~ 2 as soon as possible. Purdom et al. (2000) describe improvements in speed
:. .:ontinually re-evaluating the order of addition during the search. Penny and
- ::::-, \- (1987) describe a different branch and bound algorithm that adds charac­
=":0 one at a time rather than species.

4 ules limiting the search
-_-2:her approach that has considerable promise is to rule out regions of the search
-~ - I advance. Estabrook (1968) gave a rule which constrained the ancestral char-
_::2:5 for the particular case of Camin-Sokal parsimony, a parsimony method that

-.: be explained in Chapter 7. This might be used to speed branch and bound
--==.:-h. Estabrook's rule was rediscovered by Nastansky, Selkow, and Stewart

~ -3). They later (1974) presented an improved method that restricted the search
-_-..: er. However, these methods cannot be used with more general types of par-
-_":"_on\-.

_--\ndrey Zharkikh (1977; see also Ratner et al., 1995) has discovered some in­
=~Jing rules that allow us to determine that certain groups must be on all most
: ::.:.:oimonious trees. Using them, we can reduce the size of the branch and bound
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search, sometimes greatly. Zharkikh has a number of interesting rules, but we will
use only two of them here. They apply to parsimony problems where there are
unordered states (as in the case of nucleotide sequences).

Zharkikh's algorithm follows these rules:

1. If there are two or more species in the data set that have the same characters,
eliminate all but one of them. Repeat this until all species are distinct.

2. Eliminate all characters (sites) at which there are not or more two states that
both occur in more than one species. These cannot affect the discovery of the
most parsimonious tree and serve only to confirm that that one species is in
fact a species. Now return to step 1 unless no such sites have been found.

3. Look at all states of all characters. For each one, let the state define the mem­
bers of a group S. Calculate the number of states (over all characters) that are
shared by all members of the group S but that do not appear anywhere else.
Call this number no(S). Compute the distances between all pairs of species i
and j that are in S. The distance is in this case the number of characters that
differ between the species. If the largest value of Di.i among all these pairs
of species is less than no(S), then the group S must appear on all most par­
simonious trees. It can now be collapsed to a single fictional species, which
has its state computed from a Fitch parsimony algorithm. Thus any states
that are shared by all members of the group appear in the new species, and
otherwise its state is an ambiguity between some of the possibilities within
the group.

4. Unless all these three steps have all failed, return to step 1.

Zharkikh's paper has some additional rules that help identify pairs of species
that cannot be in the same group, and he suggests that these allow us to take
any character state that is shared between them and, on the assumption that this
similarity is convergence, recode them as different states. The present rules can
work very well when the data are relatively clean. If all characters can be recon­
structed as having unique and unreversed changes on the same tree, then it will
work wonders. It will, in fact, find all of the structure in the tree, without need for
branch-and-bound! However, when the data set is noisy, the rules may fail to de­
fine any groups at all. It is not clear how useful these rules will be in practice, but
they are viable candidates for taking advantage of structure that is present in the
data to simplify the branch and bound search. It is possible that more powerful
"pre-processing" rules can be developed to supplement these. Other approaches
are possible: Bandelt et al. (1995) show that the most parsimonious trees are con­
tained within their "median network", and this could form the basis of a method
for finding all of them.

Note that even though Zharkikh's rules are wonderfully effective in som
cases, they do not solve the NP-completeness problem. They do not work witl­
all data sets, and thus leave us with exponential run times for many cases.
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_!\ncestral states
and branch lengths

~ econstructing ancestral states
--2 Sankoff and Fitch algorithms get us a count of the total cost of the tree, in

-=:§:hted changes of state. In and of themselves, they do not tell us what were the
- _~0:1structed states at the interior nodes of the tree. But it is possible to use the

~, ers in the Sankoff algorithm, or the sets in the Fitch algorithm, to make such
=-_ost parsimonious reconstruction. The states that, in the Sankoff algorithm,

=.:-..: \-e the smallest costs at the root node of the tree are the states that parsimony
_-..<ld reconstruct for that node. Having assigned them, let us work out what the

-_2 is for reconstructing the ancestral states at nodes that lie successively further
_:- :... e tree.

::uppose that we have assigned a state to a node and look at one of the nodes
-_-:->.ediately above it. Figure 6.1 shows the logic, where state 2 is the state that
-..:..:: oeen assigned. If the state reconstructed above it were the state I, the total

3: incurred would be C21 + 5(1). If it were state 2, the cost would be C22 + 5(2),
:--..: h would of course be 5(2), as C22 = 0). The logic is similar for the other two

:: _33ibilities. The state or states that achieve the smallest total cost will be the ones
---=.: minimize C2i + 5(i).

-=nus we can assign reconstructed states in the nodes immediately above the
- -::ommost one, on the right and on the left. If there is a multifurcation, we can
..:o:g.n them in all of the lineages.

Continuing in this fashion, we can backtrack up the tree, assigning nodes far­
-2:- and farther up, until we reach the tips, where the states may have been ob-

-c:"" oed. If a tip has an ambiguity in its state, we can use the same method to esti-
- :..:e its state. The only problem that will arise in this process is what to do about

We have acted as if they will never occur. There are basically two ways to

67
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Figure 6.1: The logic of the reconstruction of ancestral states. The
shaded state is the one that has been reconstructed at the lower of
these two nodes. To decide what to reconstruct above it, we choose
the smallest of C2i + S(i).

handle them. In one, whenever there is a tie, we resolve it in each of the possible
ways, one after the other, each generating a traverse further up the tree. The result
will be to generate all possible combinations of ancestral states. This may in some
cases involve an exponential number of operations.

The other way is to keep all the possibilities, and carry out a slightly extended
version of the algorithm. We assign to the higher node all of the states that can
achieve minimum cost, coming from any of the allowable states at the lower node.
This is not computationally burdensome but leaves us with less knowledge. We
might, for example, know that a node has either state A or state C, and the one
above it also either state A or state C, without knowing which goes with which. In
some cases all four combinations might be possible, in some cases only two of or
three of them.

Figure 6.2 shows the second type of reconstruction, for the tree in Figure 2.2
(which had a higher cost for transversions than for transitions). Note that by fol­
lowing the arrows one could work out all combinations of ancestral states. In this
example there are three possible combinations.

We can do similar operations in the Fitch algorithm. There the assignment
algorithm is simply to take the set of states at the lower node (call this set L) and
the set that remains at the upper node after the Fitch algorithm was used (call this
set U). The reconstructed states at the upper node will be their intersection L n U if
that set is not empty, and L U U if it is empty. However, this will work only if L has
but one element. If it has more than one, we must apply this algorithm separately
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Figure 6.2: Assignment of possible states, in parsimonious state recon­
structions, for the site in Figure 2.2. The parsimonious reconstructions
are shown by the arrows, with the costs of the changes shown. The
states that are possible at the nodes of the tree are those whose boxes
in the array of numbers are solid, with the other boxes being made of
dashed lines.

- :- each element in L. I will leave it to the reader to apply this method to the tree
- ~: ure 2.1. The correct answer is that the interior nodes of the tree can all be

:..'--:er .-1. or C, except for the upper-rightmost interior node, which can be either A
:- ::-. or G.

-:lUs algorithm reconstructs states at the ancestral node more correctly than the
=-?roximate method of Maddison, Donoghue, and Maddison (1984). Even so, it
.:....- 1 ave a large statistical error. Wayne Maddison (1995) has used probability

- _iels of character evolution to compute how often parsimony reconstructions
- :::ates at interior nodes are wrong.
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Accelerated and delayed transformation
In some cases it may be desirable to pick one of the tied assignments of locations
of the changes. Swofford and Maddison (1987) describe accelerated transformation
and delayed transformation, two methods of assignment that attempt to maximize
reversals or maximize parallelisms, respectively. (The algorithm for ancestral state
assignment by Farris (1970) was a form of accelerated transformation.) These have
become known as ACCTRAN and DELTRAN after the names of the correspond­
ing options in Swofford's program PAUP*. Working up from a root, ACCTRAN
assigns changes as soon as possible, while DELTRAN tries to delay them until
further up the tree.

These options can be implemented in our algorithm by at each stage choosing
the state that is tied for best and that has changed most (or least) from the state be­
low it. The result need not be unique - there may be more than one choice at each
stage that satisfies this criterion. Accelerated transformation (ACCTRAN) forces
changes to occur as far down the tree as possible, and thus maximizes reversals.
Delayed transformation (DELTRAN) forces changes to occur as far up the tree as
possible, and replaces reversals by parallelisms.

Branch lengths
Branch lengths are numbers that are supposed to indicate for a given branch how
many changes of state have occurred in the branch. They are regarded by many
biologists as simple observations. But they are never simple. In the first place,
as we have already seen in Chapter 1, there may be ambiguities as to where the
changes in a character actually are. When there are ambiguities, what should we
do? Figure 6.3 shows an imaginary case that has many different reconstructions of
changes of state. It is a bit of a worst case.

Lorentzen and Sieg (1991) have insisted that parsimony analysis should prop­
erly result in the display of all possible assignments of states to ancestral nodes
(and thus all possible placements of changes of state) for each character. Their
objective may find little support outside of the pulp and paper industry.

The simplest way to obtain branch lengths seems to be to average the number
of reconstructed changes in each branch, averaging over all possible reconstruc­
tions of the evolution of the character. This is done for each character, and the re­
sult is summed over all characters. Figure 6.4 shows the resulting branch lengths
for the tree of Figure 6.3. Such average branch lengths always sum to the number
of changes of state reconstructed by parsimony.

One strange property of such average branch lengths is shown in Chapter 1,
where there were three different reconstructions of the placement of changes of
state in character 2 (see Figure 1.3). That tree was a rooted tree. However, when
the tree is considered as unrooted, there are then only two reconstructions possi­
ble. One pair of reconstructions differed only in assigning a change to one side of
the root or the other. Thus when we average the branch lengths in all possible re-
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Figure 6.3: Multiple reconstructions of the placement of changes of
state, all tied for most parsimonious, in a simple 0/1 character.

-_:<ructions for the rooted case, we will get different lengths than if we average
-==' in the unrooted case!

.-ill algorithm for computing branch lengths by averaging over all assignments
-:3.ces tied for most parsimonious is given by Hochbaum and Pathria (1997). It
.:. .::. -namic programming method that makes one pass through the tree; it can
--= partial results so that one does not have to do one pass through the tree for

::..- ":>ranch. It infers the average number of changes per branch more easily than
-. -. =-.ore complicated generating function methods of Rinsma, Hendy, and Penny
-- _ and Carter et al. (1990).

-_",other problem with reconstructed changes is that they must frequently un-
=-:::-'.mate how many changes have occurred. If two sister species have the same
--d state (with none of their other relatives having it), parsimony automati­

~e-onstructs this as a single change of state in the lineage leading to this pair
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Figure 6.4: The branch lengths resulting from averaging all possible
reconstructions of this character. Lengths in the diagram are propor­
tional to the branch lengths, except for the branches of zero length.

of species. But it is also possible, if less parsimonious, for the change to have oc­
curred in parallel in both of the lineages. It is less probable that this happened,
but it is not ruled out. Instead of contributing 1 to the number of changes in the
shared lineage, it might be more reasonable to contribute 0.9 to it, and 0.1 to each
of the daughter lineages. Parsimony never does this. It does not correct for the
unobserved changes.

In Chapter 16 we will see how probability models of character evolution can
be used to infer ancestral states. Using probability models, Penny et al. (1996) and
Galtier and Boursot (2000) calculate how often parsimony misses state changes in
branches.

In reconstructing branch lengths, we would like to have them be the average
lengths. We would like to reconstruct by averaging not over all most parsimo­
nious reconstructions, but over all possibilities in proportion to the probability of
their occurrence. We must correct the branch lengths that are reconstructed by par­
simony, to allow additional events. This inflates the branch lengths beyond their
parsimony values. Doing so for parsimony reconstructions is a complex task, bur
we shall see that in distance matrix and likelihood methods, this correction occur~

automatically.
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Variants of parsimony

--'-:'':: far we have discussed only parsimony methods in which there is symmet-
- ~3..: change among two or more states. However, we have also introduced the
: -"--- ',(off algorithm, which is capable of dealing with a much more diverse collec­
- :-: of parsimony methods. In this chapter, we will review a number of parsimony
--=:: ods other than Wagner parsimony.

amin-Sokal parsimony
:::.=.=--cin and Sokal (1965) introduced this, perhaps the simplest parsimony method.
- ':'.3.3umes that we know which is the ancestral state. In its simplest form there are

- _ states, 0 and 1, and change can only happen from state 0 to state 1; reversals
-:: :...c-npossible. Figure 7.1 shows a 0/1 character, with its reconstruction on a given

-::-? according to Camin-Sokal parsimony. Reconstruction of ancestral states and
. ~-,ting of changes of state according to Camin-Sokal parsimony are quite simple.
-~:? can use the Sankoff algorithm, with an infinite cost of 1 --7 0 changes, but this
- -.:... ecessary. All that is necessary is to note that if a node has any 0 states in
_ _ ediate descendants, then it must have state O. Otherwise (when all of its
-.=ce iate descendants are in state 1), it must be in state 1. One need only carry
_: 3. postorder tree traversal, going down the tree. A node is assigned state 1 if
-::e of its immediate descendants have state 1, and none of them have state O. It is

--.21.ed an unknown state if all its immediate descendants have unknown state;
:..- :?::wise, it is assigned state O. The changes are immediately apparent: There is
- -= cor every node that has state 1 while its immediate ancestor has state O.

Jne application of Camin-Sokal parsimony is in the evolution of small dele-
- ..3 in DNA, when we have reason to believe that they will not spontaneously
_ ::::-':. If we can code each deletion as present or absent in each sequence, then
__-::-:.n-Sokal parsimony would be appropriate. In more complex cases, where

::::ons overlap and we cannot be entirely sure whether anyone of them is
-- _~"::1t or absent, it would not be appropriate.
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1 o 110 1 o

0-1 4 changes

Figure 7.1: A simple 0/1 character reconstructed on a tree according to
Camin-Sokal parsimony. Four 0 ----+ 1 changes of state are required.

Camin-Sokal parsimony infers a rooted tree. The penalty depends on where
the root is assumed to be. Thus it will favor the placement of the root in some
particular part of the tree.

Estabrook (1968) gave an interesting method for delimiting the set of most par­
simonious trees in Camin-Sokal parsimony (see also Nastansky, Selkow, and Stew­
art, 1973, 1974). This can form the basis for a branch-and-bound algorithm. As the
focus of most work shifted to Wagner parsimony after this time, there was unfor­
tunately no further development of this method.

Parsimony on an ordinal scale
Farris (1970) gave algorithms for counting changes, and for inferring ancestral
states, when characters were on an ordinal scale. This is the case of discrete states
arranged in a linear order, with change allowed between adjacent states and all
these changes counted equally. Interestingly, Farris's algorithm also covers the
case when the possible states are in a linear continuum, with changes counted by
measuring the absolute values of the differences between the states at the two ends
of a branch. Thus if we have states such as 0.342, 1.974, and 2.569 at the tips of the
tree and we see a branch with states 0.873 at one end and 1.734 at the other, we
count the total change in that branch as 11.734 - 0.8731 = 0.861.

Farris's algorithm assigns states and counts changes in two passes through the
tree, one downward and one back up. The downward pass is, in effect, an applici1­
tion of the Sankoff algorithm. Suppose that at a node of the tree, the function tll<'-
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_ =-" the conditional cost, the function needed by the Sankoff algorithm, is f(x).
-...:...-ns out that f(x) is always of the form:

{

c+(xe-x)
f(x) = c

c + (x - xr )

x < xe
Xe ::::: x ::::: Xr

x> x r ·

(7.1)

- ~::':ne values xe and X r that are left and right ends of the interval of most par-
- ::-ious state assignments at that node. In other words, the conditional cost is
-.o-:.mt within an interval [xe, xrl and rises linearly from both ends of the interval,
=-- ;;lopes of -1 and l.

=..- :nat case, we can use the Sankoff algorithm to show that when two adjacent
-:'~. a bifurcating tree have intervals [Xl, X2] and [X3, X4], with X:l 2': Xl, if the

_ :s overlap (X3 ::::: X2), then the immediate ancestor can be assigned interval
. ·.l':3).min(x2,x4)]. If they do not overlap (X3 > X2), then the interval is

-e that separates the two disjoint intervals ([X2, X3]). (In the former case, one
::.:: zero change. In the latter case, one counts an amount of change X3 - X2.)

-- :-:1ultifurcating trees, the rules are more complicated but still result in a single
- ",1 being constructed on the downward pass at each internal node of the tree.
~0i'ord and Maddison (1987) gave a detailed exposition of Farris's algo­

-- and provided a proof of its correctness. They discussed the issue of re-
-:::-.lcting ancestral states when there are multiple possible reconstructions and
:-:', ed the accelerated transformation and delayed transformation (ACCTRA

- =~LTRAN) reconstructions. Farris's reconstruction, which was an ACC­
method, has become known as Farris optimization.

'10 parsimony
':::-:"e Quesne (1974) suggested a parsimony method that is based on "Dalla's

:Jolla, 1893). This law, which Dalla called the "Law of Phylogenetic Irre­
- ':-~[\'," states (in one form) that a complex character, once attained, cannot be

-::--i in that form again. Thus once a complex character is lost, it cannot re-
:: except in noticeably different form. There are many exceptions to this law,

- .:'" many different statements of it in the literature. Le Quesne suggested al-
- '-_-:lS that do not quite implement what he intended to; this was pointed out

-:' necessary algorithms given by Farris (1977a).
- :':'-,12 simplest form, Dollo parsimony assumes that there are two states, 0 and
-- ~ playing the role of the complex derived state. 0 is the ancestral state.

~".\'ed to evolve only once, but it is allowed to revert to state 0 multiple
~Le number of these reversions is the quantity being minimized. This can

:-:-:-0'\.imately implemented in Sankoff's algorithm by assigning a large cost to
.:::-:anges and a considerably smaller cost to 1 -> 0 changes. It is possible to
: 0at more directly as well, using an algorithm similar to the Fitch algorithm,
=--. :\\'0 passes, one down the tree and one back up.
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1 a 1 1 a 1 a

0 ..... 1 4 changes

(3 losses)

Figure 7.2: A simple 0/1 character reconstructed on a tree according to
Dollo parsimony. Three 1 ----> 0 losses are required.

Figure 7.2 shows the same tree and data as in the previous figure, reconstructed
according to Dollo parsimony. In the branch leading to the upper-left from the
bottommost fork, it is necessary to assume that state 1 arises. All occurrences
of state a above that are assumed to arise by losses 1 ----> o. There are 3 losses
required to explain these data. Dollo parsimony has been most widely applied as
a crude model of the gain and loss of restriction sites in D A. We will discuss that
application and its validity in a later chapter.

Like Camin-Sokal parsimony, Dollo parsimony is inherently a rooted method.
It assigns different penalties to differently rooted trees, so that it allows us to infer
not only the unrooted tree topology, but the placement of the root as well.

Polymorphism parsimony
A third variant of parsimony assumes that apparent parallel changes of state are
not really independent. They occur because the alleles that are needed are already
segregating in both populations. The parsimony method based on this assumes
that a state of polymorphism for two alleles is attained in a population; beyond
that point, all occurrences of either state 1 or state 0 are to be explained by losses
of one allele or the other. Polymorphism is assumed to arise only once in each
character. But this parsimony method does not minimize the number of losses.
Instead, it assumes that retention of the polymorphism along branches of the tree
is to be minimized. One counts the number of branches that are reconstructed a,
being polymorphic for both states and minimizes the sum of that number over aL
characters.
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o

o ;;; 01--1

5 retentions of
polymorphism

Figure 7.3: A simple 0/1 character reconstructed on a tree according to
polymorphism parsimony. Five occurrences of retention of polymor­
phism are required. The region of the tree that has the polymorphic
state is shaded gray.

TIle polymorphism parsimony method was first used in a numerical example
::1 uted by me for the use of Inger (1967); it was called by the less euphonious

-..:....-:' e "heteromorphism parsimony." It was first described completely in print by
~ c::-:-is (1978) and by me (1979). Figure 7.3 shows the reconstruction of the character
-.=.: olymorphism parsimony would make.

? lymorphism parsimony can be used for morphological characters, but it
- '::'3 its most natural application in explaining changes in karyotype due to chro-

- 30me inversions. It is very unlikely that the same inversion will arise twice,
- _: :nyersions can coexist in the same population, and one would explain appar-

: ?arallel gains of the same inversion by assuming that the inversion arose only
- ~2 but that polymorphism might have persisted long enough to explain differ-
-- 2\·ents.

-:he algorithms necessary for implementing the polymorphism parsimony
-=:.-~od are discussed in the references given above. Interestingly, it is not sim-
'" :0 implement polymorphism parsimony using the Sankoff algorithm. One can

2 a state corresponding to polymorphism, but one must be able to assign a
- .=.;ty to the retention of polymorphism. Thus one must use a version of the
- Iff algorithm that will allow us to assign a penalty for persistence in a state
:'--L'ut change!
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Unknown ancestral states
All three of the variants described in this chapter require us to know which state is
the ancestral one in each character. What if we do not know this? We can imagine

inferring the ancestral state by parsimony. We could count, for character i, N6 i
),

the number of changes if 0 is the ancestral state, and Nii
), the number of changes

if 1 is the ancestral state. This requires two evaluations per character. Then we
simply choose the smaller of these two numbers. Thus the total number of changes
in the tree is

(7.2)

The estimate of the ancestral state for each character is, of course, whichever state s
gives the smaller value of Ni i

). It should be immediately apparent that the amotmt
of effort involved in inferring ancestral states is twice as great if there are two
possible states.

Multiple states and binary coding
Camin and Sokal's (1965) original method assumed that each character could have
multiple states, arranged in a linear order, such as

-1<--0---->1---->2

A corresponding assumption for undirected change would be

-1 f-> 0 f-> 1 f-> 2

Both assumptions can be addressed by the proper choice of costs in Sankoff's al­
gorithm. For the first, we would use the cost matrix:

To: -1 0 1 2
From:

-1 - (Xl CX) CX)

0 1 - 1 (Xl

1 (Xl CX) - 1
2 (Xl (Xl (Xl -

while for the latter, we would instead assume:

To: -1 0 1 2
From:

-1 - 1 (Xl (Xl

0 1 - 1 oc
1 CX) 1 - 1
2 oc oc 1 -
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New characters

4 Original a h c d e

e\ -1 1 0 0 0 0

0 0 0 0 0 02 3

c\ Id 1 0 1 0 0 0

-1 1 2 0 1 1 0 0

a\ A 3 0 1 0 1 0

0 4 0 1 1 0 1

Figure 7.4: A character with 6 states, connected in a character state
tree that shows which states can be reached from which other states.
The set of binary (0/1) characters that is equivalent to this is shown.
These binary characters will have the same number of character state
changes as the original multistate character. The new characters are
labeled with letters, which are also shown next to the corresponding
branches on the original character state tree.

- ~ar cost matrices can be set up for other cases with multiple states.
:-:o\\'ever, there is an alternative method of treating such cases without using

_ :-3.nkoff algorithm. Sokal and Sneath (1963) invented additive binary coding for
:::"0' that are arranged in a linear order. This was generalized by Kluge and Farris

--.:- to cope with branching sequences of states, which have been called character
, :rees. The general idea is that a set of 0/1 characters can be produced that
':':.-5 have the same number of changes of state as do the original characters,

-::~ e\'aluated on the same tree. Figure 7.4 shows a simple character state tree
- .: ,. e set of binary characters, called binary factors, that are equivalent to it. The

_ -:;,~al method of producing this binary recoding is to make a new 0/1 character
- o:-.:.ch branch in the character state tree. Each state of the original multistate
'~=-cter is then assigned a 1 in this 0/1 character if it is connected more closely to
-:: ::nd of the branch, a 0 if it is connected more closely to the other. Thus the new
':: __ has states 2 and 4 connected to one end of branch c on the character state

-:: ilnd states -1,0, 1, and 3 connected to the other end of that branch. States 2
- .; are then assigned state 1 in the new character c, and states -1, 0, 1, and 3
=--"signed state O. Similarly, the new state b has the original states 1, 2, 3, and 4
-::cted to one end of branch b, and -1 and 0 connected to the other end of the
-:~ b. It should be immediately apparent that no two of the original character
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3 2 4 3
4 A B C 0
\

2 3

\/
-1 1

\ /
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Figure 7.5: A character with six states, connected in a rooted charac­
ter state tree. Also a phylogeny with the states of this character given
at the tips. There is no way to assign states x and y and satisfy the
requirements of 00110 parsimony.

states will have the same set of binary factors. When one moves along a branch in
the character state tree, exactly one of the new characters will change, namely the
one corresponding to that branch.

In the above example, all the arrows on the character state tree were bidirec­
tional, and the binary factors were evaluated by Wagner parsimony. If change is
unidirectional along any arrow on the character state tree, one should evaluate the
corresponding binary factor by Camin-Sokal parsimony instead.

Unfortunately, binary recoding is not possible for unordered multistate charac­
ters such as bases in DNA, where every state can change to every other, producing
loops in the character state tree.

Dollo parsimony and multiple states
An interesting paradox arises when we attempt to extend 00110 parsimony to char­
acters with multiple states. Recall that 00110 parsimony is inherently a rooted
method. Figure 7.5 shows a character state tree (essentially a rooted version of the
one in the preceding figure). It also shows a phylogeny that we wish to evaluate,
along with the states at the four tips of the tree. How can we reconstruct states
such as x and y so as to satisfy the requirement that each derived state originate
no more than once? In fact, we can't. If states x and yare taken to be 1, for exam­
ple, then states 2 and 3 must both have arisen twice. If x and yare both taken to be
2, then state 3 must have arisen twice (and 2 must have reverted to 1 an extra time
as well). A similar problem arises if we take both x and y to be state 3. The reader
can try other possibilities. All have similar problems, or worse.

The only way out is to relax some of the requirements of 00110 parsimony and
to assume that a state may have arisen more than once. However, then we mus;
have some way of deciding how much to penalize a tree for an extra origin, com­
pared to extra losses. Interestingly, if we try to escape from the problem by USilL
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::,inary recodirlg, it will reconstruct some states in the ancestor that are nonexis­
:ent. These problems were discussed by me (Felsenstein, 1979) in a paper on the
~elationshipbetween methods.

Polymorphism parsimony and multiple states
'",'ith polymorphism parsimony, there are fewer complications when characters
.-.3.\'e multiple states. The main problem comes with counting the number of states
xgregating. Consider the situation in Figure 7.4. Suppose that we have a branch
::.....at has states 3 and 4 segregating in it. Do we count this as one polymorphism or
=-.ore? The character state tree seems to imply that if the genetic material for states
:- and 4 are present, states 1 and 2 will also be present. Presumably, in that case

e will want to count the polymorphism threefold, for the 3 extra states that are
oegregating.

Ii we use binary factors, we can do this automatically. Using the binary coding
_-. Figure 7.4, we would have states 01010 and 01101 present at these five binary
-.:..~rors. This means that there would be 3 polymorphisms instead of one.

Transformation series analysis
-:I.ile multiple states are often analyzed by Wagner parsimony, we may fre­

~ ...:ently suspect that the states in morphological or behavioral characters reflect
: _ e underlying determination that implies a character state tree. Sometimes the

::eo:3.ils of the phenotypes suggest features of the tree; sometimes they do not. In
--:eo latter case we might want to find that character state tree that would allow evo­
_:::.on of the character on the given phylogeny with the fewest changes of state. We

- ..;.~. even want to go further, and adjust the phylogeny and the character state tree
=-:t each other.
This has been proposed by Mickevich (1982), who called this transformation

.:-~ analysis. She had a specific algorithm that involved assessing which states
,,~e nearest neighbors on the tree, and connecting those to make an estimate of

-:eo .::haracter state tree. Starting with initial guesses of the character state trees,
-:eo \\'ould infer an initial phylogeny, infer new character state trees from that, and

--:.::eed iteratively until the estimates of both trees ceased to change.
~or the phylogeny in Figure 7.5, the three states 2, 3, and 4 are observed. The

-.:..:- cter sta te tree 2 <---- 3 -----> 4 would fit that phylogeny, with no homoplasy.
-:eo might alternatively not want to force change to be unidirectional, so that an

_- '::'Jected character state tree 2 - 3 - 4 would be inferred instead.
~e papers by Mickevich and Weller (1990) and Mickevich and Lipscomb

.:. ~) discuss further issues, including use of prior biological information about
'":0: ~haracters to constrain the inference of the character state tree. An analo­

_ ~ approach has been suggested to biogeography (Mickevich, 1981) and to elec­
- ::< oretic alleles (Mickevich and Mitter, 1981). When the character values exist
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on a numerical scale that constrains their order, transformation series analysis will
confront the character coding problems which are discussed in Chapter 24.

As trees become larger and morphological and behavioral characters are an­
alyzed in greater detail, there are bound to be more algorithms proposed to find
the combination of character state trees and phylogeny that, taken together, re­
sult in the fewest changes of state. Statistical modeling approaches should also
be possible. The algorithmic challenges may be formidable, given the large num­
ber of character state trees that are possible with even a modest number of states.
It seems best to reserve the name transformation series analysis for the general
problem rather than a particular algorithm.

Weighting characters
In all parsimony methods discussed so far, we have counted changes equally no
matter in what character they occurred. Systematists have frequently discussed
"weighting" characters. In parsimony methods weighting assumes a concrete
form. We can have a set of weights, WI, W2, W3, ... ,Wn for the n characters. A
change in character k is counted by adding an amount Wk to the total penalty.

This approach has two uses. If we want to drop a set of characters from the
analysis (for example, to examine the effect that they are having on the result), we
could set Wi = 0 for the indices i of all of these characters and leave Wj = 1 for all
other characters j. Or we may want to allow our method to be differently sensitive
to different characters. We shall see in a later chapter that these different weights
correspond to different rates of evolution. For example, we might be analyzing
DNA coding sequences, and we might wish to take most seriously change in posi­
tion 2 of each codon, take change in position 1 a bit less seriously, and take change
in the often-synonymous third codon position a lot less seriously. We might then
assign weights 3, 4, and 1 to the three codon positions. The sequence of weights of
sites would then be: 3,4, 1,3,4, 1, 3, 4, 1, 3, 4, 1, ...

This would cause the method to avoid changes in the second codon position
as much as possible, avoid changes in the first codon almost as strongly, but place
much less emphasis on avoiding change in the third codon position. Another
heterogeneity that is often used to weight changes differentially is the difference
in rate between transitions and transversions. It has long been recognized that
transversions occur at a lower rate than transitions. Transversion parsimony is based
on the concern that, across deeper branchings, transitions may have reached sat­
uration, leaving the transversions bearing most of the information. It is the parsi­
mony algorithm in which all transitions have weight 0, and all transversions han
weight 1. Weighting methods have also been empirically derived, based on tht
distribution of numbers of changes of state across a random sample from all po:::­
sible phylogenies (the profile parsimony of Faith and Trueman, 2001), and across .­
distribution of phylogenies obtained by bootstrap sampling of all characters (tl'
weighting method of Kjer, Blahnik, and Holzenthal, 2001).
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_-\lgorithms for weighting characters were first clearly discussed by Farris
;:.:- b) in the first paper on numerical weighting algorithms.

=: uccessive weighting and nonlinear weighting
.::, also possible to weight changes of state differentially according to how many

, :..."--:em there are. This possibility is raised, and an algorithm given, by Farris
--:-.Jb). If the weight on character i were 'Wi, and there were ni changes of state
::-at character on a particular tree, we would normally expect to penalize the
~ U'i. Farris's approach is to use a function f(n) and penalize the character

. This raises the possibility of diminishing returns when penalizing addi­
- 2.1 changes of state on a character, or even of increasing returns that penalize
=:-_ additional state more. Farris recommends the use of weights that drop rather
=- _il~- with increasing probability of change of the character.

.:... other way of thinking of this scheme is that when there are ni changes, we
-.;ojze each of them by an amount g(ni) = f(ni)/ni.

: :cessive weighting
-:-.::, suggested a successive weighting algorithm for searching for most parsi-

- =;)US trees lmder these nonlinear weighting schemes. One starts with equal
_ ~:-,[S for all changes and searches for the tree T1 that minimizes the total num­

.md hence the weighted number of changes as well). Looking at T 1 , one cal­
c:'2S a new weight per change for each character, based on the total number of

-::'0- it changes on T1. Thus if character 37 changes 4 times, one sets the weight
- =:-ange in that character to 'W37 = g(4). Armed with this new set of weights
- =:-.ange (one for each character) we set out to find the tree T2 that minimizes

-eiohted sum of changes. Having found it, we now count how many changes
_' .:aaracter shows on tree T2 and use it to set new weights Wi = g(ni)' These
_:...- n used to search for a new tree, T.3.
-:--e process continues until it does not change the tree. This generally happens

- - -iuickly. The final tree has the property that the weights based on the number
_-..;,. es of each character on that tree cause us to find the same tree again. Table

- ·-;)\\'S the process for the simple example of the data in Table 1.1. There are
- =- ::sible trees for these 5 species, as the trees are unrooted. Considering the

- ::"'2r of changes in each character, there are 5 patterns of changes. Thus 3 of
~~ :Tees have 2, 2, 2, I, 1, and 1 changes on characters 1 through 6, No matter

- :..- of these 3 trees we are looking at, the weights that will be assigned to the
-~.::ers for the next round of search will be the same: g(2), g(2), g(2), g(l), g(l),

~ . We call these trees type IV and represent them by one row in Table 7,1.
'.s e,ample we use the function g(n) = l/(n + 2) (though, as there are only 2s

: .s it actually does not matter what weighting function we use).
~:.::.:-ring with any tree (say one of the 3 trees of type IV), we use the weights

=- ::-j by that tree, which would be (0.25,0.25,0.25,0.333,0.333,0.333) and com-
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Table 7.1: A simple example of successive weighting using the data
of Table 1.1. There are 15 possible unrooted bifurcating trees, which
fall into 5 types according to how many changes they have in each
character. The table shows the total weighted number of changes when
each tree type is evaluated using the weights implied by the 5 different
tree types.

Number Have pattern Type Tree type used for weights
of trees of changes of tree 1 II III IV V

1 (1,1,1,2,2,1) I 2.333 2.250 2.167 2.417 2.083
2 (1,2,1,2,2,1) II 2.667 2.500 2.500 2.667 2.333
2 (2,1 ,2,2,2,1) III 3.000 2.917 2.667 2.917 2.583
3 (2,2,2,1,1,1) IV 2.833 2.667 2.500 2.500 2.333
7 (2,2,2,2,2,1) V 3.333 3.167 3.000 3.167 2.833

pute the total sum of weighted changes for each of the 5 types of tree. For example,
type II will require

0.25 + 2(0.25) + 0.25 + 2(0.333) + 2(0.33:3) + 0.333 = 2.667

weighted changes. We can consider all the tree types using these character weights
by looking down column IV of this table. The tree that has the smallest sum of
weights is the first one, tree type I. In fact, in all 5 columns, tree type I is the best.
Thus if we start successive weighting with tree type IV, we arrive at tree I. As tree
type I recommends itself, the process terminates there. Farris (1969b) discussed
using for starting weights a formula based on work by Le Quesne (1969). The
formula considered how many other characters a given character was compati­
ble with. In the present case, this would yield the same result as starting with
unweighted characters, and would start with tree type I.

With such a small example, we cannot see many aspects of the behavior of
the method. For example, successive weighting can make it difficult to detect
ties. Suppose that we had a case where two characters were in conflict. On tree I
character 1 had one change, and character 2 had 2 changes. On tree II character 1
had 2 changes, and character 1 had one change. Therefore, if we initially look at
tree I, we are told character 1 is of high weight, and this causes us to continue to
prefer tree I to tree II. The case of Table 7.2 shows this problem. For four species
there are three possible unrooted trees. If we have two 0/1 characters that favor
((A,B),(C,D)) and two that favor ((A,D),(B,C)), we get the situation in this table.
Starting with tree III we have an even choice between tree I and tree II. If we
choose tree I, it recommends itself over tree II. Similarly, tree II recommends itself
over tree I. The final outcome depends on the initial tree, and once one has reached
one of trees I or II, the other seems less desirable.
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Table 7.2: An example of successive weighting that would show the
difficulty it has in detecting ties. The table shows the total weighted
number of changes when each tree type is evaluated using the weights
implied by the different tree types.

Number Pattern Type Tree type used for weights
of trees of changes: of tree I II III

1 (1,1,2,2) I 1.667 1.833 1.5
1 (2,2,1,1) II 1.833 1.667 1.5
1 (2,2,2,2) III 2.333 2.333 2

_.-cl11successive algorithms
-_~ alternative to successive weighting is to allow the weights to be functions of the
- ~11ber of changes in the character, but to do the search nonsuccessively. Goloboff

_::. 3a, 1997; see also David Maddison, 1990) has proposed using functions much
-' -2 those Farris used, but choosing the weights used for a tree based on the num-

-'::~ of changes on that tree. Thus if tree 'i has nij changes in character .i, the total
->:::- :llty for tree i will be

L nij 9 (nij)
j

--~ corresponds to evaluating each tree using its entry in the diagonal of Table
- ~ Going down that diagonal from upper-left to lower-right, we find that the

.:-,dties of the trees are 2.333, 2.500, 2.667, 2.500, and 2.833. The best of these is
_-:3. giving the same final result as before. In general, the results need not be
.- :,ame, though if we start at the best tree by this criterion (as Goloboff, 1993a,
-~~:s), then it can be shown that the successive method will not choose any other
-.-= provided g(n) is a decreasing function of n.

?arris (1969b) and Goloboff (1993a, 1997) argue that we should prefer functions
: at decrease with n. One example of a specific weighting function that is de­

_':':':'ng and that was applied by a nonsuccessive weighting algorithm is threshold
-'::llOny (Felsenstein, 1981a), which uses the function

g(n) = min[n. T]/n

-=-2 T is a threshold value. This is the same as counting all characters that have
-2 than T changes as if they had exactly T changes. We shall see in Chap-
- :hat there is a rationale for weighting functions like this, when one uses a
~"'1. 1m likelihood framework for inferring phylogenies. The minimum phyloge­

::ullber criterion of Goldberg et aL (1996) is a nonsuccessive weighting prace­
. _ W"\Usual for putting its weight on the character with the highest number of
- :25 of state. Most biologists would feel happier with an emphasis on the fit
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of the characters that change most slowly. The Strongest Evidence weighting pro­
cedure of Salisbury (1999) is also, in effect, a nonsuccessive weighting procedure,
as it evaluates the weight of each character with reference to the distribution of
numbers of changes of state obtained if we permute taxa on the present tree.
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::- ~i1 \'e seen, some systems of character weighting have as their objective to
-:... • information from the noisier characters and to emphasize the information

- :':,ose characters that have the least homoplasy. The simplest such system
_.: ~ e to use only information from characters that have no homoplasy - that
-::- :Tee perfectly. Of course, we cannot predict in advance which characters

-= ":ill be,
~-::-e method of finding out is to take each tree, compute the number of changes
::":':2 (hat each character requires on it, and score each character as either com­
::.2 \\'ith the tree or not. We define a character as being compatible with a
=:( can evolve on that tree with no homoplasy. We then find that tree that
-::-clZes the number of compatible characters. This criterion was first proposed
_~:c somewhat implicitly) by Le Quesne (1969). If a character has k states in

- :'=:i1, then it is easy to assess whether it is compatible with a tree: we simply
':--,ether it requires k - 1 changes of state on that tree. It must require at least

- "=,ecause one of the states will be ancestral, and the other k - 1 must arise at
" 2. ce each. If it requires more than k - 1, then one of the states will arise more
- ::1ce on the tree.

,::-'. 'ed this way, compatibility is a close relative of parsimony methods, In cer­
:.=~es, it is also derivable from weighted parsimony methods. We have seen,

.-::- : revious chapter, that threshold parsimony involves counting the number
-..:... es up to a threshold value, T, and beyond that, counting the character as
_- ~ penalty T. If the characters all have two states and we set the threshold to

= - he threshold method will actually be the same as a compatibility method.
- , ~ easy to show: On any given tree there might be no characters that require

: - ~T1ges, n1 that require 1, and n - no - n1 that require more than one change.
=:2:al penalty will then be n1 +2(n-no -nd. That turns out to be 2n-2no-n1.
::-2 numbers nand 710 are always the same on all trees that we might look

87
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Table 8.1: The data set of Table 1.1 with an added species all of whose
characters are O.

Characters
Species 1 2 3 4 5 6

Alpha 1 0 0 1 1 0
Beta 0 0 1 0 0 0
Gamma 1 1 0 0 0 0
Delta 1 1 0 1 1 1
Epsilon 0 0 1 1 1 0
Omega 0 0 0 0 0 0

at (characters that require 0 changes having only one state, and thus requiring 0
changes no matter what the tree), it follows that in minimizing the thresholded
number of changes of state, we are necessarily maximizing the number of charac­
ters nl.

Thus an appropriately weighted parsimony method, one in which the weights
of changes drop away strongly with the number of changes in that character, is the
same as a compatibility method.

The problems of searching among all possible trees, and of evaluating the
thresholded number of changes of state, are the usual ones, and we will not go
into them further here. However, in some cases we can use a table of pairwise
compatibility among characters to go more directly to the correct tree. We need to
look first at the way compatibility among characters is tested.

Testing compatibility
In a number of cases, a different approach can be used. In the case of two states
(such as 0 and 1) with no ambiguous or missing data, we can test directly whether
two characters could be compatible with the same tree. This then leads to a Yen'
different algorithm for finding the best tree. The test was introduced by E. O.
Wilson (1965). The test is extremely simple. For any pair of characters that we wish

Table 8.2: The compatibility test for characters 1 and 2 of the data of Table 8.1

ID1
o X
1 X X
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-=-.:;ble 8.3: The compatibility test for characters 1 and 4 of the data of Table 8.1

D 1
a x x
1 X X

._::, we consider each species in turn. Four possible combinations of states are
- -~:"=,le, as the first of these characters can be either aor 1, and the second can also

=_::. er 0 or 1. We note which of the four combinations have occurred. Table 8.2
-~ he four combinations, for characters 1 and 2 of the data in Table 8.1. This

- =.:; ds one species to the simple example with 0/1 characters that we used in
- '~:.o'r 1. There are three of the state combinations that occur. Wilson's test says

. ~ all four boxes are marked, then the two characters are not compatible, in the
--= ::. at they cannot co-occur on the same phylogeny without at least one of the
·~~:ers changing twice. If three or fewer boxes are marked, then the characters
: ::1 atible: There exists a phylogeny with which both of them are compatible.

- = S.3 shows the compatibility test for characters 1 and 4 in the data of Table
-=-:-2se characters are not compatible. Proceeding in this way, we can test every
.. : characters for compatibility. Figure 8.1 shows the resulting compatibility

a table showing for all pairs of characters which ones are compatible with
- :....... .o'r.

---=: above discussion has assumed a Wagner parsimony model, with the ances-
·-=:2 tmknown. If we know which state is ancestral in both characters, the test
- ::: slightly. If state a were the ancestral state in both characters, we would

:'·2 box for the state combination (0,0) whether or not it was present in the
-.::er that the test is the same.

---=: ~orrectnessof Wilson's test is easy to establish. If three of the boxes in the
:;':2 marked, then we can connect them together by two links. This corre­

:.: :0 a tree with the species grouped into three clusters, connected by those
_ ~. Each link corresponds to the origin of one state.

-. -5 a link from (1,0) to (0,0) corresponds to state aarising in the first character
--''::':21 (or the other way around). The reader will quickly see that if one box
:. -= " no states need arise; if two or three of them are checked, no more
-:: ,rigin of each state need occur, but if all four boxes are checked, then of

- -- one of the states in one of the characters must arise twice.

airwise Compatibility Theorem
::: :eason for making a compatibility matrix is to use it to choose as large
::.-= a set of characters, all of which can be compatible with the same tree.

-=- .::..·bility matrix does not at first sight tell us that; it shows us which pairs
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of characters are compatible, although without ensuring us that the different pairs
that are compatible with each other are all compatible with the same tree.

In fact, there is a remarkable theorem that guarantees us that. It does not have
a standardized name, but I like to call it the

Pairwise Compatibility Theorem. A set S of characters has all pairs of
characters compatible with each other if and only if all of the characters
in the set are jointly compatible (in that there exists a tree with which
all of them are compatible).

The theorem is true for 0/1 characters or any characters having at most two
states per character. It is not true, as we shall see, for data with missing states or
for nucleotide sequence data having four states. The Pairwise Compatibility The­
orem has been proven for a number of different cases in three papers by George
Estabrook, F. R. McMorris, and their colleagues (Estabrook, Johnson, and McMor­
ris, 1976a, 1976b; Estabrook and McMorris, 1980). The last of these papers provides
a particularly simple proof. For characters with two states it was earlier proven by
Buneman (1971).

If we consider the set of species in which one of the states (say, 1) occurs, the
test of compatibility between two characters amounts to saying that the two sets
of species (one for each character) Sand T are either disjoint, so that S n T = 0, or
S S;;; T, or S ~ T. Let us say that in this case the two sets are part of an hierarchical
structure. If the two sets overlap but neither is contained within the other, then
all regions of the set of species exist, so that all four state combinations exist. The
Pairwise Compatibility Theorem then amounts to the assertion that if all pairs of
subsets are able to fit into an hierarchical structure, then when taken together they
are all part of an hierarchical structure. This is nearly obvious, although a formal
proof is not a bad idea (see Buneman, 1971).

1 2 3 4 5 6

1
2

3

4

5
6

Figure 8.1: A compatibility matrix for the data set of Table 1.1. Shaded
boxes are those for which the pair of characters are compatible.
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1 4

Figure 8.2: The graph corresponding to the compatibility matrix in Fig­
ure 8.1. Points are characters, and lines between them indicate that that
pair is compatible.

liques of compatible characters
~ :::-..:.:-e 8.2 shows a graph corresponding to the compatibility matrix in Figure 8.1.
:.: ~~-; haracter is represented by a point, and lines are drawn between each point
L- .::. all others with which that character is compatible. A set of characters that are

?3.irwise compatible corresponds in this graph to a set of points that form a
. ,', points that are all mutually connected. A maximal clique is a clique to which

, ?oint can be added and have the result be a clique. In the graph in Figure 8.2,
_ _ _ of characters {I, 2, 3} is a clique but not a maximal clique (since 6 can be
- ':'::'2 ). {I, 2, 3, 6} is a maximal clique. The other maximal clique in the graph
_ _ S, 6}. Le Quesne's criterion directs us to find the largest maximal clique,

-_-:: in this case is {1, 2, 3, 6}. By the pairwise compatibility theorem, there must
::-':: =~ee for each of these cliques, and the characters that are in the clique all are
" =-.::-atible with that tree.

. ';e need to find the largest clique. In the graph of Figure 8.2 we can do this
c _""..:'pection. More generally we need to use an algorithm. One such is Bron and
..:::-·::'osch's (1973) clique-finding algorithm, which is a branch-and-bound proce­
':~2. It makes use of an incidence matrix of the graph: In effect, this is just the
_ =-~ atibility matrix. It may find cliques that are tied for size, and will find all

-=-:'1e finding of trees by compatibility using cliques has led to the method some-
-- 25 being called a clique method. This is often done by opponents of the tech-
- .::. :.e, who prefer that name because it implies that the proponents of it are a mere

.::'..;e.

::., principle, the finding of the largest clique is not easy: Day and Sankoff (1986)
-. 2 shown that the task is NP-hard. Practice is, however, different. A bad case

:- ?arsimony methods is (for two-state data) a data set that is a box filled with
_- '::om as and Is. But for compatibility that case is an easy one. Few if any pairs

~~ aracters will then be compatible. The cliques will be small and will easily
-_:0 md by algorithms such as Bron and Kerbosch's. When the data sets are
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very clean (the opposite case), then almost all characters will be in a single large
clique, which the algorithm again finds easily. In fact, biological data rarely, if
ever, generate compatibility matrices that cause the algorithm any difficulty. Thus
in practice, though not in theory, compatibility methods run much more quickly
than do parsimony methods.

It may be possible to go even faster. Gusfield (1991) has presented an algo­
rithm for testing a set of 0/1 characters for joint compatibility and creating the tree
from them if they are compatible. It requires an amount of computation only pro­
portional to the product of the number of species and the number of characters.
This is less effort than checking the compatibilities of all pairs of characters. How­
ever, it requires that we know which set of characters we want to check; it does
not solve the problem of finding the largest clique of characters.

Finding the tree from the clique
Once we have the largest clique or cliques, we still need to estimate the phylogeny.
This is done simply by using each character to successively subdivide the species.
This algorithm was described by Meacham (1981) and is known as tree popping.
Each character defines a partition of the set of species into those that have state 0
and those that have state 1 for the character. In the data set of Table 8.1, with the
clique {I, 2, 3, 6}, the first character divides the species into two sets according
to the state of that character. It divides the species into {Alpha, Gamma, Delta}
and {Beta, Epsilon, Omega}. Implicitly, there is to be a branch on the tree between
these two sets, with character 1 changing once along that branch. The second char­
acter sets apart the set {Gamma, Delta}; in effect it subdivides the first set of that
pair. Because character 2 separates {Gamma, Delta} from the other species, it im­
plicitly leaves {Alpha} connected with {Beta, Epsilon, Omega}. We then continue
this process of subdivision of one set or the other. Each such subdivision can intro­
duce at most one branch. Some characters may not divide the species sets further,
but serve to reinforce them and place one more change along a branch. When a
new branch is inserted, the character shows which species are separated by that
new branch.

Figure 8.3 shows the process, resulting in a tree. This is not the same as the
most parsimonious tree. It is not hard to show that with five or fewer species and
0/1 data with unknown ancestral states, the parsimony and compatibility trees
will always be the same. This case has 6 species and is the simplest one I know in
which the parsimony and compatibility methods yield different trees.

In general, compatibility trees and most parsimonious trees will not be the
same when the weights of changes do not depend on how many there are in the
character.
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Character 1

Character 2

Character 6
•

:::>elta

ICharacter 3

_ ee IS:

Gamma Alpha Omega
Beta

) I I <
Epsilon

Delta

Figure 8.3: The "tree popping" process of sequentially subdividing the
set of species, according to the characters in a clique. The result in this
case is a tree that is compatible with all the characters in the clique.
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Table 8.4: A data set that has all pairs of characters compatible, but
that cannot have all characters compatible with the same tree. This
violates the Pairwise Compatibility Theorem, owing to the unknown
("7") states.

Alpha
Beta
Gamma
Delta
Epsilon

0 0 0
7 0 1
1 7 0
0 1 7
1 1 1

Other cases where cliques can be used
Estabrook, Johnson, and McMorris (1976b) have shown that when we have multi­
state characters, where the states are related by a character state tree, the Pairwise
Compatibility Theorem works. We have already seen (in Chapter 7) that in such
cases we can recode the characters into a set of 0/1 characters, called the binary
factors. Persuade yourself that two characters are compatible if and only if their
binary factors are all pairwise compatible. Then if a set of characters are all pair­
wise compatible, so are all pairs of binary factors of those characters. It follows
that the Pairwise Compatibility Theorem works for characters that have binary
factors.

This makes compatibility methods usable on many kinds of morphological
characters, including the important case of characters that are in a linear series
of states.

Where cliques cannot be used
The clique framework cannot be used if there are missing data or if there are more
than two states that are not related in a character state tree, and hence cannot be
recoded into binary factors. That includes the important case of nucleotide se­
quences. Table 8.4 shows a data set for which all pairs of characters are compati­
ble. It has three missing states (coded "7"). In computing the compatibility of each
pair of characters, we ignored each species that had a "7" in either member of the
pair of characters. There is in fact no tree with which this set of characters are all
compatible. I leave it to readers to persuade themselves of that. For that matter,
perhaps they can find a case with fewer "7" states that would serve as an example
here. I can't.

Benham et a1. (1996) have investigated computational methods for cases with
ambiguous states. For the case of a series of states in a directed linear scale, they
describe a polynomial-time algorithm for testing the compatibility of a set of such
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- -=.::-le 8.5: Fitch's set of nucleotide sequences that have each pair of sites
:.:'::1patible, but that are not all compatible with the same tree.

Alpha
Beta
Gamma
Delta
Epsilon

A A A
A C C
C G C
C C G
G A G

: - .~racters. For the more general case, they show that the problem is NP-complete.
:= '. et et al. (1999) give algorithms for testing joint compatibility that allow for the
=- :'3sibility of polymorphic states in some of the species.

For the case of nucleotide sequences Estabrook and Landrum (1976) have
.:.:::nonstrated a test for compatibility of two nucleotide sites. But Fitch (1975,
=-? 200-205) had already given the crucial counterexample, showing a set of nu­
:.2otide sequences for which all pairs of sites are compatible, but for which there
-: :10 tree with which all of the sites can be compatible. The data set is shown in
-=--=.',le 8.5.

In such a case we cannot make use of the Pairwise Compatibility Theorem, and
::-'..i5 cannot use cliques of graphs to find largest cliques of jointly compatible char­
-=.::er5. We might use the cliques to suggest candidates for largest cliques of jointly
:.:: :npatible characters, as jointly compatible characters must always be pairwise
: . 1patible as well. But as the relationship does not run the other way, the largest
:...: ,ue of jointly compatible characters might be a subset of a clique of pairwise
: -::1patible characters, even of one that is not the largest clique in the graph.

In such cases we could always revert to treating compatibility as a kind of
-; ,,-rsimony. For any proposed tree we can count the number of characters that
:l. evolve with the minimal number of changes on that tree. This number of
:Jmpatible characters is then used as the criterion that we try to maximize by
_-arching tree space in the usual way.

?elfect phylogeny
~,e unavailability of the Pairwise Compatibility Theorem for the case of un­

: :lered multistate characters has led to much work on the pelfect phylogeny prob­
.2:n. This involves testing whether a set of such characters are jointly compatible,
1.'1 if so, constructing the tree they imply. Bodlaender, Fellows, and Warnow
~ 92) and Steel (1992) proved that finding out whether characters are jointly com-

-;atible is NP-complete (see also earlier work by Buneman, 1974, and Meacham,
~ ~:)3).

.-\lgorithms have been found to test compatibility of a set of unordered multi­
3:ate characters and construct the tree, in cases where the number of possible states
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is bounded. In those cases the problem is solvable in polynomial time. Agarwala
and Fermindez-Baca (1994) found an algorithm for the case with no more than T

states that scales as 23r (nk3 + k4
). Kannan and Warnow (1994) found an algorithm

for the four-state case that scales as n 2 k when there are n species and k characters.
They later (Kannan and Warnow, 1997) found one for T states that scales as 22r k2n.
As they point out, improvement of the exponent of k is particularly important, as
sequence lengths in real data sets can be long. In all of these cases, the algorithms
evaluate the joint compatibility of a given set of characters. They do not search for
the largest set of jointly compatible characters. Finding the largest set of jointly
compatible characters is still NP-hard. Dress, Moulton, and Steel (1997) have de­
fined a generalized notion of compatibility, which they call strong compatibility.
When it holds between all pairs of characters, the Pairwise Compatibility Theo­
rem is applicable, and they can be proven to be jointly compatible. In that case, a
clique algorithm would be applicable.

Once the set of jointly compatible characters is found, finding the tree can be
done in time linear in the number of compatible characters. Bonet et al. (1998)
produce algorithms to refine a given partially-unresolved tree using a set of com­
patible characters.

Using compatibility on molecules anyway
Although the failure of the Pairwise Compatibility Theorem for nucleotide se­
quence data seems to force us to use the more difficult perfect phylogeny methods,
one can also use compatibility in a simpler way. One can simply score each site as
compatible with the given tree or not, and then try to find the tree that maximized
the number of compatible sites. This is slower than perfect phylogeny algorithms,
but is simpler. But there is another way to escape all these problems and use the
Pairwise Compatibility Theorem on nucleotide sequences.

Recall that the rationale for discarding incompatible sites is that they are in­
ferred to be ones that change at a high rate and thus have little information. Even
one extra change of state is enough to convict a site in this case. If so, then why
do we allow sites that have three different nucleotides present to remain? A site
that has some species A, some C, and some T will require two changes of state,
even when it is compatible with the tree. If we are interested in using a compati­
bility framework, I do not see why we would not want to discard that site as well.
If we do so, then the only sites on which we base our analysis are going to be
those that have two (or fewer) different nucleotides present. And for those, the
Pairwise Compatibility Theorem will work! Thus we simply reduce our data to
the sites that have two states, use the original Wilson compatibility test, make a
compatibility matrix, and find largest cliques. The result will be a procedure that
runs quickly (if there are no ambiguities in the data such as gaps in the sequence).
Whether it is biologically reasonable will, of course, depend on whether we want
to convict a site on that small an amount of evidence.
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tatistical properties of
•arslffiony

- ..:-- erstand why parsimony methods should or should not be used, we need to
-..:c:::Ier them, not as arbitrary algorithms, but as statistical methods, with inves-

.::~~ Ie statistical properties. Although many justifications for parsimony meth­
-:. :'ase themselves in philosophical frameworks that are nonstatistical, in this
- ~.:- ter we shall consider the statistical framework only. There are two general
':':'5 we could proceed. One would be to ask whether the parsimony method is
·.=-.o\\"n statistical estimator and therefore has the desirable statistical properties

. :'.at method. The other is to consider the statistical properties of parsimony
- -;;,(tly. We will start with the former approach.

-=..ikelihood and parsimony
- _ attempts to show that parsimony methods are derivable from a known sta-
-=.::al estimation method have used the same one: maximum likelihood. The
-~: such framework was introduced by Farris (1973b). I have argued (1973b)
-~: it does so by introducing too many quantities that need to be estimated, and
--:.: therefore it does not guarantee us that the method will be statistically well-
,=_-3\·ed. A second argument by Farris (1977a) introduces fewer quantities, but
-.~ tOO many for comfort.

~ have introduced a different argument (Felsenstein, 1981a; see also Felsenstein,
- -~) that avoids this problem and yields some insight into character weighting
- .::. \\-hen parsimony is expected to work. Suppose that we have a set of charac-
. -~ each of which has two states, 0, and 1. We have a tree that has branches whose
_- ~hs in time are given, and we also have branch lengths, which result from mul­
=- >:ing the length of branch 'i in time by a multiplier, to allow different branches

....Q\·e different evolutionary rates. In effect, branch length is a pseudo-time scale

97
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that reflects the rate of change of the characters. Let the probability of change of
character ·i in branch j of the tree be I'i per unit branch length, and let the branch
length be t j . If we have a symmetric model of change between the two states, it is
not hard to show that the net probability, at the end of branch j, that this branch
shows a change from 0 to 1 (or from 1 to 0, whichever is appropriate) is

Prob (11 O. t) = ~ (1 - e- 2r;t))} 2 (9.1)

When Titj is small, this is to a good approximation simply T;tj, and the probabil­
ity that the state does not change is approximately 1 - Tit). When Titj is large, the
probability of change to the other state approaches 1/2. Thus we have a symmet­
rical random process of change between the two states. Once one reaches a state,
there is a constant chance of change, and the probability of change, as well as the
probabilities of different kinds of change, do not depend on how you reached that
state or how long ago you reached it. A random process that has this property
is known as a Markov process. In more general versions of two-state Markov pro­
cesses, one can have unequal probabilities of being in the two states, and the rate
of change can differ among characters and among branches of the tree.

The likelihood of a tree is the probability of the data given that tree. We will
discuss it more extensively in Chapter 16. Let us calculate the likelihood of a tree
on a given data set. We shall see that in certain limiting cases, this becomes closely
related to the total number of weighted changes of state. That gives a justification
of the use of parsimony.

We start by computing the likelihood, L, the probability of the data (given the
tree and the model):

L Prob (Data ITree)

c:~s L (~JDl{
recon­

structions

7,;tj

1 - Titj

if this character changes )
if it does not change

(9.2)

The first product is over characters. We assume that the evolutionary processes
that effect character change in different characters are independent, so that the
likelihood is simply the product of a series of terms. The terms have different
values of i, the index for the characters. Each of these terms in the product is
a sum over all possible ways that states can be assigned to the interior nodes of
the tree (the hypothetical ancestors). This is indicated by the word reconstructions
under the summation sign, to indicate this complicated summation over many
possibilities. The summation is used because these alternative possibilities are
mutually exclusive events.

Within the summation we calculate the probability of the events that occur in
that particular reconstruction. The reconstruction starts with a 1/2 because that is
the probability of the particular state (whether state 0 or state 1) that occurs at the
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(9.4)
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- 111 of the tree. Then there is a term for each branch in the tree. The branches
-:' ;.ndexed by], which runs from 1 to n. We are also assuming that the events
- ~;iferent branches are independent. Given the starting state at the base of each
-.=.:xh, the occurrence of a change is independent of whether there is a change in
::'.c other branch. Thus the probability is a product of terms, each Tit} or 1 - Titj,

:::'cnding on whether there is or is not a change in that branch.
-=-0 show the correspondence between this expression and the number of

- .=..:'\:)es of state in parsimony reconstructions, we have to make some more as-
_-:~ptions. We will assume that all the Titj are small. That, in turn, implies that
:: .:an approximate the innermost product of (9.2) by

B

II (Titj )"'ii
j=l

..... =,e nij is the number of changes of state (there will be 0 or 1 of them) in branch
~ -haracter 'i. This can be done because the terms 1 - Titj are then close to 1. To

-", Jegree of approximation we need, they can be replaced by 1.
A,nother approximation involves the terms in the sum over reconstructions.

.=.:": the T;tj are small, then all the terms in the sum are small, and they will
.::'er a great deal in magnitude. If there are no two of them tied in size, then

- :~: of the value of the summation will be contributed by one or a few terms.
-::-::1.5 involving a product of many small quantities Toitj will tend to make a tiny

~ :cibution compared to terms with one or two of these quantities. Thus we
...:...:. replace the sum over reconstructions with a single term, involving the one

'=-: nstruction that achieves the highest probability for that character. If there are
~ or more tied terms, we need to multiply by a quantity Ti , the number of tied

7':-:::'5 in character 'i. Though we will not dwell on it, it can be shown that these
_.':.. tities will not affect the argument that we will make about parsimony.

'. 'ith a single reconstruction chosen for each character, the likelihood in equa­
,2 now looks much simpler. Dropping the factors of 1/2 that are the same for

:cees,
chars branches

L;::; II II (T;tj )"'i j

i=l j=1

7 :ake the logarithm, which is useful because it changes products into sums.
-=-~,~ing the tree that maximizes the log of the likelihood is equivalent to finding
-7 :ree that maximizes the likelihood, as the larger a quantity is, the larger its
;::uithm is. Taking the negative of the logarithm gives us

chars branches

-lnL;::; L L nij [-In(Titj)]
;=1 j=1

(9.5)

:.- _Jdenly, we have reached parsimony. Note that this is simply a weighted par­
-_":'.ony sum. In maximizing the likelihood, we minimize the negative of the
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log-likelihood. And that quantity is the sum, over all the changes on the tree
(whose locations are indicated by the nij) of penalties of the form -In(titj)' Thus
we have made enough approximations to prove that the weighted parsimony tree
with these weights is always the same tree as the maximum likelihood tree.

The weights
In this case we have a formula for the weights. They are no longer arbitrary but
now can be related to probabilities of events. The weight of a given change is now
the negative logarithm of the probability that that particular character changes in
that particular branch. Note that if the ri is small for a character, it thereby has a
higher weight (as its logarithm is smaller, and therefore the negative of its loga­
rithm is larger). This dependence on the logarithm of rate of change contradicts
an "obvious" method of assignment of weights that is often used. It seems nat­
ural, if a character has half as large a rate of change as another, to assign it twice
the weight. But that would be a weighting function of 1/1'i, not -In(ri)' In fact,
it is when a character has a probability of change as low, in a given branch, as the
square of the probability of change of another, that we assign it twice the weight.
We do that because In(r2 ) = 21n(T). This is actually intuitively sensible: we as­
sign a change in one character twice the weight of another when it has the same
probability for one change as two changes in the other character do.

But notice another, rather horrifying, fact about the weights. They depend not
just on the rates of change, Ti, but also on the branch lengths, tj' Thus we are sup­
posed to accord higher weights to changes that occur in shorter branches of the
tree. This too makes sense. We find a tree less implausible if the changes occur
in long branches rather than in short ones, and this weighting expresses that un­
derstanding. However, when we evaluate a tree we typically do not have branch
lengths for it. That leaves us somewhat uncertain how to proceed in practice.

Farris (1969b), in the first modern paper on character weighting, discussed
which functions of probability of change would be desirable for use as weights.
He did not derive weights from a relationship between likelihood and parsimony
as done above.

Unweighted parsimony
If the rates of change become very small, another simplification emerges. As they
become smaller, the ratio of the weights to each other becomes more equal. In
the limit, the method is simply unweighted parsimony. Suppose, for example,
that we have three characters, with different rates of change. One of them has
two changes, the other two have one change. The ritj and the resulting weights
(their negative logarithms) are given in Table 9,1. We can see that tvvo changes in
character 2 incur less total penalty than one change in character 3. In this case, a
weighted parsimony method might prefer a tree with more changes, provided tha t
they were located in character 2 rather than in character 3. When we consider the
same sort of case, identical except with only 10% as great a probability of change
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~able 9.1: Probabilities of change and resulting weights for an imaginary case

Character T'itj

1 0.01
2 0.01
3 0.00001

Changes Total weight

1 4.605
2 9.210
1 11.519

- ::-ach character (in Table 9.2), characters 2 and 3 now have equal total penalties.
.::t another reduction of the probability of change by a factor of 10 (in Table 9.3),

-.':c cter 3 incurs less total penalty. In fact, it is easy to show that with enough re­
_.:ion of the rates, all by the same factor, one must in the limit have the ratios of

-::- ',,'eights for a single change approach 1, In this case, the ratios of the weights
, ~:ngle changes in characters 1 and 3 started out at 2.5, with reduction by a fac­

o "11 10 became 2, and with a further reduction became only 1.75. With enough
-_'::·.lction of rates of change, these ratios approach 1.
~us unweighted parsimony receives its justification from the assumption of

":-:: low rates of change. Note that we did not assume that rates of change in dif­
.0::-. t characters were equal. Unweighted parsimony will make a maximum like­
- "1d estimate of the tree if rates of change (or branch lengths) are small enough,

::-:1 though the different characters may have very different rates of change. This
- :: "ery good property to have, because we are often unable to say what the rela­

=:: rates of change of different characters will be in advance.

_:'ilitations Of this justification of parsimony
-'::: main problem with this justification for parsimony is that it assumes a low

'=:: of change in all characters. That corresponds to our intuition - that if we are
.. "" to find an explanation that minimizes the number of something, we must

-:: :hat event an implausible one. But the difficulty is that in many data sets,
-", the parsimony method is used, the number of changes found is too large to
_ .:.:-nsistent with this view.

Table 9.2: The same case as in Table 9.1 with one-tenth the rate of
change in each character

Character

1
2
3

Titj Changes

0.001 1
0.001 2
0.000001 1

Total weight

6.908
13.816
13.816
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Table 9.3: The same case as in Table 9.2 with one-tenth less again

Character Changes Total weight

1
2
3

0.0001
0.0001
0.0000001

1
2
1

9.210
18.421
16.118

For morphological characters one might imagine that the high rate of observed
change arises from ignoring characters that do not vary in our data set or in a larger
data set from which it is drawn. But even this supposition will not wash. For if
that were the only reason for the observation of so much change, we would expect
the change to occur only once per character. In other words, we would expect
to find data sets that had all characters perfectly compatible with each other (or
most of them perfectly compatible, at any rate). This is not found. If it were, there
would be little need to explore different algorithms for inferring phylogenies.

Farris's proofs
The pioneering attempt to connect parsimony with likelihood was by J. S. Farris
(1973a). I have discussed (Felsenstein, 1973b) my reasons for believing that his
argument does not entirely succeed. Farris's proofs are like the one sketched here,
except that they do not sum over all possible reconstructions of the states at the
interior nodes of the tree. They also do not need the assumptions that I have
made about low rates of change in each character. They arrive at formulas for the
character weights that resemble those presented here. What Farris is estimating is
not the tree, but the tree together with the states at the interior nodes and at a great
many points along the branches (the "evolutionary hypothesis"). This introduces
a great many additional quantities that are being estimated.

The strength of these proofs is that, if they are successful, parsimony inherits
the known good behavior of likelihood methods. The limitation of Farris's proof
is that likelihood often is found to misbehave as the number of quantities being
estimated rises, especially if it is proportional to the amount of data. We shall
see in the remainder of this chapter a particular misbehavior that characterizes
parsimony and that occurs even in some cases to which Farris's proof applies.
This suggests that his proofs are not enough to serve as a general justification for
parsimony.

I (Felsenstein, 1973b) and Farris (1977a) put forward alternative arguments,
ones that assume that the probability of change in each branch of the tree is small
for all characters. They are thus similar to the argument above. Like it, they as­
sume rarity of change, and thus they do not prove a general correspondence be­
tween maximum likelihood and parsimony estimates of the phylogeny. Goldman
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_:.') has discussed Farris's (1977a) argument in some detail, giving a similar

-\lthough I have described Farris's (1973b, 1977a) arguments as based on max-
- -:"'-:1 likelihood, they are actually Bayesian. However Farris (1973b) assumes a

- ?rior distribution, and then argues that the maximum posterior probability in
:: =.:.-esian argument yields the same estimate as maximum likelihood.

-.- common mechanism
.-_-:: et a1. (1994) and Tuffley and Steel (1997) have made an illuminating con­
:::0 between parsimony and likelihood. They loosened the assumptions about

:: ::-"te of change to the maximum extent possible. They allowed each character
- .=.-:e a different probability of change in each branch of the tree. This is called

= :"se of no common mechanism. There is no rate of change for a branch that ap­
- ~ across all characters, and no rate of change for a character that applies to all

.: .:::-tes. Instead, the rate of change is arbitrarily different in each combination
:::-mch and character. Thus when there are n species and P sites, there will be

_ -:3 p parameters in all, one for each character in each branch.
=:- seneral the proof of the no-common-mechanism result is not obvious, but in

-= ?3.rticular case it is easy to see the connection between parsimony and likeli­
:. This is the case with symmetric change between two states (states 0 and 1)

- - - -here there is only one possible assignment of states to interior nodes in the
-: ~ arsimonious tree. When the likelihood is computed under such a model, it

=-_3.\-e a form quite close to equation 9.2:

chars (1 B { ..
L - IT - IT P'..7

- 2 I-p
i=1 j=1 ~

if this character changes )
if it does not change

(9.6)

- :..:'.e number of branches in the tree. In the previous case, there was a common
::..- .=...t.ism at work in all branches and all characters, with rates of change specific
::. =.:-acters but not to combinations of branches and characters. In that case,
:-::-obability of change was given by equation 9.1. In the case of no common

_-.=... ism, instead of Titj we have a quantity subscripted by the combination 'ij.
-=-:'lCts a net probability of change along the branch, which is some number in
-: n-al [0.1/2].

-..5 equation 9.1 shows the probability of change to be a monotonic function
- = a.ppropriate branch length, maximizing the likelihood with respect to that
- .::.--. length will yield the same result as maximizing it with respect to the net
::- =.:-:lity of change Pij, provided that we keep that quantity in the interval

_. This invariance is well-known as the "functional property of maximum
- ,)od." Examining equation 9.6 as a function of one of the Pij shows imme­

=-:- chat it is a multiple of either Pij or 1 - Pij. It is linear in Pij, so that the
--':.:'lm of the likelihood with respect to Pij will be either at 0 or at 1/2.
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Thus the Pij for all branches that show a change should be 1/2, and those for
the branches that do not change should be O. The upshot is that (with the extra
factor of 1/2, which is for the initial state) the maximum likelihood is

(9.7)

where m is the number of changes of state in the particular reconstruction of states
at the interior nodes of the tree. To maximize the likelihood, we find the tree that
minimizes the parsimony score. Thus in this case, likelihood and parsimony will
always recommend the same tree.

When there is more than one possible reconstruction of the character, things
are more complicated. As the likelihood terms that contain one of the Pij are now
summed over different reconstructions of that character, the likelihood is still lin­
ear in Pij, so that it is still the case that the maximum likelihood values of Pij are
either 0 or 1/2 (or else are all values including those). By choosing one recon­
struction that is one of the most parsimonious ones and letting those branches that
have changes have Pij = 1/2 and all others have Pij = 0, we can again achieve
the likelihood shown above in equation 9.7. In that case, all other reconstructions
contribute nothing to the likelihood. What is less obvious is whether, by having
more branches have nonzero Pij, and thus having contributions from more possi­
ble state reconstructions, we can make the likelihood higher.

The proof by Penny et al. (1994) and Tuffley and Steel (1997) is elegant and not
simple, and I cannot explain it here (or anywhere, for that matter). It does rule out
higher values of the likelihood in the two-state and multistate cases. In the T-state
case, the maximum likelihood is

L = (~)m+l (9.8)

where m is the number of changes reconstructed by parsimony. As in the two-state
case, this maximum value can be achieved by choosing one of the most parsimo­
nious state reconstructions and setting Pij = 0 in all branches that do not have a
change of state and setting Pij = (r - l)jr in those that do have a change.

The no-common-mechanism result is a remarkable connection between likeli­
hood and parsimony; it is important to know what it does and does not mean.
It does show that there is a statistical model in which likelihood and parsimony
always infer the same trees. Previously, we knew only that they would choose
identical trees when expected rates of change were small. In the no-common­
mechanism model, rates of change can be anything but small. As we will see be­
low, in some situations parsimony methods can have undesirable statistical prop­
erties such as inconsistency (convergence to the wrong tree as the number of char­
acters increases). Likelihood with the no-common-mechanism model will shar
these undesirable properties. The number of parameters inferred in that mode!
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is high: the product of the number of branches and the number of characters.
Thus, as the number of characters rises, so does the number of parameters. This is
the "infinitely many parameters" problem that causes misbehavior of likelihood
methods in other case as well. Thus the identification of parsimony with likeli­
hood is not enough to ensure that it behaves well.

The no-common-mechanism model has been developed only for cases in
\dl.ich the r states are symmetric. If we have asymmetric change between states
\\-hose equilibrium frequencies are unequal, this cannot be accommodated in the
. resent no-common-mechanism model. Thus that model is not totally general. We
:;0 far lack a clear understanding of how much further this model can be general­
ized and still preserve this connection between likelihood and parsimony. For a
cautious assessment of the connections between likelihood and parsimony, see the
. aper by Steel and Penny (2000). An earlier attempt by Sober (1985) to prove, for

3-species rooted tree, that maximum likelihood will always choose the same tree
as parsimony, has been criticized as invalid by Forster (1986). He pointed out that
he argument implicitly assumed that the trees compared always had the same

interior branch length.

Likelihood and compatibility
\'e have shown that there is a likelihood justification of parsimony methods when

rates of change are small. There is a similar one for compatibility (Felsenstein,
:979, 1981a). Recall that in compatibility methods any character that requires more
:han one step on a given tree is counted as not fitting that tree, in effect lending
:10 valid phylogenetic support to that tree. The way to have such a character in
ikelihood inference is to have a possibility that a character is pure noise. This
could be so by having it be massively misinterpreted, but a simpler possibility is
:hat it has a very high rate of evolution. In this section, we will argue backwards
~rom the desired result to obtain the model that gives it.

Consider a model with two states, 0 and I, and probabilities of change given by
quation 9.1. We previously explored the effects of having small rates of change.
Suppose that for some character the rate of change Ti is very large. The equation
:hen shows that the probability of changing from 0 to 1 in a branch of length t j is

/2, regardless of the size of tj' It follows that the probability of changing from 0 to
J is also 1/2 (as the two probabilities must add up to 1). From this we can quickly
show that no matter what the pattern of Is and Os in a character, the probability
of that pattern is 1/217

, where n is the number of species. This is true whatever the
:ree (as long as at least n - 1 of the terminal branches of the tree are nonzero in
:ength).

Suppose that each character has one of two possible rates, Ti and 00, where Ti

:5 small, and that we do not know in advance which rate it has. If the probability
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that the character has the infinitely high rate of change is p, then the probability of
the observed pattern of data D(i) at that character is

(9.9)

where the rightmost term has already been given by equation 9.2. Now suppose
that of the two terms on the righthand side of equation 9.9, for any given tree, in
each character one or the other contributes almost all of the likelihood, and that the
term for the high rate is the one that contributes most of the probability whenever
there is more than one step in the character. Recall that when its rate of change Ti

is small, the contribution of the character to the likelihood is

. 1 branches
Prob(DC')IT.Ti);:::: 2 II htj)n ij

j=l

(9.10)

If it is always true that for any tree that has two changes in a character, that charac­
ter is better explained by having a high rate of change, then for any two branches
j and k (the ones that have the changes)

(9.11)

Thus if the term 2~ is smaller than anyone of the Tt terms but larger than the
product of any two of them, it will turn out that the likelihood for the full set of
characters, for any tree, is

chars {
L = II

i=l

~(l - p)

~(l - p) titj

p(~r

if this character does not change on tree T

if this character changes only once, in branch j

if it changes more than once

(9.12

An argument similar to the previous one then shows that the maximum likelihoo .
tree is the one that selects the largest set of compatible characters. It is equivale :
to a threshold parsimony method with threshold set to 2. As we have already seel
this finds the largest set of characters that can evolve with only one change. Note
that this does not allow a character that has more than two states to be counted ao
compatible.

This argument justifying compatibility works only when the probability p th,,:
a character has infinite rate of change is small.
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?.?rsimony versus compatibility
.::- general, compatibility methods assume that most characters will change only

-.ee, having a low rate of evolution. A small fraction will change quite frequently
::-:J thus have almost no phylogenetic information. When this is true, the largest
:-:'1 Ie of characters will be quite large, and almost no characters will show 2
:,-,mges.

Thus compatibility assumes that the quality of characters varies greatly, most
: :hem being quite good. By contrast, parsimony assumes that although rates of

-:.-- 3.:1ge are low, some characters that still have phylogenetic information will show
. :T1.oplasy.

Strictly speaking, these justifications work only for data sets in which the frac·
- :1 of characters showing homoplasy is small. If there are many homplasious
_- 3.Iacters (ones showing parallelisms or reversals), we are not in the situation as­
-_-:led by these proofs of equivalence between either parsimony or compatibility
_ - C likelihood.

'onsistency and parsimony

:":.?Yacter patterns and parsimony
-, :...:Cough no property of a statistical estimator is accepted by all statisticians as es-
-:::-.ial, one of the more important ones is consistency. An estimator is consistent
- ,,-:, the amount of data gets larger and larger (approaching infinity), the estima-
: converges to the true value of the parameter with probability 1. If it converges
;;.::>mething else, we must suspect the method of trying to push us toward some

-:- ::-ue conclusion. In 1978 I presented (Felsenstein, 1978b) an argument that parsi-
- :'.\. is, under some circumstances, an inconsistent estimator of the tree topology.
- ' ,,-~out the same time James Cavender (1978) found the same worst case for par-

-=- 0n~', though he did not say so very loudly.
=.." investigating this, we do not try to establish whether parsimony is or is not

-:-a.ximum likelihood method. We simply accept that it is a statistical estimator
;;.::>me sort, and try to establish its properties. The easiest way to do this is to

-c:': er its behavior in a simple model case. We start with a four-species tree, on
-.:c a series of characters are all evolving, independently, according to exactly

-:: ;;ame model of evolution. If the characters are sites in a nucleotide sequence,
::-: species can exhibit one of the states A, C, G, or T. There are then 44 = 256

- ",:,ible outcomes of a site. These range from AAAA to TTTT. They have come to
.:"Ued patterns. If we had characters with two states (0 and 1) instead of four
:2:', we would instead have 24 = 16 possible patterns, ranging from 0000,0001,
= 0011,0100, ... ,1111.
. qth four species, there are only three unrooted tree topologies. For each of

- .='. we can imagine working out how many changes of state are necessary for
-: ~attern to evolve on that tree. Figure 9.1 shows part of the table for four
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A C A B A B

BAD CAD A
D C

AAAA a 0 0

AAAC 1 1 1

AAAG 1 1 1

AAAT 1 1 1

AACA 1 1 1

AACC 1 2 2
AACG 2 2 2

AACT 2 2 2

AAGA 1 1 1

AAGC 2 2 2

AAGG 1 2 2
AAGT 2 2 2

AATA 1 1 1

AAIC 2 2 2

AATG 2 2 2

AATT 1 2 2
ACAA 1 1 1

ACAC 2 1 2
ACAG 2 2 2

ACAT 2 2 2

ACCA 2 2 1
ACCC 1 1 1

TIlT a a a

Figure 9.1: The table of nucleotide patterns (some of the 256 possible
patterns are shown) for four species. For each, the number of changes
of state needed on each of the three possible unrooted tree topologies
are shown. Those patterns that have different numbers of changes of
state on different tree topologies are highlighted.



Statistical properties of parsimony 109

A C A B A B

B>-<D C>-<D >-<
D C

0000 0 0 0

0001 1 1 1

0010 1 1 1

0011 1 2 2
0100 1 1 1

0101 2 1 2
0110 2 2 1
0111 1 1 1

1000 1 1 1

1001 2 2 1
1010 2 1 2
1011 1 1 1

1100 1 2 2
1101 1 1 1

1110 1 1 1

1111 0 0 0

Figure 9.2: The table of character patterns for a two-state character for
four species. For each, the number of changes of state needed on each
of the three possible unrooted tree topologies are shown. Those pat­
terns that have different numbers of changes of state on different tree
topologies are highlighted.

.::eotide states and the three tree topologies. Note that for most of the nucleotide
--:erns, there is no difference between the number of changes of state on different

-::-:: :opologies. In the figure, the rows that do have different numbers of changes
-:.3. 'e for different tree topologies are emphasized by larger type size and bolder
_-:: :'ace. There are 36 such rows in the full table. Figure 9.2 shows the same table,

- . 'ing all of it this time, for two states. Here too, the rows that show differences
- 'een tree topologies are emphasized. All 6 of them are visible.

'ate that the patterns that are of the form ~r;xyy, XY~l;y, or xyyx (where x and y

.3.:I\' two symbols) are the only ones that can affect the count of the numbers
=_-anges of state in a parsimony method. These are commonly called phyloge­
.':'If informative characters, but that terminology is somewhat misleading. The

--:::: characters are informative when methods such as distance matrix methods
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or likelihood methods are used. With nucleotide sequences, patterns like xxyz
turn out not to affect a parsimony method. That one, for example, can evolve on
any tree with 2 changes of state.

Observed numbers of the patterns
Having made the tables in either of these figures, we can imagine collecting data.
Each site (or character) in our data table will show one of the possible patterns. The
effect of the site (character) on the outcome of a parsimony method will depend
only on which pattern it has, and not at all on where it is in the data. It follows
that all that we need to know about a data set, in order to determine which phy­
logeny it leads us to estimate, is how many times each pattern occurs in it. We
can summarize a data set by a list of 256 (or in the 0/1 discrete character case, 16)
numbers. The numbers are integers that add up to the size of the data set. Having
those numbers, we can figure out from them the number of changes of state that
each tree requires. Suppose we know, for example, that pattern AACC requires 1
change on the first tree and 2 changes on the second tree. If we know that there are
12 instances of this pattern observed in our data set, we know that they contribute
12 x 1 = 12 changes to the first tree and 12 x 2 = 24 changes to the second tree. In
this way, we can sum the total changes for each tree, given the list of numbers 0­

times that each pattern is seen.
Note that the three classes of patterns xxyy, xyxy, and xyyx each can be com­

bined. Since AACC, AAGG, CCTT, and all other patterns of the form xxyy requir
1, 2, and 2 changes of state on the three trees, we need not pay attention to an~-­

thing but the total number of times that XJ;yy occurs, the total number of time':
xyxy occurs, and the total number of times :r;yyx occurs. Let us call these n xxy

nxyxY' and n xyyx . To discover which tree is favored by parsimony, we need a :
count the changes of state for the sites with these classes of patterns. Then the
changes of state for the first tree are

n xxyy + 2nxyxy + 2nxyyx = 2(nxxyy + n xyxy + n xyyx ) - ncrcryy (9.1:

Similarly, the total contribution of changes of state to the other two trees turns o'
to be

2nxxyy + n xyxy + 2nxyyx = 2(nxxyy + n xyxy + n xyy3;) - n xyxy (9.~."

and

2nxxyy + 2nxyxy + n xyyx = 2(nxxyy + n xyxy + n T -yyX ) - nJ;yya; (9.~ =

Since the first term (on the right side) of each of these expressions is the same
follows that the one that is smallest will depend on which of the three numt~

n xxyy , n xyxy , and n xyyx is largest. That determines which tree will be preferre" ~

parsimony. If there is a tie, then two (or three) trees will be tied.
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Figure 9.3: A tree with probabilities of change next to each branch. This
tree is the example that will used to investigate conditions for parsi­
mony to be consistent.

]~ served fractions of the patterns
_:e that we could have done the same calculations using frequencies rather than

- ~-:1bers. If we calculated the fraction of all sites (characters) that showed patterns
- .:::ass xxyy, and similarly for the other two classes, we would concentrate on the

-""-'::2e observed fractions of characters: !XXyy = nxxyy/N, !xyxy = nxyxy(N, and
._ = nxyyx/N, where N is the total number of sites (or characters) in the data.

-:-::' tree that the parsimony method selects is simply determined by which of the
:"-'::2e fractions !xxyy, !xyxy and fxyyx is largest.

-=.... ected fractions of the patterns
- 3.gine that we knew the true tree, and that it was not merely a tree topology, but

:::-ee with branch lengths. Suppose further that we have a probabilistic model
. ::,\'olutionary change of the characters. We consider what happens when this
-::-.e model operates independently in each character. From such a model one

_~__ calculate the expected frequencies of each of the 16 (or 256) character patterns.
ror the simple case with two states, 0 and 1, and a symmetric model of change

___-=:".':een them, we can write the formula for the probability that the character
_- ~lges in a branch of the tree, given the length of the branch. We have already
-c-::-. this formula (equation 9.1), but there is a way of avoiding it that is convenient.
~ _::'Dose that we know for each branch, not its length, but the net probability that
- =- character will change in that branch. Figure 9.3 shows an unrooted tree which

_: e the critical example for this argument. Next to each branch is the net prob­
- "':':'tT of change along it, in this case either p or q. Note that p and q cannot be

_ ::3. er than 0.5, as even an infinitely long branch has a chance of only 1/2 that the
-::..o:e at the end of the branch is different than the state at the beginning.

'. 'e have not specified the position of the root of the tree. It turns out that the
___ - ~ ability of any character pattern on this tree is the same no matter where the

: is put. With this tree and this simple probabilistic model of character change,
=- can calculate the fraction of times that each character pattern is expected to be

c::, . For pattern 0011, we can start at the leftmost of the two interior nodes of the
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Root

Figure 9.4: One way in which the character pattern 0011 can be
achieved. Starting at the root (arrow), which has state 0, there is no
change in any of the left three branches of the tree. There is change
in both of the right two branches. There are three other scenarios for
achieving 0011, corresponding to other assignments of states to the un­
observed interior nodes of the tree.

tree. Consider the four possible ways that we could assign states to the left and
right interior nodes. These are, of course, 00, 01, 10, and 11. The probability of
the pattern 0011 will be the sum of the probabilities of all four of these ways of
achieving this pattern. Figure 9.4 shows this scenario. Starting at the root, which
is the left interior node of the tree, the probability that we find 0 there is 1/2 (as
the model is symmetric, and has presumably been operating in all previous evolu­
tion). The probability of no change in the upper-left branch is (1- p), of no change
in the lower-left branch is (1- q), and of no change in the interior branch is (1- q).
Given the state (0) of the right interior node, there has been change in both of the
right branches. These have probabilities p and q.

We are assuming independence of the evolutionary processes in different lin­
eages and in different segments of a single lineage, given the states at the start of
each branch. So we can combine these probabilities by multiplication to get

1
-(1 - p)(1 - q)(1 - q)pq
2

There are three other combinations of states that could have existed at the unob­
served interior nodes. For each we can derive a probability in an analogous way.
The result is

POOll = ~ [(1 - pHI - q)2 pq + (1 - p)2(1 - q)2 q + p2 q3 + pq(1 - p)(1 _ q)2]

(9.16
This is the probability of 0011, but there is also the pattern 1100. Together the\'
make up the class of patterns xxUy. They have (by the symmetry of our model
equal probabilities, so the total probability of pattern xxyy is given by doublin:;
the quantity in equation 9.16, which simply removes the 1/2.
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Ve can also do the same for the other two patterns classes xyxy and xyy:l:. The
:11 tis:

• "yy

.,xy

(1 - p)(l - q)[q(l - q)(l - p) + q(l - q)p] + pq[(l - q)2(1 _ p) + q2p]

(1 - p)q[q(l - q)p + q(l - q)(l - p)] + p(l - q)[P(l - q)2 + (1 _ p)q2]

(1 - p)q[(l - p)(l + p(l - q?] + p(l - q)[q(l - q)p + q(l - q)(l - p)]
(9.17)

, .~ not hard to find, after a bit of tedious algebra, which of these is largest. Af­
,,' '.\'e compute Pxyxy - PEYYX' it turns out to simplify into (1 - 2q) [q2(1 - p?
- ~ - q)2p2]. This is never negative and is positive as long as q < 1/2, and ei-
-,,~ '1 > 0 or p > 0, all of which apply except in trivial cases. So pattern xyyx can

- ,,' 2r have the highest expected frequency. Taking the difference PX2YY - Pxyxy ,

-" .::ondition that this is positive simplifies (after a struggle) into

(1 - 2q) [q(l - q) - p2] > 0 (9.18)

-- =condition 1 - 2q > 0 being trivial, this basically simplifies to q(l _ q) > p2.

~ ::ol1sistency
" :cow have a condition under which, for our simple tree with an idealized model
="olution, the expected proportion of xxyy patterns is greater than that of xyxy

- _.:j.r patterns. This becomes very relevant when the number of characters (or
:...: becomes very large. For it is in that case that the observed frequency of

- - ':"-, !=lattern is expected to converge to its expected frequency. To be more precise,
--;;: ~a\V of Large Numbers guarantees us that, as the number of characters grows

-_-,,: ely large, that the probability becomes 1 that xxyy is the most frequent of
- .:2 patterns.

~'1us in this case, when q(l- q) > p2, we can guarantee that with enough char­
:-=~S, we will arrive at an estimate of the tree that has the correct tree topology.
.: ::-:.ote what happens when this condition does not hold. In that case, xyxy pat­

---:-.: have the highest expected frequency, and we can guarantee that with enough
-.:.:c.cters, the tree estimate is certain to be wrong!

:::gure 9.5 shows the regions of values of p and q that guarantee consistency or
- : __ 'istency.

, 'ote that we are not simply saying that in some cases parsimony methods can
_ ,,'.qong answers. Any method is subject to statistical error. But an inconsistent

-;;::"--:od becomes more and more certain to give a particular kind of wrong answer
. ::-.ore characters are collected. It is pulling us toward the wrong answer.

~'1e intuitive explanation of what is happening here is fairly simple. With long
-:.:-..::hes leading to species A and C, the probability of parallel changes that arrive
~.2 same state (which is roughly p2) becomes greater than the probability of
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Figure 9.5: Values of p and q that guarantee consistency or inconsis­
tency of the estimate of the tree topology by parsimony. Values of 0.5
of either parameter correspond to infinitely long branches.

an informative single change in the interior branch of the tree (which is roughly
q). Thus we have, in these cases, two changes in long branches that are, taken
together, actually more probable than one change in a short branch. The situation
may be described as one in which "long branches attract" each other. The region
of the parameter space in which this occurs is sometimes called the Felsenstein ZOl1t

(Huelsenbeck and Hillis, 1993; this is something like having a black hole named
after you).

Penny, Hendy, and Steel (1991) have given the general conditions for inconsis­
tency of parsimony in the 4-species, 2-state model, with all branch lengths allowe .
to be different.

When inconsistency is not a problem
Note that as you approach the lower-left corner of Figure 9.5, along any diagon­
at any angle other than vertically, you ultimately find yourself inside a region l ­

consistency. This happens because if we multiply p by a and q also by a, p2 :.:
multiplied by a 2 while q(l- q) is multiplied by a (this is more nearly true as q g :0

small). Thus ultimately, with a small enough value of a, the consistency conditic­
will hold.

This argument is slightly oversimplified. Reducing the rate of change of a ch~­

acter by multiplying it by a factor a is not quite the same as multiplying p b,'
For the symmetrical two-state case, equation 9.1 shows how p depends on the T2­

of change ri. To be more precise, we should have two different branch length~
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Figure 9.6: A tree showing the species and the nucleotides that are
present at its tips and the hypothetical nucleotides that existed at that
site at its interior nodes. The net probabilities of change are given next
to each branch.

. - j ']. If we reduce the overall rate of change Ti, which we here assume is the
·'::te for all characters, we can use equation 9.1 to trace out a curve of pairs of

" values, using t1 to compute p and t2 to compute q. However the net result
. ~"-1e same, since for small rates of change equation 9.1 shows that the probability
- .:..nange is approximately Titj' Thus simply multiplying p and q by a factor Ct is
-=-?roximately correct when all these quantities are small.

In other words, if the tree is short enough, even large ratios of the length of the
=-,C; to the short branches do not cause inconsistency. This is in accord with what
..::: maximum likelihood derivations showed: When branches are short, parsi­

- ~:1~' is a maximum likelihood method, and it shares the property of consistency
- 3.: likelihood methods will have.

~:i' nucleotide sequence case
o'm-ilar proof can be made in the case of nucleic acid sequences, which have

- o:3.tes. The answer is qualitatively the same, but the region of inconsistency is
- "ller. This happens because parallel changes along the two long branches are
."00 likely to result in the same base. To investigate the case, we need a probability

- -jel of base change. The simplest one, as we will see in Chapters 11 and 13,
. ::-:02 Jukes-Cantor model. This simply assumes that when a base changes, it is
-: ':3.11y likely to change to each of the three alternatives. In Chapter 11 we will
,,'clop a formula that is the counterpart of equation 9.1. For the moment we

=- need it. Instead of branch lengths, we can assign to each branch of the tree
- .' robability ]J or q of a net change. Equation 11.17 will show how those depend

'. ranch length. All we need to do for the moment is keep in mind that when
-:' changes occur, starting from the same state, there is probability 1/3 that the

"",Jt is the same.
?igure 9.6 shows an unrooted tree 'with tips whose pattern is of the class xxyy.

- :alculate the probability of getting this pattern of nucleotides at the tips, we
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could sum over all 16 possibilities for z and U'. For example, the probability of
starting with z = C and evolving the pattern given that w = A is (1/4)(1 - p)(1 ­
q)(q/3)(1 - p)(1 - q), The symmetry of the model means that some choices of z
and Vi have the same probability. For example, if z and ware, respectively, C and
G, this yields the same probability as if they are respectively C and T, and also
the same probability as if they are T and A. Taking all of these into account the
probability of the pattern turns out to be

Prob[CCAA]
1 2 1 ') 1 ') ')
-(1 - p)(1 - q) pq + -pq-(1- p)(l - q) + -p-q-(1- q)
18 27 162

7 2 3 1 ') 2
+ 972P q' + 12 (1 - p)-(1 - q) q (9,19)

Prob [xxyy]

There are 11 other patterns that make up the pattern type x:ryy, and each of those
has the same pattern probability, so that

2 ') 2 (') 4 2(1 - p) q(1 - q)- + 3P(1 - p)q 1 - q)- + 9P(1- p)q (1 - q)

2 2 ') 7 ') '3+-p q-(1 - q) + -p-q' (9.20)
27 81

Similarly, we can work out the probabilities of the pattern classes xyxy and ;r;yyx.
These turn out to be

Prob [xy:ry]

Prob [xyyx]

Equations 9.20, 9.21, and 9.22 can be shown to be equivalent to expressions that I
have published (Felsenstein, 1983a).

The condition for consistency of the estimate of the phylogeny for this case can
be obtained, but is not very illuminating:

-18 q + 24 q2 + J243 q - 567 q2 + 648 q3 - 288 q4
P < (9.23)

9 - 24 q + 32 q2

Figure 9.7 shows the regions of consistency and inconsistency for this case.
Note that near the lower-left corner of the square the region of inconsistency is
noticeably narrower than in Figure 9.5. This comes about because, while the con­
dition for consistency in the two-state case is approximately p2 < q, the condition
for the Jukes-Cantor DNA model is approximately p2 < 3q, which is easier to sat-
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Figure 9.7: The regions of consistency and inconsistency for the Jukes­
Cantor DNA model. Branch lengths are expressed in terms of the prob­
a ility that the state is different at one end of the branch from the other.
This probability has a maximum value of 0.75.

- ~he explanation for this difference is simply that the probability of arriving
._~ ::came state by independent evolution in the two-state case is approximately

: en p and q are small, while in the Jukes-Cantor case it is p2/3, as parallel
-~e5 arrive at the same state only one-third of the time. It should be evident

- : '\'ith more states, the conditions for inconsistency are harder to satisfy.
~ :eel and Pem1Y (2000) have given a fairly general proof that as the number

-;: ::csible states in each character rises, ultimately parsimony will be consistent.
--7.::- roof encompasses any number of species and fairly asymmetrical models

.:..-.ange.

~ ~ ':er situations where consistency is guaranteed
--7 above conditions for inconsistency suggest that long branches and unequal
-::~..::h lengths predispose towards inconsistency. This has been examined more

- -7::sely in some special cases.
: -- 11 (1996) examined the consistency of inference of topology in a region of a

--::-::- surrounded by four subtrees. He examined a number of special cases, find­
:: :~at there were exceptions to many proposed generalizations about when par­

- ")TI\- would be consistent. His examples suggested that inconsistency some-
-~re in the tree could occur more easily, the more species there were in the anal-

-..:. Steel (2001) has given a more generalized proof, for the model of symmetric
-":' ..;:,e among r· states, that with sufficiently short branches the parsimony and
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A B C D E A B C D E

Figure 9.8: A clocklike tree that generates data on which parsimony is
not consistent. The true tree is shown and one of the trees that will tend
to be found as the number of characters becomes large. There are four
of these trees, each with a different lineage attracted to species E.

compatibility methods will be consistent. His conditions for consistency are suf­
ficient conditions-they do not rule out consistency in other cases, with longer
branches. They become more difficult to satisfy as the number of species is made
larger. I had earlier shown (Felsenstein, 1979) that in the limit as all branch lengths
become small at the same rate, parsimony and likelihood will pick the same tree
topology.

Does a molecular clock guarantee consistency?
From the examples given above, it would be a tempting generalization to conclude
that parsimony can be inconsistent only if there is no molecular clock. The molec­
ular clock, which is discussed in more detail later in this book, is the assumptior:
that lineages have evolved at equal rates. Under a molecular clock, the true tree
has branch lengths that cause the tips to all lie equally distant from the root. =
have suggested (Felsenstein, 1983b) that imposing a molecular clock is sufficier::
to assure us that parsimony is consistent.

Hendy and Pem1Y (1989) have shown that this is not so. There are clocklik.:e
trees on which parsimony is inconsistent. Their example is of the sort shown r­
Figure 9.8. One or more of the long branches leading to the species A, B, C, or =
becomes attracted to the long branch that leads to species E. Using their Hadama.:-.::
transform method of calculation (which we will discuss in Chapter 17), they cou:.::
compute the probabilities of all 32 possible patterns of 0/1 data. They could shoo
that if branch length x is short enough, that many other trees, including one5 :.:­
which these long branches attract, will be more parsimonious than the true tree
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Figure 9.9: A clocklike five-species tree with a pair of short internal
branches, making a case similar to that of Figure 9.8. For branch
lengths b = 0.02 and b = 0.03, evolution of various lengths of DNA
were simulated using a Jukes-Cantor model. The graph on the right
shows the number of times that parsimony found the correct unrooted
tree when analyzing 1,000 replicate data sets. For b = 0.02, the infer­
ence appears to be inconsistent.

Figure 9.9 shows a computer simulation to verify this phenomenon. It involves
_ ::ocklike five-species tree with the same topology as the first tree in the previous
- ':--ll'e. One pair of internal branches has length b = 0.02 or b = 0.03, with other
:-':';1Ches adjusting their lengths accordingly. I have simulated the evolution of
...:_-:erent lengths of DNA molecule, using these branch lengths and a Jukes-Cantor
- ~'el of evolution. All sites evolved at the same rate.

The graph in Figure 9.9 shows different lengths of D A for these two values of
_-:: ~ ranch length, plotting the number of times that the correct tree was obtained

:-en using parsimony to analyze the data. There were 1,000 replicates for each
_ =:tbination of branch lengths and number of sites of DNA. The figure shows how
-:... \' of these resulted in the correct unrooted tree topology. For the two different
:-"- ch length values, 0.02 and 0.03, the results are noticeably different. When the
-_:: branch length is 0.03, the fraction of the time that parsimony produces the

::-:-ect tree increases gradually as we consider cases with more and more sites.
, .: continued to rise to 100%, parsimony would be consistent. When the true
--.:,. ch length is 0.02, the fraction of times that parsimony obtains the true tree
-~. This implies that parsimony would be inconsistent in this case. In both bases
-", .:urves change slowly-it will take a great amount of sequence data to see the
-:-..:ing behavior. Presumably this is because correctly and incorrectly interpreted
'::;; are nearly equal in their effects, and it is only with large amounts of data that
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Figure 9.10: A tree in the Farris zone. The two long branches are on
the same side of the interior branch. Long branch attraction will cause
the topology to be inferred correctly by parsimony more often than by
likelihood; in this case, the bias happens to be in favor of the correct
topology.

the influence of one overcomes the other. With larger values of the branch length
b, the fraction of correct trees rises much more rapidly towards 100%.

This simulation confirms the pattern found by Hendy and Penny (1989).
Zharkikh and Li (1993) have given a different proof of Hendy and Penny's result,
and have made more extensive numerical study of which five-species trees are in­
ferred inconsistently by parsimony. It will take much more experience before we
have a good understanding of the cases of a molecular clock in which parsimony
is misleading, but for the moment we can suggest that they are ones in which long
branches are separated by short ones, as in the nonclocklike cases.

The Farris zone
Waddell (1995, pp. 391 ff.), Yang (1996), Siddall (1998b), and Steel and Penny
(2000) have pointed out a case in which parsimony methods outperform likelihood
methods. Siddall named the region of tree space where this effect occurs the Farris
zone. (This case has also been called the "anti-Felsenstein-zone" by Waddell, 1995,
and the "inverse-Felsenstein zone" by Swofford et al., 2001). Figure 9.10 shows a
tree that displays this behavior. In this zone, the tree has long branches that are
connected to the same node. As Yang (1996) has noted, long branch attraction in a
parsimony method helps guarantee that this relationship is correctly inferred. In
effect, the inherent bias of parsimony happens to be pointing in the right direction,
toward the correct tree topology. Siddall (1998b), Farris (1999), and Pol and Siddall
(2001) consider this a case favoring parsimony methods over likelihood. Swofford
et al. (2001) argue persuasively that in this case the evidence favoring the correct
topology is being given too much weight by parsimony but is evaluated correctly
by likelihood.

They note that when the interior branch in Figure 9.10 has infinitesimal length
(such as 0.000001), no characters will actually change in that branch. In their sim-
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Table 9.4: Properties of the Felsenstein and Farris zones, showing the
difference between them

Felsenstein zone Farris zone

Parsimony consistent?

Likelihood consistent?

Correct tree if very
short internal branch
... using parsimony?

... using likelihood?

No

Yes

No

Random

Yes

Yes

Yes

Random

-':3.nons, with 10,000 sites of DNA sequence, parsimony infers the correct tree al-
-::-ost 100% of the time, in spite of a total lack of evidence as to the tree topology.
:::. contrast, likelihood infers the correct tree topology 1/3 of the time, as would
- ;:?pen if the tree topology were chosen randomly from among the three possi­
:- ":':hes. Pol and Siddall (2001) present simulation results for 10 species trees that
- ;:·:e -1: long and 6 short branches. In their trees the long branches are in adjacent
:- ;::rs. This results in parsimony doing better than likelihood. As they lengthen
__-.2 long branches, both do worse, as expected. At a certain length, parsimony
-.=.~ prey to a long branch attraction effect, causing likelihood to outperform it
:--=::ond that length. They argue that their results show evidence of "long branch
-::-: ulsion," but I find their evidence unconvincing. They do not find evidence of
.:: :onsistency of maximum likelihood.

One is tempted to think of the two zones as counterparts, one favoring like­
-.:- ood and distance methods, the other favoring parsimony methods. Siddall
~:'9 b) has viewed them this way. But they are very different phenomena. Ta­

:- _2 9.-1: shows some of their properties: If the two zones were counterparts, the
:..:.::-:e would show the same pattern when we switched zones while at the same
=---=-,e switching methods. They are not counterparts. One is a zone where parsi­
- ,,)D\- has the disadvantage of inconsistency, the other a zone where that method
-~= the advantage of bias toward a tree that happens to be correct. Neither of these
- ::-ue for likelihood in the opposite zone. We will see in Chapter 16 that likelihood

- :::hods will be consistent in both zones; likelihood also does not push us to the
_ ::-ect answer even when there is little chance of having any relevant evidence.

- orne perspective
-:2 inconsistency of parsimony has been the strongest challenge to its use. It
:-::-:omes difficult to argue that parsimony methods have logical and philosophi­

.=..:. priority, if one accepts that consistency is a highly desirable property. Some
-:.-.ools of statistical thought (notably Bayesians) reject the relevance of consis-
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tency and might not be troubled by this argument, though they do insist on use of
probabilistic models. If we accept the relevance of consistency, the resulting pic­
ture has a pleasing coherence. The arguments of the earlier part of this chapter,
as to what assumptions lead a likelihood method to become the same as a parsi­
mony method, suggest that it is low probability of change in the branches of the
tree that are needed. These are the same assumptions that work against inconsis­
tency. Likelihood recommends parsimony, and parsimony is consistent if the rate
of evolutionary change per branch of the tree is sufficiently small.

If it escapes the clutches of long branch attraction, parsimony is a fairly
well-behaved method. It is close to being a likelihood method, but is simpler
and faster. It is robust against violations of the assumption that rates of change
at different sites are equal. (It shares this with its likelihood doppelganger.) Thus
parsimony will work particularly well for recently diverged species whose branch
lengths are not long.

But when the inconsistency caused by long branch attraction is a problem, then
if one wants to continue using parsimony, one will need an alternative logical
framework.
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A digression on history and
philosophy

:: will be useful to pause at this point and ask about the history and philosophical
...:_ derpinnings of the process of inferring phylogenies. Phylogenies have been in­
:2rred by systematists ever since they were discussed by Darwin and by Haeckel,
:-:'It we concentrate here only on algorithmic methods, those that are well-defined
::. ough to be carried out by a computer. It will not be surprising that these devel­
-=,?ed only once computing machinery was available.

How phylogeny algorithms developed

~akal and Sneath
:-:.Istained numerical work on phylogenies started in about 1963. Computers had
:-een available to biologists for about six years by then, in the form of central­
.zed "mainframes" that took input from punched cards and printed the results on
;-, per printouts. During that period a number of lines of work had started that
, 'ere influential in the development of numerical phylogenies. Chief among these
, 'as the development of numerical taxonomy by Peter Sneath and Robert Sokal
::igure 10.1). Starting in the late 1950s, as mechanical methods of computation
:nitially, punched card machines) first became available to academics, they in­
~ependently developed numerical clustering methods for biological classification
~ hehener and Sokal, 1957; Sokal and Michener, 1958; Sneath, 1957a, 1957b). In

::,e original paper of Michener and Sokal (1957), the purpose of the clustering was
:- ot simply to classify, but to infer the phylogeny. There is thus a good case to be
::-:ade that this was the first paper on numerical inference of phylogenies (Figure
~ ).2 is from that paper). The interpretation as a phylogeny was made by Mich­
-=. er; Sokal saw it as a classification that did not necessarily have any validity as a

123
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Figure 10.1: Peter Sneath (left) in Madison, Wisconsin in 1959, and
Robert Sokal (right) at the International Entomological Congress in
1964. Sneath was a medical microbiologist at the University of Le­
icester and Sokal was an evolutionary entomologist at the University
of Kansas when they co-founded numerical taxonomy and introduced
and popularized many of its techniques and concepts. (Photos cour­
tesy of Peter H. A. Sneath and Robert R. Sokal.)

phylogeny. In their subsequent work Sokal and Sneath did not interpret their trees
as phylogenies.

They soon combined forces to explain and promote the use of numerical clas­
sification, especially in their widely noticed book Numerical Taxonomy (Sokal and
Sneath, 1963). Explaining many methods and providing examples, they argued
that classification should be based on phenetic principles, with measures of over­
all similarity of organisms used to make the classification, without any considera­
tion of phylogenetic relationships. Their book was an important early exposition
of clustering methods; it is regarded as a founding work by mathematicians, statis­
ticians, and psychometricians interested in mathematical clustering.

In systematics their views were regarded by many as outrageous and oversim­
plified; there was an intense debate between them and proponents of the more
traditional "evolutionary systematics" school of classification, notably Ernst Mayr
and George Gaylord Simpson. Few of the latter were converted and phenetic clas­
sification remained a minority view. But a variety of people interested in numer­
ical approaches to evolution were influenced by their methods, which had an im­
portant effect in preparing people to think algorithmically.

Numerical approaches to morphological evolution were increasingly being at­
tempted (e.g. Olson and Miller, 1958). The late 1950s also saw great progress in
molecular biology. The first wave of protein sequences were determined almost
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FIG. S. Diagram of relationships for the genus Protcriades obtained by the weighted variable
group method.

Figure 10.2: The first phylogeny inferred by numerical methods (Mich­
ener and Sokal, 1957). The tree, of morphological characters of bees,
was inferred by a clustering method. (Reprinted by permission of the
authors and of the Society for the Study of Evolution).

-_clUltaneously with the birth of numerical classification. It was soon recognized
- -3' these sequences could be a source of information on the phylogenies of or-
::~'l.isms and of genes (Zuckerkandl and Pauling, 1962).

(l am indebted to Robert Sokal and Charles Michener for discussing their joint
-ork. This section is based in part on those recollections.)

~ .huards and Cavalli-Sforza
:>:te of the foundations of numerical work on phylogenies was the remarkably cre­
:::\-e work of Anthony Edwards and Luca Cavalli-Sforza (Figure 10.3) (Edwards
c:-:d Cavalli-Sforza, 1963, 1964). Both had been students of the famous statistician
c:-:.d population geneticist R. A. Fisher. They were trying to make trees of human
:-opulations from gene frequencies of blood group alleles. It was natural in popu­
-,-:ion genetics to think of gene frequencies as establishing a system of coordinates
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Figure 10.3: Luca Cavalli-Sforza (standing) with Anthony Edwards in
Italy in 1963, and Anthony Edwards (right, in Cambridge, England,
in 1970). Edwards and Cavalli-Sforza were both at the University of
Pavia when they collaborated in founding numerical phylogenetics,
seeing it as a problem in statistical inference and introducing the parsi­
mony, likelihood, and distance matrix methods for inferring phyloge­
nies. (Left photo by Motoo Kimura, courtesy of Mrs. Hiroko Kimura;
right photo by the author.)

in a space, and for evolutionary forces to create a distribution in this space. As­
suming a branching, treelike genealogy of human populations, the two co-workers
arrived at different methods for inferring the tree. Edwards thought of the space
of gene frequencies; he realized that the points that represented the populations
could be connected by a tree, and that the branches of the tree would correspond
to paths in that space, connecting both the known points (the tips of the tree) and
the unknown ones. He wondered whether the best tree would be the one that
tied these points together with the minimum amount of string.

Cavalli-Sforza took a different approach. He had been working on divergence
of gene frequencies in local populations in the Po valley of northern Italy, where
random genetic drift seemed to be the main force bringing about different gene
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Figure 10.4: The first numerical phylogeny produced by parsimony.
The tree of human populations, inferred by Cavalli-Sforza and Ed­
wards (1965) from human blood group polymorphism gene frequen­
cies by parsimony. This tree was presented at the 1963 International
Congress of Genetics and was printed in its Proceedings volume two
years later, and is reprinted by permission of the authors.

",:,equencies in different locales. He was interested in pairwise distances between
:"'-.e gene frequencies of local populations, calculated so as to take into account that
:enetic drift would more easily cause large differences in gene frequency for alleles
:...-at had intermediate gene frequencies. As small local effective population sizes

auld cause a lot of genetic drift, he wanted to allow a treelike genealogy with
.:-:anch lengths that could vary greatly from branch to branch and would predict
:...-e amount of genetic drift on that branch. The result was a least squares method,
_- which the tree predicted a table of distances between populations, and these

ere compared to the actual distances by a least squares measure, which was to
':-2 minimized.

Having arrived at two different methods, Cavalli-Sforza and Edwards were
::''..lzzled and tried to find a way to reconcile them. As both were students of R. A.
:: ..5her, they immediately wondered whether Fisher's great method of maximum
_ elihood could be employed. If so, it would surely validate one method or the
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FIG. 1. Topology of the minimum-evolution tree uniting fifteen human populations;
constructed on the basis of the frequency of blood-group alleles.

Figure 10.5: The 1963 gene frequency tree inferred by parsimony, as
it appears when the tree topology is plotted onto a map of the world
(Edwards and Cavalli-Sforza, 1964). Reprinted by permission of the
Systematics Association.

other. They worked out a likelihood approach to the problem, and were startled
to discover that it was not equivalent to either of their two methods!

In their 1963 abstract, they stated the parsimony method for the first time.
In the 1964 paper, they presented their parsimony and likelihood methods, dis­
cussing mostly the likelihood method. They deferred the least squares method to
a later paper (Cavalli-Sforza and Edwards, 1967). Figure 10.4 shows the tree of hu­
man populations that they inferred by parsimony, presented at the International
Congress of Genetics in 1963, and which was published in 1965. Figure 10.5 is the
same tree, plotted onto a map of the world (and thus losing much of its branch
length information). This was the first publication of a parsimony tree.

Edwards and Cavalli-Sforza's paper of 1964 is remarkable in that it introduces
the parsimony method, the likelihood method, and the statistical inference ap­
proach to inferring phylogenies, all in one paper. It could have introduced the
distance matrix method as well, but did not. Although Michener and Sokal (1957)
had published earlier, this paper has at least an equal claim to be the founding pa­
per for the numerical inference of phylogenies. However, it did not discuss the
algorithmics of parsimony, and the likelihood method turned out to be unwork­
able in the form they presented.

[Anthony Edwards was kind enough to discuss the history of his work with
Luca Cavalli-Sforza with me, and this section is partly based on his recollections.
He has also published his account of this work (Edwards, 1996).]
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Figure 10.6: Left, Joseph H. Camin in the mid-1970s. Photo courtesy
of the Snow Entomological Division, Natural History Museum, Uni­
versity of Kansas, thanks to George W. Byers. Right, a member of the
Caminalcules, from the paper by Sokal (1983). Reprinted by permis­
sion of the Society of Systematic Biology.

::'nmin and Sakal and parsimony
.:.lthough Edwards and Cavalli-Sforza introduced parsimony, modern work on it
~: rings from the paper of Camin and Sokal (1965). In Sokal and Sneath's (1963)
:-ook, they had maintained that phylogenies could not be inferred reliably enough
:' be the bases for classifications. As part of his studies of classification methods,
::"kal wanted to have a set of organisms whose true phylogeny was known. The
:-est way to have them seemed to be to have a practicing systematist evolve some
,,: ificial organisms, whose complete history would then be known.

A University of Kansas entomological systematist, Joseph Camin, agreed to do
~Li5, and evolved the Caminalcules, cartoon organisms with affinities to schmoos
~ee Figure 10.6). As they evolved, they were traced from one sheet of paper to

"- other, the ancestors being carefully labeled and filed. Camin and Sokal prepared
"data matrix encoding the forms of the Caminalcules as a series of characters with
:':screte states, as had been advocated in Sokal and Sneath's book. These would
:-e given to students and to systematists and their taxonomic decisions studied.
=amin noticed that the students who seemed to be doing best in reconstructing the
·ulown phylogeny were those who minimized the number of changes of state of
~--.e characters. Sokal and he then published (Camin and Sokal, 1965) a description
-: the algorithms necessary to evaluate the number of changes of a given tree, and
- construct and rearrange the tree to search among topologies. This was the first
-:::150nably complete account of a parsimony method; it was widely noticed and
-:-.mulated most further work on parsimony. A FORTRAN computer program
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written by Roland Bartcher was available (on decks of punched cards) and listings
were published (Bartcher, 1966) and some copies were sent to other researchers
- though this was the era in which different computers often had incompatible
FORTRAN compilers.

Camin and Sokal's parsimony method assumed that one might have a charac­
ter with multiple states, that these were arranged in a linear order, and that one
knew which state was the ancestral one. It also assumed that change was irre­
versible. Thus the sequence of states would look something like this:

-3 +- - 2 +- -1 +- 0 --+ 1 --+ 2 --+ 3 --+ 4 --+

Their paper is the first to apply the word "parsimony" to the method, and it states
that "the correctness of our approach depends on the assumption that nature is,
indeed, parsimonious," an assertion that has been rejected by most subsequent
workers.

Camin and Sokal's parsimony method seems to have been derived indepen­
dently of Edwards and Cavalli-Sforza's. Although Edwards discussed his parsi­
mony method with Sokal at the International Congress of Genetics in 1963, the
connection to the Camin-Sokal method may not have been obvious. Sokal points
out that Camin, who was not aware of Edwards's work, suggested the criterion to
him when they were working on this project.

It is interesting that Sokal, who was skeptical that numerical phylogenies could
be of any value, nevertheless played such a central role in the development of nu­
merical phylogenetic methods. One is reminded of the role the statistician Karl
Pearson played in the development of quantitative genetics. Pearson did not be­
lieve that Mendelian genetics could explain variation in quantitative characters;
to bolster this view he and his students worked out consequences of variation at
Mendelian loci, in order to show that the resulting patterns did not fit the data.
They ended up contributing to the successful explanation of variation in quantita­
tive characters by the effects of Mendelian genetics.

(I am indebted to Robert Sokal for discussions of the history of the Camin and
Sokal paper, on which this section is partly based.)

Eck and Dayhoffand molecular parsimony
In the 1960s the molecular sequence data that were available were mostly protein
sequences. As these sequences accumulated, Margaret Dayhoff (shown in Figure
10.7) at the National Biomedical Research Foundation began to accumulate them
in a database that was distributed in printed form, the Atlas of Protein Sequence and
Structure. Her work was the ancestor of the modern sequence databases (together
with the DNA sequence database project of Walter Goad). From the very outset
she took a determinedly evolutionary view of this information. She was interested
in developing methods for inferring phylogenies. In the second edition of the
Atlas, in 1966, she and R. V. Eck (Eck and Dayhoff, 1966) published a description
of algorithms for the parsimony analysis of protein sequences. These were based
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Figure 10.7: Left, Margaret O. Dayhoff in about 1966. A pioneer of
molecular sequence databases and an early researcher on gene fami­
lies, she and R. V. Eck published in 1966 the first molecular phylogeny
produced by numerical methods. Right, Walter Fitch in 1975. He
published the first major paper on distance matrix methods, invented
the algorithm for counting changes in DNA parsimony, and has made
many other contributions to the study of molecular evolution. (Photos
courtesy of Edward Dayhoff and Walter Fitch.)

::- a model in which each of the 20 amino acids was allowed to change to any of
__-'" 19 others in a single step.

They described a sequential addition strategy that used an approximate evalu­
-=on of the merit of connecting the sequence to each pre-existing branch, and they
- -'-::0 describe what seems to be a phase of local rearrangements. Although the al-
.::.:-,ithm for counting changes was described only sketchily, this is not only the
--=:-st molecular sequence parsimony method, it is the first introduction of a parsi-
- "ny method with unordered states, in which each state is allowed to change to
_.=.~h other in one step .

.=:·tch and Margoliash popularize distance matrix methods
..c3 as the parsimony method was most effectively publicized, not by its first

::::"scription, but by the subsequent publication by Camin and Sokal, so too dis­
-':"'lce matrix methods were popularized most effectively, not by Cavalli-Sforza
.:...-.d Edwards, but by the work of Fitch and Margoliash (1967). Emanuel Mar-
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Fig. 3 (right above). A gene phylogeny as reconstructed from
observable mutations in several heme·containing globins. See
Fi •. 2 for details. The percent "standard deviation" (7) for
lh~' tree is 1.33.

Figure 10.8: The phylogeny inferred by Fitch and Margoliash (1967)
using their distance matrix method on cytochrome sequences. This is
one of the first distance matrix phylogenies published. (Reprinted with
permission from Science, vol. 155, issue 3760, page 282. Copyright 1967
American Association for the Advancement of Science.)
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goliash was interested in analyzing evolutionary relationships of cytochrome c se­
~1uences, which were becoming numerous. Walter Fitch (Figure 10.7), a biochemist
at the University of Wisconsin, developed a distance matrix method based on least
~quares. The distances were fractions of amino acids different between the partic­
~Ilar pair of sequences. The least squares was weighted, with greater observed
3istance given less weight. Although not discussed in explicitly statistical terms,
:ms was implicitly based on the realization that large distances would be more
~ rone to random error owing to the stochasticity of evolution.

Fitch and Margoliash described not only the least squares criterion that they
.lsed, but some of the details of the algorithm. This involved a method of clus­
:ering populations based on their distances, which was justified on grounds of
:: e molecular clock. In subsequent references to this work, "the Fitch-Margoliash
_ethod" has sometimes been considered to be any method making use of their

- -eighted least squares criterion to choose among trees, and sometimes it has been
:onsidered to be their detailed algorithm. Thus, sometimes the "Fitch-Margoliash
-:,ethod" has been criticized as sensitive to departure from a molecular clock, and
- =,metimes it has been praised for its insensitivity to the assumption of a molecu-
:.~ clock. Both views are correct, depending on which "Fitch-Margoliash method"
~ eing discussed.

I prefer to refer to the Fitch-Margoliash criterion, the weighted formula. Their
'=2~ailed algorithm is not widely used, but the criterion has prospered. Figure 10.8
-~0WS the phylogeny published in Fitch and Margoliash's original paper: It is
-:::'.larkably accurate, with some problems involving rattlesnakes and primates.

Some further confusion has resulted from some comments in the Fitch and
'argoliash paper identifying parsimony as the basis of their method; it is not at
.: a parsimony method.

It is interesting that Fitch, after introducing a major distance matrix method,
2nt on to make important developments in application of parsimony to molecu­

-~ sequences, while Dayhoff, who had done the first molecular parsimony paper,
:::-nt on to use distance matrix methods for most of her subsequent work.

- ,-ilson and Le Quesne introduce compatibility
-'-2 noted behavioral ecologist E. O. Wilson, an active student of systematics of
- :s. contributed to the development of numerical phylogenetics in a brief note

olson, 1965), which showed how one could test whether two 0/1 characters
-:c~e compatible, in the sense that both could evolve without reversals or paral­

_....5n1 on the same phylogeny. This was the test that looks across species to see
-ether all four combinations of the two characters (00,01, 10, and 11) occur. If

-:::. do not, the two characters are compatible. Camin and Sokal (1965) had a
_~e complex way of assessing compatibility and used it in some of the steps of

-:::: parsimony method.
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A chemical engineer who was an amateur entomologist, Walter Le Quesne,
built on this to suggest that one should find the tree that had as many characters
as possible compatible with it (Le Quesne, 1969). He did not use the word "com­
patibility" or actually state the criterion explicitly, though he made it clear that the
number of "uniquely derived characters" was the measure of the extent to which a
proposed phylogeny fit the data. Like Camin and Sokal, he used a table of compat­
ibilities between all pairs of characters. The algorithm he used was approximate,
involving dropping those characters that were incompatible with the most other
characters. This is not guaranteed to find the largest possible set of mutually com­
patible characters. The detailed algorithmics of doing so were worked out later,
by George Estabrook and his colleagues (see Chapter 8).

Jukes and Cantor and molecular distances
Although Fitch and Margoliash (1967) had made the first molecular application of
distance matrix methods, they used a distance that was a simple fraction of amino
acids that differed between the species. This was uncorrected for the effects of mul­
tiple replacements. The first distance correcting for this was the DNA sequence
distance of Jukes and Cantor (1969). They did so in the midst of an extensive dis­
cussion of the evolution of proteins. In that era, it was hard to get methodological
papers published, but much easier to publish extensive discussions of data, so no
separate paper was written discussing the formulas.

The authors were at the University of California, Berkeley. Thomas Jukes was
a pioneer of molecular evolution, one of the great experts on the evolution of the
genetic code. Charles Cantor, who later became well-known for his work in devel­
oping pulse-field gel electrophoresis, was at that time Jukes's graduate student.

Farris and Kluge and unordered parsimony
Although Camin and Sokal had given impetus to work on parsimony, their
method assumed irreversible change. Most users of morphological and molec­
ular parsimony would prefer not to assume either irreversibility, or that it was
known which character state was the ancestral one. However, the barrier to ha\"­
ing a parsimony method that allowed reversible change and did not assume that
the ancestral state was known was mostly algorithmic. Eck and Dayhoff (1966)
had apparently had an algorithm but did not explain it precisely. With Camin­
Sokal parsimony it is easy to assign states to hypothetical ancestors. If a node has
two descendants, whose states are 31 and 32, then one assigns to the node the state
that is the most recent common ancestor of those two states. For example, if the
states are ordered 0 --+ 1 --+ 2 --+ 3 and 0 is the ancestral state, and the two de­
scendants have states 2 and 3, then their common ancestor must have state 2 in a
parsimony reconstruction.

With unordered parsimony the matter is much less clear, and this stymied de­
velopment of these methods. This problem was overcome by Kluge and Farri::
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Figure 10.9: James S. Farris in 1983. His work in 1969 and 1970 gave
algorithms for counting the number of changes on a tree with char­
acters from a linear scale that did not assume that the ancestral state
was known. He gave the first clear description of numerical character
weighting and has made many other contributions to inference of phy­
logenies. He has been the main figure in founding the Willi Hennig
Society and persuading phylogenetic systematists that the parsimony
criterion plays a central role in the philosophical justification of their
field. (Photo courtesy of Vicki Funk.)

~.:. '9) and Farris (1970) in two papers that presented algorithms for reconstruct­
- ~ changes on a given tree, as well as algorithms for searching among trees for the
- ost parsimonious tree, They named the criterion Wagner parsimony in honor of
--:O'rb Wagner, whose groundplan divergence method (Wagner, 1961) helped stimulate

::> k on phylogeny algorithms.1 Arnold Kluge was a faculty member of the Mu­
"'" J. 1 of Zoology and the Department of Zoology of the University of Michigan,
--\.1m Arbor. J. S. Farris (shown in Figure 10.9) was a student in that department,

:...'1ough by the time the papers were published he had become a faculty mem­
-':"~ in the Department of Biological Sciences of the State University of New York
- 3:ony Brook.

"luge and Farris described algorithms, which were primarily due to Farris,
~ e\'aluating the smallest number of changes of state required by a data set on a

-\-agner may also be the only contemporary systematist who has been mentioned in a Holl)""ood
- .-i \Jew Leaf (1971), starring Walter Matthau and Elaine May.
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given tree. Farris's algorithm is similar to the one later introduced by Fitch (1971)
except that it is limited to states that are arranged in a linear order. Kluge and
Farris also described a sequential addition strategy for adding species to a tree.

Farris (1969b) also gave the first clear description of numerical weighting
procedures, introducing a "successive weighting" method that reconsidered the
weights as the tree construction proceeded.

Fitch and molecular parsimony
It remained for Walter Fitch (1971) to provide an algorithm for evaluating the num­
ber of changes of state on a tree when there were four unordered states, namely
the states A, C, G, and T in a DNA sequence. We have already described Fitch's
algorithm. His paper completed the description of methods for construction of
phylogenies from nucleotide sequences by parsimony.

Further work
It is interesting to note that, from the first papers by Sneath and by Sokal to Fitch's
work of 1971, only 14 years had elapsed (from Edwards and Cavalli-Sforza's 1963
abstract, only 8 years). Although many of these authors were unaware of each
others' work, the nearly-simultaneous rise of computers and of molecular biology
had created the conditions for numerical phylogenetic techniques to be introduced
and rapidly applied.

For the subsequent history of the field, the reader is referred to the references
in this book. For some sense of the bitter controversies that arose, see the book by
Hull (1988), the reaction to it (Farris and Platnick, 1989), and my own brief account
(Felsenstein,2001a).

What about Willi Hennig and Walter Zimmerman?
The story I have told above is not a very well-known one, though it reflects the
influences as I remember them. Many systematists are likely instead to attribute
the development of parsimony methods to Willi Hennig (1950, 1966) rather than
to Edwards and Cavalli-Sforza or Camin and Sokal. They feel that parsimony is
introduced implicitly, or even explicitly, in Hennig's book.

Hennig is justly famous for his strong and clear advocacy of phylogenetic clas­
sification and for clearly stating a method for reconstructing phylogenies based
on morphological characters. His methods spring from the earlier paper of the
botanist Walter Zimmerman (1931). An account of Zimmerman's life and his phy­
logenetic work is given by Donoghue and Kadereit (1992).

Hennig was the major advocate of monophyletic classification, and his work
had an important effect in clarifying thought about classification and inferring
phylogenies. However, neither he nor Zimmerman specified what to do if there
was conflict between evidence from different characters. Neither introduced the
parsimony method, or any other algorithmic approach. Hennig (1966, p. 121) did
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~3X that "it becomes necessary to recheck the interpretation of [the] characters" to
'::etermine whether parallelism has occurred, or whether the characters in different
~?ecies are not homologous. But he does not give any specific algorithm. He does
~3.\' (1966, p. 121) that "the more certainly characters interpreted as apomorphous
. ot characters in general) are present in a number of different species, the better
~0w1ded is the assumption that these species form a monophyletic group." (Farris,
:-.:luge, and Eckardt (1970) argue, giving the original German, that Hennig ought to
.-'l.\·e been translated as saying that "the more characters certainly interpretable as
.=:.?omorphous ..."). In any case, Hennig gave no numerical method for assessing
:"'-:1S.

Some systematists have asserted that the parsimony method is implied by Hen-
-":g's (1966, p. 121) "auxiliary principle." For instance, Farris (1983, p. 8) says that

I shall use the term in the sense I have already mentioned: most par­
simonious genealogical hypotheses are those that minimize require­
ments for ad hoc hypotheses of homoplasy. If minimizing ad hoc hy­
potheses is not the only connotation of "parsimony" in general use-
age, it is scarcely novel. Both Hennig (1966) and Wiley (1975) have
advanced ideas closely related to my useage. Hennig defends phylo­
genetic analysis on the grounds of his auxiliary principle, which states
that homology should be presumed in the absence of evidence to the
contrary. This amounts to the precept that homoplasy ought not be
postulated beyond necessity, that is to say parsimony.

:-:ennig's discussion of his auxiliary principle is concerned with the case in which
.:>nly one character can certainly or with reasonable probability be interpreted as

-? morphous." He was concerned with whether one ought to infer a relationship
::-.=:.sed only on a single character, and says (1966, p. 121) that

In such cases it is impossible to decide whether the common charac­
ter is indeed synapomorphous or is to be interpreted as parallelism,
homoiology, or even as convergence. I have therefore called it an "aux­
iliary principle" that the presence of apomorphous characters in dif­
ferent species "is always reason for suspecting kinship [i.e. that the
species belong to a monophyletic group], and that their origin by con­
vergence should not be assumed a priori" (Hennig 1953). This was
based on the conviction that "phylogenetic systematics would lose all
the ground on which it stands" if the presence of apomorphous char­
acters in different species were considered first of all as convergences
(or parallelisms), with proof to the contrary required in each case.

One can have considerable sympathy for Hennig's position here, without inter­
::-:-eting it as a rule for reconciling conflicts among characters. Indeed, in this case
: :.s directed at cases where there is only one character providing the evidence,
-.:cd hence no possible conflict. Hennig is concerned with whether one ought to
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accept the evidence of one character, where there is no other character providing
support, and concludes that to be self-consistent, one ought to accept its evidence
at face value. It is not obvious how to get from this "auxiliary principle" to the
parsimony criterion.

Farris, Kluge, and Eckardt (1970) were the first authors to attempt a formal
connection between Hennig's methods and numerical parsimony methods. After
careful discussion of other steps in the logic, they confronted the issue of how to
deal with character conflict. They cited as their axiom AIV Hennig's statement,
cited above, that the more apomorphic (derived) characters a group shares, the
better founded is the assumption that it is monophyletic. But then they note (Far­
ris, Kluge, and Eckardt, 1970, p. 176) that

Unfortunately, AIV is not sufficiently detailed to allow us to select a
unique criterion for choosing a most preferable tree. We know that
trees on which the monophyletic groups share many steps are prefer­
able to trees on which this is not so. But AIV deals only with single
monophyletic groups and does not tell us how to evaluate a tree con­
sisting of several monophyletic groups. One widely used criterion­
parsimony-could be used to select trees. This would be in accord
with AIV, since on a most parsimonious tree OTUs [tips] that share
many states (this is not the same as the OTUs' being described by many
of the same states) are generally placed together. We might argue that
the parsimony criterion selects a tree most in accord with AIV by "av­
eraging" in some sense the preferability of all the monophyletic groups
of the tree. Other criteria, however, may also agree with AIV

This honest assessment may serve as a caution to those who wish to derive
parsimony directly from Hennig's work.

Hennig and Zimmerman did not invent parsimony. But they did put forward
clear principles for inferring phylogenies when there was no conflict between dif­
ferent characters. And they were the primary figures in placing monophyletic clas­
sification at the forefront of taxonomic thinking. As such, they played an essential
role in preparing systematists for algorithmic methods.

Different philosophical frameworks
This book has been written from a statistical viewpoint. Methods have been evalu­
ated according to their properties as statistical estimators, with due consideration
of criteria such as consistency. There are many scientists (particularly systema­
tists) who reject this as the proper framework for evaluating methods of inferring
phylogenies. It is worth briefly examining their reasoning, as otherwise the reader
might mistake these frameworks for a statistical one. These nonstatistical views
have tended to be held by some systematists of the "phylogenetic systematics"
school.
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Hypothetico-deductive
\Iany of the early expositions of phylogenetic systematics in English adopted a
hypothetico-deductive view. According to it, characters falsify potential phyloge­
nies if they cannot evolve in a unique and unreversed fashion on them. We can
also say that two characters falsify each other if there is no tree on which they can
-::,oth evolve in unique and unreversed fashion.

In an influential article, Wiley (1975) identified this approach with the scientific
:11ethods advocated by Karl Popper (1968a, b), and with Hennig's phylogenetic
~\-stematics. Although he mentioned parsimony only in passing, he declared (p.
~-±3) that "the phylogenetic hypothesis which has been rejected the least number
,:If times is preferred over its alternates."

A more detailed discussion of this view was given by Gaffney (1979), who de­
:-:\-ed parsimony from the hypothetico-deductive method, which he describes as
2wmplified in the work of Popper (1968a, b). He says that "the use of derived char­
3.cter distributions as articulated by Hennig (1966) appears to fit the hypothetico­
'::'eductive model best." When he deals with character conflict, Gaffney (1979, pp.
::'S-99) finds parsimony to be directly derivable from his hypothetico-deductive
3.?proach:

In any case, in a hypothetico-deductive system, parsimony is not
merely a methodological convention, it is a direct corollary of the fal­
sification criterion for hypotheses (Popper, 1968a, pp. 144-145). When
we accept the hypothetico-deductive system as a basis for phylogeny
reconstruction, we try to test a series of phylogenetic hypotheses in the
manner indicated above. If all three of the three possible three-taxon
statements are falsified at least once, the least-rejected hypothesis re­
mains as the preferred one, not because of an arbitrary methodolog­
ical rule, but because it best meets our criterion of testability. In or­
der to accept an hypothesis that has been successfully falsified one or
more times, we must adopt an ad hoc hypothesis for each falsification
.... Therefore, in a system that seeks to maximize vulnerability to criti­
cism, the addition of ad hoc hypotheses must be kept to a minimum to
meet this criterion.

To Gaffney (1979, p. 98) this ought not be a controversial matter: "It seems to
-e that parsimony, or Ockham's razor, is equivalent to 'logic' or 'reason' because
-;:. -method that does not follow the above principle would be incompatible with
-:\\- kind of predictive or causal system."

Eldredge and Cracraft (1980, p. 69) are careful to point out that

"Falsified" implies that the hypotheses are proven false, but this is not
the meaning we (or other phylogenetic systematists) wish to convey. It
may be that the preferred hypothesis will itself be "rejected" by some
synapomorphies.
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The hypothetico-deductive approach to parsimony is also the basis for the dis­
cussion in the book by Wiley (1981, p. 111):

In other words, we have no external criterion to say that a particular
conflicting character is actually an invalid test. Therefore, saying that
it is an invalid test simply because it is unparsimonious is a statement
that is, itself, an ad hoc statement. With no external criterion, we are
forced to use parsimony to minimize the total number of ad hoc hy­
potheses (Popper, 1968a: 145). The result is that the most parsimonious
of the various alternates is the most highly corroborated and therefore
preferred over the less parsimonious alternates.

It is also invoked by Farris (1983, p. 8):

Wiley [(1975)] discusses parsimony in a Popperian context, character­
izing most parsimonious genealogies as those that are least falsified
on available evidence. In his treatment, contradictory character distri­
butions provide putative falsifiers of genealogies. As I shall discuss
below, any such falsifier engenders a requirement for an ad hoc hy­
pothesis of homoplasy to defend the genealogy. Wiley's concept is then
equivalent to mine.

One might note that these discussions do not distinguish clearly between par­
simony and compatibility methods. With small numbers of species, there is no
difference between these methods. (For example, with 0/1 characters where an­
cestral character states are not specified, parsimony and compatibility methods
will be identical unless there are at least 6 species.) When Wiley (1981, p. 111)
speaks of accepting the hypothesis that "requires the fewest ad hoc hypotheses
about invalid character tests," we are faced with the issue of how to count invalid
character tests. If we count an entire column of the character state table (a character
which can take alternative character states) as valid or invalid, then in maximizing
the number of valid tests we are carrying out a compatibility method. However,
to most phylogenetic systematists a "character" is a unique derivation of a char­
acter state. When a character state arises three times on a phylogeny, the issue is
whether we are to count that as one invalid character test or two, and whether the
decision is implicit in the works of Popper, William of Ockham, or Hennig. This
question is not directly dealt with in any of the philosophical writings of phyloge­
netic systematists.

Phylogenetic systematists have tended to back parsimony and denounce com­
patibility. This seems to come, not from any philosophical principle, but from
the feeling that compatibility discounts a character's value too rapidly, that there
is still good information to be had from characters that have been observed to
change more than once on a tree. It has also been a result of the greater readi­
ness of advocates of parsimony to ally themselves with phylogenetic systematist5
in the taxonomic wars.
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Logical parsimony
Beatty and Fink (1979) took a different approach to the logical foundations of parsi­
mony methods. They discussed the application of Popper's framework and were
5 'eptical that it was the proper justification for parsimony. They concluded (p.
6.50) that

We can account for the necessity of parsimony (or some such consid­
eration) because evidence considerations alone are not sufficient. But
we have no philosophical or logical argument with which to justify the
use of parsimony considerations - a not surprising result, since this
issue has remained a philosophical dilemma for hundreds of years.

=':1 effect they propose relying on parsimony as its own justification, though they
io suggest that the ultimate criterion is predictiveness of classifications, and that
:':Lis will be settled by empirical experience.

Kluge and Wolf (1993, p. 196) seem to come to the same conclusion. Listing a
s2ries of methods that they have been criticizing, they comment:

Finally, we might imagine that some of the popularity of the afore­
mentioned methodological strategies and resampling techniques, and
assumption of independence in the context of taxonomic congruence
and the cardinal rule of Brooks and McLennan (1991), derives from the
belief that phylogenetic inference is hypothetico-deductive (e.g. Nel­
son and Platnick, 1984: 143-144), or at least that it should be. Even the
uses to which some might put cladograms, such as "testing" adapta­
tion (Coddington, 1988), are presented as hypothetico-deductive. But
this ignores an alternative, that cladistics, and its uses, may be an ab­
ductive enterprise (Sober, 1988). We suggest that the limits of phylo­
genetic systematics will be clarified considerably when cladists under­
stand how their knowledge claims are made (Rieppel, 1988; Panchen,
1992).

Kluge and Wolf have thus cut loose from the hypothetico-deductive frame-
·ork, but they continue to consider parsimony as the foundation of their infer­

=::'.-:es. Their position can be described as a "logical-parsimony" view, as they take
:-.o.:-simony itself as the basic principle, rather than deriving it from other (Poppe­
--:-"-'.'1, falsificationist, or hypothetico-deductive) arguments.

Sober (1988), whom Kluge and Wolf cite with approval, does not take parsi­
-onv as its own justification, but justifies parsimony in terms of statistical infer­
=::'.(2, presenting a derivation that he believes shows that parsimony is generally a
- .o.\imum likelihood method. He is quite pointedly critical of Popperian falsifica-
- _:Usm. His basic criticism (p. 126) of Popper is that

Popper's philosophy of science is very little help here, because he has
little to say about weak falsification. Popper, after all is a hypothetico­
deductivist. For him, observational claims are deductive consequences
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of the hypothesis under test .... Deductivism excludes the possibility
of probabilistic testing. A theory that assigns probabilities to various
possible observational outcomes cannot be strongly falsified by the oc­
currence of any of them. This, I suggest, is the situation we confront in
testing phylogenetic hypotheses. (AB)C is logically consistent with all
possible character distributions (polarized or not), and the same is true
of A(BC). [Emphasis in the original]

Thus, cut loose from a Popperian foundation, parsimony must either rely on a
statistical justification, or stand on its own. Sober chooses the former; Kluge and
Wolf, the latter.

Logical probability?
More recently Kluge (1997a) has preferred to describe his position as using "log­
ical probability." In spite of the name, it is distinct from any parametric statis­
tical framework. Siddall and Kluge (1997) have argued against "probabilism,"
the statistical approach to inferring phylogenies, identifying it as "verification­
ist," whereas they prefer to be "refutationist." Kluge (1997a, b, 1998) prefers to
base inferences on the "degree of corroboration," a measure due to Karl Popper.
Popper's formula includes terms such as Prob (D IT) and Prob (D), where D is
the data, and T the hypothesis about the tree. (I have omitted the symbol b for
the "background knowledge" because it appears in every term.) The first term is
the likelihood. The second cannot be computed unless we sum over all possible
trees, weighting each by its prior probability. Thus Popper's formula assumes a
Bayesian inference framework, as only in that case are prior probabilities of trees
assumed to be available. As Popper was an opponent of Bayesianism (Eliott Sober,
personal communication) his corroboration formula seems fundamentally at odds
with his other views.

De Queiroz and Poe (2001) and Faith and Trueman (2001) have argued against
Kluge's use of Popper's measure of degree of corroboration. De Queiroz and Poe
conclude that likelihood is compatible with Popper's approach, but that parsi­
mony can only be justified by it if further assumptions allow us to compute the
relevant probabilities. They did not discuss whether Popper's measure requires a
Bayesian framework, but they do note a statement by Popper (1959) that likelihood
is an adequate measure of the degree of corroboration when the term Prob (D) is
small enough to be ignored. They argue that Prob (D) can be ignored as it does
not affect which hypothesis is preferred. Their view has been opposed by Kluge
(2001), who quotes Popper (1959) saying that he intends his calculation of corrobo­
ration to be applied only to "the severest tests we have been able to design." Kluge
cites Tuffley and Steel's no-common-mechanism result as establishing a direct con­
nection between parsimony and likelihood. He does not give any direct argument
that evaluating parsimony constitutes the severest test available.

Faith and Trueman (2001) make a broader argument that Popper's corrobo­
ration formula is compatible with the use of many measures of goodness-of-fit,
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including likelihood, parsimony and others. They reject the notion that there is
:1 direct connection between Popperian corroboration and parsimony. They pay
considerable attention to the term for Prob (D). They do not see it as requiring a
Bayesian approach, but propose that the PTP randomization procedure of Archie
1989) and Faith and Cranston (1991) be used to evaluate it, as the probability that

- e goodness-of-fit for a tree would occur when the data are randomized so that
.' hylogenetic structure is eliminated. This randomization procedure is discussed
:'-~lrther in Chapter 20. It is not obvious to me that Popper's term for Prob (D) is
~,tended to allow this type of randomization, rather than a Bayesian calculation.

In Kluge's framework, shared derived states (synapomorphies) are regarded as
.:nprobable when not predicted by a tree, and thus the tree that requires the fewest
:-: them has the highest value of Popper's corroboration measure. De Queiroz and
?oe point out that these probabilities cannot be calculated unless more is known
=."=,out probabilities of change in the characters in various branches of the tree. Faith
=--,d Trueman (2001), in a similar discussion, point to Prob (D) as ill·defined in
~:-e logical parsimony framework. I would add that it is not clear that it can be
::llculated in any framework other than a Bayesian one.

Consideration of the cases in which parsimony is inconsistent will make it ap­
::-arent that the probability of a synapomorphy given the wrong tree can some­
-~":1es be higher than its probability given the right tree. Therefore, a count of the
-·J.mber of synapomorphies cannot, by itself, allow us to calculate Prob (D IT) or
-,"'pper's measure. We also would need to know whether we are in one of these
_-convenient cases, and we would need to consider other aspects of the data D in
':::dition to the number of synapomorphies. This "logical probability" lacks the
J.:?rails necessary to make it actually be a probability. In their absence, it would be
::-::. er for the approach to be called a logical-parsimony approach.

Farris (1999, 2000a) invokes Popper's corroboration measure, arguing that it is
--:- :.ximized when likelihood is maximized. He then points to Tuffley and Steel's
~ ~97) no-cammon-mechanism result and argues that when a sufficiently realistic

- ..'del of variation of evolutionary rates among sites is adopted, parsimony ob­
~ s the same tree as likelihood and hence the tree favored by Popper's measure.

:-.:1\'e already noted that in such cases the inference can be inconsistent. In such
. :ase Popper's formula is corroborating the wrong tree! If more is known about
'0: distribution of evolutionary rates, one might be able to use a more specific

- ~ el that achieved consistency. In that case the likelihood method would not be
J.:::1tical to parsimony.

~"iticisms Of statistical inference
,":'.'ocates of the hypothetico-deductive and logical-parsimony frameworks are
-.:::ed in one important respect: They reject statistical inference as a correct model
:: inferring phylogenies. The basic objection most often heard is that statistical

:: ~ roaches require us to know too much about the details of the evolutionary
-.:-cess. For example, Farris (1983, p.17) declares that:
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The statistical approach to phylogenetic inference was wrong from the
start, for it rests on the idea that to study phylogeny at all, one must
first know in great detail how evolution has proceeded.

Siddall and Kluge (1997) make a similar argument. Siddall (2001, p. 396), oppos­
ing the views of De Queiroz and Poe (2001), makes a strong distinction between
/lfrequency probability (i.e. 'implicit probabilistic assumptions') and logical proba­
bility [i.e., that the hypothesis of fewer ad hocisms is the one in which we should
have a higher degree of rational beliefJ./I

One can have similar doubts about any statistical inference: If we toss coins,
are the different tosses really independent and really identical processes? We must
always temper our detailed statistical conclusions with a skepticism of the model
from which they arise. In the case of tossing coins, the model may be so close
to true that we accept it as given. Systematics lies close to the other end of the
scale: The models are only rough approximations of reality, and it is worth re­
membering that and worrying about it. Of the statistical methods we use, some
(such as maximum likelihood) make use of all details of the model. Others, such as
bootstrapping, use empirical information about the level of conflict of the charac­
ters, and thus they may rely on the characters being independent and chosen from
some pool of characters, but they rely less on the details of a probability model of
evolution.

However, there is always some reliance on the model. Critics of the statisti­
cal approach from the logical-parsimony school usually believe that they have a
method (parsimony) that makes only noncontroversial assumptions. When par­
simony is examined as a statistical method, this does not prove to be the case ­
there are implicit assumptions about rates of change in different lineages. From
within the logical-parsimony framework it seems difficult to examine the assump­
tions of parsimony.

A second criticism of statistical inference rejects the use of at least some kinds
of statistical methods, based on the fact that evolutionary events are historical, and
therefore not repeatable:

/I As an aside, the fact that the study of phylogeny is concerned with
the discovery of historical singularities means that calculus probability
and standard (Neyman-Pearson) statistics cannot apply to that histori­
cal science .... /1 (Kluge, 1997a).

In a later paper, Kluge (2002) expands on this argument, declaring that /lthe prob­
abilities of the situation peculiar to the time and place of the origin of species are
unique./I

One wonders whether this position is tenable. Suppose that we toss a coin 100
times and get 58 heads. We can regard the experiment as repeatable and infer the
probability of heads. But suppose that, after we finish tossing, the coin rolls to the
floor and then down a drain and disappears forever. Are not the 100 tosses now
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:storical singularities? Yet clearly nothing important has changed that prevents
:.IS from inferring the probability of heads!

Although I have made clear where my own loyalties lie, in the end questions
:":'.'e these must be settled by the readers of this book.

The irrelevance of classification
':;0 far in this book I have said little or nothing about classification. Almost all
::\·stematists have considered taxonomy, the naming of organisms and their place­
.. ent in an hierarchical classification, to be the basic task of systematics. The
~onstruction and maintenance of a system of classification has been loudly de­
~:aimed as the most important objective of systematics, its unifying theme. This
:::nphasis has been made by systematists of all three major schools, evolutionary­
::::stematic, phylogenetic, and phenetic. Textbooks emphasize the point, and after­
.::.nner speakers concentrate on it. And yet ... attending the annual meeting of a
~0ntemporary systematic society, such as the Society of Systematic Biology, will
~2\·eal that few of the speakers are concerned with classification. They spend
~,eir time making estimates of the phylogeny and using them to draw conclu­
:::ons about the evolution of interesting characters. They use phylogenies a great
':2al. But, having an estimate of the phylogeny in hand, they do not make use of
:..:".e classification.

This is a major shift in interest, and textbooks, after-dinner speeches, histori­
c.. s of science, and philosophers of science have not yet caught up. There has
:"-2en a major shift away from interest in classification. The after-dinner speakers
::.emselves do not practice what they preach. The delimitation of higher taxa is
-,' longer a major task of systematics, as the availability of estimates of the phy-
_-seny removes the need to use these classifications. Thus the outcome of the wars
··er classification matters less and less. A phylogenetic systematist and an evolu­
~0nary systematist may make very different classifications, while inferring much
:..-e same phylogeny. If it is the phylogeny that gets used by other biologists, their
:.~ferences about how to classify may not be important.

I have consequently announced that I have founded the fourth great school
: classification, the It-Doesn't-Matter-Very-Much school. Actually, systematists
··oted with their feet" to establish this school, long before I announced its exis­

-:::lce.
The terminology is also affected by the lingering emphasis on classification.

~imy systematists believe that it is important to label certain methods (primarily
::.rsimony methods) as "cladistic" and others (distance matrix methods, for ex­
·21ple) as "phenetic." These are terms that have rather straightforward meanings

: en applied to methods of classification. But are they appropriate for methods of
.:-..:'erring phylogenies? I don't think that they are. Making this distinction implies
.. aJ something fundamental is missing from the "phenetic" methods, that they
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are ignoring information that the "cladistic" methods do not. In fact, both meth­
ods can be considered to be statistical methods, making their estimates in slightly
different ways.

Similarly, we might infer the mean of a normal distribution from the sample
mean or from the sample median. These differ in their statistical properties, but
both are legitimate statistical estimates. Surprisingly many systematists use ter­
minology for phylogeny methods which denies a similar legitimacy to distance
matrix methods. Unfortunately, the passions that animate debates over classifica­
tion have carried over into the debates over methods of inferring phylogenies. In
this book we will give the terms "cladistic" and "phenetic" a rest and consider all
approaches as methods of statistical inference of the phylogeny.
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Distance matrix methods

-:-3.jor family of phylogenetic methods has been the distance matrix methods, intro­
_:::od by Cavalli-Sforza and Edwards (1967) and by Fitch and Margoliash (1967;
_ 3.150 Horne, 1967). They were influenced by the clustering algorithms of Sakal

- .::. Sneath (1963). The general idea seems as if it would not work very well: cal­
.=.~e a measure of the distance between each pair of species, and then find a tree

-.: ~ __ redicts the observed set of distances as closely as possible. This leaves out
_~ormation from higher-order combinations of character states, reducing the
~ matrix to a simple table of pairwise distances. One would think that this
-.:~ leave out so many of the subtleties of the data that it could not possibly do a
-.:':1able job of making an estimate of the phylogeny.
-=omputer simulation studies show that the amount of information about the
:-=,;:>eny that is lost in doing this is remarkably small. The estimates of the phy­

_ =:-'-\- are quite accurate. Apparently, it is not common for evolutionary processes
_=-3.st not the simple models that we use for them) to leave a trace in high-order

- :c;nations of character states without also leaving almost the same information
--::: pairwise distances between the species.

-=-:-:.e best way of thinking about distance matrix methods is to consider dis-
- .:=-~ as estimates of the branch length separating that pair of species. Each dis-

.:::: infers the best unrooted tree for that pair of species. In effect, we then have
-:;:.e number of (estimated) two-species trees, and we are trying to find the n­
':_:::5 tree that is implied by these. The difficulty in doing this is that the indi-

- ~.=.~ distances are not exactly the path lengths in the full n-species tree between
_ [\\,0 species. They depart from it, and we need to find the full tree that does

::-:::5t job of approximating these individual two-species trees.

=::-anch lengths and times
:-.:-ance matrix methods, branch lengths are not simply a function of time.
_ :-eflect expected amounts of evolution in different branches of the tree. Two

147
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branches may reflect the same elapsed time (as when they are sister lineages in a
rooted phylogeny), but they can have different expected amounts of evolution. In
effect, each branch has a length that is a multiple 1\ of the elapsed time t i . The
product Titi is the branch length. This allows different branches to have different
rates of evolution.

The least squares methods
We start by describing the least squares methods, which are some of the best-justified
ones statistically. The distances themselves also need some discussion, as they
must have particular mathematical and statistical properties to work with these
methods. We also describe one variant, the minimum evolution methods, and two
quicker but more approximate distance matrix methods: UPGMA clustering and
the neighbor-joining method.

The fundamental idea of distance matrix methods is that we have an observed
table (matrix) of distances (Dij ), and that any particular tree that has branch
lengths leads to a predicted set of distances (which we will denote the dij ). It
does so by making the prediction of the distance between two species by adding
up the branch lengths between the two species. Figure 11.1 shows a tree and the
distance matrix that it predicts. We also have a measure of the discrepancy be­
tween the observed and the expected distances. The measure that is used in the
least squares methods is

n n

Q L L 'Wij(Dij - dij)2

i=l j=l

(11.1)

where the 'Wij are weights that differ between different least squares methods.
Cavalli-Sforza and Edwards (1967) defined the unweighted least squares method
in which Wij = 1. Fitch and Margoliash (1967) used Wij = 1/D;j' and Beyer et
al. (1974) suggested 'Wij = 1/D ij . We are searching for the tree topology and the
branch lengths that minimize Q. For any given tree topology it is possible to solve
for the branch lengths that minimize Q by standard least squares methods.

The summation in equation 11.1 is over all combinations of i and j. Note that
when i = j, both the observed and the predicted distances are zero, so that no
contribution is made to Q. One can alternatively sum over only those j for which
j -I i.

Least squares branch lengths
To find the branch lengths on a tree of given topology using least squares we must
minimize Q. The expression for Q in equation 11.1 is a quadratic in the branch
lengths. One way that it can be minimized is to solve a set of linear equations.
These are obtained by taking derivatives of Q with respect to the branch lengths,
and equating those to zero. The solution of the resulting equations will minimize
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B

Figure 11.1: A tree and the distances it predicts, which are generated
by adding up the lengths of branches between each pair of species.

In equation 11.1 the dij are sums of branch lengths. Figure 11.2 shows the
-~e tree with variables for the branch lengths. If the species are numbered in
~: abetic order, dl4 will be the expected distance between species A and D, so

-.-:.: it is Vl + V7 + V4. The expected distance between species Band E is V2.5 =

- 1'6 + V7 + V2·

3uppose that we number all the branches of the tree and introduce an indicator
-~able Xi,j,b which is 1 if branch k lies in the path from species i to species j and
:~erwise. The expected distance between i and j will then be

_.::~ation11.1 then becomes

dij = L Xij.k, Vk

k

(11.2)

(11.3)
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A

E _...:::.--{

c
D

B

Figure 11.2: The same tree as the previous figure, with the branch
lengths as variables.

If we differentiate Qwith respect to one of the v's such as t·k, and equate the deriva­
tive to zero, we get the equation

o (11.4)

The -2 may be discarded.

One way to make a least squares estimate of branch lengths is to solve this set of
linear equations. There are both exact and iterative methods for doing this. In the
case of Cavalli-Sforza and Edwards's original unweighted least squares methods,
where the weights Wij are all I, the equations are particularly simple. This will
lead us to a nice matrix form, and the more general case can then be put in that
form. (The reader who is prone to panic attacks at the sight of matrices should
skip the rest of this subsection and the one on generalized least squares as well.)
For the unweighted case, for the tree in Figures 11.1 and 11.2, the equations are:

DAB + D AC + DAD + DAE

DAB + DEC + D BD + DIJE

DAc + DEC + DCD + DCE

DAD + D BD + DCD + DDE

DAE + D BE + DeE + DDE

DAc + D AE + D Bc

+DBE + DCD + DDE

DAB + DAD + D Bc

+DcD + DBE + DDE

4Vj + V2 + V3 + v4 + V5 + 2V6 + 2V7

'Vj + -JV2 + V3 + v4 + 'V5 + 2V6 + 3V7

Vj + v2 + 4V3 + V4 + v5 + 3V6 + 2V7

Vl + v2 + V3 + 4V4 + v5 + 2V6 + 3V7

Vj + V2 + v;, + V4 + 4V5 + 3V6 + 2V7

2Vl + 3V2 + 2V3 + 3V4 + 2V5 + 4V6 + 6V7

(11.5)
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0\\' suppose that we stack up the D ij , in alphabetical order, into a vector,

d

DAB

DAc

D.4.D

D AE

Dnc

DBD

DBE

DCD

D CE

DDE

(11.6)

---2 coefficients Xij,k can then be arranged in a matrix, each row corresponding to
--2 Dij in that row of d and containing a 1 if branch k occurs on the path between

--:-,:-cies i and j. For the tree of Figures 11.1 and 11.2,

1 1 0 0 0 0 1

1 0 1 0 0 1 0

1 0 0 1 0 0 1

1 0 0 0 1 1 0

0 1 1 0 0 1 1
(11.7)X

0 1 0 1 0 0 0

0 1 0 0 1 1 1

0 0 1 1 0 1 1

0 0 1 0 1 0 0

0 0 0 1 1 1 1

:e that the size of this matrix is 10 (the number of distances) by 7 (the number
:-~anches). If we stack up the Vi into a vector, in order of i, equations 11.5 can be
-:-:essed compactly in matrix notation as:

(11.8)

....: iplying on the left by the inverse of XTX, we can solve for the least squares
-.=....-.ch lengths:

(11.9)
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This a standard method of expressing least squares problems in matrix notation
and solving them. When we have weighted least squares, with a diagonal matrix
of weights in the same order as the D ij:

W.4.B 0 0 0 0 0 0 0 0 0

0 WAC 0 0 0 0 0 0 0 0

0 0 WAD 0 0 0 0 0 0 0

0 0 0 ViAE 0 0 0 0 0 0

0 0 0 0 WBC 0 0 0 0 0
W

0 0 0 0 0 WIJD 0 0 0 0

0 0 0 0 0 0 WBE 0 0 0

0 0 0 0 0 0 0 WCD 0 0

0 0 0 0 0 0 0 0 WCE 0

0 0 0 0 0 0 0 0 0 WDE

(11.10)

then the least squares equations can be written

XTWd = (XTwx) V (11.11)

and their solution
v = (XTWX) -1 XTWd (11.12)

Again, this is a standard result in least squares theory, first used in least squares
estimation of phylogenies by Cavalli-Sforza and Edwards (1967).

One can imagine a least squares distance matrix method that, for each tree
topology, formed the matrix XTX (or XTWX), inverted it, and obtained the es­
timates in 11.9 (or 11.12). This can be done, but it is computationally burden­
some, even if not all possible topologies are examined. The inversion of the matrix
XTWX takes on the order of n 3 operations for a tree of n tips. In principle, this
would need to be done for every tree topology considered. Gascuel (1997) and
Bryant and Waddell (1998) have presented faster methods of computation that
compute the exact solutions of the least squares branch length equations, taking
advantage of the structure of the tree. They cite earlier work by Vach (1989), Vach,
and Degens (1991), and Rzhetsky and Nei (1993). For a tree with n tips these fast
methods save at least a factor of n (and for the unweighted cases, n 2

) operations.
I have presented (Felsenstein, 1997) an iterative method for improving branch

lengths. It uses a "pruning" algorithm similar to the one which we will see in the
next chapter for likelihood. It computes distances between interior nodes in the
tree and tips, and between in.terior nodes. These distances depend on the current
estimates of the branch lengths. Using these new distances, improved estimates
of branch lengths can then be obtained. The method is of the "alternating least
squares" type, in which least squares estimates of some variables are obtained,
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=--en the values of the others, and this is done successively for different variables
:.:-anch lengths, in the present case). They converge fairly rapidly on the correct
':':-les. Although they are iterative, they do enable us to constrain the branch

-=:-_::>ths to be nonnegative, which may be helpful as negative branch lengths have
- '::liological interpretation.

This algorithm uses, at each node in the tree, arrays of distances from there to
_.:..:h other node. These can play the role that the conditional score arrays play in
--e Fitch and Sankoff algorithms for computing the parsimony score of a tree. Like
~ -:,se, these arrays can be used to economize on computations when rearranging
--2 tree. This is of less use in the least squares distance matrix methods than it is in
-2 parsimony methods, because the branch lengths in a subtree typically do not

':::::'lain completely unaltered when other regions of the tree are changed. We will
--::"2 similar quantities when we discuss likelihood methods.

::: ilding the least squares tree topology
::-:-- g able to assign branch lengths to each tree topology, we need to search among
-::-2 topologies. This can be done by the same methods of heuristic search that

::':e discussed in Chapter 4. We will not repeat that discussion here. No one
-..:.~ ,-et presented a branch-and-bound method for finding the least squares tree
::: .:. -tly. Day (1986) has shown that finding the least squares tree is an NP-complete
:.:-o~ lem, so that polynomial-time algorithms for it are unlikely to exist.

~ote that the search is not only among tree topologies, but also among branch
:::-~ths. When we make a small change of tree topology, the branch lengths of
--::'-resulting tree should change mostly in the regions that are altered, and rather

:::e elsewhere. This means that the branch lengths from the previous tree provide
--= '.,-ith good starting values for the branch lengths on the altered tree. My own
-~,ative algorithm for estimating branch lengths (Felsenstein, 1997) retains partial
-~"nnation at interior nodes of the tree. Thus we not only retain the previous
:.:-:.nch lengths, but we do not need to recompute the partial information at the
- :2rior nodes, at least not the first time they are used. Another iterative algorithm

.:- estimating branch lengths is described by Makarenkov and Leclerc (1999).
\ \'e defer coverage of the highly original least squares method of De Soete

_:':33) until the next chapter, as it uses quartets of species.

The statistical rationale
--e impetus behind using least squares methods is statistical. If the predicted dis­
'-:ces are also expected distances, in that each distance has a statistical expectation

_:-.lal to its prediction on the true tree (equal to the sum of the intervening branch
::::- ::>ths), then we can imagine a statistical model in which the distances vary inde­

:-=_ dently around their expectations and are normally distributed around them.
- :~s were true, the proper least squares estimate would minimize the sum of
,,:::J.ares of the standardized normal deviates corresponding to the different dis­
.:....-,-es. The deviation of an individual distance from its expectation would be



154 Chapter 11

Dij - IE: (Dij ), and the variance of this quantity would be Val' (D;j)' We can make
a squared standardized normal variate by dividing the square of the deviation by
the variance. The sum of squares would then be

n ]2Q = ~ ~. [Dij -IE:(Di,j)
LJ LJ Val' (D)
i=l j:j#i 'J

(11.13)

The expectation IE: (Di,j) is computed from the predicted distance, the result of
summing branch lengths between the species. The variance in the denominator
depends on the details of the process that produced these distances. In effect,
Cavalli-Sforza and Edwards's least squares methods are assuming equal variances
for all the distances, and Fitch and Margoliash are assuming that the error (and
hence the standard deviation) is proportional to the distance. Fitch and Margo­
liash approximate the variance (the square of that standard deviation) by using
the square of the observed distance.

The problem with this framework is the assumption that the observed dis­
tances vary independently around their expectations. If the distances are derived
from molecular sequences, they will not vary independently, as random evolu­
tionary events on a given internal branch of the tree can simultaneously inflate
or deflate many distances at the same time. The same is true for distances for re­
striction sites and gene frequencies. DNA hybridization techniques would seem
to be likely to satisfy the assumption, however. Their errors have much more to
do with experimental error than with random evolutionary events. But alas, DNA
hybridization values are computed by standardizing them against hybridizations
of a species against its own DNA, and those standards are shared by multiple hy­
bridization values. The result is a lack of independence even in this case.

Fortunately, it can be shown that least squares methods that do not have cor­
rections for the correlations among data items will nevertheless at least make con­
sistent estimates, that they will converge to the true tree as the size of data sets
becomes large, even if the covariances are wrongly assumed to be zero and the
variances are wrongly estimated. All that is necessary is that the expectations be
correct.

I have discussed this approach to justifying distance matrix methods (Felsen­
stein, 1984), pointing out that it does not require that there be any paths through
the data space to the observed data that exactly achieve the estimated branch
lengths. For a contrary view see Farris's arguments (Farris, 1981, 1985, 1986) and
my reply (1986).

Generalized least squares
The least squares methods as formulated above ignore the correlations between
different distances. It is possible to modify the methods, in straightforward fash­
ion, so that they take the correlations into account. This should be statistically
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=-:-eferable. However, one pays a large computational cost for taking the corre­
. ::.ons into account. Chakraborty (1977) presented a least squares method for

-",es under a molecular clock. He assumed that the covariances of distances were
-:-oportional to the shared path length on the paths connecting the two pairs of
-:-e-ies. This would be true if evolution were a Poisson process, in which there

""e random events occurring along the paths, with variances and covariances de­
=:-:llined by the number of events. This is approximately true for small amounts of
- --ergence. Howevel~ he estimated the divergence times by ordinary unweighted
_~3t squares, using the covariances only in the computation of the standard errors
. ::-te divergence times.

Hasegawa, Kishino, and Yano (1985) used an explicit model of DNA evolution
ierive expressions for the variances and covariances of the distances, and they

-, 3ed a generalized least squares method on this. Bulmer (1991) used the Poisson
-. xess approximation, basing a generalized least squares analysis on it.

These methods require more computation than ordinary least squares. The
:.;ations are similar to 11.12 and 11.9, but the diagonal array of weights, W, must

-", :-eplaced by the inverse of the covariance matrix of the distances:

(11.14)

- .:: their solution
v = (XTy-1Xr 1 XTy-1d (11.15)

-.'" inverse of the covariance matrix Y is inversion of an n(n + 1)/2 x n(n +
2 matrix. For 20 species, for example, this would be a 190 x 190 matrix. This

-.;s be done for each tree topology examined. Matrix inversion requires an effort
- - : ortional to the cube of the number of rows (or columns) of the matrix. Thus
--= :1aive cost of finding branch lengths for a least squares tree of given topology

:.dd be proportional to n6
. However, Bryant and Waddell (1998) have described

-=--_ore efficient algorithm that reduces the cost to n 4
.

~istances

- ~ rder for distances that are used in these analyses to have the proper expecta-
-:-5, it is essential that they are expected to be proportional to the total branch

_ ::th between the species. Thus, if in one branch a distance X is expected to ac­
_=,-ulate and on a subsequent branch a distance Y, then when the two branches
-", : laced end-to-end the total distance that accumulates must be expected to be

- L It need not be X + Y in every individual case, but it must be in expec-
:::~~n. It is not proper to use any old distance measure, for this property may be
::.Jng. If the distances do not have this linearity property, then wrenching con­
::s between fitting the long distances and fitting the short distances arise, and

- -= :-fee is the worse for them.
"'-e will give an example of how distances may be computed to make them
. ply with this requirement, using DNA sequences as our example.
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Figure 11.3: The Jukes-Cantor model of DNA change. The rate of
change between all pairs of nucleotides is 1(/3 per unit time.

The Jukes-Cantor model-an example
The simplest possible model of DNA sequence evolution is the model of Jukes
and Cantor (1969). In this model, each base in the sequence has an equal chance
of changing. When one changes, it changes to one of the three other bases with
equal probability. Figure 11.3 shows a diagram of this model. The result is, of
course, that we expect an equal frequency of the four bases in the resulting D A.
The quantity 11, that is the rate of change shown on all the arrows is the rate of
substitution between all pairs of bases. Note that although this is often miscalled a
rate of "mutation," it is actually the rate of an event that substitutes one nucleotide
for another throughout a population, or at any rate in enough of the population
that it shows up in our sampled sequence. In certain cases of neutral mutation, the
rates of substitution and of mutation will be the same.

To calculate distances we need to compute the transition probabilities in this
model. Note that this does not mean the probabilities of transition rather than
transversion; it is much older mathematical terminology, meaning the probability
of a transition from one state (say C) to another (say A). The easiest way to com­
pute this is to slightly fictionalize the model. Instead of having a rate 11, of change
to one of the three other bases, let us imagine that we instead have a rate *11, of
change to a base randomly drawn from all four possibilities. This will be exactly
the same process, as there then works out to be a probability 11,/3 of change to each
of the other three bases. We have also added a rate 71./3 of change from a base to
itself, which does not matter.

If we have a branch along which elapsed time is t, the probability in this fiction­
alized model that there are no events at all at a site, when the number expected to
occur is *71.t, is the zero term of a Poisson distribution. We can use that distribution
because we take time to be continuous, and the branch of time t consists then of
a vast number of tiny segments of time dt each, each having the small probability
171. dt of an event. The probability of no event is then
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Figure 11.4: The expected difference per site between two sequences
in the Jukes-Cantor model, as a function of branch length (the prod­
uct of rate of change and time). The process of inferring the branch
length from the fraction of sites that differ between two sequences is
also shown.

---2 probability of at least one event is the complement of this,

- :.~ere is an event, no matter how many there are, the probability that the last one
__ -Jted in a particular nucleotide is then 1/4. So, for example, the probability of
~ .=:: the end of a branch that started with A is

Prob(CIA.u.t) = ~ (1- e-~UL)

--: :here are three other nucleotides to which the A could have changed, the prob­
.:-:..:..it,· that this site is different at the two ends of the branch is the sum of three
_~:t quantities, being

D 3 ( -"ut) ( )s = "4 1 - e 3 11.17

~ ~ure 11.4 shows this curve of difference against ut. Note that it plateaus at 3/4.
-'-:5 is what we expect; when a sequence changes by so much that it is unrelated

: 5 initial sequence, there are still 1/4 of the sites at which it happens to end up
- :he same state as when it started.

:'\Tote that if we try to use the difference per site, which is the vertical axis of
~";l.Ire 11.4, it will certainly rise linearly with branch length. As it flattens out at
- -±, it will accumulate less and less difference with successive branches traversed.
- -\"e have two branches that each would, individually, lead us to expect 0.20 dif-
::::C'nce from one end of the branch to the other, when combined they will in fact
:-_:x lead to an expected distance of 0.34666. The differences will not be additive
: all.
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The easiest way to find an additive distance is simply to use the difference per
site to estimate ut itself. The value out is the product of the rate of change and the
time. It is the expected number of changes along the branch, counting both those
that end up being visible to us, and those that do not. We call the value of ut for
a branch the branch length. The values of ut on each branch will, by definition,
add perfectly. Figure 11.4 shows this estimation. Starting with a value 0.49 of
the difference, the dashed arrows show the process of estimating ut. The resulting
estimate, 0.7945, is in effect the difference corrected for all the events that are likely
to have occurred, but could not be seen. They include changes that overlay others,
or even reversed their effects.

The formula for this estimation is easily derived from equation 11.17. It is:

(11.18)

This is actually a maximum likelihood estimate of the distance, it turns out.
Its one tiresome aspect is that it becomes infinite when the difference between
sequences becomes greater than 3/4. That cannot occur in the data if infinitely
long sequences follow the Jukes-Cantor model, but it can certainly happen for
finite-length sequences, simply as a result of random sampling.

Although the result of these calculations is called a distance, it does not neces­
sarily satisfy all the requirements that mathematicians make of a distance. One of
the most important of these is the Triangle Inequality. This states that for any three
points A, B, and C,

DAc :::; DAB + DBC (11.19)

A simple example of violation of the Triangle Inequality is three DNA sequences
100 bases in length, with 10 differences between the A and B, and 10 differences
between Band C, those being at different sites. Thus A and C differ at 20 sites. Us­
ing equation 11.18, DAB = DBc = 0.107326 and DAc = 0.232616, which violates
the inequality. Thus we can call the number a distance in a biological sense, but
not in a mathematical sense. Fortunately, most distance matrix methods do not
absolutely require the Triangle Inequality to hold.

Why correct for multiple changes?
The Jukes-Cantor distance does not simply compute the fraction of sites that differ
between two sequences. Like all the distances we will encounter, it attempts a cor­
rection for unobserved substitutions that are overlain or reversed by others. Why
is this necessary? The first impulse of many biologists is to use the uncorrected
differences as distances. This is dangerous.

An example is given in Figure 11.5. The original tree is shown on the left.
Under the Jukes-Cantor model, the uncorrected fractions of sequence difference
predicted from this tree are shown in the table in the center. If these are used with
the unweighted least squares method, the tree on the right is obtained. It has the
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Figure 11.5: An example of distortion of tree topology when uncor­
rected distances are used. The true tree is on the left, the expected un­
corrected sequence differences under a Jukes-Cantor model are shown
in the table in the center. The least squares tree from those differences
is shown on the right. It incorrectly separates Band C from A and D.

~ong topology, most likely because the tips A and D are trying to get close to
.:..::i other harder than either is to get close to B or C. There is a battle between the
:-.~ and short distances, with the lack of correction making the long distances try
~jer to shorten the corresponding branches.

The example is what we would see if we used infinitely long sequences, but
.:':''1out correction of the distances for multiple changes. Despite the infinitely
:- ~ sequences, we get an incorrect topology. Of course, if the corrected Jukes­

_':""'-.:or distance were used, there would be a perfect recovery of the true tree, as
--:c , istances would be the sums of branch lengths along that tree. By contrast, if

-= ~lse the Jukes-Cantor correction, we approach the true branch lengths as more
- .: more DNA is sequenced, and the correct left-hand tree is found.

One case in which correction is unnecessary is when the trees are clocklike. The
= ~ er is the common ancestor of two species, the greater will be the expected dif­
--:c. ce between their sequences. Correction for multiple changes will not alter
-= ~anking of the distances, and distance matrix methods that assume a clock will
.: ro find the same topology whether or not there is correction of the distances.

-=-'-2tsky and Sitnikova (1996) show this in simulations, where failure to correct
-:3.nces has serious consequences in nonclocklike cases, but does not cause seri-
- _roblems when there is a molecular clock.

"nimum evolution
:"'g seen the computational methods and biological justification of the least

~~es methods, we now look at distance matrix methods that do not use the
-~: ::quares criterion. Some use other criteria; others are defined by an algorithm
- :L'~structing the tree and do not use an explicit criterion.
~ e minimum evolution method (ME) uses a criterion, the total branch length
:"'-2 reconstructed tree. It is not to be confused with the "minimum evolu­
~ method of Edwards and Cavalli-Sforza (1964) which was the first parsimony
:...- ..,d. One might think that the minimum evolution tree should simply be a
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tree all of whose branches are of length O. That would be the case if the tree were
unconstrained by the data. In the minimum evolution method the tree is fit to the
data, and the branch lengths are determined, using the unweighted least squares
method. The least squares trees are determined for different topologies, and the
choice is made among them by choosing the one of shortest total length. Thus this
method makes partial use of the least squares criterion. In effect it uses two cri­
teria at the same time, one for choosing branch lengths, another for choosing the
tree topology.

This minimum evolution method was first used by Kidd and Sgaramella-Zonta
(1971), who used the sum of absolute values of branch lengths. Its present-day use
comes from its independent invention by Rzhetsky and Nei (1992, 1993, 1994).
They used the sum of branch lengths. Trees with negative branches thus tend
to attract the search, and heuristic tree rearrangement may spend considerable
time among them. Kidd and Sgaramella-Zonta suggested that if there is any tree
topology that has all positive estimated branch lengths, then the best solution by
their method would also have no negative branch lengths.

Rzhetsky and Nei showed that if the distances were unbiased estimates of the
true distance (many distances are not unbiased) then the expected total length of
the true tree was shorter than the expected total length of any other. However, this
is not the same as showing that the total length is always shortest for the true tree,
as the lengths vary around their expectation. It would be impossible for it to be
true that the total length is always shorter for the true tree, as that would establish
that this particular criterion always triumphs over statistical noise! Their result
is meaningful if one reduces all the information in the data to one quantity, the
estimated length of the tree. Even then, having its expectation be least for the true
tree is not the same as showing that the use of the minimum evolution criterion
makes a maximum likelihood estimate given the tree length. For that we would
need to know that this quantity was normally distributed, and had equal variances
for all tree topologies. It is not clear whether minimum evolution methods always
have acceptable statistical behavior. Gascuel, Bryant, and Denis (2001) have found
cases where minimum evolution is inconsistent when branch lengths are inferred
by weighted least squares or by generalized least squares.

Minimum evolution requires an amount of computation similar to least
squares, since it uses least squares to evaluate branch lengths for each tree topol­
ogy. The methods of Bryant and Waddell (1998) for speeding up least squares cal­
culations will thus speed up minimum evolution methods as well. Kumar (1996)
has described search methods that improve on Rzhetsky and Nei's. Rzhetskyand
Nei (1994) describe the use of bootstrap support of branches (which I describe in
Chapter 20) to guide the search for branches where the tree topology should be re­
considered. Desper and Gascuel (2002) have found that using a "greedy" search of
tree topologies and a somewhat approximate version of minimum evolution led
to great increases in speed with good accuracy of the resulting trees.
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An early variant on Minimum Evolution that did not use least squares to infer
the branch lengths was given by Beyer et al. (1974; Waterman et al., 1977). They
instead required that the path lengths between all pairs of species remain longer
than, or equal to, the observed distances. This makes the inference of branch
lengths a linear programming problem. Their inequality is justified in the case
of closely related molecular sequences, where the total branch length will approx­
imate a parsimony criterion. Like a parsimony criterion, their method may fit
branch lengths that are substantially shorter than is plausible when the sequences
are quite different.

Clustering algorithms
The methods mentioned so far optimize a criterion such as the sum of squares,
3earching among all trees for the tree with the best value. Another class of distance
_ atrix methods does not have an explicit criterion, but instead applies a particu­
:ar algorithm to a distance matrix to come up with a tree more directly. This can
::-e quite a lot faster, but it has the disadvantage that we are not sure that the dis­
:ance information is being used fully, and we are not sure what are the statistical
?roperties of the method.

These methods are derived from clustering algorithms popularized by Sokal
':::1d Sneath (1963). Chief among them is the UPGMA method, whose name is an
.:..::ronym for its name in their classification of clustering methods. UPGMA can be
':3ed to infer phylogenies if one can assume that evolutionary rates are the same
_~ all lineages.

·PGMA and least squares
__ e can constrain the branch lengths so that they satisfy a "molecular clock." Trees
--at are clocklike are rooted and have the total branch length from the root up to
-:-:\- tip equal. They are often referred to as being ultrametric. When a tree is ultra-
-:"_2h-ic, it turns out to be extremely simple to find the least squares branch lengths.
-=-:ie total branch length from a tip down to any node is then half the average of the
.::stances between all the pairs of species whose most recent common ancestor is
--ilt node. Thus if a node leads to two branches, one of which leads on upwards

11 mammals and the other on upwards to all birds, the estimate of the total
~ ~ :lnch length down to the node is half the average of the distances between all
~:rd, mammal) pairs. The weights Wij are used to weight this average.

The branch lengths are then the differences between these total branch lengths.
- ::tey give a negative branch length, it may be necessary to set that branch length

zero, which combines two nodes, and recompute the associated sums of branch
_~:Jths. Farris (1969a) was the first to note this relationship between averages and
=':'3t squares branch lengths.
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A clustering algorithm
Done this way, finding ultrametric trees has the same search problems as other
phylogeny methods. However, there is a simple algorithm that can be used to
quickly construct a clocklike phylogeny-the UPGMA or average linkage method.
It is not guaranteed to find the least squares ultrametric phylogeny, but it often
does quite well. This algorithm was introduced by Sokal and Michener (1958)­
it belongs to the class of phenetic clustering methods that were predecessors of
most modern phylogeny methods. It has been rather extensively criticized in the
phylogeny literature, but if a clock is thought to be a reasonable assumption (and it
often is if the species are closely related), then UPGMA is a well-behaved method.

The algorithm works on a distance matrix and also keeps track, for each species
or group, of the number, ni, of species in the group. These are initially all I. The
steps in the algorithm are:

1. Find the i and j that have the smallest distance, D ij .

2. Create a new group, (ij), which has nUj) = ni + nj members.

3. Connect i and j on the tree to a new node [which corresponds to the new
group (ij)]. Give the two branches connecting i to (ij) and j to (ij) each
length D;} /2.

4. Compute the distance between the new group and all the other groups (ex­
cept for i and j) by using:

(
71;) (nj)D ik + Djkni + 71 j 71; + nj

5. Delete the columns and rows of the data matrix that correspond to groups i
and j, and add a column and row for group (i,j).

6. If there is only one item in the data matrix, stop. Otherwise, return to step 1.

This method is easy to program and takes about 713 operations to infer a phy­
logeny with 71 species. Each time we look for the smallest element in the distance
matrix, we need a number of operations proportional to 712 , and we do this 71 - 1
times. However, we can speed things up by a large factor by simply retaining a list
of the size and location of the smallest elements in each row (or column). Finding
the smallest element in the matrix then requires a number of operations propor­
tional to 71 rather than 712 . With each clustering, this list of minima can be updated
in a number of operations proportional to 71, so that the whole algorithm can be
carried out in a number of operations proportional to 712 . It can be shown never to
give a negative branch length.

An example
Using immunological distances from the work of Sarich (1969) we can show the
steps involved in inferring a tree by the UPGMA method. The amount of work
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- ceded is so small that we can carry out the clustering by hand. Here is the original
..:::stance matrix, which has the distances corrected logarithmically to allow for a
::-resumed exponential decay of immunological similarity with branch length.

dog bear raccoon weasel seal sea lion cat monkey

dog 0 32 48 51 50 48 98 148

bear 32 0 26 34 29 33 84 136

raccoon 48 26 0 42 44 44 92 152

weasel 51 34 42 0 44 38 86 142

seal 50 29 44 44 0 24 89 142

sea lion 48 33 44 38 24 0 90 142

cat 98 84 92 86 89 90 0 148

monkey 148 136 152 142 142 142 148 0

\ Ve start by looking for the smallest distance. In this table it is marked by a
~ . \., and the elements of those rows and columns are indicated in boldface and by
~:crisks at the borders of the table.

* *
dog bear raccoon weasel seal sea lion cat monkey

dog 0 32 48 51 50 48 98 14

bear 32 0 26 34 29 33 84 136

raccoon 48 26 0 42 44 44 92 152

weasel 51 34 42 0 44 38 86 142

seal 50 29 44 44 0 [E] 89 142

sea lion 48 33 44 38 [E] 0 90 142

cat 98 84 92 86 89 90 0 148

monkey 148 136 152 142 142 142 148 0

_ :-:1bining the rows for seal and sea lion, we average their distances to all other
:-c:-~les. After we do this, we infer the immediate ancestor of seal and sea lion

::-e 12 units of branch length from each, so that the distance between them is

-- The new combined row and column (marked 55) replaces the seal and sea
- rows and columns. This reduced table has its smallest element marked by a
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box. It involves bear and raccoon, and those rows and columns are boldfaced and
indicated by asterisks:

* *
dog bear raccoon weasel 88 cat monkey

dog 0 32 48 51 49 98 148

* bear 32 0 [m 34 31 84 136

* raccoon 48 [m 0 42 44 92 152

weasel 51 34 42 0 41 86 142

88 49 31 44 41 0 89.5 142

cat 98 84 92 86 89.5 0 148

monkey 148 136 152 142 142 148 0

Again, we average the distances from bear and from raccoon to all other
species, and we infer their common ancestor to have been 13 units of branch length
below each of them. We replace their rows and columns by a new one, BR:

* *
dog BR weasel SS cat monkey

dog 0 40 51 49 98 148

* BR 40 0 38 1 37.S [ 88 144

weasel 51 38 0 41 86 142

* SS 49 137.S[ 41 0 89.5 142

cat 98 88 86 89.5 () 148

monkey 148 144 142 142 148 0

The smallest element in this table was 37.5, between BR and 55. The ancestor
of these two groups is inferred to be 18.75 units of branch length below these four
species. It is thus 5.75 below the ancestor of bear and raccoon, and 6.75 below the
ancestor of seal and sea lion. You should refer to Figure 11.6 to see the branches
and branch lengths that are added to the tree by each step. Each of the groups BR
and 55 is a group with two species, so the proper average is again a simple average
of their distances to other species:

* *
dog BRSS weasel cat monkey

dog 0 44.5 51 98 148

* BRSS 44.5 0 139.51 88.75 143

* weasel 51 139.51 0 86 142

cat 98 88.75 86 () 148

monkey 148 143 142 148 0
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Now the smallest distance, 39.5, is between BRSS and weasel. One is a group
of four species, the other a single species. In averaging their distances to all other
species, we do not do a simple average, but weight the distance to BRSS four times
as much as the distance to weasel. For example, the distance of the new group to
109 is (4 x 44.5 + 51);- = 45.8. The new row and column are called BRSSW and
replace BRSS and weasel.

* *
dog BRSSW cat monkcy

* dog 0 45.8 98 148

* BRSSW 1 45.81 0 88.2 142.8

cat 98 88.2 0 148

monkey 148 142.8 148 0

:.Jow dog joins BRSSW, and the average of those rows and columns is again a
'eighted average, weighting BRSSW five times more heavily than dog.

* *
DBRWSS cat monkey

* DBRWSS 0 143.66

* cat [89.8331 148

monkey 143.66 0

\ Vith only three groups left, cat joins up next. Finally, we have only two groups
:-jch must, of course, join one another.

DBRvVSSC monkcy

DBRWSSC 0

monkey 1144.28571

-:De final tree is shown in Figure 11.6. It is fairly close to biological plausibility.

_-?GMA on nonclocklike trees
- _ -nain disadvantage of UPGMA is that it can give seriously misleading results
--2 distances actually reflect a substantially nonclocklike tree. Figure 11.7 shows
--:-.all set of imaginary distances, which are derived from a nonclocklike tree
:dding up branch lengths. Also shown is the resulting UPGMA tree. It first
-:ers species Band C, which creates a branch (the one separating them from A
- :J) that is not on the true tree. For this problem to arise, evolutionary rates
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Figure 11.6: The tree inferred by UPGMA clustering of the Sarich (1969)
immunological distance data set.

on different branch lengths must differ by at least a factor of two. Note that this
is not long branch attraction. In fact, it is short branch attraction: Band C are put
together because they are similar in not having changed.

Neighbor-joining
The neighbor-joining (NJ) algorithm of Saitou and Nei (1987) is another algorithm
that works by clustering. It does not assume a clock and instead approximates the
minimum evolution method. (It may also be thought of as a rough approximation
to least squares.) The approximation is in fact quite good, and the speed advantage
of neighbor-joining is thus not purchased at much cost. It is practical well into the
hundreds of species.

Neighbor-joining, like the least squares methods, is guaranteed to recover the
true tree if the distance matrix happens to be an exact reflection of a tree. Thus for
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UPGMA tree

BCD A

Q 6~6 18 110.833

22.~

Figure 11.7: A four-species, nonclocklike tree and the expected data
matrix it yields, when distances are the sums of branch lengths. The
tree estimated by applying the UPGMA method to this distance matrix
is shown-it does not have the correct tree topology. In both trees the
branch lengths are proportional to the vertical length of the branches.

:....:e data matrix of Figure 11.7 it simply recovers the true tree. The algorithm is (as
::10dified by Studier and Keppler, 1988):

1. For each tip, compute 'Ui = 'L.;':#i Dij/(n - 2). Note that the denominator
is (deliberately) not the number of items summed.

2. Choose the'i and j for which Dij - 'Ui - tlj is smallest.

3. Join items i and j. Compute the branch length from i to the new node (Vi)
and from j to the new node (vi) as

Vi ~Dij + ~(Ui - Uj)

V 1. D + 1. (u· - u·)) 2 1) 2) .,

--!C. Compute the distance between the new node (ij) and each of the remaining
tips as

D(ij).k = (Dik + D jk - D,j) /2
.., Delete tips i and j from the tables and replace them by the new node, (ij),

which is now treated as a tip.

':'. If more than two nodes remain, go back to step 1. Otherwise, connect the
two remaining nodes (say, eand rn) by a branch of length DCm.
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Figure 11.8: The neighbor-joining tree for the data set of Sarich (1969)
rooted at the midpoint of the longest path between species. It may be
compared with Figure 11.6.

We will not show the steps in detail for the Sarich data set but only the result
of applying neighbor-joining to that data set, in Figure 11.8. The midpoint rooting
method used is due to Farris (1972). Unlike the UPGMA algorithm, the neighbor­
joining algorithm is not carried out in a number of operations proportional to n2 .

Current algorithms use a number of operations proportional to n 3
, owing to the

necessity of updating the Ui and subtracting them from the distances.

Performance
Computer simulation studies have shown that neighbor-joining performs quite
well. Although it has sometimes been claimed to perform better than the Fitch­
Margoliash method, this seems not to be the case, although the difference is not
great (Kuhner and Felsenstein, 1994). When the decision is made as to which pair
of tips to cluster, ties are possible. Backeljau et al. (1996) have raised this issue
and examined how well various implementations of neighbor-joining cope with
ties. Farris et al. (1996) noted that when neighbor-joining is used together with
bootstrap resampling, an arbitrary resolution of ties can produce the appearance
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of strong support for a grouping when there is none. Takezaki (1998) finds that
this problem is serious only for short sequences or closely related species and can
be avoided if one randomly chooses among tied alternatives. This can be done by
ensuring that each bootstrap replicate is analyzed with a different input order of
species.

Using neighbor-joining with other methods
:'\eighbor-joining is also useful to rapidly search for a good tree that can then be
improved by other criteria. Pearson, Robins, and Zhang (1999) use it while re-
aining nearly-tied trees, choosing among them by minimum evolution or least

o:quares criteria. Ota and Li (2000, 2001) use neighbor-joining and bootstrapping
,0 find an initial tree and identify which regions of it are candidates for rearrange­
ment (as Rzhetsky and Nei, 1994, did for minimum evolution). They then use
:naximum likelihood (which is described in Chapter 16) for further search. This
~esu1ts in a substantial improvement in speed over pure likelihood methods.

Relation ofneighbor-joining to least squares
~ere is a relationship between neighbor-joining and other methods, though this is
:-;ot immediately obvious from the algorithm. It belongs to the class of clustering
:':1ethods that are defined by the precise algorithm rather than by a criterion. If
':e made a change in the neighbor-joining algorithm that resulted in somewhat
~i£ferent trees, we could not argue that we were doing better at accomplishing the
~iectives of neighbor-joining. By definition, anything that results in a different

=ee is not neighbor-joining. In comparison, methods that minimize a criterion
0:,,"ays allow us the possibility that we could find an algorithm that does a better
,~ of searching for the tree that achieves the minimum value.

The relation of neighbor-joining to other methods may not be clear from its pre­
"':::1tation in the papers of Saitou and Nei (1987) and Studier and Keppler (1988).
- (heir equations, observed distances are used as if they were equal to the sums
: '::>ranch lengths, when in fact only their expectations are. There is acknowledg-

-2nt in these papers that observed distances do differ from these expectations,
- ..:: little more than that. Nevertheless, Saitou and Nei (1987) do establish one con-
-~tion. In an extensive appendix they show that, for a given pair of species that
-: be clustered, the branch lengths inferred are those that would be assigned by
:"seighted least squares. At first sight this appears to establish neighbor-joining
- a more approximate version of least squares. In Chapter 4 I mentioned star­
_:omposition search, in which an unresolved starlike tree is gradually resolved

clustering pairs of species. We might think that neighbor-joining is simply a
--:-decomposition search using the unweighted least squares criterion.

:t would be, if it used least squares to choose which pair of tips to join. But al­
:.lgh it computes their branch lengths by least squares, it does not use the sum
O:'-luares as the criterion for choosing which pair of species to join. Instead it
_= the total length of the resulting tree, choosing that pair that minimizes this
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length. This is a form of the minimum evolution criterion. But we also cannot
identify neighbor-joining as a star-decomposition search for the minimum evolu­
tion tree. Neighbor-joining allows negative branch lengths, while minimum evo­
lution bans them. Thus neighbor-joining has some relation to unweighted least
squares and some to minimum evolution, without being definable as an approx­
imate algorithm for either. It would be of interest for someone to see whether
a star-decomposition algorithm for least squares, or one for minimum evolution,
could be developed that was comparable in speed to neighbor-joining.

Gascuel (1994) has pointed out a relationship between neighbor-joining and
the quartets method of Sattath and Tversky (1977).

Weighted versions ofneighbor-joining
Two modifications of neighbor-joining have been developed to allow for differ­
ential weighting in the algorithm to take into account differences in statistical
noise. Gascuel (1997) has modified the neighbor-joining algorithm to allow for the
variances and covariances of the distances, in a simple model of sequence evolu­
tion. This should correct for some of the statistical error. Gascuel's method, called
BIONlt thus comes closer to what generalized least squares would give, though
it is, of course, still an approximation. The weights are applied at step 3 of the
neighbor-joining algorithm given above.

Subsequently Bruno, Socci, and Halpern (2000) developed weighted neighbor­
joining (the weigl1bor method) which uses weights in the formulas at somewhat
different steps, and in a different way. They are used in steps 2 and 3. The weigh­
bor method is justified by appeal to a likelihood argument, but it is not the full
likelihood of the data but a likelihood calculated separately for each of a series
of overlapping quartets of species, and under the assumption that distances are
drawn from a Gaussian (normal) distribution.

I will not attempt a detailed justification of the terms in either BION} or weigh­
bor, both for lack of space and because I believe that both are approximate. It
would be better to start with a likelihood or generalized least squares method,
and then show that a weighted version of neighbor-joining is an approximation to
it. This has not been done in either case.

Nevertheless, both methods seem to improve on unweighted neighbor-joining.
In Gascuel's BION} method, the variances and covariances of the distances are
taken to be proportional to the branch lengths. The variance of Dij is taken as
proportional to branch length between species i and j. The covariance of D ij and
DIi:£ is taken to be proportional (with the same constant) to the total shared branch
length on the paths i-j and k-P. This is usually a good approximation provided
the branch lengths are not too long. Gascuel (2000) presents evidence that BION}
can outperform minimum evolution.

Bruno, Socci, and Halpern's weighbor method uses the exact formula for the
variance of a Jukes-Cantor distance instead. This is approximate for other models
of DNA change, but more correctly copes with the very high variances of distances
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when tips are far apart on the tree. The cost paid for this greater accuracy is that
some additional approximations are needed to keep calculation to order n 3 . These
authors argue that weighbor can find trees more accurately than BIONJ because it
is less affected by noise from very large distances. mONJ should do well when no
distances are large, and both should do better than neighbor-joining.

There seems more left to do in developing weighted versions of neighbor­
'oining that properly reflect the kinds of noise that occur in biological sequence
jata.

Other approximate distance methods
3efore the neighbor-joining method, a number of other approximate distance
::Lethods were proposed. Like it, they were defined by their detailed algorithms,
:-lot by an explicit criterion. The earlier ones have since largely been superseded
:'\ neighbor-joining.

~istance Wagner method
-=-he earliest is Farris's (1972) distance Wagner method. This is closely related to
-is earlier WISS (weighted invariant shared steps) method (Farris, Kluge, and
=.::kardt, 1970) and his "Wagner method" algorithm (Kluge and Farris, 1969; Far­
:-.3,1970) for approximate construction of a most parsimonious tree. The distance
. ·.'agner method is intended as an approximation to construction of a most parsi­
-:-,.onious tree. Species are added to a tree, each in the best possible place. This
5 iudged by computation of the increase in the length of the tree caused by each
:' ossible placement of that species.

The intention is thus similar to that of minimum evolution, but the details are
:.iferent. Instead of using a least squares reconstruction of the branch lengths, the
-:c=-:gths are computed from distances between pairs of nodes. The distances be-
-een the tip species are given, but those between a tip and an interior node, or
:~:ween two interior nodes, are also computed approximately. These approximate
':~5tancesbetween interior nodes, and between interior nodes and tips, determine
--e branch lengths. The approximation used assumes the Triangle Inequality. Un­
_ e many other distance matrix methods, this restricts the use of the distance Wag­
- ","c method to distances that satisfy the Triangle Inequality, which many biological
--5:ance measures do not.

,-\n exposition of the details of the distance Wagner method will be found in
-", book by Nei (1987, pp. 305-309). Modifications of the distance Wagner method
"'e also been proposed (Tateno, Nei, and Tajima, 1982; Faith, 1985).

-, related family
- -other family of approximate distance matrix methods (Farris, 1977b; Klotz et

1979; Li, 1981) uses a reference species to correct distances between species
: ~mequal rates of evolution. If C is the reference species and A and B are two
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species, then the branch length of the branches leading from C to the node x where
the paths leading to A and B separate is

(11.20)

If Dcx can be calculated for all pairs of species (other than the reference species),
the largest such distance can be used to choose a candidate pair to be clustered.
This corrects for unequal rates of change in the lineages. The transformation of the
distance was also used in the WISS method of Farris, Kluge, and Eckardt (1970). It
is related to similar steps in the neighbor-joining methods.

The more recent "Harmonic Greedy Triplets" method of Csurbs and Kao (2001)
and Csurbs (2002) builds a tree rapidly by using some of the possible triplets of
species. It can build a tree in a time proportional to n 2. This could be quite useful
in studies with large numbers of species.

Minimizing the maximum discrepancy
Farach, Kannan, and Wamow (1995) were able to find a fast algorithm to find a
tree that minimizes the L= norm in the case of a molecular clock. This norm is
simply the absolute value of the largest discrepancy between the predicted and
the observed distances.

Atteson (1999) has shown that if the shortest branch in a tree has length c, then
if the distances are all within c/2 of the true, treelike distances, a number of meth­
ods including neighbor-joining will recover the true tree topology. This is also
true of the BIONJ modification of neighbor-joining. He shows that no method can
achieve a better multiplier than 1/2, and that there is a similar multiplier a, the
edge L:>o radius, such that any branch whose length is greater than that multiple
of c is correctly reconstructed. For neighbor-joining a = 1/4. Some other meth­
ods such as a modification of the algorithm of Sattath and Tversky (1977) achieve
values of a as great as 1/2. He shows that no method can have 0: greater than that.

Erdos et al. (1997a, 1997b, 1999) have produced another algorithm. They argue
that it is superior in quality of result to neighbor-joining. I will defer discussion
of this algorithm to the next chapter, as it uses quartets of species. Similarly the
"neighborliness" method of Sattath and Tversky (1977) and Fitch (1981), the four
point metric method of Buneman (1971), and the innovative tree search method of
De Soete (1983) are best discussed in that chapter.

Two approaches to error in trees
One of the interesting aspects of these computer scientists' approaches to investi­
gating the effect of statistical error in trees is that they approach the problem very
differently from statisticians. This difference is on display in the work of Farad"
Kannan, and Wamow (1995), Erdos et al. (1997a), and Atteson (1999). A statistician
takes a problem like the inference of phylogenies, considers the joint distribution
of the data given an (unknown) true tree, and asks how the statistical variation in
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:: e data creates statistical variation in the estimates of the phylogeny. The com­
:'Llter scientists take a very different tack. They assume that one somehow knows
:: e extent to which the data depart from a perfect reflection of the true phylogeny.
:or example, they assume that they know by how much the observed distances
':'cpart from the true expected distances. They then investigate what bounds can
:'<:' placed on the departure of the predicted distances for the estimated tree from
:-e.,e true distances.

The counterpart would be a linear regression fitted through a set of points.
~l.e statistician asks how the variation and covariation of the observations create

.:lriation and covariation of the estimates of the slope and intercept of the line.
-:-:1e computer scientists' approach would correspond to assuming that we knew
:-~e value of the largest departure of an observation from the true line, and would
::~en place a bound on the departure that would result between the estimated line
~,d the true line. They would prefer that method that made this value as small as
:'L'ssible.

In effect, the computer scientists have found a different way of addressing the
-=::ue of statistical noise. This is true, not only of the work on phylogenies, but of
::-.e body of work on computational learning theory from which it is derived. In
:--~s book we will mostly concern ourselves with the more familiar statistician's
-:''.Jroach, but it is worth noting, both that the other approach exists, and that al­
:-':'.~ugh stated in very different terms, it is not necessarily incompatible with statis-

A puzzling formula
=.:'r some of the distance methods there have been recent bounds on how many
:':-.nacters are needed to ensure a given level of accuracy of the resulting tree.
~~ese are inspired by theory on "Probably Approximately Correct" (PAC) meth-

.:::: in "computational learning theory." Erdos et a1. (1997a) give two versions of
'-2se bounds. One (cited as a personal communication from Sampath Kannan) is
·-.:It for a symmetric 0/1 model of change, with k characters and n species, when

2 a.pply the L oo norm method of Farach, Kannan, and Warnow (1995) we will
-~\e high probability of finding the correct tree if

k
c logn

- > .j2 (1- 2g)2dwm(T)
(11.21)

:,ere c is a constant, f and g are lower and upper bounds on the net probability of
-..:lnge on the branches of the true tree, and diarn(T) measures the largest number
: ~ ranches in any path across the tree. Steel and Szekely (1999, 2002) have used a
-:.'.te general statistical estimation framework to show that the dependence of the

- ..:.:nber of characters on 1/P is necessary as well as sufficient.
The result is surprising because it seems to imply that we need only have a

':"llber of characters proportional to the logarithm of the number of species, in
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order to be quite likely get an accurate estimate of the tree topology. I am not go­
ing to discuss the derivations or even the exact conditions for these inequalities.
Similar inequalities, for a number of distance methods, will be found in papers
by Atteson (1997), Ambainis et. al. (1997), Erdos et al. (1999), Farach and Kan­
nan (1999), Huson, Nettles, and Warnow (1999), Cryan, Goldberg, and Goldberg
(2001), and Csuros (2002). To get this logarithmic dependence on the number of
species, we would have to be considering a series of cases with larger and larger
numbers of species, while holding quantities like j, g, and diam(T) constant.

A number of people (so far not in print) have pointed out that the logarithmic
dependence is misleading. Can quantities such as j and 9 remain constant as the
number of species increases? In fact, they cannot. For example, suppose that we
obtained our true trees from the outcome of a birth process, where lineages had a
constant probability of branching. As we get trees with n species, the probability
of change on the shortest branch, j, will be shrinking as l/n. Thus the bound on
k will grow, not proportionally to log n, but at least at the rate n 2 log n. The issue
is complicated, because there are different inequalities for different methods, and
more than one way to define the process that produces the true trees.

Consistency and distance methods
Properly formulated distance methods do have the property of consistency. This is
remarkably easy to establish. Suppose that our distance measure uses the correct
model of evolution. As we collect more data (for molecular sequences, as we col­
lect longer sequences), the estimate of the branch length between a pair of species
converges to the true branch length. For example, with the Jukes-Cantor model,
the fraction of sites different between the two species converges to the expected
fraction of sites different. If the expected fraction is 0.49, as in Figure 11.4, then
we get closer and closer to having 0.49 of the sites different as we collect longer
sequences. That in turn means that the estimated distance becomes closer and
closer to 0.7945. Similar proofs can be made for other distances, though the proofs
become more complex for other distance measures.

Thus all the distances converge to their true values. If it is true that our distance
matrix method reconstructs the correct tree when fed the true total branch lengths
between each pair of species, then we can be assured of consistency. For the least­
squares methods, the proof is fairly trivial. When the observed distances equal
the expected distances, the sum of squares is necessarily O. Even if some other
tree were to also have the sum of squares be 0, the true tree would be tied with it
and would therefore be among those that must be included in the set of best trees.
For neighbor-joining the corresponding proof has been given by Saitou and Nei
(1987). The corresponding proof for UPGMA is trivial and is left as an exercise
to the reader. For minimum evolution, Rzhetsky and Nei (1993) gave the proof
for four-species trees. However, Gascuel, Desper, and Denis (2001) show some
cases with inconsistency of minimum evolution when weighted least squares or
generalized least squares is used to infer branch lengths.
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Thus we can be sure of consistency if the convergence of the distances to their
-_e ,·alues occurs and if a close enough set of distances implies a close enough
--=-=:. For cases in which the true tree is bifurcating, this seems easy to prove for all
_--= algorithms mentioned. I will leave this issue of continuity to the mathemati-

ror cases in which the distances have converged and become perfectly addi­
e it is possible to recover the true tree and do so quickly. Neighbor-joining and

- _~imum evolution do so, but it can be done even more quickly. Waterman et al.
- -;) gave an algorithm whose effort is proportional to n 2 ; Culberson and Rud-

- ~: . (1989) have improved this to nlog(n).
Of course, if not, then not. If the distances are not computed according to

- -= correct model, they will converge to wrong values, and the tree inferred by
: =:ance matrix methods will then be wrong, perhaps in topology but certainly in
--.'i. ch lengths. (See, for example, DeBry, 1992.) If the model is nearly correct, then
-::- distances will be nearly correct. Violation of consistency for distance matrix

--=:hods is thus rather easy to investigate. One need only compute the limits to
:--.:ch the distances tend as more data is collected and see which tree is selected
.-.en those limits are fed into the distance matrix method. It will be true that

__ :-easonable distance matrix methods will be equally consistent with a given
-::-:hod of calculating the distances. Unreasonable distance matrix methods, such
- :"'-PGMA applied to nonclocklike data, will not be consistent, but again this is

-: ::--:er easy to investigate without need for consideration of the rates at which the
.:....=:ances approach their limiting values.

A limitation of distance methods
--ere has been much work on distance methods. They are probably the easiest
: -::logeny methods to program, and they certainly can be very fast. Although this
:-..:.arantees continuing popularity, they have an inherent limitation that is worri­
- :"}'le. When evolutionary rates vary from site to site in molecular sequences, dis­
:.=....-.ces can be corrected for this variation, as we shall see in Chapter 13. A similar
_ :Tection is possible in likelihood methods, as will be explained in Chapter 16.

-:1.en variation of rates is large, these corrections become important. In likelihood
--2:hods, the correction can use information from changes in one part of the tree
- :.nform the correction in others. Once a particular part of the molecule is seen
- .::hange rapidly in the primates, this will affect the interpretation of that part of
--e molecule among the rodents as well. But a distance matrix method is inher-
=:-:Iy incapable of propagating the information in this way. Once one is looking at
:--anges within rodents, it will forget where changes were seen among primates.
-=-: IS distance matrix methods must use information about rate variation substan-
-:' Jy less efficiently than likelihood methods. This casts a cloud over their use,

:-:e which may prove hard to dispel.
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Quartets of species

We saw that distance matrix methods can be considered to be constructu11
tree as the best possible compromise between estimates of all possible two-sp
trees. This involves some loss of information. In DNA sequences, for exar
there are 4n possible nucleotide patterns when there are n species. But dis1
matrix methods first reduce the 4" numbers down to n(n - 1)/2 numbers. C
we do better if we discarded less information?

It would be possible to estimate three-species trees and then find the ful
as the best possible fit to them. There would be n(n - l)(n - 2)/6 possible tri
If we had 10 species, the original 1,048,576 possible DNA patterns would 1:
duced to 10 x 9/2 = 45 distances. There are 10 x 9 x 8/6 = 120 different tri
All of these triples have the same unrooted tree topology because there is onl;
possible unrooted tree topology when there are three species. It would be intt
ing to know whether methods that construct an overall tree from trees of all tr
would give noticeably better results than distance methods. As far as I know,
Grishin (1999) has tried to develop a triples method of combining unrooted t
species trees into a full n-species tree. He develops definitions of two-, three
four-species distances, and fits them by least squares. Another possible candi
the harmonic greedy triplets method of Csuros and Kao (2001) and Csuros (201
really a distance method in which a few of the triplets of species are examille

However, if we go on to quartets of species, we find an active literature
many methods. The greater interest in quartets occurs because they have d
ent tree topologies - some of the literature attempts to combine the tree to:
gies and infer from them an overall tree topology. When conflicts arise bet'
the topologies of the quartets, some of the methods make a network that i
a tree, but tries to summarize as much as possible of the conflicting informc
The quartets approaches are not exactly parallel to the distance matrix metl
They do not spend much effort trying to measure the goodness of fit betwee
quartet trees and the four-species subtrees that come from the full tree. In,
tion to methods that use all possible quartets (or a sample from them), ther
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Figure 12.1: A four-species tree with branch lengths. If distances are
determined by adding up the branch lengths between the species, the
four point metric condition will hold. The thin solid lines show the
paths for the distances dAc and d BD , the thin dashed lines show the
paths for dAD and dBD, and the thick dashed lines show the paths for
dAB and dCD·

~ ~so methods that use one outgroup species and all possible combinations of three
:.~er species. One is the three-taxon statement (3TS) method which is more closely

-2.ated to parsimony methods than to distance matrix methods.

The four point metric
-_:..: of the quartets methods are based on the four-point metric (FPM) condition. This

s discovered by Zaretskii (1965), and independently by Buneman (1971). (For
-=:erences to other rediscoveries see the paper by Gascuel and Levy, 1996.) Con-
--.:~er the four-species tree ((A,B),(C,D)), as shown in Figure 12.1. If the distances

2re exactly those implied by the tree, we could get the distances by adding up
-2 branch lengths on the paths from one to another. You can easily see from the
~re that

dAc VI + V5 + v3

d BD V2 + V5 + V4

dAD VI + Vi) + V4
(12.1)

dBc V2 + V5 + v3

dAB VI + V2

d CD v;J + V4

--2 first two equations are for distances that have thin solid lines in their paths in
:-_lre 12.1. Adding them,

(12.2)
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The third and fourth equa tions correspond to the thin dashed lines and add to the
same sum:

dAD + dBc = Vl + V2 + 2 V5 + V;j + v..

The thick dashed lines correspond to the last two equations, and add to

(12.3)

(12.4)

These three quantities all contain v, + 7'2 + 'li3 + V-l, and the first two also contain
2V5. Then

dAB + dCD :::; dAc + dBD = djw + dBc (12.5)

These three terms are the three possible ways of grouping all four species into two
pairs.

The unrooted trees for four species include three bifurcating trees:
((A,B),(C,D)), ((A,C),(B,D)), and ((A,D),(B,C)). We can get the second and third of
these by simply switching species Band C, and then switching species C and D.
So there will be conditions exactly analogous to equation 12.5 for them, with the
appropriate species switched. The case where the tree is not bifurcating is the one
where V5 = 0 in anyone of these trees.

Buneman (1971) defined a set of distances as being a four point metric if for any
four speciesi,j, k, and£' the three quantities Dij+Dkf, Dik+Dj( and Dil+Dij have
the two largest ones equal to each other. This is simply a condition that guarantees
that there is a tree whose path lengths add up to the distances.

The split decomposition
Buneman's four point metric condition tells whether four species can have their
distances exactly represented by a tree. What do we do if there are more then four
species? We could check whether all quartets of species satisfy the FPM condition,
but this does not guarantee that there is one tree that implies all of those individual
FPM conditions. The most extensively studied method for combining quartet trees
is the split decomposition method of Bandelt and Dress (1992b).

They start by noting that the length of the interior branch of the tree implied
by a quartet (such as ABCD) can be computed as

~ [max(DAB+DcD. D,.l.c+DBD . DAD+DBc)

- min (DAB + DCD, DAc + DBD, DAD + D BC )]
(12.6)

A look at Figure 12.1 or equations 12.2-12.4 will verify this. Bandelt and Dress then
consider all possible splits of the set of species. A split is an unordered partition
of the species into two sets. (Usually we are interested only in those that have at
least two species in each of the two sets). If there are seven species, A through G,
one possible split is {ACDF I BEG}. For each split, they consider all quartets
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C

E

Figure 12.2: A seven-species tree with a split separating sets ACDF and
BEG. The tree is shown twice, with two of the quartets that have two
of the species from each side of the split. The branches connecting the
members of the quartet are emphasized with darker lines.

~f species that have two species from one set and two from the other. For this
~~~lit, there are 18 such quartets, ranging from ACBE, through ACBG, to DFEG.
3 It ABEG is not one of these, since three of its species come from the same set of
-'le partition.

For each of these 18 quartets we can see whether it is compatible with the par­
-::1on, as judged by whether the smallest of the three distance sums is the one
':lplied by the partition. This is a weakening of the original Four-Point Metric
~0ndition, as it does not require that the two larger sums be exactly equaL It was
<lggested by Sattath and Tversky (1977) and Fitch (1981). In our seven-species
~\.ample, when we look at quartet ADBE we should have

(12.7)

::w that quartet to be compatible with the split {ACDF IBEG}, The distance sum
. -hose two pairs of species are each within sets of the partition should not be the
.?,rgest of the three distance sums for the quartet to support that split.

For each possible split, Bandelt and Dress compute a weight that is an estimate
.: the length of the interior branch that separates the sets of the partition. Figure
: _.2 shows a split on a seven-species tree (our example) and two of the quartets
:onnected by bold lines) that will be compatible with it. Note that the four-species

=:-ee for one of these quartets has its internal branch as the one that separates the
:-\'0 sets in the partition for the split. The other has a longer internal branch, in­
~:uding that branch and one other. Bandelt and Dress compute the weight of the
-?lit by having it be zero if any of the quartets does not support the split. If they
-J support it, the interior branch length for each quartet is taken, and the weight
: he smallest of these interior branch lengths.

If the distances between species were all computed from the tree with no error,
---':5 would simply compute the length of the branch that separates the sets of the
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Table 12.1: Distances between a set of seven species for 232 nucleotides
near the D-Ioop region of mitochondrial DNA, in a data set assembled
by Masami Hasegawa

Bovine Mouse Gibbon Orang Gorilla Chimp Human

Bovine 0.0000 1.6866 1.7198 1.6606 1.5243 1.6043 1.5905

Mouse 1.6866 0.0000 1.5232 1.4841 1.4465 1.4389 1.4629

Gibbon 1.7198 1.5232 0.0000 0.7115 0.5958 0.6179 0.5583

Orang 1.6606 1.4841 0.7115 0.0000 0.4631 0.5061 0.4710

Gorilla 1.5243 1.4465 0.5958 0.4631 0.0000 0.3484 0.3083

Chimp 1.6043 1.4389 0.6179 0.5061 0.3484 0.0000 0.2692

Human 1.5905 1.4629 0.5583 0.4710 0.3083 0.2692 0.0000

partition for the split. In practice, the lengths will be computed with some error, so
this minimum branch length will often be smaller than the actual branch length.

There are a great many possible splits. With n species there are 2n - 2n - 2
nontrivial splits, so that for 10 species there are 1,002 possible splits. But Bandelt
and Dress (1992a) have shown that at most G) = n(n - 1)/2 of them can have a
positive weight (these they call the d-splits). This is a much smaller number - for
n = 10 it is 55. Bandelt and Dress (1992b) give an algorithm for searching for the
d-splits by starting with a few species and adding the remaining species. Having
the d-splits for fewer species, one can find the d-splits when one more species is
added by trying adding the new species to each of the partitions of the existing
splits. The computational effort for finding all the d-splits for n species rises at a
rate of at most n6 . Although this is a polynomial increase, it could still be fairly
fast. However, on moderately clean data sets the actual computational burden
rises more slowly than n6 .

A single unrooted tree with n species has 2n - 3 internal branches. If the splits
found by Bandelt and Dress's method are all compatible with the same tree, there
will be no more than 2n - 3 of them. Frequently there are more, so that the splits
specify a set of trees. Bandelt and Dress (1992b) note that it is frequently possible
to draw a graph that is not a tree that summarizes all the splits and makes it rather
easy to see which trees need to be considered.

As an example of the splits method, we will take a distance matrix of seven
species, five of them great apes, for 232 sites in or near the D-Ioop of mitochon­
drial DNA. If we compute the distances among the sequences using the F84 dis­
tance (for which see Chapter 13) with the empirical base sequences and transi­
tion/transversion ratio 2 we get the distances shown in Table 12.1. Using Huson
and Dress's program Spli tstree we find that the following splits are supported
(aside from the trivial splits that have one species separated from the rest):



Quartets of species 181

Split

{Bovine Mouse IGibbon Orang Gorilla Chimp Human}

{Bovine Mouse Gibbon I Orang Gorilla Chimp Human}

{Chimp Human IBovine Mouse Gibbon Orang Gorilla}

{Gorilla Chimp Human IBovine Mouse Gibbon Orang}

{Bovine Gorilla IMouse Gibbon Orang Chimp Human}

{Mouse Gibbon IBovine Orang Gorilla Chimp Human}

{Gibbon Human IBovine Mouse Orang Chimp Gorilla}

Weight

0.4029

0.03675

0.0306

0.021

0.0103

0.01015

0.00975

These splits taken together do not make a single tree, as some of them conflict.
=-., 'act, we can simply use the concept of compatibility. Two splits are compatible
": they could be splits of the same tree. This will be possible if one split divides

_e of the two sets of the other, but does not divide the other set. In fact, if we
-:"_ake up an imaginary character for each split, with states 0 and 1 for each species
':2pending on which set of the split contains that species, then the characters will
::-2 compatible (see Chapter 8) if the splits are compatible. We can find, from this
~: of splits, the maximal cliques of splits. Each specifies a tree.

Figure 12.3 shows the trees implied by this set of splits. The branches leading
"_ the tips are given lengths corresponding to the seven trivial splits, which can
::-2 inferred by the split decomposition method but which I have not shown in the
".::.":,le of splits here. They include the one that parsimony, distance matrix, and
_ elihood methods infer from these data (upper left), as well as others with less
=_ sible groups uniting Bovine and Gorilla or Gibbon and Human. As can be seen
- :he set of splits, these have small interior branch lengths.

The branch lengths are inferred from the weights for each split, including
::::3. ch lengths for the trivial splits that separate each species from all the others. (I
".::::e omitted those from the above table of splits.) Note that there are a number of
.::.~:erent ways to infer the interior branch lengths for a single quartet, and a num­
::-=:: of possible ways to combine those to infer the weight of a split. Thus to some

:ent the branch lengths inferred by the split decomposition are arbitrary. Ban-
"2:- and Dress (1992a) have shown that if we predict each distance using the sum
" all those splits that separate that pair of species, we get on average an under­
-:-:mate. They prove that the average of the predictions of all the distances in the
.:-.::ance matrix is no greater than the average of the distances themselves. This in-

:\-es using all splits, even incompatible ones that could not be present together
- the same tree. When only the ones compatible with a particular tree are used, it
:':ows that there must be even more underestimation. The branch lengths in the

:- jt decomposition are not inferred by optimizing some measure of goodness of
"":-etween the observed and the expected distances.
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Figure 12.3: The trees implied by the maximal cliques of splits from the
list of splits for the example. The split weights are used as the branch
lengths of the corresponding branch.

Related methods
A useful way to summarize the splits is the splits-graph introduced by Eigen,
Winkler-Oswatitsch, and Dress (1988). It is reviewed by Dress, Huson, and Moul­
ton (1996) and by Nieselt-Struwe (1997).

The split decomposition method was preceded by a method of combining
quartets due to Buneman (1971), which tended to lose more resolution. Bryant
and Moulton (1999) described the refined Buneman tree, a variant of it that loses
less resolution. Berry and Gascuel (2000) have suggested finding the largest set of
quartets that all are compatible with the same tree, and finding that tree. They
have presented an algorithm to do this that requires effort proportional to n 4

•

Bryant and Steel (2001) present methods to infer a tree from a set of quartets con­
strained to reflect those splits implied by the sites in a set of molecular sequences.

Short quartets methods
A limitation of the split decomposition method is that it will succumb rather read­
ily to noise in the data. A split has a weight (an estimate of the branch length
separating the two sets in the partition of species) that is the minimum of the in­
ternal branch lengths for all quartets that have two members in each of the sets
in the partition. If even one of these quartets infers the wrong tree topology
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~ those four species, the weight of the split becomes zero. Thus if the split is
~.BCD 1 EFGHI} and quartet ACFG happens to give the tree ((A, F), (C, G)),

--'" the whole split is effectively eliminated.
The noise can easily arise if some of the species are rather distant from each

:........er. This is also a serious problem with distance matrix methods such as
-:::ghbor-joining and those using the Fitch-Margoliash criterion. The weighting

- :arge distances in the data set by these methods is not correct-large distances
--2 aid too much attention. The large distances are quite noisy and can wreak

-..: -oc with the tree.
To correct for this, Erdos et al. (1997a, 1997b, 1999) have put forward the short
:"~ets 1I1ethod. This reconstructs a tree from quartets that do not involve any

- :he larger distances. This method uses a threshold value of the distance and
::epts only those quartets that do not have any of the distances between their

-:::nbers greater than this threshold. Thus if a quartet abcd is being considered,
- -·-ill be used only if all of the distances Dab, DoC! Dad, D bc, D bd , and D cd are
-- aller than the threshold. Inferring trees for these "short" quartets, they then

::lbine them to make an estimate of the overall tree. The method of combination
d is complete compatibility of the quartets. If some of the short quartets are

- :ompatible with each other, the method returns only the result Inconsistent. If
--,0 short quartets are too few to specify the tree, the method returns the result
-.o:~ 'ficient. In the former case, the threshold value is decreased, in the latter case,
- :.0: increased. A tree may result, or it may be discovered that all values of the
- ~eshold result in either Insufficient or Inconsistent.

Figure 12.4 shmvs a tree with the short quartets circled. (Here the actual branch
c:"'..;:;ths are used rather than the observed distances.) If all these quartets had the
::0~ er four-species tree topology, this would be sufficient to specify this tree topol-

TI1e method of tree reconstruction used in the short quartets method is called
-,0 .iyadic closure method (DCM). Its efficient implementation in an algorithm that
0:'_ construct a tree in time proportional to n5 is discussed in their paper. It in­
.:,-es maintaining a list of all possible quartet splits and updating it for each of

-:: quartets in turn.

The disk-covering method
-. -2 short quartets method will fail to find a tree if there is any inconsistency in

--::: topologies from different quartets. Huson et al. (1998) and Huson, Nettles,
- j Warnow (1999) have extended it to become the disk-covering method, or DCM
-.mehow that acronym seems familiar). This differs from short quartets in two

- -=.jor ways: It allows us to assemble trees from pieces larger than quartets, and
- '::oes not insist that all the estimates that are combined be compatible. It is thus
:::e to respond more easily to well-defined regions of the tree and also to cope

- ore easily with noise in the data.
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Figure 12.4: A tree with the short quartets circled. The shortness
is in this example judged by the true path lengths between species
(rather than, as in actual practice, by estimates of the distances between
species). There are 15 possible quartets for these 6 species; here only
those whose distances do not exceed 0.25 are circled. This is the small­
est threshold that leads us to infer a connected tree.

The criterion used to divide the list of species into overlapping sets of species is
again a threshold value of the distance between species. We make a graph in which
the species are points, and lines are drawn between all pairs of species whose
distances are below the threshold. The graph is then triangulated, by drawing in
extra lines so that every loop in the graph has all of its points directly connected.
This is hard to do in the worst case, but easy for most actual biological data.

The graph now has maximal cliques. Each of these is taken as a set of species
whose trees will be inferred, then combined to form the full tree, using a supertree
method like those covered later in this chapter. All n(n - 1)/2 possible distance
values are used as threshold values, and a consensus of the the resulting trees used
as the final result.

Unlike the short quartets method, the disk-covering method does not specify
what method is to be used to infer the trees for the sets of species. Any method
can be used, not necessarily distance matrix methods; parsimony and maximum
likelihood are also possibilities. Once the trees have been inferred, they are com­
bined by making strict consensus supertrees (see later in this chapter). The DCM
also leaves the user some flexibility in choosing the threshold value of the distance.
Huson et a1. (1998) report some experience with different methods of inferring the
trees of the sets of species and with different choices of threshold values.
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Figure 12.5: A tree of the same unrooted topology as in Figure 12.4 but
with a clock. The root is at the black circle. Of the 15 possible quartets,
all but one cross the root, and all 14 of these have the same maximum
distance, 0.39. In clocklike trees there is no set of short quartets that
crosses the root and allows construction of the tree. As in Figure 12.4,
the quartets are here evaluated by their expected distances rather than
their observed distances.

'-hallenges for the short quartets and DCM methods
--;? disk-covering method is valuable in that it tries to make the divide-and­

=-'luer approach to reconstructing large trees a well-defined algorithm. By di­
::~'lg the set of species into smaller sets, it allows use of methods of inference

--=.: \,"ould be unacceptably slow on the full data set. The hope is that the loss of
: :::uacy in doing so will not be unacceptable. By using a threshold value of dis­
- :e, an effort is made to find sets of species whose trees can be determined with
_. e accuracy. The hope is that large trees can be stitched together out of smaller

- .: that have a reasonably small "width."
This is not always possible. If the tree is close to clocklike, the deepest diver­

_.=- :es in the tree will not be easy to span with short quartets, or even with"disks"
:: more species. Figures 12.4 and 12.5 show trees, one nonclocklike and one
:~ike. If we use the expected distances produced by each tree and apply the

~_ -covering method, we will find that the nonclocklike tree can be spanned by
..::- and five-species sets. But any clocklike tree will not have any disks that can

er it, except for the trivial one in which the disk contains all the species. This
_ be true when we use the expected distances, as we must for such an example.

- -:?al cases where the observed distances vary around the expected distances, the
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situation will not be as bad as this, but it should be nearly as bad. The more closely
it is true that all distances between species on opposite sides of the root are equal
to each other, the more likely that we will be unable to find a small tree that crosses
the root and can be used in the short quartets method or in the DCM.

The ill-behavior of clocklike trees in the disk-covering method raises the ques­
tion of how often it will be able to effectively cope with large trees, either actual or
simulated.

Three-taxon statement methods
In the methods mentioned so far, quartets are analyzed by distance methods or
analyzed by likelihood methods, and these subtrees combined to infer a full tree.
Parsimony methods can be used as well, and this has been proposed by Nelson
and Platnick (1991). It will not immediately be obvious that their three-taxon state­
ment (3TS) method could be a quartets method, but it is. The three-taxon state­
ments are rooted trees, so that they make a statement about a quartet of species,
one of which is always the root of the full tree (or, in practice, the outgroup).

The 3TS method is to take all triples of species, add the root (if we know the
ancestral states) or the outgroup (if we do not), and for each of these infer the tree
topology by parsimony. In such a case the parsimony analysis is trivial. elson
and Platnick count each character as making a three-taxon statement about the
topology of the full tree. Thus if species B, C, F, and the outgroup have states
0, 1, 1, and 0, respectively, the statement favors the tree topology (B,(C,F)). That
statement votes for any tree that has that topology when all species other than B,
C, F, and the outgroup are removed. The full tree is given a score according to how
many of the three-taxon statements support it.

The computational burden of the 3TS method is considerable. One can, for
each possible three-taxon statement, make up a data set with all other species hav­
ing unknown ("7") character states and only those three species having their actual
character states. Thus for the triple B, C, F, all species other than those three would
have state "7". There must be one of these characters created for each original
character for each possible triple. Thus if we had p characters and n species we
would need to create a data set with p x n(n - l)(n - 2)/6 characters. Evaluat­
ing these data with a parsimony method would select the tree or trees favored by
the 3TS method. For example, with 50 characters and 10 species (one of them the
outgroup), one would need to create a data set with 4,200 characters. This is not
impossible, and ways could be found to considerably simplify the task. (With in­
teger character weights, one could get the number of characters down to 252 for a
10-species data set.) So far there has been no work on speeding up the algorithm,
nor any attempts to approximate it by considering fewer than the full set of triples
of species.

Most of the literature has instead been concerned with disputing whether or
not the method is valid or consistent with the principle of parsimony (Kluge, 1994;
Platnick et aI., 1996; Farris and Kluge, 1998; De Laet and Smets, 1998; Scotland and
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Figure 12.6: Three trees with 0/1 data, showing that the 3TS method
makes a distinction that Wagner parsimony does not.

=,~rine, 2000). Some of the reaction has been extraordinarily strong, including the
_~..:ulation of an anti-3TS paper as a kind of petition for signature by 30 authors
::,uris et al., 1995a; see historical comments and response by Platnick in Platnick
,: 3.1., 1996, p. 248). The issue of whether 3TS is or is not precisely consistent with
::- ':'~5imony need not detain us here; it is not exactly the same, although it can be
-_::arded as a quartets approximation to it.

One argument against a connection between parsimony and the 3TS method
-:.~ been that the latter cannot use reversal of a derived state as evidence (Farris,
::. :Ob). For example, in a full tree we may see tetrapod limbs arise among verte­
::-' -,,-res, only to be lost in a group such as snakes. Could 3TS ever use the secondary
::'~ence of limbs as a derived character, as a full tree could? It could not, as orig­
-,,,:1\' formulated. However, De Laet and Smets (2000) note that a 4TS method

"Jld do so.
In Figure 12.6 are three trees with 0/1 data. The left tree requires 1 change un­

-:c~ Wagner parsimony, and the right two 2 changes. The three-taxon statements
-.:.: could support a tree on this character would have to have both species that
'''' 1s. In the left tree either of the species having 0 would then make a three-taxon
'.:.:ement that supported the tree. In the center tree one of the species, the lower
-e that has a 0, would lead to a three-taxon statement supporting the tree. In the
:: tmost tree, no three-taxon statement would support the tree. In this case the

--3 method is rewarding the tree for placing parallel origins of state 1 near each
:"-.er on the tree. This is reminiscent of the behavior of Dollo parsimony, although
- =:e two methods are not identical. Although most of the literature supporting
-:c use of the 3TS method insists that it is about classification rather than phy-

.::eny, some (e.g., Platnick et al., 1996) seem to find closer location of parallel
-':':1ges a feature recommending the use of the 3TS criterion.
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Table 12.2: Table of the 10 pairs of values of RAS and E for a data set
of five species with the first two having all states 1, and the last three
having all states 0

Species pair RAS E

1 2 15 5
1 3 0 0
1 4 0 0
1 5 0 0
2 3 0 0
2 4 0 0
2 5 0 0
3 4 10 10
3 5 10 10
4 5 10 10

Other uses of quartets with parsimony
Quartets arguments with parsimony can also be used for testing for significant
historical structure in a data set. This is the objective of the RASA (relative apparent
synapomorphy analysis) method of Lyons-Weiler, Hoelzer, and Tausch (1996). It has
also been put by them to other uses, including identifying best outgroups (Lyons­
Weiler, Hoelzer, and Tausch, 1998) and detecting situations likely to lead to long
branch attraction (Lyons-Weiler and Hoelzer, 1997).

RASA measures the signal in a data set by plotting the relationship between a
measure of similarity between two species and a measure of apparent synapomor­
phy. If we have a data set with discrete characters that have two or more states, we
can consider only the variable characters, and measure for a pair of species (i,.7)
the number of characters E ij in which the two species have the same state. We
can also measure RASij , the number of times, across all characters, that these two
species have the same state while another species has a different state. Thus if we
had five characters, all of which have Is in species A and B and Os in species D, E,
and F, E 12 = 5. For each character there are 15 instances (species D, E, and F in
each of the five characters) in which A and B have the same state while the other
species has another state.

RASA plots RASij against E ij and seeks to test whether the regression is sig­
nificant. Table 12.2 (which I suppose can be called a tabula rasa) shows the values
of RAS and E for all pairs of species. Lyons-Weiler, Hoelzer, and Tausch (1996)
compare the slope of the regression of RASij on E ij by a t-test with predicted
values of either Lij RASiJ / LiJ E ij or with values in the same matrix with the
columns scrambled separately in each character. In this example, the predicted
slope is 2.25 from the first method, so that there is judged to be no signal in the
data set.
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Figure 12.7: A consensus supertree (bottom), computed from three
trees with different sets of tips.

It is difficult to say whether RASA is really a quartets method. It looks only
.o~ triples, but the RASA statistic looks at more than one triple at the same timet

-here these share one pair in common. In effect it is looking at the split separating
:':',at pair from all other species. Because it does not make any attempt to use the
~~uctureamong those other species, it can count data from closely-related species
.:.~ if it were independent information. For this reason many objections have been
-~ised to RASA (Simmons et al., 2002; Faivovich, 2002; Farris, 2002).

Consensus supertrees
~ethods like disk covering assemble a large tree from smaller trees. This step

~ a use of consensus supertrees. When not all of the input trees have the same
-?ecies on them, we may want to find which tree that has all of the species is
-=-.ost consistent with them. This active area is well reviewed by Bininda-Emonds,
'=~ttleman, and Steel (2002). I will only touch on some of the more widely-used
-=-.ethods here. Gordon (1986) has suggested finding the tree which has all of the

___?ut trees within itt in the sense that one can get them by dropping different
~[s of species. Figure 12.7 shows three trees, with different and overlapping sets
: species, and their consensus supertree. Supertrees have become of increasing

- :erest as data sets with large numbers of species have been analyzed. When
. .:'mputationally intensive methods of inferring trees are used, it may be helpful

.:' analyze a series of subsets of the species. One then will want to combine the
-.:'erred phylogenies for the subsets and see whether a consensus supertree can be
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Table 12.3: The set of fictional characters implied by the three input
trees in Figure 12.7. Each character corresponds to one internal branch
of one tree. Species missing from a tree have "7" states for its char­
acters. In this example, the trees are considered to be rooted, so an
outgroup 0 with all Os is also included.

Tree 1 Tree 2 Tree 3
0 0 0 0 0 0 0 0 0
A 7 7 7 0 1 0 7 7
B 0 1 0 0 0 1 1 1
C 1 0 0 1 1 0 0 0
D 0 1 1 0 0 1 1 0
E 0 1 1 7 7 7 7 7
F 1 0 0 1 1 0 7 7
G 7 7 7 7 7 7 1 1

made. Algorithms for constructing supertrees are difficult; Gordon presented only
approximate methods. The nonadditive binary recoding technique introduced by
Kluge and Farris (1969) and used to encode phylogenies by Farris (1973a) can be
used in one method of constructing supertrees. We have seen in Chapter 7 that
one can construct characters corresponding to branches in a phylogeny (there it
was done for a character state tree). Each branch's character has a 1 for species
connected to one end of the branch and 0 for species connected to the other end.
If the tree is rooted the set connected to the upper end of the branch gets state 1.
We can omit characters for the branches connected directly to tips, as they will not
affect the calculation of the supertree.

For the calculation of consensus supertrees, we make these characters for each
tree. If a species is missing from the tree, its state for all of that tree's characters
is taken to be "7". The characters for all of the input trees are appended into one
data set. If we are using rooted trees to build the supertree, an outgroup that has
all states "0" should also be included.

Table 12.3 shows the resulting data set for the three trees in Figure 12.7. The
groups of fictional characters for each of the three trees is indicated. We can imag­
ine evaluating the changes of these characters according to Camin-Sokal parsi­
mony (if the trees are rooted) or Wagner parsimony (if they are unrooted). If a tree
is proposed to be the consensus supertree, these characters should each change
only once. Thus the characters should all be compatible. Unfortunately, we can­
not use the Pairwise Compatibility Theorem to find the tree, as the data have "7"
states in them, and as we have seen in Chapter 8, this makes the theorem inap­
plicable. However, we can do an approximate search for the consensus supertree
by inferring the tree by Camin-Sokal parsimony (or in the unrooted case, Wagner
parsimony).
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Even when all of the trees are compatible with each other, there may be many
'::ifferent supertrees, each of which contains all of the trees. The strict consensus of
.o.~ of these is called the strict consensus supertree. Steel (1992) showed a polynomial
=-_ e algorithm for finding it directly in the rooted case, more quickly than with
.:::; rdon's algorithm. The BUILD algorithm of Aho et al. (1981) tests compatibility

: the set of trees and, if they are compatible, finds one of the supertrees.
The recoding method can be extended to deal with cases in which not all the

::-ees are consistent with each other. Finding the most parsimonious tree then
~:-eates a compromise between conflicting information from different trees. This
~.ethod, which is called MRP (matrix representation with parsimony) was suggested
=-:.- Baum (1992) and by Ragan (1992b). There have been a number of suggestions
: 'xays to weight the trees so as to more effectively incorporate information about

:"-.e support for various parts of the trees (Ragan, 1992a; Purvis, 1995; Ronquist,
_~96b; Rodrigo, 1996).

Direct methods for computing supertrees in polynomial time when not all of
:"-.e trees are compatible include the MinCutSupertree method of Semple and Steel
-=_ 0) and the modification of it by Page (2003).

_-\ consensus supertree method, the average consensus method, has been pro­
: sed for trees with branch lengths by Lapointe and Cucumel (1997). They suggest
: :nputing the path lengths between each pair of species and averaging across all
::-2t:'S that contain that path. The consensus supertree is then computed by a least
<·.lares fit of the tree to these average path lengths.

- :\ote that the quartets methods described above are not the same as any of
-o2se supertree methods. Most of these methods will produce the same tree when
-02 individual trees are completely consistent with each other, and all make differ-
-: compromises when they are not. All of them may be compared with the result
- 3ssembling a combined data set, with "?" states for characters not scored in par-
::.lIar species. Analyzing the combined data set is a "total evidence" approach
- j may yield different results. I will discuss the controversy between total evi-
-:::Ke and consensus tree methods later, in Chapter 30.

_-ote that the depressing results of Steel, Dress, and Boeker (2000) (the discus­
_ will be found in Chapter 30) include some for supertrees.

-eighborliness
- -::ath and Tversky (1977), Fitch (1981), and Bandelt and Dress (1986) had earlier

::-eloped methods based on quartets, using measures of neighborliness to choose
:s to join on the tree. Sattath and Tversky looked at every pair of species and
ery quartet that includes that pair. For each quartet they asked whether that

o:r was supported as being neighbors. If they were considering species 3 and
- ::tey asked, for each other pair of species i and j, whether the tree inferred for

- -".T quartet placed 3 and 7 on the same side of the interior branch. The trees were
-~",rred by considering whether D 37 + Dij was the smallest of the three distance

::15 (the others are D 3i + D7j and D3j + D 7i ). They counted the number of
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times this has occurred, to get a neighborliness score for each pair of species. That
pair was then connected and replaced by a single species, whose distances to the
others were computed by averaging. The process was continued until the tree was
constructed. The use of a simple average of the distances implies that the tree is
clocklike.

Fitch (1981) used instead a neighborliness that was an average of the branch
lengths inferred. Gascuel (1994) discussed these strategies in the context of the
neighbor-joining algorithm, and showed that Fitch's method gives essentially the
same result as neighbor-joining. In effect it is a distance method rather than a
quartets method. This underscores the close relationship between distance meth­
ods and quartets methods.

De Soete's search method
The most original quartets method of all, and one of the most unusual approaches
to searching for trees is that of De Soete (1983). He starts with an observed matrix
of distances (Dij ) and attempts to construct a tree that will most nearly approxi­
mate them. He does this by trying to achieve a matrix of expected distances (dij )

that are those predicted by a tree. If all of the expected distances satisfy the four­
point metric (FPM) condition, it can be shown that there is a tree that predicts
these distances. De Soete gradually modifies the matrix of expected distances and
ensures that it comes closer and closer to satisfying the FPM condition. The ex­
amination of whether the individual FPM conditions are satisfied makes this a
quartets method.

De Soete computes an overall measure of the form

'" 2L(D) = L.,;(Dij - dij ) + pP(d)
ij

(12.8)

which is the usual sum of squares, plus a function pP(d) that penalizes departures
of the fitted distances from adhering to the Triangle Inequality and the four-point
metric. For each quartet there is a term in P(d) of the form

(12.9)

where dij + dkt is the smallest of the three distance sums for that quartet. It is the
square of the difference between the two larger distance sums.

This penalty function has the property that it is positive unless the FPM is
precisely satisfied, at which point it becomes zero. De Soete envisages fitting dis­
tances dij that minimize L(D) for a given value of p. The bigger the constant p, the
more weight is placed on the penalty function, and thus the more effort the mini­
mization will put into reducing P(d). Taking a series of increasing values of p, the
method will force P(d) closer and closer to zero. Thus the expected distances dij

will become more and more treelike as p increases.
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\rote that the initial expected distance matrix does not satisfy the FPM condi­
- n, and neither do any of the later ones, although they come closer and closer
-::t satisfying it. Thus we do not have estimates of trees that we alter to wander in
-:ee space. What we have are entities that are not quite trees. Imagine that all of
-:ee space is a flat surface, divided into regions for the different tree topologies.
:'e Soete starts, not in that surface, but in the air above it. As the penalty for de­
~ a.rting from the FPM condition becomes greater, the method in effect falls out of
:.-e sky toward the space of trees, being attracted to particular regions of the space.
=,,,, Soete's method does not crawl through tree space like all the others but instead
~ 3.rachutes onto it from above. Some further developments of similar techniques
-3. ·e been made by Roux (1988) and by Gascuel and Levy (1996). This is a unique

__ roach that deserves more attention.

_uartet puzzling and searching tree space
-'-e above methods have used the distance information, never returning to the
~:,inal data. Quartets can also be used to generate trees as candidates for search

--'O:''lg other criteria, including criteria that measure the goodness of fit to the full
-"- ecies data. Strimmer and von Haeseler (1996) have introduced the quartet
:-:ling method, which uses quartets to infer a number of estimates of the full

-2'2. and then chooses among them using likelihood. We will introduce likelihood
- :erence of phylogenies in Chapter 16. For the moment we need only know that

_~ a criterion for choosing among trees. In fact, although Strimrner and von
- 3.eseler specify likelihood as the criterion for quartet puzzling, other criteria such
- : arsimony, or even least squares distance criteria, could as easily be used.

:n their method, one starts by taking all quartets, and using likelihood to infer
-" :'our-species tree for each. This is different from the split decomposition and
_ ~hborliness methods, in which the quartets are always inferred using their dis­
- :es. The likelihood is computed using the full molecular sequences for those
_= species. The species are taken in a random order. The quartet for the first four
_~ed as a starting point. For each species in turn:

Take all triples of species that are already on the tree.
- Add the next species to the triple and infer the tree for that quartet.
- If the quartet is (say) ACOG f and D is the new species, then if the tree comes

out ((A,D),(C,G)), this is considered a vote against having D located on any
branch between C and G.
Place the votes-against on those branches.
_-\ccumulate the votes for all these triples.

- Place D on the tree by connecting it to the branch with the fewest votes­
against (choosing one of the placements at random if there is a tie).

:::lgure 12.8 shows some of the steps in this process. Although the overall cri­
- _:1, likelihood, is used to infer the trees, there are some arbitrary steps in the
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Figure 12.8: Steps in quartet puzzling, showing the evaluation of a
triple, ACD, which becomes a quartet ACDG (dashed lines) when we
add to it a new species G whose placement on the six-species tree (left
tree) is being evaluated. The inferred tree for the quartet is shown in
the center tree. The branches that this quartet "votes against" as places
to add G are shown as dashed lines on the righthand tree.

resulting algorithm. In particular, the votes are all-or-none; they do not reflect the
amount of difference in likelihood between different resolutions of the quartet. In
the example in the figure, the placement of species G in the quartet is far enough
to the left that it would also seem to vote against the center branch of the original
tree, but this is not counted. Strimmer, Goldman, and von Haeseler (1997) have de­
scribed a modification of the quartet puzzling algorithm, using Bayesian posterior
probabilities of quartets as weight. The modification addresses this arbitrariness
and seems to improve the effectiveness of the search for the maximum likelihood
tree. Ranwez and Gascuel (2002) have invented another weighted method of com­
bining quartets that also seems to improve on quartet puzzling.

A particularly interesting use of quartets for searching is given by Willson
(1998). He uses parsimony, and for each tree is able to measure the extent to which
quartets within the tree disagree with the tree topology. The measure is not a count
of quartets, but is weighted to measure the strength of the disagreement. With the
parsimony criterion, he is able to prove that no other tree achieves a lower value
of the total strength of this disagreement. This proves that the tree is one of those
optimizing this criterion, without the need for an exhaustive search.

Lake's (1995) "bootstrapper's gambit" method is a resampling method that
builds trees from bootstrap sampled data sets, insisting that no quartets conflict.
It will be described further in Chapter 20 when we consider bootstrap sampling.

Perspective
Quartets methods lead to a lot of nice mathematics, but we should keep in mind a
basic limitation - that they treat the quartets as a sufficient representation of the
original data. This can be dangerous. Distance matrix methods have been devel-



Quartets of species 195

",ed that weight departures of the tree from the individual distances in ways that
~et1ect the statistical noise arising from the stochastic processes of evolution. Quar­
:2ts methods are at an earlier stage of development; they do not make any attempt
:0 do this, with the exception of some of the modifications of the MRP method and
::"e Bayesian weighting for quartet puzzling. It is going to be necessary to take the
'::'ilta into account. Consider a simple example. We have various quartets inferred
~om data on bird species, and we combine them to make a tree. In the process, the
__ ·ormation from one particular species of sparrow is weighted by consideration

: the quartets in which it appears.
:'Jow suppose that a second, nearly identical species of sparrow is included in

:':'~e data set. If it is closely related to the first species of sparrow, parsimony or like­
:.:. ood methods will take this into accOlmt, and the presence of the second species
: sparrow will have little effect. It will always be found on the tree next to the first

-: ecies and will scarcely change the assessment of which events have occurred in
_-'oIution. But in a quartets method or in some distance matrix methods, the effect
: including the second species of sparrow can be more dramatic. In effect, each

~~lartet that includes the first species is joined by another that reaches the same
~~'nclusion and includes the second species. When the quartets are combined to
~ilke the overall tree, the sparrow quartets will loom larger and have a greater in­
-~lence on the tree, more influence than is really appropriate. By ignoring the data
:'.ce the quartets are available, the quartets methods lose the ability to properly
:'sess the noise in the inference. This may be changed by future developments of

-·ese methods. It is not clear that this will be easy to do.
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Models of DNA evolution

We have just introduced distance matrix methods, which use models in the for­
mulas for the distances. In later chapters we will cover likelihood and invariants
methods, which are also dependent on having a probabilistic model of evolution.
This is a good point to review some of the models of evolution that are used in
many methods of inferring phylogenies. We will cover in this chapter the mod­
els of change of DNA (and RNA) sequences. In subsequent chapters we will cover
other molecular models. We defer to a later chapter the use of the Brownian mo­
tion approximation to model change of gene frequencies and quantitative charac­
ters, and the issue of genetic distances based on gene frequencies. As we cover
various models of DNA change, we will also comment on methods for obtaining
distances from them.

We have already introduced the simplest model of DNA evolution, the Jukes­
Cantor model (in Chapter 11). This model assumes, in effect, that the frequencies
of all four bases at equilibrium are equal and that there is no difference of rates
of substitution between transitions and transversions. A (large) number of alter­
native models have since been introduced to remedy this. We will review some
of them. An important objective in each case will be to compute, for each model,
the probability of change from a given state to a given other state in a branch of
length t. These are called transition probabilities. The name has nothing to do with
the transition/ transversion distinction that molecular biologists make - it is older
terminology from probability theory. The reader will have to be alert to whether
the word transition is being used in the molecular biological sense, or to denote
any change of state (whether it is a transition or a transversion).

Kimura's two-parameter model
Kimura (1980) introduced a model that allows a transition/transversion inequality
of rates, while still being very symmetrical. It is shown in Figure 13.1. The two
parameters, a and (3, of the Kimura two-parameter (K2P) model allow us to vary not

196
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Figure 13.1: Kimura's two-parameter model. Rates differ between
transitions and transversions, but are otherwise equal.

(13.1)
CYo

/3 (~) R~l

-,: only those values guarantee that the expected transition/transversion ratio is R
.:-.d the total rate of change is 1. It is possible to derive the transition probabilities
-- ~ Kimura's two-parameter model. For now we just note that, for a branch of
-=:1gth t, the probabilities that the net result is a transition (change from, say, A to
- and that the net result is any transversion (change from A to C or to T) turn out

Je

only the overall rate of substitution per unit time, but also the fraction of them that
:'.Ie transitions as opposed to transversions. It should be apparent that, from any
:1ucleotide, there is one change, at rate a, that causes a transition, and two, at rate
-, that cause transversions. The ratio of transitions to transversions, which we will
~all R, will be a/ (2/3). The total rate of change will be a + 2/3.

The model is symmetrical, and one can immediately see that, after enough time
:-:as elapsed, it will be equally likely for the base to be a purine or a pyrimidine.
- -ithin these two categories there is also complete symmetry between the two pos­
,::ble nucleotides, so the equilibrium frequencies of all four bases under Kimura's
_ odel are, as they were in the Jukes-Cantor model, TTA = 7TG = 7Tc = TTT = 1/4.
. ·ote that the Jukes-Cantor model is simply the particular case of Kimura's two­
:-arameter model in which a = /3, so that R = 1/2.

In the next subsection we will see formulas for the transition probabilities of a
=core general model that has Kimura's model as a special case. To express these in
.=. meaningful way, we would like to consider a site that has rate of change 1 per
.:..-ut time (which means that we are scaling branch length in expected nucleotide
o-.lbstitutions per site). This would require that Q + 2/3 = 1. Given the transi­
::on/transversion ratio R, that in turn means that

R
R+l

Prob (transition It)

Prob (transversion It)

1 _ 1. exp (- 2R+l t) + 1 exp ( __2_ t)
4 2 R..Ll .. J R+l

1 1 ( ? )"2 - "2 exp - R+l t
(13.2)
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Note that the probability of a particular transversion (say, A to T) is half of the
value given in equation 13.2. These probabilities are not the probabilities of single
changes but the net result of whatever number of changes occur. A change from
A at one end of a branch to C at the other may involve multiple changes of base in
between.

Figure 13.2 shows these quantities plotted against time (t) for two different
values of R, 10 and 2. In both cases the number of transition differences rises to
a maximum and then begins a slow decline toward an ultimate value of 1/4. In
both cases the expected number of transversion differences rises slowly toward an
ultimate maximum of 1/2. Note that beyond the point where the overall fraction
of differences between the sequences is expected to be about 50%, there will be
little information about the distance conveyed by the transitions. This might be
thought to argue for ignoring transitions and simply basing our inferences on the
transversions. But note that in these same figures, the transitions do contribute
meaningful information below 50% divergence (in the case of R = 10, most of
the information). The figures also suggest that no one ratio of weights will suffice
to use this information in an optimal way. Above 50% divergence, transversions
should be heavily weighted. Below it, they should not be.

Calculation of the distance
With the Jukes-Cantor distance, we could compute the distance by expressing the
fraction of difference between sequences in terms of the distance, and then solving
that equation for the distance. With Kimura's two-parameter distance, a similar
procedure can be followed. In effect, we have two observations, the fraction P of
transition differences between the two sequences, and the fraction of transversion
differences (Q). Solution of the two equations 13.2 yields:

t

R

-11n [(1 - 2Q)(1- 2P - Q)2]
-In(1-2P-Q) 1

- In(1-2Q) - '2

(13.3)

the first of these being given by Kimura (1980). For each pair of sequences, we
are estimating both t and R. One difficulty with doing things this way is that we
may obtain wildly different transition-transversion ratios R for different pairs of
sequences, when in fact all of them have evolved on the same phylogeny and thus
share important parts of their evolution. Another is that any pair in which either
Q > 1/2 or 2P + Q > 1 will have complex values of Rand t, which does not make
sense.

An alternative method of computing the distance is to treat the matter as a
statistical estimation. It can be shown that the quantities P and Q are in fact "suffi­
cient statistics," so that any estimation of t need only make use of those quantities
plus the number of sites n. All other observations, such as how many of the differ­
ences are A f-t G transitions as opposed to C f-t T transitions, do not increase the
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Figure 13.2: Net probabilities of transition and transversion change in
Kimura's two-parameter model, with two different values of the tran­
sition/transversion ratio, R = 10 and R = 2. The first is typical of
some mitochondrial DNAs, the second of mammalian nuclear DNA.
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power of the estimation, and taking them into account may actually hurt. It is not
hard to show that equations 13.3 in fact make maximum likelihood estimates of t
and n when they have real-valued solutions. We can also imagine making max­
imum likelihood estimates of t when R has a fixed value. Suppose that we think
we know R. The likelihood, the probability of the data given the model and t, is
the product of the probabilities of the differences at each site. At each site the prior
probability of the observed base in the first sequence is 1/4, and the conditional
probability of the base observed in the other sequence is either 1- P- Q, P, or Q/2
(there are two of the latter). If there are 'II sites in alt nl of which have transition
differences, and n2 transversion differences, the product of terms will be:

(
l)n (1 )noL = Prob(datalt.R) = 4" (l_p_Q)n-n , -n 2 pnl 2Q (13.4)

The quantities P and Q are given by the two equations 13.2. They are expres­
sions in Rand t. Our objective here is to maximize L with respect to t, holding
R at the value that we have fixed. One might imagine solving this by differenti­
ating equation 13.4 with respect to t, equating the derivative to 0, and solving for
t. The reader who attempts this will find that no closed-form solution is possible.
However, this need not stop us from solving it numerically in a computer, by for
example, Newton-Raphson iteration. The result is a rapid and well-behaved esti­
mation method that has the advantage of preserving the consistency of R across
all pairs of sequences. For each pair we must maximize its L with respect to t. An
additional advantage of this framework is that it shows us that when Q > 1/2 or
2P + Q > I, the maximum likelihood estimate of t is infinite. One can also re­
late it to Kimura's formula, by differentiating equation 13.4 with respect to both
t and n equating both derivatives to 0, and showing that the resulting equations
are precisely equations 13.2.

The Tamura-Nei model, F84, and HKY
The Kimura two-parameter model and the Jukes-Cantor model place great restric­
tions on the DNA sequences, in the interest of ease of computation. One assump­
tion of the models that it would be nice to relax is that all four bases have equal
expected frequencies. Two of the most widely used models that relax this assump­
tion, and allow arbitrary base frequencies, are the F84 and HKY models. The
former has been in use in my phylogeny package PHYLIP since 1984, but was
not published until Kishino and Hasegawa (1989) described it (with my assent).
Felsenstein and Churchill (1996) have explained it further. The HKY model was
introduced by Hasegawa, Kishino, and Yano (1985). These models are generi­
cally similar. Both extend the Kimura two-parameter model to asymmetric base
frequencies, in slightly different ways. Both have five parameters. Rather than
present them separately, we shall examine a slightly more generalized modet with
six parameters, which includes both of these as a special case. It was introduced
by Tamura and Nei (1993). Our notation will differ from theirs.



Models of DNA evolution 201

Table 13.1: Instantaneous rates of change in the Tamura-Nei model

To: A G C T

From:

A - crnTiG/7iR + PTiG P7iC P7iT

G aRTiA/TiR + PTiA - ,87ic P7iT

C PTiA PTiG - aYTiT/TiY + PTiT

T ,8TiA ,8TiG aYTic/Tiy + PTiC -

In effect, the Tamura-Nei model imagines that we have at any site a constant
?robability of two kinds of event. If a site has a purine (A or G), it has a constant
: robability aR per unit time of an event of type I, which replaces the base with a
:andom base drawn from a pool of purines. It also has a constant probability of
:eplacing it by a random base drawn from a pool of all four bases. If the site has a
::'\Timidine, it has a constant probability ay of replacing the base by a random base
.:rawn from a pool of pyrimidines, and also a constant probability of replacing it
'::'\' a base drawn from the pool of all four bases.

The pool of all four bases is imagined to contain them at some frequencies TiA,

- ~', TiG, and TiT. It will turn out that these are precisely the equilibrium frequencies
:"a t we expect under this model. The purine pool and the pyrimidine pool are
::.lch set up with a mix of these bases in precisely the same ratios as in the overall
:::-001. Thus in the purine pool, we have A and G in the ratio TiA : TiG. If we call
:"e total frequency of purines in the overall pool 71R = TiA + TiG, the frequencies of
-. and G in the purine pool are then TiA / TiRand TiG/ TiR. Similarly, the pyrimidine
::001 has these two bases in a ratio of Tic : TiT and a total frequency of Tiy and thus
-:equencies of Tic /Tiy and TiT /Tiy.

The two kinds of events, in a tiny slice of time that has length dt, occur with
:::obabilities aR dt and pdt, when the original base is a purine. They occur with
:::obabilities ay dt and,8 dt when it is a pyrimidine. Table 13.1 shows the instanta­
-;cous probabilities per unit time of the 12 possible changes of base. ate that the
:der of bases is not alphabetical. These are rates, that is, when multiplied by dt

:'-.e\' become the probabilities of change in a very small interval of length dt.
If this model has aR = ay, it is the F84 model. If aRjay = TiR/7iY, it is the

-:-::'Y model. Both of these are special cases of the Tamura-Nei model.
The parameterization in terms of aR, ay, and p is not the most useable one.

'e would like to express these in terms of the expected transition/ transversion
'.=.io R, and we would also like to scale the aR, ay, and p so that the average
. .:.:e of change per site is 1 per unit time. Noting that the four rows of Table 13.1
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will apply 'TrA, 'Trc, 'Trc, and 'Try of the time, respectively, we can add up the total
expected rates of transitions and transversions. The total rate of transitions is:

(13.5)

and the total rate of transversions is:

(13.6)

We would like to have T"/T,, = Rand Ts + Te, = 1. Substituting 13.5 and 13.6
into those, and denoting the ratio of O!R to Cy\.r as p, we end up with equations that
can be solved to yield the a's and (3. We get:

and

Cl,y

o.R = po.}"

(13.7)

(13.8)

(13.9)

We could substitute these into Table 13.1, but this results in unexciting expressions,
so we resist the temptation.

With all this done, it remains to find the transition probabilities (in the prob­
abilistic rather than the molecular sense of the phrase) for a branch of length t.
These are needed, as in the other cases, as raw material for distance or likelihood
calculations.

The nice property that this family of models has is that they let us calculate the
transition probabilities easily. The property that allows that is that each kind of
event erases the effect of some events earlier. For example, suppose that we have a
series of events of type I and type II that follow each other, the last event being of
type II. Then, as that replaces the base by one randomly drawn from the nucleotide
pool, it does not matter at all what other events preceded it: We know that the net
probability of obtaining an A is 'TrA, of obtaining a Cis 'Trc, and so on. If an event
of type II is followed by an event of type I, the result is the same - it is only the
type II event that matters. So a type II event anywhere along a branch results in
the nucleotide at the end of the branch effectively being drawn at random from
the nucleotide pool.

Likewise, if a branch has a series of events of type I, but none of type II, it does
not matter how many events of type I it had: The probability of getting an A is
'TrA/'TrR (if the lineage started with a purine). So type I events erase the effect of
previous and subsequent type I events, and type II events erase the effect of any
previous and subsequent events. Thus all we need to know of a branch is whether
it has had any type I events, and whether it has had any type II events. If an event
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Table 13.2: Probabilities of different numbers of Type I and Type II
events in the model

exp( -(CtR + ;3)t)
cxp( -,st) (1 - exp( -aRt))

1 - exp( -;3t)
Some type I, no type II

Some type II

If the branch starts with a pyrimidine:

No events exp( -((icy + ;3)t)
Some type I, no type II exp( -;3t) (1 - exp(-Qyt))
Some type II 1 - exp( -,St)

If the branch starts with a purine:

No events

~ad rate .A, the probability that there are none in a branch of length t is exp( -.At).
TI1e net probabilities for a branch of length t are shown in Table 13.2.

From this table, from the rules about events "erasing" each other's effect, and
~rom the composition of the nucleotide pools, one can easily work out the transi­
:ion probabilities. For example, if we start with an A, a G could arise (1) if the last
2\-ent is one of type I that results in a G in a lineage that has no events of type II,
:-r (2) if there is an event of type II and the last event happens to yield a G. In the
:'-ilst case, the probability of a G is TtG / Tt R, and in the event of the second, it is TtG.

?utting these together,

Prob (G I A, t) = exp( -;3t) [1 - exp( -aRt)] 7fG + [1 - exp( -;3t)] 7fG (13.10)
7fR

-\-e could write out 16 expressions like this, but we can write them more generally.
~~lppose that we use two notational devices when dealing with subscripts i and

[hat range over the four bases A, G, C, and T. They are the standard Kronecker
::'elta function bij, which is 1 if i = j and 0 otherwise, and the "Watson-Kronecker"
-:: uivalent, Sij, which is 1 if i and j are both purines or if they are both pyrim­
jines, but is 0 otherwise. We also have eti, which is either QR or oy depending on
-_ ether i indexes a purine or a pyrimidine. With these notational conveniences,

-_-.e transition probability can be written as:

Prob (.j I i, t) exp( --(Qi + /3)t) bij

+ cxp( -,st) (1 - cxp( -Oi t )) ( 7rj
O

ij )

Lk Ojk 7r k

+ (1 - exp( -(3t)) 7fj

(13.11)

"'\Jote that the sum involving Ejk in the denominator of the fraction of the term
:'. the right side is simply 7fR or 7fy, whichever is appropriate.
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It must be kept in mind that these "events" are purely fictional, and are of
use as a means of easily calculating transition probabilities. They are not to be
confused with the actual processes of substitution of bases, since some of them
result in no change. The substitution probabilities occur as if these events were
happening.

There are no simple formulas for estimating distances from the Tamura-Nei
model. However a numerical maximum likelihood approach is easy to construct
using the formulas for the transition probabilities. Using the equilibrium frequen­
cies 1fi and the transition probabilities Prob (jli, t) we note that the fraction of
sites at which we have in our two species bases i and j, respectively, will be
1fi Prob (jli. t). The likelihood for DNA sequences n bases long that have base
1ni at site i in the first sequence and base ni. at that site in the second sequence will
then be

n

L = II 1frni Prob (ni I mi· t)
;=1

(13.12)

We can compute L for various values of t using the transition probability formu­
las, and use standard methods of searching for the maximum of a curve. This
likelihood makes use of the fact that the joint probability of bases 1ni and ni does
not depend on where their common ancestor is along the lineage connecting the
two species. We can arbitrarily choose one to be ancestral to the other, without
affecting the result. This comes from the property of reversibility.

Schadt, Sinsheimer, and Lange (1998) have presented a model with two more
parameters than the Tamura-Nei model. They show how to calculate transition
probabilities explicitly for this model. When constraints are imposed on it to
ensure reversibility, it becomes the Tamura-Nei model. Schadt, Sinsheimer, and
Lange's model is the most complex one so far for which transition probabilities
can be explicitly calculated.

The general time-reversible model
All of the models so far have been reversible. If the equilibrium frequencies of the
bases are 1fA, 1fG, 1fG, and 1fT, then a model is reversible if

1fi Prob(jli.t) = 1fj Prob(ilit) (13.13)

This means that the probability of starting with i at one end of the branch, and
ending with j at the other, is the same as the probability of starting with j and
evolving to i. That is, if we see base ./ at one end of a branch, and base j at the
other end, there is no way to decide which end was the ancestor and which the
descendant. An example of a nonreversible model would be one in which A was
most likely to change to G, G to C, C to T, and T to A. Thus if we saw many Cs
at one end of a branch, and many Ts at the other, this would be a hint that the Cs
were in the ancestor and the Ts in the descendant.
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Table 13.3: The general time-reversible model of DNA evolution

To: A G C T

From:

A - 7IG 0' 7IG ,8 7IT!

G 7IA 0' - 7Ic 15 7IT E

C 71A (3 7IG 15 - 7IT 7)

T 7IA! 7IG E 7IG 7) -

Reversibility is mathematically convenient; it is the basic reason why we usu­
-'.~I\' are not able to place the root of a tree, and are consequently inferring unrooted
=ees. But there is no biological reason why models of D A change should be re-

ersible - it is a convenience rather than a reality. However, some of the reversible
::-.odels come close enough to fitting real data that a realistic model may be nearly
--2 'ersible, so that we have rather little statistical information enabling us to place
:: e root of the tree.

The instantaneous rates of change for the most general time-reversible (GTR)
--:-. del for DNA are shown in Table 13.3. This form of the rates is due to Lanave et
-'.~, (1984).

The rates as given above need to be adjusted so that one unit of time is the time
_- \\'hich we expect to see one change per base. As the 7Ii are the equilibrium fre­
~'..:.encies of the bases, the total rate of changes will be the sum of the off-diagonal
:::ements of Table 13.3, each multiplied by the probability that one would start

'ith that base. Thus the rates should be standardized so that

(13.14)

As with all models of DNA change, if we have the rate matrix A we can cal­
:-..:.late the transition probability matrix P from it for any branch length t. In this
:-'.3e, the rate matrix is

r

- (a7lG + ,671e + 'Y7IT) em A (371A 'Y7IA

WfG - (a7lA + [me + €7IT) [me ETtG

A = (37fe oTte - U37r,A + 07fG + 7]7fT) 7]Tte

'Y7fT 67fT 7]71T - (--y7fA + 67fG + 7}71c)

] (13.15)

'ote that this is the transpose of Table 13.3, so that aij is the rate at which base j
,:,,-,anges into base i.

In principle, the transition probability matrix P can be computed from A by
-atrix exponentiation, so that

P(t) = eAt (13.16)
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In practice, this must be done numerically, as there is no convenient formula for the
elements of P(t). For the other models we have been describing, formulas do exist,
for example equations 11.16, 13.2, and 13.11 for the Jukes-Cantor, Kimura two­
parameter, and Tamura-Nei models, respectively. In the case of the general time­
reversible model, one must instead take the rate matrix A and find its eigenvalues
Ai and eigenvectors, decomposing it into the product

A = TAT-I (13.17)

where A is a diagonal matrix of the Ai, and T is a matrix whose columns are the
right eigenvectors of A. The matrix exponential is then obtained by replacing the
elements of A by exp(Ait). In place of A we will then have P(t). The eigenvalues
and eigenvectors of A could be taken in advance and used repeatedly to evaluate
P (t) for different values of t.

A is not a symmetric matrix, so that one might expect some difficulty getting
the eigenvalues and eigenvectors. But it is the product of two symmetric matrices:

o 0
KG 0
o KC

o 0

o 1[ -w

.~ ~
a

-x
6

(3

6
-y

(13.18)

where TV, X, Y, and Z are slightly messy but can easily be worked out from the
diagonal entries in equation 13.15. We can call the two matrices on the right side
of equation 13.18 D and B. It is easily proven that if we can find the eigenvec­
tors of the symmetric matrix D 1/ 2BD1 /

2
, and the matrix whose columns are its

right eigenvectors is called U, that the eigenvectors and eigenvalues of A can be
obtained from

(13.19)

so that the eigenvectors of A can be obtained from those of D 1/ 2BD1/ 2 by premul­
tiplication by the diagonal matrix D 1/ 2 , and the eigenvalues of D 1/ 2 BD 1/ 2 are the
same as those of A. Thus a program for finding the eigenvalues and eigenvectors
of a symmetric matrix can be used.

Since there are only three nonzero eigenvalues of these matrices, we could also
have used the closed-form solution of the cubic equation to write expressions for
them. These are so tedious that there seems no point in doing so.

Distances from the GTR model
We can of course use the matrix machinery to compute distances from the general
time-reversible model numerically. We could try different values of t, using some
numerical optimization scheme, and compute the likelihood for t for the particular
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Table 13.4: Pairs of nucleotides for 500 sites of sequence that has di­
verged according to a Kimura two-parameter model with R = 2 for a
branch length of 0.2. The columns are the bases in the first sequence.

A G C T total
A 93 13 3 3 112
G 10 105 3 4 122
c 6 4 113 18 141
T 7 4 21 93 125

total 116 126 140 118 500

:-.:jy of sequences. If the base at site i is mi in one sequence, and ni in the other,
:..:-:en the likelihood is:

(13.20)

,-2 then have to find the value of t that maximizes this likelihood. If there are am­
~:,:;uous nucleotides, the expression is a bit more complicated: Instead of a single
:- ~ir of nucleotides at that site, we have a sum over all pairs that are compatible

-::h the ambiguity.
This is numerically tedious. There is hope for a more direct approach, though it

::::5 into difficulties too. Looking at equation 13.20, using the expressions in Table
:'.3, we will find that there are only 10 different quantities. (This is because we

..~.. 't distinguish between A --+ G and G --+ A, for example.) The likelihood will be
- ~ximized if we can set the parameters of the model, and t, so that the expected
--:,quencies of the 10 events are exactly equal to their observed frequencies. Can

-:' do this? The number of parameters is the number of parameters in Table 13.3,
:- .....;5 one for t. This at first appears to be 11 (for the six Greek letters plus four
.::.Jilibrium frequencies of bases, plus one for the branch length t). However, there
- 3. constraint that all the 7T'i must add to I, and another constraint, which is that
,::,:Jation 13.14 must hold. They reduce the number of parameters to exactly nine.

It then seems that we need only find the values of these parameters that fit the
::~erved fractions of the 10 events exactly. Often this can be done, but sometimes

- :':. As an example of a case in which it can be done, here are results from a
_~puter simulation of two sequences that have diverged for a total branch length
: J.2 according to a Kimura two-parameter model with R = 2.0. Although we

-~\-e simulated sequences evolving according to that simpler model, we are using
-;;> more general GTR model to analyze the resulting sequences. We can then see
:--:ether the individual rates of change between bases are inferred to be close to

- :)se in the K2P model.
The pairs of nucleotides can be tabulated across the 500 sites to give Table

-:.J:. Under the general time-reversible model, we can see that the number of
:;;>5 at which the first sequence has (say) a G and the second a C has the same
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Table 13.5: The same table of nuc1eotides as in Table 13.4, with sym­
metrical off-diagonal elements averaged.

A G C T total

A 93 11.5 4.5 5 114
G 11.5 105 3.5 4 124
c 4.5 3.5 113 19.5 140.5
T 5 4 19.5 93 121.5

total 114 124 140.5 121.5 500

expectation as the number at which the first has a C and the second a G. We can
therefore combine these cases, which we do by averaging the table with its trans­
pose, getting Table 13.5. A relevant estimate of the equilibrium frequencies of the
bases is obtained by dividing the column sums by 500 to get (7iA, 1fG, 7Tc· 7TT) =

(0.228,0.248,0.281,0.243). Dividing each column by its sum, we get an estimate of
the net transition matrix along the branch:

[

0,815789 0.0927419 0.0320285 0.04115231
~ 0.100877 0.846774 0.024911 0.0329218
p=

0.0394737 0.0282258 0.80427 0.160494
0.0438596 0.0322581 0.13879 0.765432

(13.21)

Noting from equation 13.16 that this is expected to be the matrix exponential of
At, we can estimate At by taking its matrix logarithm:

[

-0.212413 0.110794 0.034160 0.0467261
A = 10" (p) = 0.120512 -0.174005 0.025043 0.035554

t b 0.0421002 0.028375 -0.236980 0.205579

0.0498001 0.034837 0.177778 -0.287859

(13.22)

The matrix logarithm is the inverse of the matrix exponential. One takes the eigen­
values and eigenvectors of the matrix, takes the logarithms of the eigenvalues,
and then reconstitutes the matrix with those. This may be impossible if any of the
eigenvalues are not positive.

In this case we have an estimate of At. Can we separate the t from the A? We
can if we have some way of standardizing the rate matrix A. The matrix At is
promising. The rates off the diagonal are all positive, and it can be verified that
they do indeed have the property of reversibility. The standardization we seek is
the requirement that the total rate of changes be 1 per unit time. This fixes A. The
changes from state j to state i are 1fjaij per unit time. It is possible to show rather
easily that as the columns of A sum to zero, that if we let D be a diagonal matrix
whose elements are the 1fi, we require that the trace of the product AD satisfy

-trace(A:O) = 1 (13.23)
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It follows that

t = -trace(At.6) = -trace[1og(p) D] (13.24)

-:his is the distance for the general time-reversible model. It is made by estimating
: e base frequencies Tii and the rates aij, and finding ones that exactly predict the
.) served net transition matrix P. The estimate is only allowable if all the aij are
:1onnegative, and can only be computed if all the eigenvalues of P are positive.

Note that we also get, with the estimate of t, an estimate of A. In symbolic
:erms this works out to:

A = - log(P) / trace [log(P) D] (13.25)

In the present numerical example the distance is estimated to be t = 0.228125.
~s is close to the true value of 0.2. The estimate of A works out to be:

[

-0.931124 0.485671 0.149741 0.204826 ]
A = 0.528274 -0.762764 0.109776 0.155852

0.184549 0.124383 -1.038820 0.901168
0.218302 0.152710 0.779302 -1.261850

(13.26)

~l..is is moderately close to the rate matrix that is implied by the Kimura two­
:'3.rameter model, which for this case would be

[

-1 2/3 1/6

A = 2/3 -1 1/6
1/6 1/6 -1
1/6 1/6 2/3

1/6 ]
1/6
2/3
-1

(13.27)

:::or example, the average of the diagonal elements is -0.9986385, the average of
::-.e four parameters for transitions is 0.67360175, and the average of the eight pa­
-,,":neters for transversions is 0.162517375.) However, an exactly fitting estimate
: the rate matrix and distance is not always possible. As an example, consider

,,-,",: imaginary data set of 400 sites. Table 13.6 shows the nucleotide pairs at the
- '0 ends of the branch. There are 100 of each of the four bases in each of the se­
~'.:ences. 208 of the 400 sites show the same base in both sequences, so that 50.2%
. : .he bases have not changed. Some strange features are seen (for example, an A

-'= :nore likely to have changed than not) but even those might well be expected
~-asionallyas the result of a fluctuation due to random sampling.

On more detailed examination it will be found that it is impossible for any set
'rates in equation 13.16 to lead to precisely these empirical joint frequencies. It

="-, do so only if we allow negative rates, which is impossible. The constraint
: ~ainst negative rates prevents us from fitting each and every empirical result
~ actly. The symptom of this problem is that when we attempt to take the matrix

sarithm when evaluating equation 13.24, we encounter a negative eigenvalue
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Table 13.6: An imaginary data set of two sequences 400 bases in length.
They are tabulated according to the base that appears in the first se­
quence (vertical) and in the second sequence (horizontal).

A G C T total

A 32 40 8 20 100
G 40 40 8 12 100
c 8 8 76 8 100
T 20 12 8 60 100

total 100 100 100 100 400

whose logarithm would be an imaginary number. The correct value of the distance
in this case would be infinite (Waddell and Steel, 1997).

-The general time-reversible model is more apt to give infinite distances than
are the more restrictive models that we have discussed previously. This can create
problems for their use in situations such as bootstrap sampling of sites, in which
the tables of pairs of nucleotides can vary in many ways.

The general time-reversible model distance in equation 13.24 was introduced
by Lanave et a1. (1984). The equations in this section were derived by Rodriguez
et a1. (1990).

The general 12-parameter model
If we do not assume that the stochastic process is reversible, it is still possible to
use most of the preceding section. We would then have a general Markov process,
though we would assume that it was the same throughout the tree, and that it had
an equilibrium distribution. There would be 12 parameters, as from each of the
four states there would be four probabilities of change, which had to add up to 1.
So there would be three parameters for each column of the transition matrix. We
would have equation 13.20 for the likelihood, and we would reduce the data to a
table such as Table 13.4. Now, however, we would not symmetrize that table, but
would use it as it stands. Dividing the numbers in its columns by the sum of that

column, we would estimate P.
However, it is not quite this simple. In estimating the equilibrium frequencies

1fA,1fG,1fC, and 1fT, as well as the 12 rates of change, we cannot simply use the
empirical frequencies and the matrix logarithm of the conditional probability ma­
trix, as we did in the previous section. These might, in this case, give us estimates
that were impossible under the model, such as base frequencies that would not re­
sult from the estimated rates of change. We have to maximize the likelihood in
equation 13.20 subject to constraints. These are that the frequencies of the bases
add to I, that the columns of the transition matrix P add to I, and that the base
frequencies be the equilibrium frequencies for this transition matrix.
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There are no formulas for what the estimates will be, or what the resulting dis­
:ance will be. Rodriguez et al. (1990) pointed out that when we have a molecular
~lock, with two branches of equal length leading from an ancestor to these two
iescendants, the 12 parameters are confounded and we cannot estimate them all.
~s is not quite the same as saying that we cannot estimate the distance, but there
:~e matter lies. This model needs more work to determine whether there is any

'ay of using it.
A serious issue is that we cannot rely on reversibility. Thus if we have a pair

.. : species i and j, the probability of the 16 possible combinations of bases de­
:"ends, not simply on the total branch length between them, but on where along
:..:'.at branch their latest common ancestor was. We would be considering this si­
--.. tltaneously for all pairs of species. Even if we were willing to estimate this
xation, would we not want to keep it consistent between all pairs? Thus if the

-2quences for human and oak tree are best explained by having their common an­
:::stor be close to the oak, shouldn't the branch between chimpanzee and oak tree
-....50 have it there?

logDet distances
"e have argued that there is work to be done to see whether the general 12­

:".=aameter model is useable. However, there is one body of work that seems to
~2li\"er even more than that. This is on the LogDet or paralinear distance measure.
-_ \"ersion of it was introduced by Barry and Hartigan (1987) and it reached full
~e\elopment in the work of Lake (1994), Steel (1994a), and Lockhart et al. (1994).
~-:e LogDet distance can be defined as (Steel, 1994a)

t = -lndet (F) (13.28)

~ere det is the determinant and F is the"divergence matrix" whose (i, j) element
: :he fraction of sites at which the first sequence has base 'i and the second has
: ,,-se j. However, this form of the LogDet distance has the disadvantage of having
.. :1onzero value when the two sequences are identical. To cure this problem both
_,x:khart et al. (1994) and Lake (1994) rescale F according to the base composition.
_.. ckhart et al. obtain:

~ 1 [ 1 ]t = -4 lndet (F) - 2lndet (DxD y ) (13.29)

"::1ere D" is the diagonal matrix of the observed base frequencies in the first se­
-....;.ence, and D y is the diagonal matrix of the observed base frequencies in the
-.::-cond. Lake's (1994) paralinear distance is the same except for the factor of 1/4.

The argument is that this distance applies to models in which the process of
: ,,-se change differs at different points along the tree. One wonders whether it

Lluld be equivalent to estimating rates in different regions of the tree, and then
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Table 13.7: The table of joint frequencies nucleotides for two sequences
that evolve from a common ancestor according to HKY models with
different equilibrium base frequencies

A G C T total
A 0.101572 0.0328061 0.0239532 0.0151002 0.173431
G 0.058329 0.106783 0.0354118 0.0239532 0.224477
C 0.074999 0.0609347 0.106783 0.0328061 0.275523
T 0.091669 0.074999 0.058329 0.101572 0.326569

total 0.326569 0.275523 0.224477 0.173431 1.0000

even though these are confounded with each other, somehow extracting the cor­
rect estimate of the distance anyway. The LogDet distance does not quite deliver
as much as this. For example, consider an ancestor in which the base composition
is (1/4, 1/4, 1/4, 1/4). One descendant lineage is assumed to be 0.5 long, and along
this we imagine the sequence evolving according to an HKY model with R = 2/3
and equilibrium base frequencies for A, G, C, and T of (0.4,0.3,0.2,0.1). The other
descendant lineage is also 0.5 in branch length, and also has an HKY model oper­
ating on it with R = 2/3, but for this model the equilibrium base frequencies are
taken as (0.1,0.2.0.3.0.4). If we observe enough sites, we will find the joint base
frequencies in the two sequences to be as given in Table 13.7. Using these joint
frequencies, the marginal frequencies in the two sequences, and equation 13.29,
we obtain the distance 1.04418. The true distance is a bit smaller, 1.0. This is no
mere sampling fluctuation-we have assumed an infinite number of sites to sam­
ple from. Waddell (1995) noted this overestimation when the frequencies of the
bases are unequal.

Suppose that we have two successive branches that separate a pair of species.
The base composition starts out with its diagonal matrix being D(O). Then it
evolves with transition probability matrix p(l). After that its base composition
becomes D(1). Then a different transition matrix comes into play for the second
branch, p(2). It is straightforward to show that the divergence matrix will be

F = p(2) p(l) D(O) (13.30)

The divergence matrices for the two successive branches, if we could observe
them, would be

and

p(1) D(O) (13.31)

(13.32)

It can be shown that the LogDet distances for the two individual branches do not
sum up to give the LogDet distance for the two branches one after the other. The
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exception is when the frequencies at the end of branch 1 are (1/4.1/4,1/4,1/4).
TIlen the LogDet distances sum properly.

The upshot of all this is that LogDet distances do not have the magical proper­
jes that they seem to, unless we somehow constrain all the base frequencies to be
equal. However, they do give us distances that are "tree-additive" (Steel, 1994a;
~ockhart et al., 1994). In the limit as the sequences become infinitely long, they
-::an be fit perfectly by an additive tree. However, the problems with the base fre-
-=Iuencies can lead to the branch lengths being wrong. The problem arises because
-.\-e cannot assume that the expected base frequencies at the start of a branch are
:he equilibrium frequencies under the Markov process that operates along that
-:>ranch. Since earlier branches have other processes, there is no necessity that they
~enerate those base frequencies.

Thus LogDet distance also does not solve the problem of how to get a distance
:hat applies to the general 12-parameter model. Nevertheless, LogDet distances
~re frequently applied to correct for inequalities of base composition across a tree.
3\\-offord et al. (1996), in their excellent short summary of this issue, argue on the
_ sis of experience that LogDets are no worse than other distances in handling this
.::ase, as the other distances also have assumptions that are violated. Our numerical
",ample can serve to check this: If we were to fit an HKY model to the table of
oint frequencies (Table 13.7) it turns out that the overall frequency of bases has
::equency 0.25 for each base, and we are actually fitting a K2P model. Using the
"-=Iuations 13.3, we find that the maximum likelihood estimate of the distance is
~ .1302. Thus LogDet is doing better, with less than one-third as much bias.

Galtier and Gouy (1995) have described another method for coping with base
.::omposition variation between lineages. It is less general, as it allows only GC
'ersus AT variations, and it is rather approximate, as it assumes that the observed
::-ase compositions in two lineages are the equilibrium base compositions for the
: ocesses of change since their common ancestor. As far as I know there has been
-_0 comparison of this method with the LogDet method.

Other distances
-=-:,ere are many more distances, but there is no space here to discuss most of them.
Zharkikh (1994) has a good review covering many distances and explaining re­
..::.cionships between them. Yang, Goldman, and Friday (1994) carry out a likeli­
-ood-based evaluation of the fit of several models to real DNA data.

In reading the distance literature, it is good to keep in mind the distinction
:-etween statistics and their expectations, a distinction ignored by many authors.
~uch of the distance literature treats the distance as a quantity that has some in­

:::-'.nsic meaning, rather than as an estimate of the branch length in a two-species
::-ee. As a result, distances are often not presented as estimates, and their formulas
':-e frequently not derived from any statistical principle. This has led to a litera­
-..:.re which is quite difficult to read. Nevertheless, most of the resulting formulas
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Figure 13.3: The large-sample standard deviation of the Jukes-Cantor
distance (dashed curve) and its coefficient of variation (solid curve),
for different values of the true branch length, when the sequences are
100 bases long

can be shown to be well-behaved, being at least consistent when considered as
statistical estimators.

Variance of distance
Since distances are estimates of the branch length in two-species phylogenies, we
can use the likelihood curve for each distance to examine its statistical error (as
will be explained further for phylogenies in Chapter 19). For some of the simpler
distances we can get closed-form expressions for the large-sample variance of the
distance. For the Jukes-Cantor distance we can note that it is computed from the
variance of the proportion p of nucleotides that differ between the sequences. This
has the usual binomial variance p(l - p)/n when there are n sites. The large­
sample "delta method" approximation to the variance of the distance is obtained
by multiplying this by the square of the derivative of the function relating distance
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to p. This function is given in equation 11.18 (where p is called D s ). The result is
that the variance is

Var(D) = 9p(1-p)
(3 - 4pF n

When equation 11.17 is used with u = 1 to express this in terms of a branch length
i, this becomes

Var (t) = ~ (e 4t
/

3 + 3) (e4t
/ 3 - 1)

16n
(13.34)

The large-sample variance of the Jukes-Cantor distance was first given by Kimura
and Ohta (1972) for the more general case of an arbitrary number of states.

Figure 13.3 shows the standard deviation and the coefficient of variation (ra­
tio of standard deviation to mean) for sequences of length 100. The standard de­
viation rises at first as the square root of branch length, quickly passes through
an inflection point, and then starts to rise faster than linearly. The result is that
the coefficient of variation is remarkably level for branch lengths between 0.2 and
1,4. This gives some support to using a power of 2.0 in the least squares weights
l'ij = 1/D;j' But above branch lengths of 1.4 the variance rises more rapidly, in­
h'oducing more noise than this weighting would imply. The variance rises faster
than any power of branch length, implying that large distances can introduce sub­
stantial noise into the phylogeny unless appropriate weights are used.

The coefficient of variation calculations confirm our suspicion that we have
:he most accurate picture of the amount of divergence when it is intermediate.
The branch length that is best estimated is 0.719, which corresponds to sequences
-16.2% different. Much shorter sequences lead to too few differences to estimate
accurately, and much longer sequences have too many sites with multiple substi­
:utions obscuring each other.

It is a startling fact that the actual variance is infinite. There is a small (often as­
:ronomically small) probability that the sequences will be more than 75% different,
It which case the estimated branch length is infinite. The large sample approxi­
:nation ignores this dismaying possibility.

Rate variation between sites or loci

Different rates at different sites
.:n all the distance calculations so far in this chapter, we have assumed that the
:ates of change at all sites are equal. We have always taken the rate of change to
'::-e 1 per unit branch length. If we have sites with different rates of change, we
",ill want to standardize branch lengths so that the average rate of change across
~ites is 1 per unit branch length. Thus if we have six sites with rates of change that
~,and in the ratios: 2.0 : 3.0 : 1.5 : 1.0 : 4.4 : 0.8, we should divide these by their
~\'erage (which is 2.11666) to get the rates as 0.94489 : 1.41732: 0.70866: 0.47244 :
=,078740: 0.377953, These now have a mean of 1.
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In any of these models, a site that has rate of change r, and that changes along a
branch of length t, simply behaves as if it were changing with rate 1 along a branch
of length Tt. Thus, given that we know the rate of change of a site, and given that
we can compute the transition probability matrix for any branch length, P(t), we
need only compute the transition probability P(rt) instead. This can be done site
by site, using the rates for each site. For example, if we thought that rates at first,
second and third positions in a protein coding sequence were in the ratio of 2: 1.2 :
5.0, the rates we would use for those positions would be 0.7317, 0.4390, and 1.8293,
which average to 1. The probability of change in a given site in a branch of length
t would then be either P(O. 7317t), P(0.4390t), or P(1.8293t), depending on which
codon position the site was in.

Distances with known rates
We can use the maximum likelihood approach to compute distances, for any of
the reversible models of change given in this chapter, if we know the relative rates
of change at all the sites in the sequence. We first standardize the rates, as we
discussed in the previous paragraphs. Then we can use a modification of equation
13.20. If ri is the relative rate of change at site i, we need only modify equation
13.20 a bit to write the likelihood as

(13.35)

and then find the value of t that maximizes it. This can be done for the Jukes­
Cantor, Kimura two-parameter, Tamura-Nei, and general time-reversible models.
The resulting distance will be scaled so that one unit is one expected change per
site, and it will correctly take into account the fact that some sites are expected to
change more quickly than others.

Distribution of rates
Of course, often we know that there are unequal rates of change at different sites,
but we do not know in advance which sites have high and which low rates of
change. One possible approach would be to estimate the rate at each site. This
requires a separate parameter, Ti, for each site. Such an approach has been used by
Gary Olsen (Swofford et al., 1996). As the number of sites increases, the number
of parameters being estimated rises correspondingly. This is worrisome: in such
"infinitely many parameters" cases maximum likelihood often misbehaves and
fails to converge to the correct tree as the number of sites increases. A likelihood
ratio test allowing different rates among segments of DNA has been proposed by
Gaut and Weir (1994). They found by simulation that it failed to follow the proper
distribution when segment sizes were small.

A better-behaved alternative is to assume a distribution of rates and that each
site has a rate drawn from that distribution at random, and independently of other
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-::es. If we are computing the distance, for example, we must for each site integrate
\'er all possible rates, multiplying the contribution of the site to likelihood for this

:-air of species, evaluated at that rate, by the prior probability density f(r) of the
:"te. Then

L(t) = l~s [.{>C f(r) 'irniPm,ni (rt) (iT'] (13.36)

-=----:'1is can be done numerically for any density of rates f(7'). For some special den-
-::\' functions there are useful analytical results as well.

- nmma- and lognormally distributed rates
:3.te variation was first explicitly modeled in molecular evolution by Uzzell and
'::-:>rbin (1971) (see also ei, Chakraborty, and Fuerst, 1976). They used a gamma
.:~tribution,as it was analytically tractable, varied from 0 to 00, and had parame­
'::-:5 that would allow the mean and variance to be controlled.

Olsen (1987) modeled rate variation by a lognormal distribution (a distribution
.:: \\'hich the logarithm of the rates is normally distributed). He was unable to get
'.::alytical formulas for the distance and so used numerical integration.

The gamma model was further developed by Jin and Nei (1990), who were
'::-:e to use the analytical tractability of the gamma distribution to get formulas for
_'-2 Jukes-Cantor distance with gamma distributed rates. Although it is possible
- carry out the integration with respect to the rate density f(r) for the transi-
- :-, probability Pij (rt), this is of utility mostly for computing distances. We shall
-== that the transition probabilities are used in maximum likelihood estimation
: ?hylogenies. However, to integrate the probability for each branch against the

:::-, sity function of f(7') is to assume that the rate varies, not only from site to site,
: ..:: from branch to branch. By integrating separately for each branch, we in ef­
~:: assume that the rates vary independently from branch to branch. This is too

..: a rate variation. A more realistic model would have rates varying from site
site in an autocorrelated fashion, and from branch to branch also in an autocor­

'::.:1ted fashion. Such a pattern was envisaged by Fitch and Markowitz (1970) in
-::-ir model of "covarions."

=---- yariant sites. In addition to gamma-distributed rate variation, it is also
::-2n biologically realistic to assume that there is a probability fa that a site is

---ariant, that it has zero rate of change (Hasegawa, Kishino, and Yano, 1987).
- :s quite easy to do calculations for such a model, and frequently such a class
. :m'ariant sites is included with the rest of the sites having rates drawn from a

.:::nma distribution.

~~>stancesfrom gamma-distributed rates
-'-2 one tractable case of interest is the computation of distances using the gamma

---5:ribution of rates. The gamma distribution has density function

1
f(1') = f(a) (30 (13.37)
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CI = 0.25
cv = 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Rate

Figure 13.4: The density function of a gamma distribution of rates
when the mean of the rates is 1 and there are various amounts of vari­
ance in the rates. For each of the three densities, the value of a and the
coefficient of variation (cv) of the rates is shown.

The mean of the distribution is a(3 and its variance is a(32. If we want the gamma
distribution of rates 7" to have a mean of I, we take the density in this equation and
we set,8 = l/a and have the density function

j '( ) aa a-1 -aT7" =--7" e
r(a)

(13.38)

Figure 13.4 shows three gamma distributions, for different values of the parame­
ter a. The"shape parameter" a is the inverse of the squared coefficient of variation
of the rates. Thus if the rates have coefficient of variation 0.3, so that the standard
deviation of rates is 30% of their mean, the value of a is 1/0.09 = 11.1111. Fig­
ure 13.4 shows the density function of the rates for three different values of a, and
corresponding coefficients of variation of the rates. I find the coefficient of vari­
ation a more meaningful description of the degree of rate variation, but a is the
parameter commonly used in the literature.

When the coefficient of variation is small, the distribution of rates varies
around 1 in what is nearly a normal distribution. As the coefficient of variation
goes to zero, so that a goes to infinity, the distribution becomes a single spike cen­
tered on 1 (where the dashed line is). As the coefficient of variation rises, the dis-
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Figure 13.5: Comparison of the rise of sequence difference with time
in Kimura 2-parameter models (R = 3) with no rate variation (dashed
curve) and with gamma-distributed rate variation with 0: = 0.25 (solid
curve). In the latter case the high-rate sites saturate quickly, and the
sequence difference then rises much more slowly as the low-rate sites
gradually accumulate differences.

-:-: ution of rates spreads out, to have many of the sites with rates that are nearly
and the rest with rates that are quite large.

There is nothing about the gamma distribution that makes it more biologically
-::':'llistic than any other distribution, such as the lognormal. It is used because of
:0 mathematical tractability.

-in and Nei's distance. Jin and Nei (1990) have used this approach to de-
- -e a formula for the Jukes-Cantor distance with gamma-distributed rates. In the
~o:e of the Jukes-Cantor distance, the sufficient statistic is the fraction of sites that

-_~:er between two sequences. The distance will be the one that predicts this frac-
- __ exactly (unless the fraction exceeds 3/4, in which case the distance is infinity.
-, ~.,jng equation 11.17, altering it slightly to accommodate the rate r as a multiplier

t, and integrating it over a gamma distribution of rates, gives

(13.39)

-ere f(r) is the gamma distribution. This can be done exactly. The result is
=.:ed to the moment-generating function of the gamma distribution, which is the
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expectation of exp(er). When the integral is evaluated and the resulting formula
solved forut, the result is

3 [ ( 4 )-1/0.]D = -4 Q 1 - 1 - :iDs (13.40)

ML distances for other models. For most more complex models, there
is no analytically tractable formula for the distance once gamma-distributed rates
are allowed, but it is not hard to obtain formulas for the likelihood, and this can
be maximized numerically. In cases such as the Kimura two-parameter model
and the Tamura-Nei model (including its subcases the HKY and F84 models), the
quantities Pij(t) can be computed. In each of these models there are formulas
(equations 11.16, 13.2, and 13.11) of the form

(13.41)

(for appropriate choices of As, Es, and Os). Looking at equation 13.36, and substi­
tuting in equation 13.41 evaluated at Tt, we need only to be able to carry out the
integration. A bit of consideration of moment-generating functions will show that
all that needs to be done is to replace the exponentials such as exp( -bt) by their
expectation under the gamma distribution, which is

(13.42)

Thus we can get transition probabilities for all of these models, as needed. For
the general time-reversible model one can do an analogous operation (Gu and Li,
1996; Waddell and Steel, 1997). After the transition probabilities are available, the
likelihood is straightforward to evaluate and maximize. Figure 13.5 shows the
large effect that variation of rates among sites can have on distance calculations.
In that figure, a Kimura two-parameter model with transition/transversion ratio
3 has gamma-distributed variation of rate of substitution with (l = 0.25, and that
model is compared to one with no rate variation. This is one of the curves shown
in Figure 13.5. The figure plots the difference between sequences (vertical axis)
against the true distance (horizontal axis). At first the sequence differences rise at
the same rate, but once the high-rate sites have saturated, difference afterwards ac­
cumulates much more slowly owing to the slow process of substitution elsewhere.
Both curves will ultimately plateau at 0.75.

A general formulation. Gu and Li (1996) and Waddell and Steel (1997)
discuss more general methods that can allow other distributions of rates. They
give general formulas for the GTR model, which, instead of the matrix logarithm,
apply the inverse of the moment generating function of the distribution of rates
across sites. This is not always easily accessible, but when it is, their formulas will
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allow computation of the transition probabilities, and thus the estimation of the
:naximum likelihood distances. As all the other models we have discussed are
~pecial cases of the CTR model, they too can be treated in this way.

.\1odels with nonindependence of sites
~ates can be correlated between nearby sites; we will see in Chapter 16 this can be
: andled by hidden Markov model methods. In some cases the correlations will be
~(ronger than that-the occurrence of substitutions in one site will affect the occur­
~ence in another. The most dramatic cases of this correlation are the compensating
::/bstitutions that occur in ribosomal RNA molecules. Where two sites are paired
_ the stem of a secondary structure, natural selection will favor them continuing
~o be paired. If an A is replaced by a C, natural selection will favor replacing the
___.. with a C in its pairing partner.

Assuming that we know the structure, and that it has not changed during this
:-rocess, we could imagine a model in which a pair, AU is replaced by another pair,
::;c. CU or UC pairs can also occur, though they are less favored. Such a model has
::"een developed by Tillier (1994; see also Tillier and Collins, 1995, 1998, and related
:: odels by von Haeseler and Schbniger, 1995, and Muse, 1995). Her model allows
:: anges between AU and CU, and also between CC and CU, with a lower rate of
:: ange between AU and Cc. At a different rate, any of these pairs can change into
.:.. \. of the reverse pairs UA, UC, and CC. Use of such models has confirmed the
::-.istence of compensating changes (Rzhetsky, 1995; Tillier, and Collins, 1998).

YIodels with compensating substitutions have unusual properties, as has been
:ointed out by Carl Woese (1987). Two independently-evolving sites would both
:.Lange in the same branch with a probability that depends on (ut)2. But if there
.:.~e compensating substitutions, after one has occurred, its bearers are at a fitness
::sadvantage 8. Unless "rescued" by the compensating change, they will be elim­
.:-ated from the population. After the first mutation, we expect only about 1/8
~). ies of that mutation ever to exist before it is eliminated by natural selection.
~"1US the occurrence of the first substitution has probability that depends on ut,
: .J( the occurrence of the compensating mutation has probability dependent on

'. Thus the probability that both changes occur is a function of u2t/8 rather
-::.n u2t2. Woese points out that this provides us with the opportunity to separate
:Tom t, whereas they are normally confounded. If we can do so, we can use the
~ 'or the different branches of the tree to locate its root.

Context-dependent models of DNA change have also been made, usually with-
..::: a specific model of the mechanism of the dependency. Schbniger and von

-::.eseler (1994) and Jensen and Pedersen (2000) have modeled the dependence of
-:es of change on sequence at neighboring sites and have discussed methods of
-o::mation of the pattern of rates. The number of possible parameters being large,
=-._ roaches that use models of the expected dependency will have an advantage.
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Models of protein evolution

The first molecular sequences available were protein sequences, so it should not
be surprising that some of the earliest phylogeny methods were designed to work
with protein sequences. Eck and Dayhoff (1966) made the first numerical molec­
ular phylogeny with protein sequences. Fitch and Margoliash (1967) designed
their distance matrix methods with protein sequences in mind, and Neyman (1971)
made the first molecular use of likelihood methods on protein sequences.

Amino acid models
Eck and Dayhoff (1966) used a symmetric Wagner parsimony method whose states
were the 20 amino acids. Any amino acid could change to any other with equal
ease. Although Eck and Dayhoff's model was not formulated probabilistically,
Neyman (1971) explicitly used an m-state model with symmetric change between
states, with the case of Tn = 20 in mind. However, this is not a very realistic
model, as it allows changes between amino acids that may be very remote from
each other in the genetic code and that also might not be observed to change to
each other very often in actual sequences.

The Dayhoff model
Dayhoff and Eck (1968, chap. 4) had already formulated a probabilistic model of
change among amino acids, based on tabulating changes among closely related
sequences (it is usually known as the Dayhoff model). Although there was no ex­
plicit reference to the genetic code, it was hoped that the empirical frequencies of
change would reflect the constraints caused by the code. In its more complete de­
velopment, Dayhoff, Shwartz, and Orcutt (1979) tabulated 1,572 changes of amino
acid inferred by parsimony in 71 sets of closely related proteins. From this they
compiled a "mutation probability matrix" that showed the probabilities of changes
from one amino acid to another, for different amounts of evolutionary divergence.

222
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The most important of these tables is the mutation data matrix, the PAM 001
table. PAM stands for probability of accepted mutation. PAM 001 (Table 14.1) is
the probability of changing from one amino acid to another along a branch short
enough that 1% of the amino acids are expected to have changed. Each column
shows the probabilities of change to different amino acids. It is noticeable that the
entries of the PAM 001 table have been rounded off, so that the columns do not
add exactly to 10/000. Even if they had not been rounded, the probabilities would
also not have been reversible. The trees from which the mutation probabilities
were tabulated were apparently rooted, so that it could be seen whether a given
change was A ---+ R or R ---+ A, and these are tabulated separately. If the trees had
been considered to be unrooted, it would have been necessary to make the matrix
be reversible.

The PAM 001 model can be turned into a transition probability model for larger
e\'olutionary distances. A widely used one is the PAM 250 matrix, which is, in
effect, the result of raising the PAM 001 matrix to the 250th power, corresponding
[Q an expected difference of amino acid sequences of about 80%.

PAM matrices are derived by taking a large number of pairs of sequences from
closely related species. For each, it is assumed that the sequences are close enough
:hat no multiple substitutions have occurred. If in a pair of species, a protein dif­
:ers at lout of 100 positions, and we see an Alanine in one species and a Threonine
:.n the other, we count that as one difference and tabulate it for that pair of amino
acids. But if the proteins differ at 2 out of 100 positions, and one has an Alanine
opposite a Threonine, this is counted as only 0.5 of a difference in tabulating the
"umber of changes from one amino acid to the other. It is assumed that the branch
:ength is twice as long in this case, so that each observed difference indicates less
~hange.

We will not go further into explaining how Dayhoff, Schwartz, and Orcutt
1979) derived their PAM 001 matrix, as this is not essential. The point is that

:: was the first major attempt to derive an empirically-based probabilistic model
.'f amino acid substitution.

Other empirically-based models
-,S further data have accumulated, others have redone the PAM tabulation, with

::. much larger base of data. Jones, Taylor, and Thornton (1992) have described
:':-:eir procedure for tabulating mutation data matrices from protein databases, and
-;,l\'e derived a PAM 250 matrix from this larger set of data. In addition, it is no-
-:.~eable that these mutation data matrices are averages over many different con-
'::\:ts. Jones, Taylor, and Thornton (1994a, b) have tabulated a separate mutation
,:"ta matrix for transmembrane proteins. Koshi and Goldstein (1995/ 1997/ 1998)
- :;,\e described the tabulation of further context-dependent mutation data matri­
:::5. Dimmic, Mindell, and Goldstein (2000) have made one of the most interesting
''';'~ ulations, using estimated "fitness" values for different amino acids, that affect



Table 14.1: The PAM 001 table of transition probabilities from one amino acid to another along a branch short enough
that 1% of the amino acids are expected to have changed. Values shown are multiplied by 10,000. The original amino
acids are shown across the top, their replacements down the side. The colum"ns thus add to (nearly) 10,000. The amino
acids are arranged alphabetically by their three-letter abbreviations; the one-letter codes are also shown.
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:..~eir probabilities of substitution. They also allow for there being a mixture of
~"tegories of sites.

Many other tabulations have also occurred (e.g., Gonnet, Cohen, and Benner,
~ 92; Henikoff and Henikof( 1992). Most of these compute log-odds for use in
;;,:igning sequences or searching for local matches (see the paper by Altschut 1991).
Jur objective here is to concentrate on the use of probabilistic models of amino
;;,;:id substitution to obtain distances and maximum likelihood methods. The log­
. dds matrices are of little use for this purpose.

There has also been recent progress in refining methods for inferring mutation
:'"ta matrices. Adachi and Hasegawa (1996) used maximum likelihood inference
:.:> create their mtREV model from the complete mitochondrial sequences of 20
ertebrate species. They used a phylogeny for the species, and chose the matrix

:..~at maximized the likelihood for the proteins of these mitochondria. Adachi et
;;,~. (2000) made a similar matrix for plastids. Whelan and Goldman (2001) have
-:.3ed likelihood methods to improve on the Jones-Taylor-Thornton mutation ma­
=ix. Muller, Spang, and Vingron (2002) have examined the adequacy of three
::-.ethods, Dayhoff's, a maximum likelihood method, and a "resolvent" method
.: their own (Muller and Vingron, 2000) that approximates maximum likelihood.
-=-: ey find the latter two to be superior, with maximum likelihood slightly better
:·.J.t considerably slower. Cao et al. (1994) and Goldman and Whelan (2002) have
.:. .\'ocated adjusting the matrices for the equilibrium distribution of amino acids
. .:>und in the particular data under study.

.'.Iodels depending on secondary structure
-.S the substitution model can depend on the secondary structure, one can also use
·'xh models to infer secondary structure. This has been done by Thorne, Gold­
-:'.an, and Jones (1996; see also Goldman, Thorne, and Jones, 1996). They assume
:..-:at each amino acid position has a secondary structure state (they use alpha-helix,
:-;: a-sheet, and "loop" states). These states are hidden from our view. They use
:..-e hidden Markov model (HMM) approach, which will be described in more detail
_- Chapter 16. The essence of the method is that the overall likelihood is the sum

'er all possible assignments of states to positions, weighted by the probability of
'..=--"t assignment given a simple stochastic model that tends to assign similar states

neighboring positions. The likelihood of a phylogeny can be computed effi­
_·mtly, even though we are summing over all assignments of states to positions.
-.:terwards, the fraction of the likelihood contributed by the assignments can be
_~ed to infer the secondary structure assignment at each position. Thorne, Gold­
- .:.n, and Jones use amino acid models inferred from sequences whose secondary
-::-.J.cture assignments are known.

The secondary structure HMM approach has been applied to transmembrane
- :.:>teins (Lio and Goldman, 1999). It seems to increase accuracy of prediction of

-=~ondary structure.
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Codon-based models
An important limitation of the purely empirical approach is that it does not force
the resulting model to have any relationship to the genetic code. It is possible to
predict events that require two or even three base changes in a codon. This is not
necessarily a bad thing; such events do occur. If most events are one-base changes,
that will be reflected in the empirical tables of amino acid changes. Benner et
al. (1994) argue that for short evolutionary distances the structure of the genetic
code dominates the changes that occur in evolution. Yang, Nielsen, and Hasegawa
(1998) formulate an empirical model of amino acid change, REVO. It is a general
reversible model that disallows changes that would require more than one base
change in the genetic code.

However, simply tabulating the amino acid changes and making an empirical
table of probabilities cannot fully reflect the effects of the genetic code. The most
dramatic case is Serine, which has two "islands" of codons in the code: (TCA, TCG,
TCC, TCT) and (AGC, AGT). One cannot pass between the two by a single base
change. Over a short evolutionary time we might find evidence of change from
Tryptophane (TGG) to Serine, by a change of the second codon position (TGG
----t TCG). We might also find amino acid positions that had changed from Serine
to Asparagine (AGT ----t AAT). But that does not mean we are very likely to find
changes from Tyrosine to Asparagine, even when enough time has elapsed that
two base changes are expected. The solitary codon for Tryptophane (TCG) differs
by three bases from the codons for Asparagine (AAC and AAT), so at least three
base substitutions, not two, would be needed.

This suggests that we must take the code into account if we believe that it is rel­
evant. I have described (Felsenstein, 1996) a parsimony method that has states for
the amino acids, including two for Serine, and that allows changes only between
amino acids can be reached from each other by one base change. An observation
of Serine is treated as an ambiguity between the two Serine states.

Goldman and Yang (1994) and Muse and Gaut (1994) have made the impor­
tant step in formulating a codon-based model of protein change. They assume
that changes are proposed by a standard base substitution model, but that the
probability of acceptance of changes from one amino acid to another is given by a
formula that has the probability of rejection increase as the chemical properties of
the two amino acids become different. The coefficients of the formula for the prob­
ability of acceptance can be estimated by empirical study of amino acid changes
or base changes. The result is a 64 x 64 matrix of probabilities of change among
codons (actually 61 x 61 because the three nonsense codons are omitted). The tran­
sition probabilities that result from such a model will much more accurately reflect
the probabilities of longer-term change than will amino-acid-based models such as
Dayhoff's PAM matrix. The difficulty is largely computational-the spectral de­
composition of a 61 x 61 matrix and computation of its powers is considerably
slower than for a nucleotide model or an amino acid model. Since computational
effort in computing the eigenvalues and eigenvectors of a matrix rises as the cube
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of the number of rows or columns, the effort should be 61 3 /43
>::::; 3,547 times

greater for a codon than for a nucleotide model, and 61 3 /203
>::::; 28 times greater

for a codon model than for an amino acid model.
Nevertheless codon models are attractive, both in taking into account the con­

straints due to the genetic code and in fitting the transition probabilities for amino
acids with fewer parameters. With a PAM matrix model that is reversible, there
are 208 quantities that are estimated in compiling the matrix (Yang, Nielsen, and
Hasegawa, 1998). By contrast, Goldman and Yang (1994) used an HKY model of
:l.ucleotide sequence change, with one additional parameter that converts a mea­
"me of amino acid difference into the probability of acceptance of the amino acid
.=hange. They allow for different base frequencies at the three codon positions, so
:hat they end up with only 11 parameters. Their extensive empirical study sug­
;ests that the resulting model fits the data better than empirical models. Schadt,
Sinsheimer, and Lange (2002) have extended the codon model by grouping amino
?cids into four classes, and allowing three different probabilities of acceptance be­
:-·\-een different classes. This has the potential to improve the fit further.

:nequality Of synonymous and nonsynonymous substitutions
-~ang and Nielsen (2000) use a codon model similar to that of Muse and Gaut
~ 94), generalized to allow for an HKY model of nucleotide substitution. It has
~:l.e parameter (w) for the ratio of the rates of nonsynonymous and synonymous
o-Jbstitution. If natural selection is discriminating against changes of amino acid,
_ will be less than 1. If positive natural selection favors change of amino acids,
_ will be greater than 1. Neutral change will have w = 1. Likelihood ratio tests

:hich will be described in Chapter 19) can be used to test for departure from neu-
::-ality. These approaches build on the work by Miyata and Yasunaga (1980), Perler
:c: al. (1980) , Li, Wu, and Luo (1985), and Nei and Gojobori (1986), which use pairs

~ sequences rather than full phylogenies, and use statistical methods other than
_~'elihood.

The problem with the likelihood ratio test approach with phylogenies is that
: assumes that positive (or negative) selection applies to all amino acid positions,
=-erywhere in the tree. It is most likely that natural selection favors change at
_:c~ ain positions, in certain lineages, with change at most other positions being re­
-..:':ed. A change of enzyme substrate in one lineage may favor modifications in
-2 active site of the protein, while at most other positions natural selection main-
- :_11S the secondary and tertiary structure of the protein. Thus there is a danger
-?t the codon model will miss positive selection, as the evidence for it could be
..::weighed by negative selection at most amino acid positions in most lineages.

=-ineage specificity. Muse and Gaut (1994) allowed rates of nonsynonymous
~ svnonymous) substitution to vary between lineages. Yang (1998) and Yang and
_2lsen (1998) presented a likelihood ratio testing framework for the inequality
-: e ratio of nonsynonymous to synonymous substitution between prespecified
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sets of lineages. Methods that allow the ratio of nonsynonymous to synonymous
substitution to be the same for most lineages, but to differ on lineages that are not
prespecified, might be developed using hidden Markov models (see Chapter 16);
these are presumably not far off.

Site specificity. Nielsen and Yang (1998) and Yang et al. (2000) allowed the
ratio of nonsynonymous to synonymous substitution to differ among sites, with­
out assuming that it was known which sites differed from which. They allowed
some sites to be neutral, some to be under negative selection, and some under pos­
itive selection. Which sites were which could be identified by computing poste­
rior probabilities in a Bayesian framework. This is analogous to the method using
maximum posterior probabilities, which will be described in Chapter 16 when we
discuss hidden Markov models of variation of evolutionary rates among sites.

Both varying. Yang and Nielsen (2002) have combined site variation and
lineage variation in the ratio of nonsynonymous to synonymous substitution rate,
and Bustamante, Nielsen, and Hartl (2002) have made specific application of such
techniques to inferences involving pseudogene evolution.

Protein structure and correlated change
There has been considerable interest in using covariation of amino acids in evolu­
tion as a source of information about the three-dimensional structure of proteins.
Simply using the correlation of amino acid states across sequences is dangerous,
since some of the correlation seen may simply reflect the phylogeny, which makes
the individual sequences nonindependent samples. (For a more detailed discus­
sion of this issue, see Chapter 25.) Pollock and Taylor (1997) show in a simulation
study that failing to take phylogenies into account can lead to false indications
that protein sites are correlated in their evolution. Wollenberg and Atchley (2000)
used a statistic that did not correct for the phylogeny, but used parametric boot­
strapping (for which see Chapter 20 and Chapter 19) to correct the distribution of
their statistic for the effects of the phylogeny.

A method of detecting correlated substitutions that attempted to take the phy­
logeny into account was developed earlier by Shindyalov, Kolchanov, and Sander
(1994). It uses a statistic comparing the number of times a pair of sites has simul­
taneous substitutions on the same branch of the tree. Tuffery and Darlu (2000)
examined its behavior by simulation, and argued that error in the inference of the
phylogeny can be a source of false positive signals. One might hope to make a
simple likelihood ratio test of the nonindependence of substitution at two protein
sites. (For an introduction to such tests, see Chapter 19.) There are not only many
pairs of possible sites, there also would need to be nearly 20 x 20 parameters for
the association of all possible pairs of amino acids at each pair of sites. We would
drown in possible parameters. To avoid this trap, Pollock, Taylor, and Goldman
(1999) classified amino acids by size or charge into two classes, greatly reducing
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the number of parameters needed. They were able to detect covariation between
sites in simulated and real data, using a likelihood ratio test developed for discrete
characters by Pagel (1994).

The search for signal in correlated substitutions at different sites is at an early
stage. Much more work will be needed before we have a clear picture of how
:nuch information about protein sequence can be had from sequence comparisons
across species.



Chapter 15

Restriction sites, RAPDs,
AFLPs, and microsatellites

Much of the early work on variation in DNA sequences used variation in restric­
tion sites rather than attempting full sequencing. It is necessary to have a way to
model the variation in restriction sites and restriction fragment length polymor­
phisms in order to interpret these data. More recently, RAPDs (randomly ampli­
fied polymorphic DNA) and AFLPs (amplified fragment-length polymorphisms)
have been developed, which use the PCR reaction to detect variation at certain
sites, without the need to sequence. For within-species work, microsatellite loci
are widely used, both because they can be assessed without sequencing and be­
cause the mutation rates between size classes are much higher than point mutation
rates. They thus have increased genetic variation and this makes them quite use­
ful. In this chapter, we will consider models for these data.

Restriction sites
The literature on statistical treatment of restriction sites started by considering
how to compute a distance between restriction fragment patterns (Upholt, 1977;
Nei and Li, 1979; Kaplan and Langley, 1979; Gotoh et al., 1979; Kaplan and Risko,
1981). Probabilistic models were used in these and other papers (Nei and Tajima,
1981, 1983; Tajima and Nei, 1982). A major simplification in the case of a Jukes­
Cantor symmetrical model of DNA change was first noted by Nei and Tajima
(1985). We will consider it and its implications, returning afterwards to the treat­
ment of restriction fragment length differences.

Nei and Tajima's model
Suppose that a restriction enzyme has a recognition site r bases long, with a sin­
gle sequence that is recognized. Out of 4'" possible sequences of this length, one
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is the restriction site. One could use any model of DNA change and use it to pre­
dict the change of the restriction site, but to do so we would have to keep track
of all possible sequences of length r. The observation that a site is present spec­
ifies that the recognition sequence (say ACTAGT) is present. The observation that
it is not present is, in effect, ambiguous among all the other -1' - 1 sequences. To
make a transition probability matrix for the sequence, we would need to make
one with 4" states. Thus for a 6-base recognition sequence we would need to com­
pute transition probabilities among 46 = 4.096 states! One might think that as
',,'e cannot tell the difference between all the states that are not the recognition se­
-luence, we could simply lump them all into one state. However, that cannot be
jone with most DNA mutation models. A state that differs by one site from the
~ecognition sequence could be, say, ATTAGT or CCTAGT. If these have somewhat
_~ifferentprobabilities of changing to the recognition sequence, the two states can­
-ot be lumped.

Nei and Tajima (1985) realized that in the case of the Jukes-Cantor model, sym­
::1etries reduce the state space enormously. In the Jukes-Cantor model any two
~:ates that are the same number of mutations away from the recognition site have
~,e same probability of changing to it. Thus ATTAGT and CCTAGT both have the
~:..me probability of mutating to a recognition sequence along a given branch of a
=ee. In the Jukes-Cantor case, lumping of states is possible. For an r-base recog­
-:rion site, there are states that are 0, 1, 2, up to T bases away from the recognition
-=quence. In each of these categories, all the states can be lumped together. We can
: :npute the probability of changing from one of the sequences k bases away from
·.-e recognition sequence to one f: bases away, without having to ask what the ex­
.:: sequences involved are. The number of states that are k bases away from the
.. :ognition sequence will be

(15.1)

- :- a 6-base cutter, the numbers of states that are k bases away are given in Table

:\ei and Tajima (1985) gave formulas for the transition probabilities from k to
::'.:1ses away from the recognition sequence. Their result is straightforward to
c:-:\-e (we use a notation slightly different from theirs). If a sequence changes

- :n k to f: bases away, it can do so in a number of ways. Initially there are k: bases
- -hich the sequence differs from the recognition sequence, and r - k bases in
-..:..::h it does not. To change to being £bases away, the sequence could have [ + In

~,e sites that originally did not differ change their sequence, while m of the sites
.: did differ changed to become similar to the recognition sequence. The result
- ~equence that differs by t.
=~ the time (or branch length) that elapses is enough that we have a proba­
=-:: jJ that a site will change to another base, the probability that a site that is

-:eo-ent from the recognition sequence changes to become similar is p/3. Thus
~ rabability of changing to have fi. differences from the recognition sequence is
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Table 15.1: Number of nucleotide sequences of length 6 which differ by
k bases from a 6-base restriction site

k Number
o 1
1 18
2 135
3 540
4 1215
5 1458
6 729

the probability that J! - k + m of the r - k sites change, times the probability that
m of the k sites change. These are binomial probabilities with probabilities p and
p/3, respectively. It follows that we can sum the product of the probabilities of the
binomial probabilities:

b ( k) (k) m k mPH = fa g~;; m p£-k+m (1- pr-k-ce-k+m) m (~) ( 1 -~) -

(15.2)
The limits a and bneed careful attention. The smallest possible value of m is either
o (if g > k) or k - J! (otherwise). The largest possible value of m is, for similar
reasons, the smaller of k and r - g. The resulting expression is

min[k,r-fJ . k

Pk£ = L (g ~;:m) p£-k+m (1 - pr-t+m (~) (~r' (1 _~) -m

m=max[O,k-fJ

(15.3)
To express the transition probabilities in terms of time and the rate of base change
per unit time, we need only substitute the expressions for p for the Jukes-Cantor
model (equations 11.16 and 11.17). There is no more compact analytical expression
- the transition probability must be computed by doing the summation. But this
is not hard to do. We shall see in the next chapter that maximum likelihood meth­
ods of inferring the phylogeny can be based on transition probabilities, if these can
be computed for arbitrary pairs of states and arbitrary branch lengths.

For more general models of base change the computation becomes too difficult.
One would wish to allow for differences in rate between transitions and transver­
sions. The Kimura two-parameter model does this, while otherwise treating the
bases symmetrically. Li (1986) computed transition probabilities analogous to the
present ones using that model. But he did so only for patterns involving a few
species. In general, instead of having r + 1 states for an r-base cutter, it requires
us to specify for each r-base sequence by how many transitions and how many
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transversions it differs from the recognition sequence. This means that there are
r + 1)(1' + 2)/2 possible states. For a 6-base cutter that would be 7 x 8/2 = 28

states, so that the transition matrices would be 28 x 28. This is an increase of a fac­
tor of 16 in matrix size (and hence an increase of a factor of 64 in computation) over
the case of the Jukes-Cantor model. For models with asymmetric base composi­
tion the matter is much more serious. I cannot see any way to do the computations
\\-ithout making a separate state for each of the 4T possible r-base sequences. For a
6-base cutter, that is 4,096 states, an increase in computational effort of more than
:3 x 105 over the Jukes-Cantor model.

Distances based on restriction sites
_lost work using probability models of restriction sites has been focussed on ob­
:aining distances for use in distance matrix methods. With two sequences there
:ore four possible observations at each restriction site location: the four combina­
::ons of presence and absence in each of the two sequences. We can denote these
--, +-, -+, and --. We can use the models to calculate the probabilities of each
.:>f these. Suppose that the branch length is t between two species (A and B), that
:: e enzyme is an r-base cutter, and that the model of D A change is taken to be
=-~e Jukes-Cantor model. Under that model, the probability of a restriction site at
~'l\' location is, of course:

(15.4)

-=-:'lis will be the sum of the probabilities of ++ and +-, and it will also be the
o·..;.m of the probabilities of ++ and -+. If we can find a way to compute the
:~ bability ++, then by subtraction we will be able to compute the probabilities of
~- and +-. Since all four probabilities should add up to 1, we can then compute
:"-.e probability of -- as well. The critical quantity is then seen to be P++, the
==0bability of ++.

This was first computed by Nei and Li (1979). Our notation will differ from
:: 2irs. The probability that a sequence of T' bases is a restriction site in sequence A
.0 - _" and the probability that all r bases continue to code for a restriction site at
_-2 other end of a branch of length t is (1 - py, where p is the probability that an
- ii\-idual base is different at the other end of the branch. Thus

(15.5)

The value of p can be computed from the Jukes-Cantor formula 11.17. Taking
-= rate of substitution as 1 per unit time, this will give

(15.6)
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and by the requirements for the probabilities to sum up, we then immediately see
that

and

P+- ~ p_+ ~ or [1 .(l+~'d?

P_- = 1- (~r [2- C+34e-~tr]

(15.7)

(15.8)

Issues ofascertainment
It would seem straightforward to use these probabilities to compute the distance
by maximizing a likelihood with respect to t. However, we have to consider
whether we see all the cases that are - -. We typically have not chosen a restriction
site independently of its having the restriction recognition sequence. In fact, we
are likely to have examined only those sites that showed variation in some sam­
ple of individuals. Thus we have to correct for a bias toward finding + sites. This
would be called an ascertainment bias in fields such as human genetics.

It is not easy to characterize all of the different ways that we could have chosen
the sites for study. We might have a phylogeny, and look only at those sites that
varied somewhere in the phylogeny. Thus we might see - - in these two species,
but somewhere else on the tree there would have to be a + at this position. Re­
quiring that reduces the probability of a --. Alternatively, we might have chosen
the sites based on the phylogeny of some other, relatively unrelated organisms. In
a paper on maximum likelihood estimation of phylogenies from restriction sites, I
have (Felsenstein, 1992b) shown how to correct for some kinds of these ascertain­
ment effects, as we will see in the next chapter.

If we are at a loss to know what to do with the ascertainment effects, we can
simply drop the -- sites and make our estimate of distance from the relative
numbers of ++, +- and -+ sites. The probabilities of these three outcomes, given
that a site is not --, are P++/ (P++ + P+_ + P_+), p_+/ (P++ + P+_ + P_+),
and P+_/ (P++ + P+_ + P_+). The likelihood for the numbers of sites n++, n+_
and n_+ will be

(15.9)
L (

n+++n+_+n_+) ( P++ )n_+
n++ n+_ n_+ P++ + P+_ + P_+

(
P )n+_ ( P )71_+

X P++ + P:= + P_+ P++ + P~~ + p_+

the P's being functions of t. The combinatorial term in front can be dropped, as
it is a constant independent of t for any data set. We have a reversible model of
DNA evolution, so that P+_ = P_+. Then we can combine terms and get

(15.10)
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This is of the form

L (15.11)

P++
X = (15.12)

p++ + p+- + p-+
Taking the logarithm of L, differentiating with respect to .T, equating the derivative
:0 zero, and solving, we find that the maximum is at

(15.13)x =
n++ + n+_ + n_+

This is reasonable: The empirical frequencies of the site patterns match their ex­
?ectations. We can use equations 15.6 and 15.7 to express::1: in terms of t. The result

(

1 )T1 + 3e-"t n++
4 - n++ + ~ (n+_ + n_+)

··.-hich then can easily be solved to give the distance

(15.14)

(15.15)

This formula is quite similar to that derived by Nei and Li (1979). (It differs by a
:~ctor of two in the branch length, as it asked a slightly different question, and by
:::'cir assumption that all sites that are shared between two species were present
': a common ancestor halfway between them.) Nei (1987, pp. 97ff.) derived a
-::11ilar distance by allowing the frequencies of nucleotides in the sequence to be
_tequal, using them in the formula, but then also using the Jukes-Cantor model
-:uch assumes their equality. In practice it is unlikely that the resulting formula
-j} differ much from the one given here, especially for closely related species.

Li (1986) used the Kimura two-parameter model for restriction site inferences.
"':..:s equations could be adapted above instead of using equations 15.6 and 15.7, but
:"-_2\- would not lead to a closed-form formula. However, the resulting equations
:~t easily be solved numerically. Nei and Li (1979) also show how the assumption

: 3. gamma distribution of evolutionary rates among sites affects the formula.

?7rsimony for restriction sites
-_::hough a full treatment of restriction sites requires a stochastic model, we can

:1sider whether there are parsimony methods that approximate the behavior of
-2 full model. DeBry and Slade (1985) discussed a model with three states, 0, 0'
- j 1. Of these, 1 is the presence of the site, 0' is any sequence that is one base

-av from it, and 0 groups all other sequences. They derived expressions for tran-
:::ons between the three states using a Jukes-Cantor model. They approximated
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the probabilities of change and used them to argue that the most probable scenar­
ios for homoplasy would be situations in which the site was gained once but then
lost multiple times.

We have seen that 00110 parsimony is based, implicitly, on a model in which
gain is quite improbable but loss is not as rare. DeBry and Slade argue that 00110
parsimony will be an acceptable approximation to use of the full likelihood model.

Albert, Mishler, and Chase (1992) have argued against the use of 00110 parsi­
mony for this purpose. They find that Wagner parsimony comes closer to approx­
imating the probabilities of change of restriction sites; that the total avoidance of
parallel origins of the restriction recognition sequence in 00110 parsimony is too
strong a constraint. In using Wagner parsimony, they specify that the ancestral
state is unknown.

Which method, 00110 or Wagner parsimony, does a better job at approximating
restriction sites change may depend on the degree of divergence between species.
If the species are closely related, parallel gains may be strongly outweighed by
parallel losses. If the species are not so closely related, explanation by parallel
gains can become important. We shall see below that RAPDs and AFLPs can in
many respects be treated as large restriction sites. These will have strong asym­
metries of change that may make 00110 parsimony more defensible that it proved
to be in the cases that Albert et al. considered.

We can illuminate these asymmetries by using the formulas given above. Sup­
pose that we have an ancestor, whose state is unknown, giving rise to two species;
each are diverged t units of branch length from that ancestor, and both possess the
restriction site. Given this, what is the probability that the ancestor also had the
restriction site? The transition probability from + to + we know to be (1 - pro If
the probability that a base differs after t units of branch length is p, we can use an
argument like that used for equation 15.5 to show that the joint probability of the
two tips and the ancestor all being + is "0(1 - p)"(l - pr. This is

(15.16)

The probability that both tips are + is given by equation 15.6, with t replaced by
2t. The conditional probability that the ancestor is + is computed from the ra­
tio of P+++ to that quantity. It will be apparent from Figure 15.1 that when two
species are distant, the appearance of the same restriction site in both is not strong
evidence for their ancestor having had that site, though it may have had a DNA
sequence that matches many of the bases in the recognition sequence. These cal­
culations are similar to ones made by Alan Templeton (1983).

Modeling restriction fragments
So far we have discussed only restriction sites. Many studies using restriction di­
gests analyze the presence or absence of restriction fragments instead. There is no
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Figure 15.1: Fraction of the time the ancestor of two species who both
have a restriction site is expected to have that site also. The two species
are each diverged from the ancestor by a branch of length t. The curves
for a 6-base cutter (solid curve) and a symmetric two-state 0/1 charac­
ter are shown.

_~ probabilistic treatment of restriction fragment variation, but Nei and Li (1979)
- .=--e constructed a distance for restriction fragment data. If a given fragment of
_- ~"-h L nucleotides is found in one species, the probability that it will also be

.:..,d at another, which is a branch length t away, can be calculated approximately.
-2 can work out approximate formulas for this using the mathematics of restric­

=-_ sites by noting that a fragment will be retained if the restriction sites at its
: ends are preserved, and also if no new restriction site arises between them

_~ ~olt, 1977; ei and Li, 1979).
_-ei and Li (1979) have given a formula that does not depend on L. This they do
~Qmputing the average probability that a restriction fragment will be retained

-=~ a branch of length t. This averages over all lengths of sequences and thus
~: not depend on L. They then compute the distance by, in effect, finding the
..:e of t that fits the observed fraction of restriction fragments that are retained.

:.:" restriction recognition sequence is T' bases long, the fraction of fragments that
= - bases long will be (approximately)

(1 - ayn-r a (15.17)

-=~e Cl is 1/41', the probability of a recognition sequence at a random point on
- -:J':\A. Suppose that b is the probability that a sequence that is not a recognition
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sequence changes to one that is by the end of a branch of length t. Nei and Li point
out that the probability that a restriction recognition sequence arises at a given site
among the m - T that are in the interior of the fragment is b. Although the TTL - T

possible such events are not completely independent, if we treat them as such, we
should get a good approximation. If Q is the probability that a restriction site is
present after branch length t, the probability that the two restriction sites at the
ends of the fragment are both still present after branch length t is Q2. Thus the
probability that a fragment of length m +T is preserved is, to good approximation,

(15.18)

Averaging this over all values of TTL, weighting by the probabilities of fragments of
all lengths, we get

oc

(15.19)

(15.20)

(15.21)

(15.23)

nl.=r

which can be summed as a geometric series to get

aQ2
F=

1 - (1 - a)(1- b)

We have the value of a (above), and it turns out that

b = a (1 - Q)
(1 - a)

Substituting these into equation (15.20), we get the average fraction of restriction
fragments retained as

Q2
F = 2 _ Q (15.22)

This is in slight disagreement with ei and Li who define Q and t differently and
reach a slightly different result for b. If we use the Jukes-Cantor model to compute

_ [1 +3exp (_ ~ t) ] T

Q-
4

we can note that equation (15.22) is a quadratic equation in Q and solve it for Q,
and then we can solve equation (15.23) for i.

One might wonder whether it is not possible to do better by explicitly taking
into account the length of each individual fragment and by making a maximum
likelihood estimate of the branch length from the full set of fragments. Aside from
the daunting probability and statistical problems involved, the data may not fit
the model well enough for this approach to succeed. The total length of all frag­
ments ought to be to same in both species, and frequently this is not the case. We
would have to accommodate in the model the inaccuracy of our measurements of
fragment sizes, as well as the disappearance from our data of fragments that were
too small or too large.
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Parsimony with restriction fragments
ne can also use parsimony methods, coding each fragment as a character which

:5 1 when present, 0 when absent. Although a given change from 0 to 1 is likely to
~ e a strongly asymmetric event, we cannot know whether the gain of a fragment
~epresents the gain or loss of a site. A fragment may appear as a result of gain
,:If a restriction site, which cuts a larger fragment in two. At the same time, the
-;a.in of the site results in the loss of the larger fragment. The loss of that site
-.,·ould cause the gain of that fragment. Thus there is no simple rule as to whether
:~ e appearance or the disappearance of a restriction fragment corresponds to the
.:>rigin or loss of a restriction site. Each event is asymmetric, but it is hard to know
=- which direction the asymmetry is. We could use Wagner parsimony, ignoring
~ e asymmetry of the changes. If we want to use Dalla parsimony, we must ensure
~ at for each character the ancestral state is taken to be unknown. If that is done,
~'1e algorithm will choose the direction of the asymmetry, based on the fit to the
'::':'lta on each tree.

Note that as a single base change can cause the disappearance of one fragment
~ld the simultaneous appearance of two smaller ones (or vice versa), the 0/1 char­
.:.~ters do not evolve independently. It thus becomes doubtful whether techniques
--...:-h as bootstrapping, jackknifing, or paired-sites tests can be used to evaluate the
-~engthof the resulting inferences. As we will see in the chapters that cover these
-ethods, all of them assume that the characters evolve independently.

By contrast, with restriction sites (rather than fragments) the changes in the
- ji,-idual sites occur in different nucleotides, and can be regarded as independent
--:-":ess the sites overlap. This makes it easier to apply statistical methods that
-=-~ ire independence.

::t.-\.PDs and AFLPs
- _ any organisms, RAPDs or AFLPs have become widely used in a manner sim­
':- a restriction fragments. How can RAPD or AFLP data be analyzed in phy­
::::enetic inference? In both cases a given band is present when a PCR primer
'::~lence is present at both ends of a piece of DNA. When either of these mutates

- .:> 19h to cease to be a primer, or when another site arises within the fragment,
-= ~ and that is seen on the gel moves enough that it seems to disappear.

ror example, if we were doing RAPD analysis with primers of length 10 nu­
_")tides, and under conditions in which all 10 bases must match the primer for
-, R reaction to recognize it, then a change in any of the 20 bases could cause

. ':: :'ragment to disappear from its place on the gel. If the two PCR primers are
-:c enough to each other to successfully result in a PCR reaction, they have few

- . gh sequences of length 10 between them that it is very unlikely that any se-
-=_ ces exist there that are only one base different from being a primer. Thus
_ :nain mechanism of change of RAPD bands will be mutation in the two PCR
::1ers. AFLPs are detected differently, but have essentially the same properties,
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but with longer primers (about 20 bases long at each end) and three additional
nucleotides at each primer site.

In effect, we then have associated with each fragment a total of 20 (or 46) bases
that must be in a particular sequence for the fragment to be seen. The 20 bases are
not entirely contiguous, but this does not matter. They act like a 20-base restriction
site. We can thus make a statistical model of the presence and absence of RAPD or
AFLP bands by simply using the model given above for restriction sites. In spite
of their detection as fragments, the statistical behavior of RAPD and AFLP bands
is more like that of restriction sites.

Restriction sites distances can be used, as can parsimony methods. The recog­
nition sequence is so long that we should expect strong asymmetries between pres­
ence and absence of the sites. A quantitative examination has not yet been made,
but I would expect it to favor the use of Dollo parsimony rather than Wagner parsi­
mony in this case. Backeljau et al. (1995) have discussed reasons for believing that
no parsimony method conforms adequately to the properties of the evolution of
RAPDs. It would also be possible to use the restriction sites model for maximum
likelihood inference of RAPD or AFLP phylogenies.

The issue ofdominance
One problem with use of restriction fragments data, RAPDs, and AFLPs is that
these markers are dominant. Thus in a diploid individual that has a fragment
present in one of its two haplotypes for the relevant region of the genome, the
fragment is scored as present, and its absence from the other haplotype is not
noted. For genomes that have diverged substantially this may not be a problem­
fragments that differ between species may tend to have their presence or absence
fixed within each species. For within-species inferences the problem is more seri­
ous, as we are likely to be concentrating on those fragments that show differences
within the species, and these will not necessarily show fixed differences between
local populations. Clark and Lanigan (1993) have described a correction for dis­
tances from RAPDs to allow for the effect of dominance.

Unresolved problems
The models for AFLP and RAPD data presented here are oversimple. In such data,
one can have more complex phenomena that are not reflected in these models. For
example, two PCR primers could lie near each other on the DNA, so that one PCR
primer is present at the left end of a fragment, but two lie near the right end, re­
sulting in two bands that share their left primer but have different right primers.
Mutation of the left PCR primer sequence could then eliminate both bands. This
and other phenomena create additional sources of noise in RAPD and AFLP data.
The users of these methods have been slow to recruit theoreticians to address these
issues, preferring instead to forage among existing methods, which are developed
for other kinds of data. If the communities of users of RAPD and AFLP techniques
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are to be well-served by methods of data analysis, they will need to take the ini­
iative to ensure that these problems are addressed.

:\1icrosatellite models
.'.Iicrosatellite (VNTR) loci are another class of partial sequence information. A mi­
..:rosatellite locus has a simple sequence, such as a di- or trinucleotide [such as
.-J.CT)n] repeated tandemly a number of times. We typically know only the num­

::>er of copies of the repeat. RAPDs, AFLPs, and restriction sites are assumed to
: ave a normal mutational process for noncoding DNA, but microsatellites are dis­
:-'..nguished by having mutational processes that are related to their status as re­
~ eats, such as slippage. One event can cause addition or removal of some of the
~epeats. Although restriction sites and peR primers are only known to be such by
:' lr laboratory procedures, tandem repeats have an effect on the biology of repli­
~ittion, and this leads to having their own distinct mutational processes.

These mutational processes have high rates of change, compared to sitewise
::1utation rates in noncoding DNA. Typical rates of mutation range up to 0.0001
:'er locus per generation, many orders of magnitude larger than rates of point
:-:1 ltation in DNA. The resulting high rates of change has led to the growing use of
-:,..icrosatellite loci as markers within species. However, their use for inferring phy­
,:,genies between species has lagged, because it is frequently found that a marker
~-at is highly variable within a species cannot be found at all in a neighboring
-:,ecies. As we shall be concerned with coalescent trees of genes as well as with
-::': dogenies, we need to consider models for the mutational change of microsatel-
_:e loci.

~Jle one-step model
-=-:',e simplest model is one in which, in each generation, there is a small probability
.- itt the number of repeats increases by 1, and an equal probability that it decreases
: .. 1. Things cannot be this simple if the number of copies reaches 1, for it cannot
.::.-::-..:rease below that value. If one copy is taken to be an absorbing state (a state
- '."hich the system becomes stuck once it is reached), then it is possible to show
- 3.' there is a higher and higher chance that the locus is in this state, the remaining

._ ies of the locus having higher and higher numbers of copies.
The one-step model has been used by Valdes, Slatkin, and Freimer (1993) and

=:,Idstein et al. (1995a). They took the sensible step of ignoring the issue of what
., ~ pens when there is one copy, on the grounds that we are primarily interested
- ?robabilities of change among moderate numbers of copies, and the behavior
.: e locus when there is only one copy will have a scarcely noticeable effect on
-..=.,. We can closely approximate their model by assuming that time is continuous
.::: er than discrete generations) and that there is a constant risk of taking a step,
~L equal probability of stepping up or down. This is a model well-known as

::- randomized random walk (Feller, 1971, p. 59). Feller shows that the transition
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probabilities can be written in terms of the modified Bessel function; we derive a
clumsier expression for simplicity.

In a branch whose length is t, with mutation rate I.l, the number of mutations
occurring will be drawn from a Poisson distribution with expectation pt. If we
end up changing the number of copies by i (where i can be any integer, positive or
negative), this can occur in a number of ways. We can have i + k steps upwards,
and k steps downwards, for a total of i +2k steps and a net displacement of i steps.
The probability that there are i + 2k steps is the Poisson probability

(15.24)

and the probability that i +k of these are steps upwards is the binomial probability
of getting 'i + k heads in i + 2k tosses:

(
i+ 2k) (~)Hk (~) k

Z + k 2 2 (
'i+ 2k) (~)i+2k
l+k 2

(15.25)

Taking the product of these we get the net transition probability by summing
it over all possible values of k:

00 e- I.Jt (~dr+2k (i + 2k) (~) i+2k
L (i+2k)! i+k 2
k=O

00 ( t) ;+2k 1-/-1-[ ~L

e L 2 (i + k)1 kl
k=O

(15.26)

Although Feller's Bessel-function version of this formula is more compact, simply
computing the present form by summing equation 15.26 over relevant values of k
is probably the most effective way.

Figure 15.2 shows the transition probabilities to different numbers of copies,
starting with 10 copies, and with ~t = 2 and ~Lt = 10. Note that with the larger
numbers of expected changes, the transition probability becomes nearly Gaussian
in shape. For branches longer than this, some chromosomes will approach the
limit of one copy, and we would expect this model to become inaccurate.

Microsatellite distances
From models such as one-step models one can make distances. This has been done
by Slatkin (1995) and by Goldstein et al. (1995a, b). Their distances are intended
to measure the divergence of populations within species. We shall see in the chap­
ter on coalescents that two genes in a random-mating population of constant fi­
nite effective population size N e are expected to be separated by 4Ne generations,
the mean time back until they have a common ancestor. Under a one-step model
the change in copy number has a mean of 0 and a variance which is equal to the
branch length times~. The difference in copy number between two genes from
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Figure 15.2: Transition probabilities for numbers of copies of a mi­
crosatellite locus lmder the one-step model of change. The histograms
show the relative probabilities of different numbers of changes in re­
peat number, for a branch long enough that 1 change is expected (up­
per) and long enough that 5 changes are expected (lower). The areas of
the histograms are equal.

:.":e same population will then have mean 0 and variance 4Ne /1. If two populations
-2 arated t generations ago, the number of generations separating a gene from

_e population from a gene from the other is 2t + 4Ne , since they trace back to
--2parate copies in the ancestral population, and those are separated by about 4Ne

:2nerations. The situation is depicted in Figure 15.3.

The difference in copy number between two genes, one from one population
-:1d one from the other, has mean 0 and variance approximately (2t +4Ne )/l. (This
- only approximate since two genes from a population vary around 4Nc genera-
-::~ns in their time of separation.) That also implies that the mean squared differ-
::~ce in copy number is approximately (2t + 4Ne )/l. One is immediately tempted
-- make the mean squared difference in copy number between the populations the
- easure of distance between them. However, we would like to subtract the 4Ne /1
-' that we get a distance that is proportional to t. Goldstein et al. (1995b) have
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Approximately

2N generations
e

Approximately

2N generations
e

t generations

Figure 15.3: Genealogy of copies where a pair of gene copies is drawn
from each of two species, which have a common ancestor.

accomplished this correction by noting that the mean squared difference between
copies within a population is 4Ne JL (set t = 0 to see this). We might then want the
distance to be the mean squared difference between copies in the two populations,
less the mean squared difference between copies within populations.

An algebraic simplification is available, as it can be shown (Goldstein et al.,
1995a) that for large values of N e this simply equals

(15.27)

The derivation makes use of the assumption that the effective population sizes of
the two populations are equal and also equal to the effective population size of
their common ancestor. Without that, the result is not exact.

Note that this estimate comes from equating variances to their expectations.
This is not a maximum likelihood estimate. If the difference in number of copies
between two populations were normally distributed, it would be a maximum like­
lihood estimate. Thus, to some extent it will be not be a fully powerful statistic,
but it does have some robustness. The derivation assumes that the variance of
copy number that accumulates is JL per unit time, but it does not actually rely on
the assumption that the changes of copy number are one-step changes. Thus the
(rSJL)2 distance should be applicable to cases in which there could be multiple-step
mutations.

A Brownian motion approximation
In fact, a Brownian motion approximation can be made (Felsenstein and Beerli, in
prep.; see also Zhivotovsky and Feldman, 1995). It is not yet clear how good an
approximation this will be in practice. We simply assume that the copy number
changes along a branch of the tree according to a Brownian motion, rather than
by the more realistic processes of one-step or multistep models of copy number
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Figure 15.4: Probabilities of different numbers of changes of copy num­
ber in a microsatellite locus, for different values of the branch length tit.
The dashed curves are the probabilities from the one-step model, and
the solid curves are the probabilities from the truncated Brownian mo­
tion approximation.

'::''1ange. The transition probability for changing from copy number Tn to Tn + k in
.=. branch of length t can be computed, given the constant j-L. This can be computed
~ the probability of changing by an amount between k - 1/2 and k + 1/2 when
:........e expected change is 0 and variance of change is j-Lt, where the amount of net
'::',ange comes from the normal distribution with this mean and variance.

An integral like this must be computed numerically, but we can approximate it
~:.- the probability density of at k, times the width of the interval around k (which
-= I). However this can give a probability greater than 1. To avoid this we can
:::-mcate it:

Prob (Tn + k ITn) ;:::;: min [1, 1vr:z;:;: exp (_ ~ k
2

)]Viii 27f' 2 j-Lt
(15.28)

Figure 15.4 shows probabilities of different numbers of copy number changes,
,~the one-step model and with this approximation. The scaled branch length j-Lt
- :':,e horizontal axis, and the curves give the probabilities of a net change of 0, 1,
~ .. (the probabilities of negative numbers of changes -1, -2, ... are the same).

It will be apparent from the figure that the approximation is less than perfect.
-:.....en j-Lt is near 0.1, it expects less change than actually would occur in the one­

'=? model. When p.t is near 0.7, it expects somewhat more change. At longer
--==---tch lengths, the approximation is quite good.
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Models with constraints on array size
The one-step model cannot be exactly true, for it predicts some chance of having
negative numbers of copies! Change cannot pass zero copies. In fact, empirical
studies have suggested stronger constraints than this on the number of repeats.
Models of constrained variation in microsatellites have been made (Garza, Slatkin,
and Freimer, 1995; Feldman et al., 1997; Pollock et al., 1998). If there were advance
knowledge of the constraints, this could be used to advantage, but if we do not
know for each locus at what number of copies they are constrained, it is hard to
see how to estimate the limits to change in a way that can be used practically
(as pointed out by Nielsen and Palsboll, 1999). We would have to estimate the
strength of the constraints separately at each locus, so that as the number of loci in
the study increased, the ratio of the amount of data to the number of parameters
would not increase indefinitely.

Multi-step and heterogeneous models
There has also been some examination of whether the single-step model is ade­
quate (DiRienzo et al., 1994). In general it is often possible to show that it is not.
It is difficult to calculate transition probabilities for a multi-step model. How­
ever, with the Brownian motion approximation we need only know the variance
of the change of allele number per generation, and this is insensitive to whether
the changes are by one repeat or many.

There does seem to be evidence that changes in loci with large numbers of
repeats are more frequent, or larger, than in loci with few repeats. If we were to
assume that the standard deviation of change in repeat number was proportional
to the repeat number, we could approximate this by taking the logarithm of the
repeat number. It would have constant variance of the change on its scale, and
could be approximated by a Brownian motion model.

For distance matrix methods, where exact transition probabilities are not
needed, one can go further. Zhivotovsky, Feldman, and Grishechkin (1997) de­
rive formulas for the expected distance as a function of time when there are biases
in mutation and heterogeneity of rates of change from locus to locus. Zhivotovsky,
Goldstein, and Feldman (2001) extend these results even further.

Snakes and Ladders
The models mentioned so far all assume that changes in the number of repeats
are not very large. Two groups have investigated models in which the number
of repeats can undergo large decreases. Kruglyak et al. (1998,2000) modeled the
occurrence of point mutations. A point mutation in one of the repeat units of a
rnicrosatellite locus divides the tandem array into two tandem arrays. One may
even be so small that it ceases to have slippage events. Thus point mutations can
cause large decreases in array size. Calabrese, Durrett, and Aquadro (2001) have
investigated in more detail the consequences of the model for the distribution of
number of repeats.
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Falush and Iwasa (1999) have made another model that allows large decreases
in the number of repeats. They do not specify the mechanism of the decreases,
but simply specify the distribution of the number of repeats after mutation. They
use an asymmetric triangular distribution that has an upward bias in change, but
a variance that is proportional to the square of the number of repeats. In such a
:nodel, one might imagine that the upward bias of change would cause the num-

er of repeats to increase without limit. The fascinating thing about their model is
:hat this does not happen. umber of repeats tends to rise for a while, but sooner
or later the number of repeats decreases to a low number. Computer simulations
and a diffusion-equation approximation both verify that this collapse of the num­
'::>er of repeats occurs often enough to keep the number of repeats from blowing
'.lp.

Both models predict large decreases in the number of repeats. Chambers and
\,1cAvoy (2000) analogize such processes to the game of Snakes and Ladders,
'.\'here the player is constantly at risk of plunging backwards toward the start of
:heir journey.

The difficulty with both of these interesting models is that they do not easily
:end themselves to calculation of long-term transition probabilities of the number
of repeats. It may be necessary to adopt Markov chain Monte Carlo methods to use
:hem in statistical inference within or between species (d. Nielsen, 1997; Wilson
:md Balding, 1998).

omplications
?or all that has been done to model microsatellite loci, the biology is sufficiently
:omplicated that much more work is needed. Enough is known to motivate more
'\'ork. Sibly, Whittaker, and Talbot (2001) have shown that the change of repeat
-. Imber rises with repeat number, and ceases when there are only a few repeats.
=: \'en that is not an adequate description of microsatellite mutational processes.
=:llegren (2000) reviews the depressing results of pedigree studies that observe
-,t'w mutations. Noor, Kliman, and Machado (2001) also find a complex pattern
'~ changes in long-term evolutionary studies. The issue that must be faced is not
.-hether one-step models are close to being true-they are not-but under what

:j-cumstances they can be used as an approximate model for inference.
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Chapter 16

Likelihood methods

Having models of evolution for a character, we can use standard statistical meth­
ods to make estimates of the phylogeny. Perhaps the most standard framework
of all is maximum likelihood, which we have encountered earlier. It was invented
by R. A. Fisher (1912, 1921, 1922). Many of the usual statistical estimates that we
know and love are really maximum likelihood estimates, including the average as
the estimate of the mean of a normal distribution, the observed fraction of "heads"
as an estimate of the parameter of a binomial distribution, and the least squares fit
of a straight line to a series of (x. y) points when y is normally distributed around
the true regression line.

Likelihood methods for phylogenies were introduced by Edwards and Cavalli­
Sforza (1964), for gene frequency data. The first application of likelihood methods
to molecular sequences was by the famous statistician Jerzy Neyman (1971). Iron­
ically, he was a well-known skeptic of the use of likelihood. Kashyap and Subas
(1974) extended Neyman's work. I showed (1981b) how to make likelihood com­
putations for nucleotide sequences practical for moderate numbers of sequences.

Maximum likelihood
Although likelihood is of central importance in statistics, it has usually been omit­
ted from the "cookbook" statistics courses that biologists take, and therefore is
unfamiliar to most biologists. For this reason it is important to describe like­
lihood here. Using the laws of conditional probability, we can easily show for
any two hypotheses Hi and H 2 about a set of data D that since Prob (HID)
Prob (H and D)j Prob (D) = Prob (DIH) Prob (H)j Prob (D), then

Prob (HiID) Prob (DIHi ) Prob (Hd
Prob (H2 ID) Prob (DIH2 ) Prob (H2 )

This expresses the "odds ratio" in favor of hypothesis lover hypothesis 2 as a
product of two terms. The first is the ratio of the probabilities of the data given

248
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:.--:e two hypotheses. The second is the ratio of the prior probabilities of the two
_-::potheses (the odds ratio favoring HI over H 2 ) before we look at the data.

If we have the odds favoring HI over H 2 , equation 16.1 shows how to take into
.o:-ount the evidence provided by the data, and come up with a valid posterior
_~ds ratio. This formula is the odds ratio form of Bayes' theorem. The quantity

~ _Jb (DIH) is called the likelihood of the hypothesis H. Note that, in spite of
: ~nunon English usage, it is not the probability of the hypothesis. That would be
- b (HID). It is instead the probability of our data, given the hypothesis.

If we have independent observations, then

(16.2)

: :ollows that

(16.3)

_- equation 16.1 and 16.3 we can see that if there is a large amount of data, the
-:~nt side of the equation will be dominated by its first term, the likelihood ratio
: :he two hypotheses.

Bayesian statisticians try to come up with valid prior probabilities and use for­
- ~as such as equation 16.1 to infer valid posterior probabilities of the various
-- :-otheses. Non-Bayesians are skeptical of our ability to come up with valid
=-~or probabilities. They may prefer that hypothesis that maximizes the likeli­
· 0d Prob (DJH). This may not end up being the hypothesis that has the largest
=- ~[erior probability, but if the amount of data is large, the chance that it is is good.
-_~ the amolmt of data increases, this maximum likelihood estimate will become
- . ,e and more likely to be the best estimate as well, as equation 16.3 becomes
.:. :ninated by the quantity in the large parentheses. Fisher showed (1922) that
- :ximum likelihood estimates have a variety of good properties, including con­
· ::ency (converging to the correct value of the parameter) and efficiency (having
_'-=: smallest possible variance around the true parameter value) as the amount of
· .::a grows large.

Other statistical frameworks are possible as well, such as least squares. These
::mates are sometimes easier to compute than maximum likelihood, but as likeli-

· -:,d is extremely efficient in extracting information, and as faster computers have
'::~O\-ed the barriers to doing it, most of the development of statistical methods

=- ilferring phylogenies has concentrated on likelihood.

-.' example
- :11ake likelihood methods concrete, consider the estimation of the heads proba-
- ::-\- of a coin that is tossed n times. If we assume that the tosses are all indepen-
.-:::-: , and all have the same unknown heads probability p, then on observing the
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Figure 16.1: The likelihood for the heads probability p for a series of 13
independent coin tosses that results in 5 heads and 6 tails. Note that
the maximum of this curve is at the point p= 5/11.

sequence of tosses HHTTHTHHTTT, we can easily calculate the probability of these
data. It is

L = Prob (Dip) = pp(l-p)(l-p)p(l-p)pp(l-p)(l-p)(l-p) = p5(1_p)6 (16.4)

where we can take the product because the tosses are assumed independent. Fig­
ure 16.1 shows the likelihood curve, plotting this L against p. Note that although
this looks rather like a distribution, it is not. It plots the probabilities of the same
data D for different values of p. Thus it does not show the probabilities of different
mutually-exclusive outcomes, and the area under this curve need not be 1.

The maximum likelihood is at p = 0.454545, which is 5/11. This can be verified
by taking the derivative of L with respect to p:

dL 4 6 0 ­

_ = 5p(1 - p) - 6pO(1 _ p)b
dp

equating it to zero, and solving:

dL 4 " ~dp = P (l-p) [o(1-p)-6p] = 0

(16.5)

(16.6)

which yields as the position of the maximum (the point in the interior where the
slope is zero) p= 5/11.
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Likelihoods are often maximized by maximizing their logarithm. This maxi­
:nization works more easily:

lnL 5 lnp+6 In(l-p) (16.7)

-..,·hose derivative is
d(ln L)

dp

-.. hich again yields p= 5/11.

5 6
-----
p (1 - p)

o. (16.8)

Computing the likelihood of a tree
-':e now examine how to compute the likelihood of a given tree. This will be done
- -ith DNA sequences as the example, but the procedure used is actually general
~-' all discrete-characters models, and it can be related closely to the methods for
::-ntinuous characters as well.

Suppose that we have a set of aligned DNA sequences, with m sites. We are
~\-en a phylogeny with branch lengths, and an evolutionary model that allows
....0 to compute probabilities of changes of states along this tree. In particular, the
::-odel allows us to compute transition probabilities p;J(t), the probability that
-:3te j will exist at the end of a branch of length t, if the state at the start of the
::anch is i. Note that t measures branch length, not time. We will make two
'~sumptionsthat are central to computing the likelihoods:

Evolution in different sites (on the given tree) is independent.

-, Evolution in different lineages is independent.

The first of these allows us to take the likelihood and decompose it into a prod­
_:~. one term for each site:

In

L = Prob (D[T) II Prob (D(i)jT)
;=1

(16.9)

":-:ere D(-i) is the data at the 'ith site. This means that we need only know how to
-:":l.pute the likelihood at a single site. Suppose that we have a tree, and the data
: ?. site. An example is shown in Figure 16.2 The likelihood of the tree for this
:2 is the sum, over all possible nucleotides that may have existed at the interior

- ,es of the tree, of the probabilities of each scenario of events:

Prob (D(i)\T) = LLLL Prob(A.C.C,C,G,:.c,y,z,wIT)
x y z w

:::< summation running over all four nucleotides.

(16.10)



Prob (A, C, C, C, G, x, y, z, wiT)

Prob (x) Prob (y[x. t6) Prob (Aly· tl)

Prob (zlx, ts) Prob (Clz, t3)

Prob (w[z, t7)
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x

Figure 16.2: A tree, with branch lengths and the data at a single site.
This example is used in the text to describe calculation of the likeli­
hood.

The assumption that we have made about evolution in different lineages being
independent allows us to decompose the probability on the right side of equation
16.10 into a product of terms:

Prob (C[w, t4) Prob (Glw, to)
(16.11)

The probability of x may be taken to be the probability that, at a random point
on an evolving lineage, we would see base::r; (where x = A, C. G, or T). If we are
allowed to assume that evolution has been proceeding for a very long time accord­
ing to the particular model of base substitution that we are using, it is reasonable
to take Prob (x) to be the equilibrium probability of base x under that model. The
other probabilities are derived from the model of base substitution. The change in
each lineage is independent of that in all other lineages, once the bases at the start
of each lineage have been specified.

The expression in equation 16.11 still looks difficult to compute. The individual
probabilities are not hard to compute (for example, we can use one of equations
11.16, 13.2, or 13.11, depending on which of these models of DNA change we
happen to be using). The problem is that there are a great many terms in equation
16.11. For each site, it insists that we sum 44 = 256 terms. That does not sound
too hard, but with larger numbers of species the problem increases. The number
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of terms rises exponentially with the number of species. On a tree with n species,
-here are n - 1 interior nodes, and each can have one of 4 states. So we need 4n - 1

~erms. For n = 10 this is 262,144; for n = 20 it is 274,877,906,944. That is definitely
~oo many.

Economizing on the computation
.=ortunately, there is an economy that makes the whole computation practicable.
= introduced this (Felsenstein, 1973b, 1981b), calling it "pruning." (It was also in­
iependently invented by Gonnet and Benner, 1996.) It is simply a version of the

1 eeling" algorithm invented by Hilden (1970), Elston and Stewart (1971), and
:-J:euch and Li (1972) for rapidly computing likelihoods on pedigrees in human ge­
::,etics. That in turn may also be regarded as a version of Horner's rule, which
::nakes us able to compute the values of polynomials rapidly. This method was
:"Jst published by Horner (1819), though it seems to have been used much ear­
...:er by Isaac Newton. It is a particular case of a method well-known in computer
~ience as "dynamic programming."

The method may be derived simply by trying to move summation signs in
=--.J.uation 16.10 as far right as possible and enclose them in parentheses where pos­
o~"::Jle. Equation 16.10 can be written:

x y Z tv

Prob (CIY, t2)

Prob (zlx, ts) Prob (Clz, t:3)

Prob (UJlz, t7) Prob (ClUJ, t4 ) Prob (ClUJ, t5)
(16.12)

~- j 'when we move the summation signs as far right as possible

L Prob(x) ( ~ Prob(Ylx,t6) Prob(Aly,td Prob(Cly,t2))

x ( 21 Prob (zlx, ts) Prob (C[z, t3)

x (L Prob (UJlz, t7) Prob (ClUJ, t 4 ) Prob (ClUJ, ts) ))
w

(16.13)
=- ;nay note that the pattern of parentheses and terms for tips in this expression

(A, C) (C, (C, C))

-...:ch has an exact correspondence to the structure of the tree. The flow of compu­
=0ns in equation 16.13 is from the inside of the innermost parentheses outwards.
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This suggests a flow of information down the tree, and indeed, an algorithm to
compute equation 16.13 is easily found that works in this way.

It makes use of a quantity that we may call the conditional likelihood of a subtree.

We will call this L ~i) (8). It is the probability of everything that is observed from
node k on the tree on up, at site i, conditional on node k having state s. In equation
16.13 the term

Prob (Clw. t4) Prob (Glw. t5)

is one of these quantities, being the probability of everything seen at or above that
node (the node that lies below the rightmost two tips), given that the node has
base 'W. There will be four such quantities, corresponding to different values of w.
The key to the pruning algorithm is that, once these four numbers are computed,
they need not continually be recomputed.

The algorithm is most easily expressed as a recursion that computes the L(i) (8)
at each node on the tree from the same quantities in the immediate descendant
nodes. Suppose that node k has immediate descendants eand Tn, which are at the
top ends of branches of length te and tm . Then we can compute

(16.14)

The logic of this equation is straightforward: The probability of everything at or
above node k, given that node k has state 8, is the product of the events taking
place on both descendant lineages. In the left lineage, it sums over all of the states
to which 8 could have changed, and for each of those computes the probability of
changing to that state, times the probability of everything at or above that node
(node f), given that the state has changed to state x. othing more complicated
than simple probability bookkeeping is involved. The conditional likelihoods at
nodes eand Tn fit easily into the calculation. The extension to multifurcating trees
is immediate, simply involving more factors on the right side of equation 16.14.

To start the process, we need values of the L(i) at the tips of the tree. If state A

is found at a tip, the values of the L(i) at that tip will be

(16.15)

Whichever base is seen at the tip has the corresponding value of L(i) set to I, and
all others are O.

This algorithm is applied starting at the node that has all of its immediate de­
scendants being tips (there will always be at least one such node). Then it is ap­
plied successively to nodes further down the tree, not applying it to any node until

all of its descendants have been processed. The result is the L6i
) for the bottom­

most node in the tree. We then complete the evaluation of the likelihood for this
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site by making a weighted average of these over all four bases, weighted by their
prior probabilities under the probabilistic model:

(16.16)

Working your way in equation 16.13 from the innermost terms to the outer ones,
\'ou can verify that this recursion computes the likelihood correctly. The effort
needed is not excessive: For each site it is carried out n - 1 times, and each time
it is four calculations, each the product of two terms, each having a sum of four
" roducts. Thus with n tips on the tree, and sequences p bases long with b different
possible bases, the effort required is proportional to p(n - 1)b2

. Actually, it can
'. e reduced below this if some sites have the same pattern of nucleotides, as we
:leed only compute the probability for one of those sites and can reuse the same
_1uantity for the other site.

Once the likelihood for each site is computed, the overall likelihood of the tree
:s the product of these, as noted in equation 16.9.

Handling ambiguity and error
. \-e have assumed that at each tip, we have a precise observation of which nu­
.:leotide is present. The present framework actually has no trouble at all handling
:1rnbiguities. For example, we might have observed an R rather than an A (which
:11eans we observed only that this nucleotide was a purine, and hence might ei­
:her be an A or a 0). In that case, given that we were capable only of seeing R or
~ -, the four values of L(i) at that tip should be (1,0.1. 0), because our observation
R) would have probability 1 given that the truth was A or 0, and would have

?robability aotherwise.
Similarly, when we fail to observe the nucleotide, so that the base must be

encoded as N in the standard IDB one-letter code, the L(i) would be (1,1,1, I),
~ ecause the observation of total ambiguity would have probability I, no matter
xhat the true nucleotide, given that we did not observe at all.

With these values at the tips, likelihoods can be computed straightforwardly
-..Ising the algorithm for data sets that have ambiguous nucleotides. ote that the
~ i) at a tip do not necessarily add up to I, as they are not probabilities of different
,:1utcomes but probabilities of the same observation conditional on different events.
lOU may be sorely tempted to make the quantities (i,~,~, ~), but you should
:esist this temptation.

Another situation that is easily accommodated is sequencing error. Suppose
:. at our sequencing has probability 1 - E of finding the correct nucleotide, and c/3
,:1f inferring each of the three other possibilities. Consideration of the meaning
,:1t the L(i) then shows that when an A is observed, the four values should be
i-c) c/3, c/3, c/3). If a C is observed, they should be (c/3, l-c, c/3, c/3), and

::0 on. Although this uses a particularly simpleminded model of sequencing error,
.::.ny other model could be incorporated in this manner. The effect of sequencing
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error is similar to lengthening the branches of the tree: If there is a 1% rate of
sequencing error, this can look rather like a lengthening of all exterior branches by
0.01. But it is better to treat it by altering the L(i). If we tried instead to remove 0.01
from the length of each exterior branch, that might make some of them of negative
length. Also, it is not obvious that parameters like transition/ transversion rate are
the same for sequencing error as for evolution.

Unrootedness
The trees inferred by maximum likelihood appear from this description to be
rooted trees. If the model of base substitution is reversible, as most of them are,
the tree is actually unrooted. Consider the region near the root of the tree in Figure
16.2. Using the conditional likelihoods, we can write the likelihood as

L(i) = LLL Prob(x) Prob(Ylx,t6) Prob(zlx,ts) L~i)(y) L~i)(Z) (16.17)
y z x

But reversibility of the substitution process also guarantees us that

(16.18)

Substituting that into equation 16.17/ we get

y z ::c;

so that the root can be shifted to the node to its upper left, without any change in
the likelihoods of the tree at the individual sites. In fact, it is easy to show, using
the Chapman-Kolmogorov formula for transition probabilities, that the root can
be shifted anywhere in between as well: If we add an amount 1L to t6 and subtract
the same amountu from ts/ we do not alter the likelihoods at all.

Once the root has reached the upper-left or upper-right descendants, it can in
fact move on beyond them, using the same argument. In fact, it can be placed
anywhere in the tree. The tree is therefore actually an unrooted tree, without any
information present as to where the root is. Of course outgroup information can
help root itt and so can considerations of a molecular clock.

Finding the maximum likelihood tree
The pruning algorithm for updating likelihoods along a tree also greatly simplifies
the task of finding the maximum likelihood tree, though perhaps not enough to
make it entirely easy. In general, the task is very much the same as with distance
matrix methods. We are searching in a space of trees with branch lengths. We need
to find the optimum branch lengths for each given tree topology, and we also need
to search the space of tree topologies for the one that has a set of branch lengths
that gives it the highest likelihood.
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After

Figure 16.3: The region around branch 7 in the tree of Figure 16.2, when
a new root (node 0) is placed in that branch. The change in the notation
and structure of the tree is shown. The subtrees are shown as shaded
triangles.

It is the former task that is simplified by the pruning algorithm. There is no an-
_-jcal solution to the problem of finding the optimal branch lengths for a given

-0c2 topology. Unlike the case of least squares distance matrix methods with nega-
---e branch lengths allowed, there is no matrix equation that can solve for the best
:=-"-TIch lengths. However, we can try to find our way to a maximum of the likeli­
- :0d curve by proceeding uphill and by hoping that this is also the highest such
- :;.\.imum for that tree topology. In general, we have no assurance that there are
- :: multiple maxima, but they are rarely seen in practice. So this strategy works
-.l:.:h- well. (See Steel, 1994b, for a case in which it can be shown that there are mul-
- ~:e maxima for a given tree topology, and Chor et al., 2000, who use Hadamard
-"-.T1sform techniques to find data sets that have multiple optima and even ridges
: jed trees. Simulation studies by Rogers and Swofford, 1999, found less cause

- :- concern.)
The pruning algorithm speeds the iteration of branch lengths. To see this, imag­

_-e that we are iterating the branch length of branch 7 in the tree in Figure 16.2.
:-:-o\-ided that we have a reversible model of evolution, we can, without affecting
:.::-_\- of the likelihoods, take the root of the tree to be at the beginning of this branch.
=:sure 16.3 shows the reconfiguration. We have in effect added a new root, node

i 1st to the right of node 8, with a zero-length branch connecting it to node 8. If
-2 do that, the likelihood for site 'i will turn out to be

(16.20)

:e can summarize all the likelihoods for the part of the tree connected to the left

-:< of branch 7 by L~i), which can be computed from that subtree. The rerooting
: the tree has changed the meaning of that quantity - it now summarizes that

·a.rt of the tree. We already had L~i), and it has not changed in meaning. Note
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that as the root is at the left-hand end of branch 7, Prob (z) is simply multiplied by

L~i)(Z) as there is no time for the state to change between nodes 0 and 8 (and so
Prob (ylz. 0) = 0 unless y = z).

In effect, once the information from the subtrees at the end of a branch is
"pruned" down to that node, we are left with a tree with only two tips. The branch
length for that tree can then be calculated. Its optimal value has not been altered
by any of the rerooting and pruning.

The likelihood then needs to be maximized with respect to t7 by finding the
best length for this branch in the two-species tree. This can be done by many
methods; the Newton-Raphson method seems to be a good one for this, but EM
algorithms also work, as does direct search with quadratic interpolation. How­
ever, once one branch has changed length, there is no guarantee that the others are
still at their optimal lengths. It is necessary to return to all the other branches, im­
proving their lengths. This process continues indefinitely, but it must converge. At
each step the likelihood of the tree increases. The process will not fall into an end­
less cycle, because in such a cycle the likelihood would have to decrease as well as
increase.

Schadt, Sinsheimer, and Lange (1998) show how to prune derivatives of like­
lihoods with respect to branch lengths along a tree, enabling use of the Newton­
Raphson method to update all branch lengths simultaneously. In practice, improv­
ing the length of one branch at a time works quite well, as there are not very strong
or complex interactions between branch lengths. After a few sweeps through the
tree improving the likelihood, it does not improve much more, and the tree can
then be evaluated.

For the search among tree topologies, we do not gain much because we use
likelihoods. The usual issues of local and global rearrangements are present.
Branch-and-bound search is possible, but for the moment the bounds available
are far too loose for it to work effectively. There is room for improvement there.
There has also been no proof that the problem is NP-hard (as there has been for
many other methods). It seems likely that it is some sort of "NP-nasty" problem,
but there is actually no formal examination yet of its computational difficulty.

However, there are hints that we may be able to do better than conventional
heuristic search. Friedman et al. (2002) suggest a "structural EM algorithm" for
searching tree space in a way suggested by the data. This unusual algorithm starts
by computing conditional likelihoods for all nodes in a tree, then produces a ma­
trix of log-likelihoods for imagined connections of all pairs of nodes in the tree
(including interior nodes). A new tree is produced by reconnecting the nodes us­
ing a minimum spanning tree and then resolving it into a bifurcating tree.

It is amazing that such a strategy works at all. Interior node i may end up
connected to ), and k to £, when previously k was part of the section of the tree
that contributed to node i's conditional likelihoods. However Friedman et al. have
theorems showing that the likelihood is guaranteed not to decrease by doing this.
In effect, this is a data-driven tree rearrangement that has some minimal guaran-
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:ees. Friedman et al. do find it necessary to add a simulated annealing step to
:~eir search (for which see Chapter 4) to avoid getting stuck on local optima. It
~ too soon to know how effective such approaches will be, but the availability of
iata-driven search methods that can guarantee never to give a worse tree is en­
:ouraging.

Inferring ancestral sequences
-:-he ability to reroot the tree anywhere also gives us a simple computational
~ethod for finding ancestral states for sites with a given tree. If we have some
-:ode in the tree for which we want to know the ancestral states, we need only
~oot the tree at that node. As we prune likelihood down that tree, we end up with

':",lantities 7rsL~i) (8) for all states 8 at each site i. Each computes the contribution
:.~at each state 8 makes to the overall likelihood of the tree at that site. The state
~-:at makes the largest contribution to this likelihood is the one to estimate (Yang,
:.umar, and Nei, 1995). Although we could do this successively for each interior
:-ode, one can speed the process by reusing the views of likelihood as we go. This
~ much the same process for likelihood as it is for parsimony. The result is that

e can compute the estimates of ancestral sequences by two passes through the
~ee, in time linear in the number of species and no worse than linear in the num­
:-2r of sites. Koshi and Goldstein (1996) suggested inference of ancestral states by
~ :nethod equivalent to this, and so did Schluter et al. (1997) for 0/1 characters that
::-' 'olved according to a simple stochastic model.

One potential difficulty is that if we choose the best ancestral sequence q.t each
____:ernal node of the tree, this may turn out to be different from the combination
~: states that together make the highest contribution to the likelihood. In equation
~ -:,.10 that would correspond to finding the combination x:yzw that maximized the
-:::-,m inside the summations. This would yield a joint estimate of the states at all
--=-.:erior nodes of the tree. The previous method is a marginal estimate at each
- :'de. Usually they will yield the same estimated states, but occasionally they

; I not. Figure 16.4 shows a simple example of discrepancy between the joint
- d the marginal reconstructions. It shows the same tree as in our example of
":,elihood calculations, with branch lengths specified and a Jukes-Cantor model
---"ed. Considering the ancestral nodes left-to-right, the states that have highest
- .:1rginal probabilities are A, C, and G. The overall likelihood is 0.0000124065. The
~~gest contribution to that likelihood from one joint ancestral reconstruction is

_000041594, more than one-third of the total. It is for the reconstruction A, G, G,
:uch conflicts with the marginal information. There is no paradox - the other

---' t reconstructions that contribute to the likelihood include many that have a C
: :he bottommost node.

Yang, Kumar, and Nei (1995) first suggested doing the joint calculations.
- -:.?ko et al. (2000) gave a dynamic programming algorithm that avoids the ne­
::-"3sity of searching over all combinations of interior node states. One can modify
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C C
C C

C C

0.3 0.3 0.3 0.3
0.2 Ja2A o.o/~~A

G
0.01 G-l0.02

I 0.15
G----l0.05

Figure 16.4: A five-species unrooted tree with one site (the same as in
Figure 16.2 with branch lengths added). Under a Jukes-Cantor model
of base change, the marginal (left) and joint (right) reconstructions of
states at the ancestral nodes are shown. They differ in the bottom­
most node, which has state G in the joint reconstruction, but which as­
signs slightly more probability to C in the marginal reconstruction. The
marginal reconstructions are shown as boxes divided vertically into re­
gions proportional to the contribution each base makes to the overall
likelihood.

equation 16.14 by replacing the summation signs by max. The resulting recur­
sion computes at each node the probability contributed by the best combination of
states from that point up:

At the root of the tree one can use 7fs to weight the different states and then choose
the one with the highest value. From there one can backtrack up the tree in a
straightforward way, choosing the interior node states. The logic is similar to
the algorithm given in Chapter 6 above. This is equivalent to Pupko et al.'s al­
gorithm. Bayesian approaches to joint reconstruction are also possible (Schultz
and Churchill, 1996). See Chapter 18 for Markov chain Monte Carlo methods for
Bayesian inference of phylogenies. Pagel (1999b) suggests finding the combina­
tion of states, together with a set of branch lengths, that makes them together have
the highest likelihood. this would compare different state combinations using for
each a tree with different branch lengths.

Rates varying among sites
We have already seen in Chapter 13 that rates of evolution can vary among sites in
a nucleotide (or protein) sequence. In calculating distances we discussed modeling
the rate variation by using a gamma distribution of rates across sites (the gamma
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distribution is described in Chapter 13). In principle we could do the same for
likelihoods on trees. If we have Tn sites, and the density of the gamma distribution
of rates is f(r: ex), the overall likelihood would be

(16.22)

,,"here L(i) h) is the likelihood of this tree for site i given that the rate of evolution
at site i is rio This approach has been advocated by Yang (1993). The difficulty is
that we need to compute the L(i) h) for all possible rio Or at least, so it seems.
\Ve would then have to evaluate the likelihood at site i for a densely spaced set of
eYolutionary rates, greatly increasing the amount of computation.

There might seem to be hope of getting around this problem. The L's are
:hemselves sums of products of expressions, each of which is an exponential in
:he length of the branch. With the gamma distribution, the integral of an expo­
:1ential function of the rate, averaged over the gamma distribution, is analytically
~actable. If we can express the likelihood for each site as a linear combination of
exponentials, then we can integrate this expression termwise. This raises the pos­
~ibility of exactly calculating the likelihood. However, when we try to do this, we
~. d that for a tree with n tip species, there turn out to be 32n- 3 terms that need to
·0 e evaluated for each site. For example, for 10 species, we need 317 = 129,140,163
:erms, and for 20 tips there are 4.5 x 1017 . This is too many.

An alternative that works for trees whose branches are not long is given by
:. eel and Waddell (1999). Taking the pattern probabilities for a tree as functions of
:..~e rate of evolution at the character, they approximate that function by a power
oeries. They obtain quite simple formulas for the pattern probabilities in terms of
:..~e mean and variance of the evolutionary rates. Their approximations work well
··.·hen amounts of divergence are small.

The best alternative, which has been adopted by Yang (1994a), is to approx­
.:::nately evaluate the integral at each site by numerical integration. Thus if we
:"·a1uate the likelihood for each site at a series of k different rates T1. T2 . ... ,Tk;, we
:::.m approximate the likelihood at the ith site by the weighted sum

(16.23)

-=-:. e weights 'Wk and the points Tk must be chosen so that the proper approximation
-= made. Yang uses for Tk the average over the gamma distribution of the values
-- the corresponding quantile. (For example, if k = 10, for r3 he averages the or-
::nates between the 2/10 and the 3/10 points of the gamma distribution.) A pos­
o:~ 1y more accurate method would be to consider the process as Gauss-Laguerre
~·Jadrature, with the k points being chosen as the zeros of the generalized La­
::-Jerre polynomials (Felsenstein, 2001b).
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Sites:

Phylogeny: 2 3 7

C A C G A C G A

C G T A A C G A

C G A G A C G G

C A A A A C G G

A A G T G C G C

Hidden Markov process:

Rates 10.0 0 0~-o 0 0 0 0

of
2.0 .....-0 ° ~~ ° OJ'.evolution:
0.3 0 0 0 0 .. -0-0 0

Figure 16.5: Diagram of a hidden Markov model (HMM). Nature as­
signs rates to sites according to a Markov process that is hidden from
our view. We can observe the resulting patterns of nucleotides at the
sites. To compute the likelihood based on these, we must sum over all
combinations of rates at sites.

The value of a is needed; if not known in advance, it can be inferred by max­
imizing the likelihood with respect to this parameter by numerical evaluation for
different values. Gu, Fu, and Li (1995) have discussed ways of doing this, also in
the presence of invariable sites.

Hidden Markov models
Computing the likelihood of a tree for each site at a number of different rates of
substitution opens the door to more complex and realistic models. We can assume
that the rate of evolution is laid down by a Markov process operating along the
sequence. Each site's rate of change is determined by a random process that de­
pends on which rate of change was chosen at the previous site. The process of
choosing rates of change is done by nature; it is hidden from us. The outcome of
evolution at each site is then dependent on the rate chosen by this hidden Markov
process.

Such a model is called a hidden Markov model (HMM). These have been first in­
troduced in ecology (Baum and Petrie, 1966; Baum et al., 1970) but have become
most widely used in communications engineering and speech recognition. More
recently (Churchill, 1989) they have invaded molecular biology. Ziheng Yang,
Gary Churchill and I have applied them to inferring phylogenies, modeling the
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'~signment of rates to sites (Yang, 1995; Felsenstein and Churchill, 1996). Suppose
-.":at we have specified some stochastic process that assigns rates to sites, and we
::.n compute the probability of any given combination of rates. The overalllikeli­
-ood of a tree T is the probability of the data, making a weighted average over all
=- 0ssible combinations of rates:

?rob (D IT) = L L ... L Prob (Ti, . ri2' ... ri,J Prob (D I T. I"i, . l'i2' ... rim)

(16.24)
~ e number of rate combinations is vast. Even with (say) four rates possible at
c::..::h site, there would be 4m terms, one factor of 4 for each site.

However, a simple algorithm, rather like the one we use to compute likelihood
-_ong a tree reduces the computation-it is well-known as the backward algorithm to
5ers of HMMs. Note that the only nonindependence of sites is due to the possible

_-"relation of rates among neighboring sites. Given the rates, then conditional on
---2 rates, we can factor

111

II Prob (D(i) IT. Ti)

;=1

(16.25)

_~:.ng this factorization and moving the summation over i m as far right as possible
- :he expression on the right side of equation 16.24, we get

-. -2 factorization of the probabilities of rates into

?:'ub (D IT) ~~ ... ~
i'l i2 i m - 1

"\' Prob (r· IT' )L..J t m 'l.1Il-1

111-1

11 Prob (DO) IT,r'i)
i=1

Prob (D(m) IT, Ti.",)

(16.26)

(16.27)

?ossible because of the Markov model of assignment of rates to sites.

It turns out that the Markovian nature of the hidden stochastic process allows
::>mputational economy very similar to the recursive evaluation of likelihood
":n a tree in the "pruning" algorithm. Recall that in that algorithm, the essential

_.'.:1tities were the probabilities of all data seen at or above a point in the tree,
_ -2n the (unknown) state of the site at that point of the tree. In this case, the
. _':':1tity needed is the probability of all data seen at sites j, j + 1. .... m, given the

:..- rate of evolution Tij at site j. This we define as

Prob (D[j] IT. Tij) = Prob (D(j). DCi+1). .... D(m) I T. rij) (16.28)
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and, as in the pruning case, this quantity is easily shown to satisfy the recursive
algorithm

(16.29)
The algorithm starts at site rn where it is easy to see that

(16.30)

a quantity we already know. Equation 16.29 can then be used recursively to com­
pute the quantities Prob (D[j] IT, Ti;) for sites m -1, m - 2, ... , until we have com­
puted the quantities Prob (D[llIT, Til)' These are the probabilities of the entire
data set given the unknown rates at site 1, and they can be combined by weight­
ing them by the prior probabilities (under the HMM) of those rates:

Prob (D IT) = L 1fi, Prob (D[l] IT, Ti,)
i,

(16.31)

The recursive algorithm economizes because we are summing probabilities of
all possible paths through the array of sites by rates. If two of these paths share all
but their first rate, then we do not need to calculate the contributions from both
paths separately, but we save the terms that are shared and reuse them.

Thus there is a recursive algorithm for computing the likelihood with the
HMM model, and it merely requires for a given tree that we compute the prob­
ability for each site given each possible rate at that site. Then we combine them in
a recursion that needs computational effort equal to the product of the number of
sites and the number of rates. In general, since the computational effort is dom­
inated by computing the likelihoods for each rate at each site, if there are (say) 5
rates, we compute the likelihood of the tree, not with 5m times as much effort, but
only with 5 times as much effort, as in the case of a single rate of evolution. The
algorithm updates partial information from the last site forward to the first. It is
equally possible to make it go the other way.

Autocorrelation of rates
The hidden Markov model approach allows us to model not only the variation
of rates among sites, but the autocorrelation of rates. Yang (1995) used an auto­
correlated gamma distribution and approximated it by having discrete categories.
He used as the rates for the categories the means of rates between quantiles of
the gamma distribution. The transition matrix from one rate category to another
is here represented as Prob (Ti; ITi;_I); he computed its elements from a discrete
approximation to the bivariate gamma distribution.

My own paper with Gary Churchill (Felsenstein and Churchill, 1996) used a
simpler transition matrix. The rates Ti and their probabilities 1fi are allowed to
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be arbitrary, which gives great flexibility, but sometimes more flexibility than the
user wants. We assumed that with probability A a new rate is drawn from this
distribution; otherwise the rate at the next site remains the same as at the current
site. Note that drawing a new rate could result in getting the same rate again. The
transition probabilities are then

(16.32)

where Oij is the usual Kronecker delta, a bookkeeping device that is 1 when 'i = j
and 0 otherwise.

Any other Markov chain for change of rates could be used instead. There is
nothing particularly magical about the gamma distribution; for example, the log­
normal might do about as well.

HMMs for other aspects of models
Although we have presented the HMM framework with the hidden states being
different evolutionary rates, there is nothing to prevent them from being any as­
pect of the model of change (Churchill, 1989; Felsenstein and Churchill, 1996). For
example, the states could be purine-richness of the region in which the site was lo­
cated, or AT-richness, or the secondary structure of the region in which an amino
acid position is located. Goldman, Thorne, and Jones (1996) have made just such
a model. They find that when the estimates of the states are examined, that this
model, which uses phylogenies, increases the accuracy of assessment of secondary
structure by about 10%.

Estimating the states
Ve have concentrated on the estimation of the phylogenies, summing over all

'Jossible combinations of the hidden states at the sites. One can also make an esti­
mate of the hidden states. Two possibilities are evident (Felsenstein and Churchill,
~996). One is to make an estimate of the single combination of states across sites
:hat makes the largest contribution to the likelihood. The other is to estimate, for
each site, which state has the largest total probability added up over all combina­
:ions of states at other sites. The first of these finds that, for example, I, 2, I, I, 3,
3,2,2, 1 is the combination of states across all 9 sites that makes the single largest
.::ontribution. Alternatively, we might find that more of the total probability of the
jata is contributed by state 1 at the first site than is contributed by states 2 and
3. At the second site, we might find that, overall, combinations of states having
:'tate 2 there make the greatest contribution. In general we would hope that the
.::ombination of states that resulted would be the same either way, but there is no
~uarantee that this will happen.
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Models with clocks
The algorithms we have discussed in this chapter have allowed each branch to
assume any nonnegative length. That implies that the tree can be far from clock­
like. It is of great interest to be able to find the maximum likelihood tree under a
molecular clock. In doing so, we have to maintain the branch lengths under a set
of constraints that causes all of the tips to be equidistant from the root. The easiest
way to do this seems to be to iterate, not the branch lengths themselves, but the
times of the interior nodes of the tree. The tips are all assigned times of 0, and the
interior nodes then will have negative times.

In this scheme one can also use pruning to economize. If we consider the
branches (usually three, but tvvo for the root) that connect to an interior node, we
can re-evaluate the time of the node. We use pruning to obtain conditionallikeli­
hoods for the three nodes to which this node connects. Then we iterate the time of
this interior node, with only as much computational effort as is needed on a three­
species tree. We must be careful never to allow the iteration to carry a node's time
beyond that of its descendants or of its immediate ancestor. As with the nonclock­
like case, one must iteratively improve different parts of the tree, returning after
one time has changed to see if the others need changing.

Relaxing molecular clocks
The notion of a molecular clock has been controversial almost since its introduc­
tion by Zuckerkandl and Pauling (1965). Morphological systematists, who see no
counterpart to the molecular clock, have been at the forefront of a wave of skepti­
cism about it. One frequently hears the assertion that there simply are no molecu­
lar clocks. Certainly, when we have organisms of greatly different biology, there is
no reason to expect that their molecules will evolve at the same rate. Their genera­
tion times, replication and repair mechanisms, and constraints of natural selection
will differ greatly, and thus so will their overall rates of molecular evolution. At
the opposite pole, members of the same species should have very similar biology,
and we would expect the rates of molecular evolution to be quite similar. Essen­
tially all analyses within species use the molecular clock assumption. We shall see
such analyses in Chapters 26 and 27.

The issue is then not whether there is any molecular clock, but how far beyond
the species level one can go before the clock breaks down seriously. Recognizing
this, a number of researchers have developed methods using relaxed molecular
clocks, ones whose rates change slowly enough to still enable them to be used.
Some of these methods start by inferring the numbers of changes in each branch
for a molecule, and then fit a tree to these in such a way to have as little departure
from a clock as possible. Sanderson (1997, 2002) used branch lengths inferred by
parsimony, and then fitted divergence times to them in such a way as to minimize
a measure of difference between the rates observed in successive branches as one
moves up the tree. He found that the dates of origin of groups obtained this way
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fitted the geological evidence better than when a single rate was used. Cutler
(2000a) also used numbers of changes inferred by parsimony or distance methods.
He allowed rates to vary across branches as if drawn from a normal distribution,
with negative rates taken to be zero. He too found that the trees fitted with the
relaxed clock were superior.

Thorne, Kishino, and Painter (1998) used a Bayesian treatment with a prior dis­
tribution of rates of evolution among branches. (Bayesian methods will be covered
in Chapter 18.) They assumed that each branch had a rate that was drawn from a
lognormal distribution. The logarithms of the rates were assumed to be autocor­
related, with a correlation that decayed exponentially with the difference between
the midpoint times of the branches. To integrate the likelihood over all possible
combinations of rates they used a Markov chain Monte Carlo (MCMC) integra­
tion. MCMC methods will be described below in Chapters 18 and 27. Confining
attention to a single tree topology, they were able to infer the distributions of an­
cestral node times. Kishino, Thorne, and Bruno (2001) improved this method by
having the rate in each branch drawn from a lognormal distribution with auto­
correlation of the logarithms of rates, with the correlations depending not on the
difference of midpoints of branches, but on the length of the earlier branch.

In all of these treatments, rates of evolution were assumed to be constant within
each branch. Huelsenbeck, Larget, and Swofford (2000) present a model for rate
change along trees that has two parameters. One is the rate of a Poisson process
:hat places events of rate change along the tree. The other is the variance of a
gamma distribution, which has expectation 1. At each rate-change event, the pre­
\'ious rate is multiplied by a quantity drawn from this gamma distribution. They
:00 use a Bayesian MCMC approach, and they too find that allowing relaxation of
:he molecular clock improves their results.

_VIodels for relaxed clocks
"ohn Gillespie has done the pioneering work on relaxed molecular clocks. In 1984
~e proposed a model of protein evolution with rates of substitution varying con­
inuously through time according to a stationary stochastic process. (For a wider
" erspective, see Gillespie, 1991.) One of the models that fits his framework is a
:-,\'o-state Markovian model with a rate that is either 0 or a nonzero value, with
:~anges at random times. This is similar to the model of Huelsenbeck, Larget, and
3\\'offord (2001) in that the rate can change at any time. Cutler (2000b) uses neutral
-:opulation genetic models to show that fluctuations in their parameters can only
:.:1use noticeable variation in rates of substitution when the fluctuations occur on
=. \-ery long time scale. Zheng (2001) has shown that in some DNA models a viola­
::.on of clockness is expected, but this usually leads to only minor departures from
, clock. Bickel and West (1998) find that a fractal renewal process determining in­
":?rvals between substitutions in proteins fits data, though they do not attempt a
-..Jllikelihood analysis.
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Table 16.1: The covarion model of Penny et al. (2001), a particular case
of the covarion model of Galtier (2001). There are two rates, one of
which is a and the other is 1. Note that transitions between the rates
can occur at any time, but transitions between the 4 nucleotide states
can occur only when the rate is nonzero, in this case according to a
Kimura three-state model. Diagonal elements are omitted.

To:

From:

Rate = 1 Rate = a
Al Gl Cl Tl AO GO CO TO

Al - ex (J 'Y J a 0 0

Gl ex - 'Y (J a J 0 0

Cl (J 'Y - ex 0 a J 0

Tl 'Y (J ex - a a a J

AO J1,J 0 0 0 - 0 a 0

GO 0 J1,J 0 0 a - 0 0

CO a 0 /16 a a a - 0

TO 0 a a fdj 0 a a -

Covarions
As mentioned above, Fitch and Markowitz (1970) put forward the notion that evo­
lutionary rates change not only along the molecule but also along the phylogeny.
They called these changing regions "concomitably variable codons" or covariol15.
Making a stochastic model of such a process is doubly difficult because one wants
to maintain the autocorrelation of rates along the molecule. Thus the rates at each
site cannot change independently along the tree, without becoming uncorrelated
along the molecule. The clusters of sites that have high rates of change will move
back and forth along the molecule as evolution proceeds. Fitch and Markowitz
used a rough method, looking for a momentary excess of multiple changes at a
site as an indication that it was one of the few that could change substantially.

If one does not require that rates be autocorrelated along the molecule, it be­
comes possible to make a likelihood analysis of a covarion model. Galtier (2001)
and Penny et al. (2001) have developed covarion models of this sort. The two
models are quite similar, Galtier's being more general. They assume that at each
site there are two stochastic processes, one making changes among a number of
rates of evolution, the other making changes according to the current rate of evo­
lution among a number of states (such as bases). We can only see the states, not
the rates, so our observations are treated as ambiguous observations of the (state,
rate) pairs. Table 16.1 shows the model of Penny et al., which has two rates, one
of them O. There are then 2 rates and 4 states, for a total of 8 (state, rate) pairs. In
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the table the rates of change between all 8 pairs are shown. The top four of these
(AI, Gl, Cl and Tl) are states with nonzero rate, the bottom four (AO, GO, CO, TO)
states with rate of change zero.

The states will be spend I" times as much time with a nonzero rate of change as
as it will with a zero rate of change, and in each unit of time a fraction <5 of all sites
will change between the two rates. The transitions between a site being invariant
and site being variable occur at rates <5 and 1"<5. Given that the rates are in the
nonzero state, the transitions of the bases occur according to one of the standard
models, in this case the Kimura three-parameter model. An observation of a C is
treated as an ambiguity between two states, Cl and CO, since we can only see the
ase, not the rate. Using the usual methods for inferring ancestral sequences, one

can infer also the sites that are variable at each node in the tree.
A covarion model of this sort is approximately four times slower in computa­

jon time than a conventional model, because its transition matrix has four times
as many entries. If we wanted to take into account the correlation of rates at neigh­
boring sites, it would probably be necessary to use an MCMC method, with rate­
change events visible in the tree.

Empirical approaches to change of rates
Gu (1999, 2001) has taken a more empirical approach to change of rates among
~ites in different parts of the phylogeny. His interest is in gene duplications, in
jiscovering whether rates of evolution at a site differ in the two duplicate loci.
-:ne model assumes that the rates do not change within each locus, but have a
?robabilitye). of changing between these two subtrees. In the 1999 paper, Gu uses
:orrected parsimony reconstructions of numbers of changes in each branch of the
:Tee. He then makes a maximum likelihood estimate of e). given these numbers. In
:' e 2001 paper, he uses a full maximum likelihood approach, taking the likelihood
:0 be the product of the likelihoods of the two subtrees. As he notes, this does not
·..lse information about the part of the tree that precedes both subtrees.

Using a similar model, Susko et al. (2002) test whether the rates across sites are
iifferent in two subtrees. Under the alternative hypothesis the rates are assigned
oeparately to both subtrees, under the null hypothesis they are assigned in com­
=: on. They obtain posterior probabilities of rates for sites in both subtrees, and use
9. arametric bootstrap or a regression technique to test whether the subtrees have
'::'ifferent rates.

Are ML estimates consistent?
-::ne issue of consistency must arise for maximum likelihood as it does for parsi­
.. ony. There are some general proofs in the literature of statistics that maximum
...:..\:elihood estimates are consistent. In my paper (1973b) on maximum likelihood
::-. ylogenies from discrete characters, I said that the proof by Wald (1949) could
-:e used to prove consistency. A number of evolutionary biologists have argued
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that phylogenies may not satisfy the conditions for likelihoods to be compared
between topologies, or the conditions for the consistency proofs to apply.

Comparability of likelihoods
Nei (1987) argued that "the likelihood computed in this method is conditional
for each topology, so that it is not clear whether or not the topology showing the
highest likelihood has the highest probability of being the true topology when a
relatively small number of nucleotides are examined." Saitou (1988) agreed that
"the ML values for different topologies are conditional and cannot be compared
in the usual statistical sense." Li and Gouy (1991) said that "the ML values for
different topologies would be equivalent to the ML values computed under dif­
ferent hypotheses and thus cannot be compared in the traditional sense." Because
of a similar concern that the topology could not be considered a parameter, Yang
(1996) preferred to call the method the "maximum maximum likelihood method",

In fact, the likelihoods of trees of different topologies can be compared. Each
is the probability of the same event (the data), computed conditional on different
phylogenies. As such they are on the same scale, and one number being larger
than another, the probability of the data is higher given that tree than given the
other. If we had prior probabilities for two trees, and these were equal, then equal
likelihoods for the trees would also imply equal posterior probabilities. Thus the
likelihoods are precisely comparable. What cannot be done is to use the conven­
tiona1likelihood ratio test to compare these phylogenies, as we will see in Chapter
19. But this does not mean that the likelihood scales for different trees are incom­
mensurable.

A nonexistent proof?
Yang (1996) argued that Wald's proof required "the continuity and differentiability
of the likelihood function with respect to the topology parameter. Such concepts
are not defined." Siddall (1998b) argued (citing a lecture by Farris) that the appli­
cability of Wald's proof

cannot be true. Among Wald's (1949) criteria for consistency were
requirements for independence and identical distributions, which se­
quenced nucleotides cannot have, and that the likelihood function is
everywhere continuous and continuously differentiable with respect
to the parameter of interest. Cladograms being discrete, it has yet to be
explained how that condition can be satisfied or indeed what it would
mean in this case ....

Farris (1999) concurred with Siddall, and concluded that "Felsenstein's claim was
incorrect," and that "it had never occurred to me that Felsenstein would base his
position on a nonexistent proof."

The proof is not nonexistent. Although I did not formalize it in 1973, I exam­
ined Wald's conditions and convinced myself that they would hold. Since then
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such proofs have been constructed nwre formally. Chang (1996b) gave a Wald­
like proof for binary trees with evolution according to the same Markov process
at all characters. Rogers (1997) independently reached the same conclusions for
a somewhat more general class of tree topologies. Swofford et al. (2001) have ar­
gued that Wald's conditions are met in the case of phylogenies, that they do not
include the differentiability and continuity conditions that Yang, Siddall, and Far­
ris cited. Rogers (2001) gives a detailed argument that the Wald proof applies for
maximum likelihood estimation of phylogenies with a DNA model with a class of
invariant sites and a gamma distribution of rates across sites.

A simple proof
For the purposes of this book, it will suffice to sketch a more simplified proof of
the consistency of maximum likelihood inference of phylogenies. A proof much
like this one was given by Yang (1994b). Let us assume that characters evolve
independently according to the same Markov process. For a given tree T, the
likelihood will be

m

L = Prob (D IT) = II Prob (Xi IT)n i

i=l

(16.33)

\,'here m is the number of character patterns, Xi the ith of these, and 'f1,i the number
of times the ith character pattern is observed. Taking logarithms,

m

InL = L ni In Prob (Xi IT)
i=l

=£ we divide this by the number of characters, '11" we get

(16.34)

(16.35)

(16.36)

-. -here Ii is the observed fraction of characters that have pattern i, and qi is the
:Taction expected to have pattern i given tree T. This is the log-likelihood per
:~aracter. Its expectation is obtained by calling the expectation of Ii under the
2ue tree Pi:

IE [~ InL] = t Pi In(qi)

Note that Pi is the fraction of pattern i expected under the true tree, whereas
is the fraction expected under tree T, which mayor may not be the true tree.

::-Jppose that we also consider the expectation of the log-likelihood per character
.:....,der the true tree. This will be

[
1 ] m

IE :;:;, InL = 8 Pi In(pi) (16.37)
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It is an old and well-known inequality in probability theory (sometimes callec.
Kullback's inequality) that for two sets of probabilities Pi and qi,

m m

L Pi In(pi) > L Pi In(q;)
i=1 i=1

(16.38

unless all the qi are equal to all the Pi, in which case, of course, the two quantitie:::
are identical. So the expected log-likelihood per character is greater for the true
tree than for any other, with equality only if there happens to be another tree that
gives exactly the same predicted frequencies of patterns.

As we examine greater and greater numbers of characters, all evolving with
the same Markov process, the observed frequencies Ii will converge (with proba­
bility 1) to the true frequencies Pi. It is then easy to show that, with probability 1,
the log-likelihood per character converges to the value expected on the true tree.
The log-likelihood per character for any other tree will then, in the limit, be less.
The sole exception is when two trees predict exactly the same pattern frequencies.
We might think that this completes the proof. What this argument has established
is that the tree is becoming one whose expected pattern frequencies are closer and
closer to those expected on the true tree. That is not quite the same thing as estab­
lishing that the tree itself is becoming closer and closer to the true tree. But some
rather weak continuity conditions will ensure that, and we are going to leave them
undiscussed. (In fact, that is essentially what Wald's proof does.) The interested
reader can consult the detailed arguments in the papers cited above.

In the case where two trees, T1 and T2 , predict the same pattern frequencies
we might think that things will go badly wrong. But they actually do not, because
if we evolve on tree T1 but then arrive at tree T2 as the estimate, T1 is also the
maximum likelihood estimate. We define the maximum likelihood estimate as the
set of all trees that maximize the likelihood. In fact, there won't be two such trees
in any interesting case. Only trees that differ in branches of zero length will predict
the same pattern frequencies.

There have been several examinations of this "identifiability" issue. Chang
(1996b) showed under what conditions on the transition matrices of the Markov
chain the expected pattern frequencies allow not only convergence to the correct
tree topology but reconstruction of the transition matrices on the branches as well.

Misbehavior with the wrong model
Likelihood is usually consistent if we use the correct stochastic model in our anal­
ysis. When we use the wrong model, there are few guarantees. Suppose that the
model we use in the analysis predicts pattern frequencies Qi on the true tree and
pattern frequencies qi on another tree. We could be guaranteed of consistency only
if

m m

(16.39)
i=1 i=1
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Since we have said nothing about how our model differs from the true one, we
cannot guarantee that this inequality is true. If the model differs only slightly from
the true model, the Qi should be close to the true expected pattern frequencies Pi.
In that case the true tree will probably be preferred to the untrue tree. But if under
our model the untrue tree itself also has pattern frequencies that are close to the
true ones, it may be preferred.

In some cases the pattern frequencies may not be changed when the model is
changed. One example would be any model that had the same pattern frequencies

ut allowed some autocorrelation between characters. In a simple (and artificial)
example in which each character is perfectly correlated with one other, as if we had
accidentally photocopied the data so as to double its length, the pattern frequen­
cies are unchanged even though there are now correlations among characters. In
such a case a maximum likelihood inference that failed to account for the correla­
:ions would nonetheless be consistent.

Note that the wrong tree that is preferred may have the same tree topology
as the true tree, differing only in branch lengths. When our main objective is to
mer the tree topology, we can hope that getting the model slightly wrong will not
:nake much difference. Gaut and Lewis (1995), Waddell (1995, pp. 377-385), Chang
1996a), Sullivan and Swofford (1997), and Huelsenbeck (1998) have all discussed

'. e inconsistency of likelihood under various departures from the model. Kuhner
and Felsenstein's (1994) simulations showed signs of inconsistency of maximum
i 'elihood when there was unacknowledged rate variation from site to site.

Chang (1996a) showed a particularly interesting case in which the pattern of
::-ranch lengths differed in two sets of characters. Using a symmetrical two-state
:nodel of evolution, he then showed that the pattern frequencies for four species
-..-ere identical to those predicted for a different tree topology from a model that
:--:ad only one set of branch lengths! This establishes neatly that when one ana­
.:.-zes assuming one rate of character change, one can be substantially misled if the
:-attern of branch lengths differs greatly between characters. But note that it does
-.'t prove that analysis with the correct model would be inconsistent, either with

::.: e correct assignment of branch-length patterns to characters, or with a model al­
_o\\-ing each character to evolve with one of two sets of branch lengths, chosen at
:andom. Steel, Szekely, and Hendy (1994) earlier presented a proof that with a
~cneral form of variation among characters in the rate of evolution, one may get
:":;'c same expected pattern frequencies for two different trees. They provide suf­
=cient (but not necessary) conditions for the consistency of maximum likelihood
:osrimation of the phylogeny. Farris (1999) has argued that their result "sharply
:2stricts the variety of circumstances under which maximum likelihood can guar­
~ tee consistency." In fact, their result does not show that this problem will occur
: ": all distributions of evolutionary rates that do not satisfy their sufficient con­
.::::ions. Even when two trees predict the same pattern frequencies, this means
.::1\- that in the limit these two trees will both be found to be maximum likelihood
_~:imates. If one is the true tree, it will be one of the estimates found.
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Better behavior with the wrong model
Sometimes having the wrong model can actually improve our chances of recover­
ing the true tree. We saw (above in Chapter 9 that long branch attraction can cause
a parsimony method to perform better, if the long branches happen to be adjacent
on the tree. This happens because there is no correction for parallel changes on
the two branches, and those changes are reconstructed as occurring on the branch
ancestral to the two long branches. With a wrong model of base change, a similar
phenomenon can occur with likelihood (Bruno and Halpern, 1999). Yang (1997b)
has shown that analyzing DNA sequence data without allowing for variation in
the rate of evolution from site to site can have a higher probability of inferring the
true tree, even when there is rate variation. The method Yang tested undercor­
rects for multiple substitution, compared to the true method. When long branches
are adjacent on the tree, it will increase the chance that they are correctly placed.
Yang's simulations show this pattern, but also that the wrong model makes infer­
ence less efficient when long branches are separates by short branches. This result
is as expected. Pol and Siddall (2001) also find long branch attraction when using
a Jukes-Cantor model to analyze data generated by an HKY model. As they place
the long branches in adjacent pairs, this attraction results in improved trees. Since
we do not know at the outset which situation we are in, Yang's and Pol and Sid­
dall's results should not be taken as a general recommendation to use the wrong
model. Bruno and Halpern (1999) have presented further simulations and argu­
ments to this effect.
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adamard methods

---:> ::\ew Zealand school of Michael Hendy, David Penny, Michael Steel, and
-=~ co-authors (Hendy and Penny, 1989, 1993; Hendy, 1989, 1991; Hendy and
_-3.rleston, 1993; Hendy, Penny, and Steel, 1994; Steel et al., 1992; Steel, Hendy,
- .::. Penny, 1993) have brought a set of powerful mathematical techniques to bear
- :: e reconstruction of phylogenies by methods similar to likelihood, for models

::"ange that are symmetrical and that have modest numbers of species. This is
- -.: f the nicest applications of mathematics to phylogenies so far. A more recent
= ~:ew of the mathematics involved will be found in the paper by Steel, Hendy,
- .::. Penny (1998).

Their method makes use of the observed and expected frequencies of the differ­
-: ~ atterns of data. (Character patterns were introduced in Chapter 9 in the dis-
-=~ion of the consistency of parsimony methods.) If we have nucleotide sequence
~:? for four species (say a, b, c, and d), for example, a site might turn out to have
-:~ of 256 different patterns, AAAA, AAAC. AAAG. AAAT AACA. .... TTTT. If
--,,:ead we had a character with two states, a and I, as we might have if DNA
~:3. had been recoded by classifying nucleotides into purines (R) and pyrim­

'_--:es (Y), then there are 16 possible patterns, 0000. 0001. 0010..... 1111. The data
_- e summarized by reporting the fraction of sites that had each of the pat­
~. If the model of evolution is symmetrical change between the two states,

'-': pattern 1111 and the pattern 0000 convey the same information. The 16
- ':-:erns can be summed in complementary pairs to form 8 partition frequencies,

. Pxxxy , Pxxyx , Pxxyy . Pxyxx . Pxyxy . Pxyyx , and Pxyyy . ote that these parti-
:-- are in the same orders as the binary numbers 0000,0001, ... , DIll, where 0
:-:>placed by x and 1 is replaced by y. The vector of these partition frequencies

-=:'1 y and co-workers call the sequence spectrum. In summarizing the data in this
~:-. we know how many times each partition pattern occurs, but we lose sight of
-.-:>re the patterns are in the molecule. Hence, without further development, this

--"~ \'sis cannot deal with hidden Markov models of rate variation across sites, for
--~ case in which rates at neighboring sites are correlated.

275
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The methods make use of a transform of the partition frequencies, the
Hadamard transform. It is a special case of the Fourier transform. The Hadamarc.
transform for any size can be generated by taking the 2 x 2 matrix

Hi = [1 1]
1 -1

(17.1

and forming Kronecker products of it. The Kronecker product will be further intr
duced in Chapter 23. For our purposes we need only note that taking any matri.:
A and taking its Kronecker product with HI yields

HI Q9 A = [A A]
A -A

(17.:

In other words, make the product by producing a matrix with twice as man..
rows and twice as many columns as A, with the matrix A in each of its four cor­
ners, but with the lower-right one having the signs of its elements reversed. If ".
take Kronecker products of HI with itself we get the Hadamard transform matri­
ces:

(17.3

Proceeding in this fashion one can construct the 8 x 8 matrix H 3 = HI Q9 H_
which is

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 -1 1
H3 = (17.';

1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1

When this matrix is used to make the Hadamard transform, in effect it com­
putes differences between one set of patterns and another. The lone exception tL
this is the first row, which computes the sum of all the partition frequencies, :;
number that must always be 1. The second row computes the sum of all the odci­
numbered patterns, minus the sum of all the even-numbered patterns. In the 0 .
case this is

(Pxxxx + P;cxyx + Pxyxx + Pxyyx ) - (Pxxxy + Pxxyy + Pxyxy + Pxyyy ) (17.:;
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..... moment's consideration will show that it is simply the total of all pattern fre­
~encies that have the same state in species d as in species a, less the total of all
:':'-ose that have different states in those two species. If we denote the probability
:::-.at Cl =I d by dad, this is (1 - dad) - dad or 1 - 2dad.

The Hadamard transform method uses the transform to make a direct measure­
-,ent of how much support there is in the data for various partitions of species. It
.: a remarkable fact that this can be done. I will not give a proof of this here but

-:..J explain some of the context.
Suppose that we consider the three possible tree topologies for four species,

..:.. :ier this symmetric model. In each case the four exterior branches of the tree are
-·.ill1bered 1 through 4, and the interior branch is numbered 5. We can characterize
:':'.e branch length by using the net probabilities of change PI, P2, P3, P4, and P5
.: each branch. Calculating the 16 expected probabilities of each pattern in each
:~: ology using these, forming the 8 expected partition frequencies from these, and
:l' 19 the Hadamard transform of these 8 probabilities for each topology, we get
:'-.e results shown in Table 17.1. Their order is the same as the order of rows in
:::-:: ation 17.4. The sets in the fourth column of the table are in binary order for the
--st three species names c, b, bc, etc., but with species d added to those that have
.=..., odd number of members. All of these quantities will be expected to be positive
.; _one of the probabilities of change Pl . ... ,P5 are as large as 1/2.

\ Ve are assuming a symmetric model of change among the two states. ote that
:::-e entries in the Hadamard transform of the sequence spectrum are products of
:"':ms each of which is one of the (1- 2pi)' With the symmetric two-state model of
:':,aracter change we can recall from equation 9.1 that each of the net probabilities
~ hange Pi is, as a function of the branch length,

-!lich means that
1 - 2Pi = e-2Vi

(17.6)

(17.7)

-=: us a term like (1 - 2pd(1 - 2p5)(1 - 2p2) can be written as an exponential of a
s:un of branch lengths:

(17.8)

•. ecomes natural to think of taking the logarithms of these quantities.
The result, for the three trees of our example, is shown in Table 17.2.
Each term is a multiple of a sum of branch lengths. Hendy (1989, 1991) has

s= own that if we divide each of these sets of species into pairs of species that have
:.:';e paths between them on the tree disjoint, in that no two of these paths have a
::anch in common, their branch lengths add to these sums. For example, in the
-ee ((a, c), (b, d)) the set a, b, c, d consists of pairs (a, c) and (b, d). Although there
.:;,:-e two other ways of dividing this set of four species into two pairs, this one has



Table 17.1: The Hadamard transform of the expected sequence spectrum P"";.,.,,, .... P"'Jyy. This is shown for all three
unrooted bifurcating trees with four species. The next-to-rightmost column shows the set S of species for which each
term calculates the difference between the probabilities that there are an even and an odd number of symbols in set S.
Additional interpretations of these quantities arc given in the rightmost column.

Topology I Set Interpretation

((a, b), (e, d)) ((a, c), (b, d)) ((a, d), (b, c))

1 1 1 0 P

(1 - 2pJ)(1 - 21.14) (1 - 2VJ)(1 - 2p::;) (1 - 2p~) (1 - 2VI)(1 - 2p5)(1 - 2p~) {ed} I - 2 d ed

(1 - 27)2)(1 - 2p::;)(1 - 2p4) (1 - 2V2)(1 - 2V4) (1 - 2p2)(1 - 2p::;) (1 - 2p4) {bd} 1 - 2 dbrl

(l - 2p2)(1 - 2p::;)(1- 2p:~) (1 - 27)2)(1 - 2p5)(1 - 2p::l) (1 - 2p2) (1 - 27):{) {be} I - 2 (he

(1 - 2pl)(1- 2p5)(1 - 2p4) (1- 2PI)(I- 2p::;)(1- 2p~) (1- 2VI)(I- 2p'l) {ad} 1 - 2 da.d

(1 - 2pd(1 - 2p::;) (1 - 2p:l) (1 - 2pd(1 - 2p:l) (1 - 2pl)(1 - 2p5)(1 - 27)4) {ac} 1- 2d"e

I:'- ("I - 2p1)(1 - 2p2) (1 - 2p1) (1 - 2p::;) (1 - 2p2) (1 - 2pI )(1 - 2p::;) ( l - 2p2) {ab} 1 - 2d"brl

H
Q)...,

(1- 2pr)(1 - 2p2) (1 - 2pl)(1 - 2p2) (I - 2pl)(1 - 2p2) {abed} Prob [abed even]-P-.
<tJ

X (1 - 2p3)(1 - 2p~) x (1 - 2p3)(1 - 2p~) x(l- 2p:l)(1 - 21)4) Prob [abed odd].r::
U

00
I:'-
C'-l
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Table 17.2: The logarithms of the Hadamard transform of the ex­
pected sequence spectrum Pxxxx , ... , [JEYYY' This is shown for all three
unrooted bifurcating trees with four species. The rightmost column
shows the set S of species for which the Hadamard transform calcu­
lated the difference between the probabilities that there are an even
and an odd number of symbols in set S.

((a, b), (c. d))

o
-2(1'3 + 1'4)

-2(1'2 + 1'5 + 1"4)

-2(1'2 + 1'5 + 1':J)

-2(1'1 + 1'5 + 1'4)

-2(1'1 + 1'5 + 1"3)

-2(1'1 + "'2)

-2(1'1 + 1'2 + 1'3 + 1",1)

Topology

((a. c). (b, d))

o
-2(1'3 + 7'5 + 7'4)

-2(1'2 + 1'4)

-2('1'2 + 1'5 + 1'3)

-2('1'1 + 7'5 + 1'4)

-2(1'1 + 1':J)

-2(7'1 + '1'5 + 7'2)

-2('1'1 + 7'2 + 1'3 + 7'4)

((a, d), (b, c))

o
-2(1'3 + 1'5 + '1'4)

-2(1'2 + 1'5 + 1'4)

-2(1'2 + 1'3)

-2(rI +1'4)

-2(r1 + 1'5 + 7'4)

-2(7'1 + 1'5 + 1"2)

-2(1"1 + 7'2 + 1"3 + 1'4)

Set

o
{cd}

{bd}
{be}
{ad}
{ac}
{ab}

{abed}

:~e path between a and c consist of branches 1 and 3, the path between band d
~onsist of branches 2 and 4, and there is no branch shared between them. The set
~onsistingof all of these branches defines the terms in Table 17.2: The entry for this
::ee for set a, b, e, d consists of the sum of the branch lengths 1"i for the four branches
_l the set of nonoverlapping paths between pairs, in this case 1'1 +1'2 +1'3 +1'4. Note
:~at it does not consist of the sum of the 7'i for the set of branches connecting the
02' of species a, b, e. d; it instead uses the set of branches connecting those pairs of
o~ ecies whose connecting paths are mutually exclusive.

Thus for each entry in this vector, we could compute rather easily what its
?Jue will be, without going through making a Hadamard transform of the ex­

:-2cted pattern frequencies. However, we will not have to do this, as there is one
-:-:ore surprise ahead.

The edge length spectrum and conjugate spectrum
-:2ndy and Penny (1989) write these sums of branch lengths as a vector p, They
. j;o denote the Hadamard transform of the expected sequence spectrum as the
2ctor q, and the expected sequence spectrum as the vector s so that

q=Hs

- :oking logarithms of all the entries in q,

p = In (q) = In (Hs)

(17.9)

(17.10)
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This equation can of course be solved for the expected sequence spectrum by ex­
ponentiating and then using the inverse of the transformation matrix H:

(17.11)

If we take the inverse Hadamard transform of the the vector p, we get the sur­
prising outcome that the result is a vector that has one positive entry for each
branch in the tree, with the rest being zero except for the initial entry, which is mi­
nus the sum of the other entries. Hendy and his co-workers call this the edge length
spectrum. (They have sometimes also called it the tree spectrum.) From equations
17.10 and 17.11 we find by taking the Hadamard transform that the formula for
the edge length spectrum is

g = H- 1 In (Hs) (17.12)

This is called a Hadamard conjugation. It involves taking a Hadamard transform,
applying a function to the result, and then undoing the Hadamard transform. It is
the Hadamard log conjugation. It may be inverted by doing the Hadamard exponential
conjugation:

s = H- 1 exp (Hg) (17.13)

We can also make a Hadamard conjugation of the observed sequence spectrum,
the vector of observed partition frequencies. We get the conjugate spectrum

I = H- 1 In (lIS) (17.14)

We can obtain the edge length spectrum in our test case of a four-species tree.
Taking the Hadamard transform of the vectors in Table 17.2, we get the edge length
spectra, in Table 17.3. Note that where the tree topologies differ, the pattern of
zero and nonzero entries in the table differ. If the observed partition frequencies
are close to the expected partition frequencies, we can hope that the edge length
spectra computed from them would show a similar pattern.

The zeros in this table correspond to algebraic expressions in the partition fre­
quencies that remain 0 for all trees of a given topology. In Chapter 22 we will see
that these are called the invariants of the tree, and that they are of great interest
for future work on inferring phylogenies. The Hadamard machinery gives us a
means to compute all of these invariants.

A numerical example of the Hadamard conjugation may be helpful. If we have
the four-species case, with the true tree being ((a,b),(c,d)), and 1'1 = 1'2 = 1'3 = T4 =
0.1, and 1'5 = 0.05, then if we simulate a 200-character set of data along this tree,
we find in one simulation that the sequence spectrum (the vector of partitions) is

(158/200,7/200,13/200,4/200,9/200,2/200,0,7/200)
and its Hadamard transform is

(1,0.8,0.76,0.78,0.82,0.8,0.72,0.64)
Taking logarithms of that vector, we get

(0, -0.223144, -0.274437,-0.248461, -0.198451, -0.223144, -0.328504, -0.446287).
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Table 17.3: The edge length spectra (tree spectra) for the three trees,
computed from the expected partition frequencies for those trees. The
entry is the length of the branch that separates the set (shown in the
right column) from the other species.

((a. b), (c, d)) ((a, c), (b, d)) ((a, d). (b. c)) Set
-(7'1 + 7'2 + 7'3 -(7'1 + 7'2 + 7"3 -(7'1 + 7'2 + 7'3

+7'4 + 7'5) +7'4 + 7'5) +7'4 + 7"5) 0
7'4 7'4 7"4 {d}
7'3 7'3 7'3 {e}
"'5 0 0 {cd}
7'2 7'2 7'2 {b}
0 "'5 0 {bd}
0 0 "'.5 {be}

7'1 7'1 7'] {bed}

.':"pplying the inverse Hadamard transform one gets
(-0.48561,0.084911,0.16324,0.039007, 0.11259, 0.013673,-0.013360, 0.085552).

-=:'\amining Table 17.3 we can see that the elements whose expectations are zero
.:.. der different tree topologies are the 4th, 6th, and 7th elements, which are re­
O?ectively 0.039, 0.014, and -0.013. The correct values are 0.05, 0, and O. Thus
:,:.rnple inspection may reveal which partitions correspond to the true tree. Figure
~ -.1 shows an example, using a six-species tree on which 1,000 sites were simu­
.,,:ed with a K2P model with transition/transversion ratio of 2. The sites were
:...~en scored using the states purine or pyridine. The figure shows the histogram of
:":utition frequencies, its Hadamard transform, and the resulting conjugate spec­
=-.m1. It can be seen that the Hadamard conjugation cleans up the signal, bringing
-:-.ost classes close to zero. The numbers along the bottom axis represent the par­
:::.:ions when they are seen in binary notation. Thus class 19 is 010011, and when
:':-.e species A-F are indicated by Os and Is, it is partition ACDIBEF. The dark
':TOWS point to the signals for the interior branches, the light arrows the exterior
::anches. Note that in this example, the signal for this particular partition, which
- 3.5 the shortest branch in the tree, is nearly lost.

The closest tree criterion
-=-':-.e ideal use of the Hadamard transform would then be to create an edge length
'c ectrum from which the branches could simply be read off. This is not necessar­
.. easy. We have shown an example in which there is only one possible internal

:::lnch, and the other two entries in the vector have expectation o. For larger num­
:-o:!5 of species the pattern may be harder to discern. For 10 species, for example,
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Figure 17.1: An example of the use the Hadamard conjugation. 1,000
sites simulated on the tree at above left and coded for purine ver­
sus pyrimidine yield the partition frequencies in the upper-right his­
togram, their Hadamard transform (at the lower left), and the conju­
gate spectrum at the lower right. Classes that correspond to exter­
nal branches in the true tree are shown with lighter arrows, internal
branches with dark arrows.
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Table 17.4: Conjugate spectrum for the numerical example (leftmost
column) together with the edge length spectra for the three bifurcating
tree topologies in this case. The least squares best fit error [2 (T./) is
shown for each.

/ ((a. b). (c. d)) ((a. c). (b. d)) ((a. d). (b. c)) Set

-0.4856071 ~0.4856071 -0.4856071 -0.-1777432 0
0.0849109 0.084973-12 0.0900402-1 0.09277486 {d}
0.163238 0.16330052 0.16836734 0.17110196 {c}
0.0390072 0.03906972 0 0 {cd}
0.112586 0.11264852 0.11771534 0.12044996 {b}
0.0136731 0 0.01880244 0 {bd}

-0.0133605 0 0 0.00000000 {be}
0.0855524 0.08561492 0.09068174 0.09341636 {bed}

0.000365457 0.00183162 0.00312386

::<ere are 29 = 512 entries in the sequence spectrum, of which 10 correspond to
:2rminal branches of the tree, one corresponds to the empty set, and the other 501
:0 different possible internal branches. We need to select a set of branches that
.:ore compatible with each other (in the sense of Chapter 8, that the partitions they
_-:'efine are compatible). We cannot depend on finding them by taking the largest
-:-ntries in the vector, as some of those might be incompatible. There can be short
:- anches in the true tree that would show small entries in the edge length spec­
~um, and those might be ignored while entries that were due to sampling error
-';ere not. One wants to look at all sets of branches that correspond to trees.

Hendy (1989) has proposed inferring phylogenies by finding the closest match
:,etween the observed and expected edge length spectra. This is not the same as
:":1aximum likelihood, but neither is it the same as distance matrix criteria, as it
-.:ses some higher-order information. If there are n species, there will be n(n - 1) /2
'::istances, but there will be 2n

-
1 entries in the tree spectrum. Thus it is a much

:::1ore sensitive criterion than any that uses distances. For example, with 10 species
:~ere will be 45 distances but 512 nonzero entries in the edge length spectrum.

The criterion Hendy used is least squares, using only those entries of the edge
:2ngth spectrum that are expected to be nonzero. If the entries in the observed
:fee spectrum are denoted by Ii, and the entries of the expected tree spectrum are
_enoted by gi, the criterion is

? '" 2r-(T, /) = ~ hi - gil (17.15)

A complication in using this criterion is that for each tree topology we must
ind a set of branch lengths that minimize r2 (T, I)' This can be done by least
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squares fitting, and rather easily. Hendy (1989, 1991; Hendy and Penny, 1993
has shown that the least squares branch lengths can be found by taking the SUIT.

'YT of all of the 'Yi entries (those that would have nonzero gi for that tree topology
including 'Yo), dividing by D+I, where B is the number of branches in the tree, an .
then subtracting this from each of those ;. This, if positive, gives an estimate 0:
the branch length Vj that one gets by minimizing r 2 in equation 17.15. (If negatiw
the branch length is 0.) Note that for each possible tree topology we need only stan
from the conjugate spectrum - it need only be computed once. So the process or
fitting branch lengths can be quite fast, permitting many topologies to be checked.

For our numerical example, Table 17.4 shows the estimates of branch lengths
obtained for the three tree topologies, together with their values of r 2 (T, 'Y). The
tree ((a. b). (c, d)) is the closest tree. Note that tree ((a. d). (b, c)) has its internal
branch set to length zero, rather than allow it to be negative.

Although the closest tree criterion is roughly similar to a likelihood criterion,
departures from expectation for different entries in the conjugate spectrum Cal

vary, and can covary. The closest tree criterion does not weight their departure,;
from expectation differently and does not correct for covariation. Waddell et al.
(1994) have shown how to calculate the covariance matrix of the entries in the
conjugate spectrum. This is a fair amount of work - (11 - 1) x 2n operations­
but can lead to a more realistic assessment of the goodness of fit of a tree.

DNA models
I have discussed Hadamard methods as being done on two-state data, but actualh'
some four-state DNA models are available. Steel et al. (1992) have extended the
Hadamard methods to four-state DNA sequences, assuming a Kimura 3ST model
(Kimura, 1981). This is an extension of the Kimura two-parameter model that adds
an additional rate. The pattern is shown in Table 17.5. Instead of bipartitions of
the set of species, Steel et al. (1992) count quadripartitions, which in this case are
pairs of bipartitions. The four bases (A, G, C, T) are assigned the binary digits
(00,01,10,11) and the partitions correspond to the first and second digits of these
pairs. (Thus the first distinguishes between purines and pyrimidines.) For a data
set with 11 species, there will be 22n

-
2 different quadripartitions possible. Many

Table 17.5: The Kimura 3ST model of DNA base change. The instanta­
neous rates of change per unit branch length are shown.

To:
From: A G C T

A - 0' ,8 'Y
G a - 'Y (3
C ,8 I - a
T 'Y ,8 a -
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of the same results go through, and one can compute closest trees. However, the
results cannot be generalized to models less symmetrical than the Kimura 35T
model, which is a rather special symmetric model of DNA change.

Computational effort
The amount of computation needed to infer trees by the closest tree criterion dif­
~ers substantially from that needed by maximum likelihood. With n species, there
',\'ill be 2n - 1 bipartitions possible. The Hadamard matrix is then a 2n - 1 x 2n - 1 ma­
:rix. It might seem that doing the Hadamard transform would thus require 2217 - 2

operations. But the Hadamard transform for 217 - 1 points is a special case of the
:=ourier transform; as in the Fourier case, there is a fast Hadamard transform al­
~orithm that speeds things up a great deal. To multiply by the matrix in equation
~ /..± one need only do the following:

• Take adjacent pairs of entries in the vector of bipartitions.
• Replace the first by their sum, the second by their difference.
• Then take all pairs of entries 2 apart and do the same. As you do so, skip

along the vector as needed so as not to involve any element in more than
one of these pairs.

• Then take all pairs of entries 4 apart and do the same, and continue. After
each pass double the size of the interval between entries until it becomes
2n - 2 for the last pass.

,:us accomplishes the matrix multiplication of the vector by the appropriate
:"'::adamard matrix. The inverse of this transform is a simple multiple (1/2 n - 1)

_: the transform, so it too can be done by essentially the same algorithm.
To carry out the Hadamard conjugation should require n x 217 operations. Thus

- ~, 10 species, only 10 x 1024 = 10,240 operations are needed. For 20 species, one
--2eds 20 x 1,048,576 = 20,971,520 operations. Once the Hadamard conjugation
- Jone, different tree topologies can be evaluated with only about 2n - 1 operations

=:;..::h, as one does not have to do the Hadamard conjugation each time.
For four-state data using the Kimura 35T model, the computational require­

-2nts are much heavier. The number of operations for the Hadamard conjugation
~-:'.::omes n x 22n- 2 . With 10 species this is 2,621,440 operations; with 20 species it
- about 5.5 x 1012 . Thus at present one starts running into computationallirnits
--=:\\'een 10 and 20 species.

\Ve may contrast this with ordinary maximum likelihood. A limitation of
..::damard methods is that they must compute terms for all bipartitions or quadri­
- :;'::Titions, whether or not they occur in the sequences. Ordinary ML requires that

-2 compute terms for only those patterns that show up in the data. This can be
_::-stantially smaller than the number of sites, if the number of species is small or
:':',e species are closely related. Thus a 20-species DNA data set with 1,000 sites

- i differences of about 25% in sequence between species may turn out (as one did
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in a simulation I ran) to have 526 distinct patterns in the DNA. Unlike the closest
tree algorithm, maximum likelihood does require iteration of branch lengths for
each tree topology. This must be balanced against the large number of operations
required for one Hadamard conjugation. It seems clear that Hadamard methods
with DNA sequences will run into a limit near 20 species, while maximum like­
lihood can deal with larger cases than this, though not of course with nearly as
many species as distance matrix methods can. If Hadamard algorithms could be
found that do not spend time on patterns that do not occur in the sequences, this
would make these methods much more practical on data sets of moderate size. If
any way could be found to extend them to nonsymmetric models of base change,
that too would be a great advance.

Extensions of Hadamard methods
Although Hadamard methods inherently cannot cope with autocorrelations of
rates or of sequence patterns among sites, they can be adapted to correct for un­
equal rates of evolution at different sites, as long as the rates are assigned indepen­
dently to the sites. Steel et al. (1993) have shown that if the distribution of rates
l' among sites is f(1'), then we must replace the logarithm in equations 17.10 and
17.12 by the inverse of the moment-generating function of f(1'). This is

(17.16)

If this function can be evaluated (which it can for distributions such as gamma dis­
tributions) then its use instead of the logarithm allows us to have a Hadamard con­
jugation that works for the model with varying rates among sites. Waddell, Penny,
and Moore (1997) have discussed this method further, giving inverse moment­
generating functions for a number of relevant distributions and discussing which
distributions of rates among sites might give similar fit to data.

Hadamard methods can also be used to carry out a distance matrix method
(Hendy and Penny, 1993), and to correct parsimony and compatibility methods so
that they are not inconsistent (Steel, Hendy, and Penny, 1993). The latter authors
show that if in the conjugate spectrum we take the "parsimony partitions," namely
those that correspond to internal branches of trees, the entries for these have the
branch lengths as their expectations. We can interpret their sum as an estimate
of the expected numbers of changes for a tree, and we expect that the smallest
value will correspond to the correct tree. Of course this expectation is met only
asymptotically, but it does establish that this method, in effect a parsimony method
corrected for multiple changes, is consistent. Thus Steel et al. argue that the source
of the inconsistency of ordinary parsimony is not the parsimony criterion per se,
but its lack of a correction for multiple changes.

In the numerical example that we used above, the three different internal
branches had corrected lengths 0.0390072, 0.0136731, and -0.0133605. Steel,
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Hendy, and Penny (1993) suggest using the absolute values of these. For the tree
((a,b),(c,d)) the first partition is compatible and requires one change. The other
two partitions are not compatible and require two changes. All other partitions
require one change. Thus if we used these corrected lengths, we could sum over
all the nonempty partitions and obtain the total corrected parsimony score for the
tree ((a,b),(c,d)) (divided by the number of sites) of

51 0.0849109 x 1 + 0.163238 x 1 + 0.0390072 x 1 + 0.112586 x 1
+ 0.0136731 x 2 + (-0.0133605) x 2 + 0.0855524 x 1 (17.17)
0.4859197

The other two trees, evaluated in an analogous way, give total parsimony scores
f 0.5112538 for ((a,c),(b,d)) and 0.5382874 for ((a,d),(b,c)). The correct tree does

~ave the smallest corrected parsimony score in this example. This is not one of the
2xamples where parsimony is misleading - uncorrected parsimony also leads to
: e same conclusion.
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Bayesian inference of
phylogenies

Bayesian methods are closely related to likelihood methods, differing only in the
use of a prior distribution of the quantity being inferred, which would typically
be the tree. Use of a prior enables us to interpret the result as the distribution
of the quantity given the data. Bayesian methods date to 1790, and controversy
among statisticians over their appropriateness is almost that old. Recently, the use
of Markov chain Monte Carlo methods has given a new impetus to Bayesian in­
ference. In this chapter I hope to introduce Bayes' theorem, as well as the Marko\'
chain Monte Carlo (MCMC) methods used to implement it. We will see MCMC
methods again in Chapter 27.

After a description of the literature on Bayesian inference of phylogenies, I
will spend much of the remainder of the chapter considering whether Bayesian
inference is appropriate. It may be enough to say that the arguments were old
long before anyone thought of using Bayesian approaches to inferring phyloge­
nies. Nothing that biologists say is going to settle the matter. A recent review of
work on Bayesian methods for phylogenies is given by Huelsenbeck et al. (2001).

Bayes' theorem
We have already seen in Chapter 16 that Bayes' theorem can be put into an odds­
ratio form (equation 16.1). It is appropriate to give it in its usual form here. Given
an hypothesis H (such as a possible tree) and some data D, the probability of the
hypothesis given the data is

Prob (H I D)

288

Prob(H & D)
Prob (D)

(18.1)
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The joint probability of Hand D, Prob (H & D), can itself be written as a product
of the probability of H and the conditional probability of D given H:

Prob (H & D) = Prob (H) Prob (D I H)

Substituting this expression into equation 18.1 we get

Prob (H I D) = Prob (H) Prob (D IH)
Prob (D)

(18.2)

(18.3)

This is Bayes' theorem in its simplest form. The denominator Prob (D) is the
sum of the numerators Prob (H & D) over all possible hypotheses H and is the
quantity that is needed to normalize them so that they add up to 1. This leads to
the more usual form of the theorem:

Prob (H) Prob (D I H)
Prob (H I D) = LH Prob (H) Prob (D I H) (18.4)

The theorem is a simple exercise in conditional probabilities. As such it is uncon­
troversial. Figure 18.1 shows the Bayesian inference of the heads probability with
11 (left column) and with 44 (right column) tosses of a coin, both resulting in a 5 : 6
ratio of heads to tails. The prior that is assumed, a truncated exponential distribu­
tion with mean 0.34348, is at the top of the figure. The posteriors, at the bottom,
show that the influence of the prior is substantial with 11 tosses but has less influ­
ence with 44 tosses. In the left-hand case, the mode of the posterior is displaced
from 0.4545 to below 0.40, but in the right case the displacement is much less, as
:he likelihood curve is providing more of the information and the prior less.

The odds-ratio form of Bayes' theorem (which we saw in equation 16.1) is easi­
est to use. The odds favoring one hypothesis over another are the odds the person
gave them initially (the prior odds), multiplied by the ratio of the likelihoods un-

er the data. Suppose that there are two possible hypotheses, and in advance we
~a\'or H 1 over H 2 , giving them odds of 3: 2. Now some data are examined. The
. 'elihood ratio Prob (D IH1 ) / Prob (D IH2 ) turns out to be 1/2, so that the data
:lye half as probable given hypothesis 1 as it is given hypothesis 2. Bayes' theo­
~em tells us to compute the posterior odds ratio by multiplying these two to get

:3 2) x (1/2) = 3/4. After looking at the data we now give odds in favor of H 1 of
-:>nly 3 :4.

This calculation too is uncontroversial; there is no statistician who would not
J.se it, given the correctness of the prior odds. What is controversial is whether
-:sable prior odds exist.

When not in odds-ratio form, Bayes' theorem allows us to turn a prior distribu­
=on into a posterior distribution. It is enormously attractive because it computes
.-hat we most need, the probabilities of different hypotheses in the light of the

':a tao
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Figure 18.1: An example of Bayesian inference with coin tossing. The
probability of heads is assumed to have a prior (top) that is a trun­
cated exponential with mean 0.34348 on the interval (0,1). The left col­
umn shows the likelihood curve and the posterior on the probability of
heads when there are 11 tosses with 5 heads. The right column shows
the case of 44 tosses with 20 heads. The vertical dashed lines are lo­
cated at the observed fraction of heads.
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Bayesian methods for phylogenies
Early in the history of numerical work on phylogenies, Bayesian arguments were
:'n use, but usually without a fully Bayesian inference of phylogenies. Edwards
1970) discussed the possibility of using random models of branching and ex­
inction to place priors on trees but concluded that this was not computationally
:- ractical. The influential unpublished manuscript by Gomberg (1968) adopted a
Bayesian approach to inferring phylogenies from characters that changed accord­
:.ng to a Brownian motion process. Farris (1973a, 1977a) based his arguments in
~a\'or of parsimony on a Bayesian foundation. Harper (1979) used Bayesian ar­
suments to compute probabilities that a group of taxa that shared a derived state
'.,'ere truly a clade. Ward Wheeler (1991) assumed that each step in a parsimony
:rlethod reduced the likelihood by a factor of e; he argued from this that the proper
:"S5essment of phylogeny from different data sets is the tree chosen by overall par­
=-imony. Smouse and Li (1987) used a more fully Bayesian approach. For a case
";ith a rooted tree with three species, they placed equal prior probabilities on each
,)' the three tree topologies, then computed posterior probabilities using the likeli­
:cood function for each of these. However, they did not place priors on the times of
:: e interior nodes of the tree. Instead, they maximized the likelihoods over these
:..nd took the results as the likelihoods for the tree topologies. This was almost, but
:-:ot quite, a fully Bayesian analysis of phylogenies. Another early effort by Sin­
""eimer, Lake, and Little (1996) used the patterns of nucleotides across species,
;:c':aluating whether the phylogenetic invariants had their expected values. These
_:\'ariants will be discussed in Chapter 22. Lake's invariants are computed from
"',lms of pattern frequencies. Sinsheimer, Lake, and Little placed equal prior prob­
.:.'oilities on the three possible uillooted tree topologies with four species, but they
:'id not place priors on branch lengths or node times. They instead placed priors
_. the sums of pattern frequencies.

Zander (2001) has argued that one can compute posterior probabilities of par­
::..:ular alternative rearrangements of the tree topology around an interior branch.
:-:e uses the number of steps reconstructed by parsimony on a branch, and on
:"-.e corresponding interior branches in the two trees obtained by doing a nearest­
-2ighbor interchange at that branch. I will argue in Chapter 19 that the statistical
'::-:it of significance he uses for the branch has some merit, but the posterior proba­
.::.:.ihes he derives are more doubtful. They do not seem to be obtained using any
.: :..rticular prior distribution, so that it is unclear how they could be correct poste-
-:or5.

Computational difficulties prevented most of these authors from doing a more
--:.: y Bayesian inference of phylogeny. Rannala and Yang (1996) attempted a fully
:::.. \'e5ian inference of phylogenies. They used a birth-and-death process prior on
::'.2 trees in an analysis of DNA sequences using a molecular clock. For a fixed
- :erval of time since the start of the process, they inferred the birth, death, and
<~stitution rates, as well as the transition-transversion ratio for the HKY model
: base substitution, by finding values that maximized the posterior probabilities
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summed over all trees. Fixing these parameters at their estimated values, they
used the probability contributed to the posterior by each tree topology as its pos­
terior probability. They showed calculations indicating that these posterior proba­
bilities did not depend much on the nuisance parameters.

Rannala and Yang's approach used numerical integration of the posterior prob­
abilities over all interior node times for each given tree topology. Owing to the
large number of topologies and the need to integrate over many dimensions, this
approach was feasible only for a modest number of species.

Markov chain Monte Carlo methods
In Bayesian inference, the expression for the posterior distribution has a denomi­
nator that can be very difficult to compute, as it involves summing over all possible
hypotheses. Fortunately, samples from the posterior distribution can be drawn us­
ing a Markov chain that does not need to know the denominator. In the late 19905
the increasing feasibility of Bayesian inference by these Markov chain Monte Carlo
methods led to their more widespread use, and they came to be used in phyloge­
netic inference. We will see this method again in Chapter 27, where it will be
introduced again for likelihood inference rather than for Bayesian inference. I will
describe such a method here and show that it achieves the desired distribution.

Markov chain Monte Carlo methods in Bayesian inference draw a random
sample from the posterior distribution of hypotheses (in this case, trees). It thus
becomes possible to make probability statements about the true tree. If 96% of the
samples from the posterior distribution of trees have {Human, Chimp} as a mono­
phyletic group, then we can say that the probability that these are a monophyletic
group is 96%. Of course, there is some uncertainty if the number of samples is not
large; this is reflected in use of the name of the famous gambling casino at Monte
Carlo. In estimating phylogenies we have the same hope as the house does in the
casino: that enough samples will lead to the expected results.

The Metropolis algorithm
One of the most widely used Markov chain Monte Carlo (MCMC) methods is the
Metropolis algorithm (Metropolis et aI., 1953). It is usually used in a modified form
called the Metropolis-Hastings method, the modification being due to Hastings
(1970). The idea of MCMC methods is to wander randomly in a space of trees
in such a way as to settle down into an equilibrium distribution of trees that has
the desired distribution (in this case, the Bayesian posterior). Imagine all possible
trees, connected to each other so as to form a connected graph. Suppose we know
the distribution of trees f(T) that we want. We will later see that we don't need to
know the denominator of this distribution.

The Metropolis algorithm involves the following steps:

1. Start at some tree. Call this Ti .
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2. Pick a tree that is a neighbor of this tree in the graph of trees. Call this the
proposal T j .

3. Compute the ratio of the probabilities (or probability density functions) of
the proposed new tree and the old tree:

4. If R 2': 1, accept the new tree as the current tree.

5. If R < 1, draw a uniform random number (a random fraction between 0 and
1). If it is less than R, accept the new tree as the current tree.

6. Otherwise, reject the new tree and continue with tree Ti as the current tree.
7. Return to step 2.

This algorithm never terminates. It is a Markov chain because it is a random
._ rocess in which the next change depends only on the current state and not on
··.-here the process was previously. Assume that the probability of proposing Tj

··:hen we are currently at Ti is the same as the probability of proposing T i when
-·.-e are at T j . (If this is not true, we need to make Hastings' correction, which
-:e omit for now-it will be described in Chapter 27 when we use the Metropolis
~:gorithm in another context.)

::5 equilibrium distribution
-:-. e Metropolis algorithm is a Markov chain that has an equilibrium distribution
--:- _To verify that it is the desired one, we need to compute the ratio of the prob-
::-ilities of forward and backward change Prob (Tj ITi ) and Prob (Ti ITj ). Sup­
:-ose that f(Ti ) > f(Tj ). Using the rules above, one can see that when the tree is
-:- and Ti is proposed, it will be accepted with probability 1. When the tree is Ti

-:cd Tj is proposed, the ratio R will be f(Tj)/f(Ti ). The probability that the ran-
.::om number that is drawn will be less than R will be R. So the probability that
-=-.:'e Tj will be accepted will be R. A similar proof draws the analogous conclusion

: en f(Ti ) ~ f(Tj ).
The upshot is that

. -hat

Prob (Tj ITi.)

Prob (Ti I T i )

f(Tj )

f(T;)
(18.5)

(18.6)

-=-.;ure 18.2 illustrates that this equation implies "detailed balance" in which the
- ..;.:nbers of times there is a transition from state i to state j equals the number

~ jmes there is a transition from state j to state i. If we sum both sides of this
'::':.lation over all T i , on the right we are summing the probabilities of transition

all possible Ti . The transition probabilities on the right sum to I, and we get
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Figure 18.2: If we have a distribution 7Ti of states, and if the transition
probabilities Pij = Prob (Tj ITi ) from tree Ti to tree Tj and the prob­
abilities of transition in the reverse direction Pji satisfy equation 18.6,
then the amount of probability moving along the two shaded arrows in
the next step will be equal. If this is true for all paths between adjacent
states, then the equilibrium distribution 7Ti = f(Ti ) will be maintained
unchanged.

the equation that establishes that the f(Ti ), if scaled so they add up to I, are the
equilibrium probabilities of the process:

(18.7)
Ti

Starting in the distribution f(T), we see from this equation that if we sum up
all the ways that one could arrive at tree T j , counting for each the probability
contributed by that way, the resulting probabilities remain the f(T), which is thus
the equilibrium distribution.

Thus for any distribution f(T) the Metropolis algorithm is a stochastic process
(in fact, a reversible one) whose equilibrium is that function. This would not be
much help for the cases we want to treat, because we don't know the denominator
of the distribution. Fortlmately, in computing the acceptance ratio R we don't need
to know the functions f(Ti ) and f(Tj ). All that matters is their ratio - if they have
the same denominators, these cancel out. Thus, knowing only the numerators, we
can carry out the algorithm.

Bayesian MCMC
Adapting the Metropolis algorithm to Bayesian inference involves sampling from
the posterior distribution (equation 18.4). If we can compute the prior probabili­
ties of trees Prob (T) and the likelihoods Prob (D IT), then we can carry out the
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.\1etropolis algorithm. Although we don't know the denominator in equation 18.4,
it cancels out in the expression for the acceptance ratio:

R = Prob (Tj ) Prob (D ITj )

Prob (T;) Prob (D ITi )
(18.8)

The acceptance ratio is the ratio of the prior probabilities of the proposed tree
,md the current tree, multiplied by the likelihood ratio of these trees. We already
:-illOW how to compute the likelihoods of trees. We need only choose a prior distri­
~ ution for which the probabilities can be computed.

Once these are available, we can start with an estimate of the tree and propose
~hanges in it, using the Metropolis algorithm to accept or reject those changes.
".\"e start with a "burn-in" period to allow the process to settle into its equilibrium
iistribution. After that, we record the tree every S steps, where S is chosen so that
"·\"e have enough trees but not too many. For example, we might use 5,000 steps as
-". burn-in period, and then record every lOath tree for 100,000 steps. This sample
:>:' 1,000 trees can be assumed to be from the posterior distribution. In deciding
··.hen to sample, it is important to count both steps in which we have accepted the
?roposed tree, and steps in which we have rejected it and retained the old tree.
-=:Us might even mean repeatedly sampling the same tree.

Bayesian MCMC for phylogenies
-:-hree groups of authors introduced Bayesian MCMC methods into phylogenetic
_ ierence, essentially independently. They were Yang and Rannala (1997), Mau
l:1d Newton (1997) (extended by Mau, Newton, and Larget, 1999, and by Larget
:_ d Simon, 1999), and Li, Pearl, and Doss (2000). All of these authors used
.[etropolis algorithms to implement Markov chain Monte Carlo methods. We can
"~-us on several issues that differ among their methods:

1. The prior distribution each assumed

2. The proposal distribution each used for changes in the phylogeny

3. The kind of summary of the posterior distribution each used

?riors
-: e methods differ as to whether the tree was assumed to arise from a stochastic
:- ~ocess of random speciation, extinction and sampling, or whether it was simply
"" have been drawn from a uniform distribution of all possible rooted trees. In all
--2se cases the assumption was that the trees are clocklike.

Yang and Rannala (1997) used the birth-and-death process from their 1996
:: l \"esian approach to place a prior on the phylogeny. They assumed that in an
-:erval of time of known length tl, a birth and death process operates and pro­

: j, -es S species. The observed number of 8 species is then sampled at random
-:>m these. They do not make it clear what happens if S < 8, so that there are
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too few species to sample from. They present a distribution of times of speciation
conditional on having sampled 8 species. They place a uniform prior on all the
clocklike tree topologies (without node times specified).

Mau and Newton assumed that all possible labeled histories are equiprobable.
They seem also to have assumed that for each labeled history, the placement of
its interior nodes came from a uniform distribution. Li, Pearl, and Doss assumed
instead that all possible rooted tree topologies were equiprobable, which is a some­
what different distribution, with less of its probability concentrated on symmetric
topologies. Such distributions of trees are technically inadmissible, since if there is
no limit on the antiquity of the earliest node, there cannot be a uniform distribu­
tion of node times. Mau and Newton do not make it clear how they limit the prior
to prevent inadmissibility. The subsequent papers of Mau, Newton, and Larget
and of Larget and Simon do not clarify the matter. Larget and Simon also mention
a method that does not assume a clocklike tree, but they do not say what prior it
assumes.

Li, Pearl, and Doss allow the interior nodes of their trees to be uniformly dis­
tributed, subject to the constraints on them by the topology and the times of the
contemporary nodes and the root. They do fix the time of the root at a time esti­
mated in a rough starting tree, and never change it. To scale all the branch lengths,
they estimate the rate of substitution, which is equivalent to changing the time of
the root node. Their procedure for estimating it is not derived from an MCMC
method.

It is not clear whether the resulting uncertainties about the exact prior used in
each case are serious problems, or whether they are simply unimportant conse­
quences of the difficulty of describing exactly what was done when the procedure
is complex. As these are founding papers of Bayesian inference of phylogenies,
the lack of a clear explanation of what prior was used is an agonizing omission.

Proposal distributions
The three methods also differ in the proposal distributions that they use for wan­
dering by MCMC through the space of trees. In principle the methods could use
any proposal distribution, as long as it could reach all trees from any starting tree.
It would only require enough running to assure that the proper distribution was
attained. In practice, the matter is more difficult. It is hard to know how much is
enough. A proposal distribution that jumps too far too often will result in most
proposed new trees being rejected. A proposal distribution that moves too timidly
may fail to get far enough to adequately explore tree space in the allotted time. At
the moment the choice of a good proposal distribution involves the burning of
incense, casting of chicken bones, use of magical incantations, and invoking the
opinions of more prestigious colleagues.

Mau and Newton use a novel method of rearranging the tree. They note that
at each node in a clocklike tree the order of the subtrees can be exchanged without
changing the tree. They start by making an arbitrary choice at each interior node
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Figure 18.3: Steps in Mau and Newton's method of making proposals
of new trees in their Bayesian MCMC method. The species (1) are re­
ordered by rotating branches, (2) coalescence times between adjacent
species are calculated, (3) these are modified, and (4, 5) a new tree is
constructed with those coalescence times.

of which subtree will be on the left. They then consider the depth of the times of
coalescence" of each pair of adjacent tips. They alter these coalescence times by

-:hoosing a change for each from a distribution uniform about zero, except for very
:emaIl coalescence times. In those cases they ensure that the coalescence time does
"lot become negative by reflecting its value about zero. The process is illustrated
~1 Figure 18.3. When two connected coalescence times pass one another as a result
y: the change, this causes a change in the tree topology. (When two nonconnected
:-.mes pass one another, the labeled history changes.) Their scheme for perturbing
:.~e tree leads not only to changes of node times, but of tree topologies, including
:0me changes that are larger than nearest-neighbor interchanges.

Mau and Newton's proposal method implicitly assumes that the prior on trees
:e uniform for all clocklike labeled histories. This is actually an impossible distri­
~ ltion, but we need to know whether that creates any difficulty. Mau, Newton,
-'-.,d Larget (1999) prove that this proposal mechanism is irreducible (i.e., it can
-,.,ach any tree in the tree space from any other with enough steps). Larget and Si-
-:-:on (1999) extend the scheme to nonclocklike trees by altering both coalescence
--..::nes and heights of tips. They do not make it clear how this works, and I have
-)me doubts as to what prior on uillooted trees it assumes.
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Both Larget and Simon (1999) and Li, Pearl, and Doss (2000) have a different
proposal distribution that makes local modifications of the tree that can be nearest­
neighbor interchanges. Larget and Simon also have a nonclocklike version of this.

In Mau and Newton (1997) and the papers following up on it, the specific cal­
culations in their acceptance-rejection step are not explained. I assume that they
are using the likelihood ratio of the trees after and before the proposed rearrange­
ment, without any term for the prior. This implicitly assumes that the prior is flat.
Li! Pearl, and Doss (2000) do use this procedure, and thus also assume a flat prior!
but they constrain the root at a fixed time. They do not use a prior for the rate of
substitution, but estimate it in a somewhat arbitrary way. As this quantity is the
multiplier that determines the branch lengths given the times of the nodes, this
leaves it uncertain what the prior on the tree is.

Yang and Rannala (1997) move among tree topologies, ones that do not have
node times or branch lengths. Thus these are discrete! and there are a finite number
of them. Starting with one topology, they then use a nearest-neighbor interchange
at a randomly selected internal node to propose another topology. For each of
these they sample a large number of speciation times from their conditional distri­
bution. The likelihoods of the trees before and after rearrangement are computed
approximately from these samples of trees, each of which has had its likelihood
computed. The Metropolis algorithm is then used to accept or reject the proposed
change of topology.

It is likely that there will be many more proposal mechanisms invented in the
future. Choice among them is a matter of practicality! trying to achieve a mecha­
nism that moves around the tree space enough but without having its proposals
rejected too often.

Computing the likelihoods
In all of these methods we must compute the acceptance ratio R. This involves
the ratio of the priors of the two trees and also the ratio of their likelihoods! as we
can see in equation 18.8. For the methods mentioned above! the priors are taken
to be trniformly distributed over all relevant trees! so their ratio is 1. In Chapter
16 we saw how to efficiently compute likelihoods! summing for each character
over all possible assignments of states to interior nodes of the tree. In the cases
in which proposal distributions modify only a local area of a tree (as in the cases
that generate only nearest-neighbor rearrangements), we can take advantage of
the way that the likelihood computation uses conditional likelihoods. This can
allow the likelihood computation to be local, without any need to recompute most
of the conditional likelihoods. We have already discussed a similar economy in
Chapters 2 and 4! illustrating it in Figure 2.3.

In the method of Li! Pearl! and Doss (2000) there is an additional considera­
tion. In specifying the phylogeny! they specify not only the topology and node
times, but also the D A sequences at the interior nodes. This enormously speeds
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~he computation of the likelihood, which then is merely a product of the proba­
:,ilities of the changes on each branch. They can also take advantage of the fact
:hat their proposal mechanism involves only local rearrangements of the tree, so
:hat the ratio of likelihoods before and after a change involves only terms from
:Learby branches. However, this simplification is purchased at a cost, because they
:nust run their Metropolis sampler long enough to collect a sample of the possi­
"::>le assignments of DNA sequences to interior nodes. This can be a considerable
~ urden.

There is no reason that the models of change used in the likelihood computa­
:ions need to be restricted to the standard DNA models. Jow et al. (2002) use six­
? d seven-state RNA models, like those of Tillier (1994) and Muse (1995), that re­
Ject pairing of sites in the secondary structure of the molecule. We may expect
::lore elaborate models to be used as protein structure is more intensively inves­
::gated. For some of these models the likelihoods may be difficult to compute by
:....,tegrating out the states of the interior nodes of the tree. A procedure like that of
=-'i, Pearl, and Doss may then have to be adopted, with MCMC over both trees and
_,terior node states.

Summarizing the posterior
:-laving a good sample of trees from the posterior, how are we to summarize the
_-:formation they convey? It is tempting to simply ask how frequent each tree is.
':""5 the trees have node times that vary continuously, there is no answer to this
,::,-Jestion, as each tree is infinitely improbable. If we confine ourselves to asking
~·::,out the tree topologies, or about the labeled histories, these have probabilities,
:-:J.t they may be hard to assess. If the data strongly constrain the trees, then we
-:eight find only a few trees accounting for most of the probability in the posterior.
:Jt if the data are fairly noisy, there might be millions of different trees in the
:-0sterior, and in the worst case no two of the trees we sample will be alike.

Thus there is good reason to be interested in methods of summarizing the pos­
-~,ior other than the empirical tree probabilities. One solution is to use clade prob­
.-::,ilities. For clades of interest such as {Human, Chimp} we can sum the posterior
-:-: babilities of all trees that contain the clade. Then we can say that (for exam-
-: :2) the posterior probability of that clade being on the tree is 0.87. This could be
.: ~ne for many different clades. The probabilities are not for independent events:
: (Human, Gorilla} has a clade probability of 0.40 and {Orang, Gibbon} has a
:_?de probability of 0.37, there might be no tree in the sample from the posterior
--at has both, or there might be as many as 0.37 of the trees that contained both.

!Lether there is a problem analogous to a "multiple-tests" problem if we look for
-2 clade with the highest posterior probability has not been examined, as far as
_-J1OW. Clade probabilities were used by Larget and Simon (1999) and are caleu­

e :ed in the Bayesian phylogeny inference program MrBayes by Huelsenbeck and
- .:>nquist (2001).
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An alternative way of summarizing the posterior was used by Li, Pearl, anci
Doss. Considering the cloud of sampled trees, they use a triples distance measur
(Critchlow, Pearl, and Qian, 1996; see below, Chapter 30) to find the tree that i5
central to the cloud. They then take as their interval of trees the 90% of all tree':'
that are closest to this central tree.

Of course, to obtain a valid result, we must have sampled the Markov chain for
a long enough time to reach equilibrium, and to sample from it adequately. Little
is known about how long a run is needed. Controversy exists (Suzuki, Glazko.
and Nei, 2002; Wilcox et aI., 2002) as to whether current programs sample for a
long enough time.

Priors on trees
A serious issue in Bayesian inference is what kind of prior to use. If the prior
is agreed by all to be a valid one, then there can be no controversy about using
Bayesian inference. For example, in cases where a random mechanism such as
Mendelian segregation provides us with prior probabilities of genotypes, all statis­
ticians, whether Bayesians or not, will happily use Bayes' theorem and consider
the posterior probabilities to be valid.

Priors on trees fall into three classes:

1. Priors from a birth-death process

2. Flat priors

3. Priors using an arbitrary distribution for branch lengths such as an exponen­
tial

Rannala and Yang (1996) used a birth-death process of speciation, which can
also be followed (Yang and Rannak 1997) by a random sampling from the result­
ing species to get the smaller number of species actually analyzed. They needed
parameter values for birth and death rates. It would be possible to put prior distri­
butions on the birth and death rates in order to do a full Bayesian inference. They
chose instead to estimate the birth and death rates by maximizing the sum of all
posterior probabilities. This is an "empirical Bayes" method.

Huelsenbeck and Ronquist's (2001) program MrBayes allows the user the
specify priors on branch lengths, using either uniform or exponential distribu­
tions. This gives a prior different from a birth-death process.

As we have seen, the other methods assume one or another form of a flat prior.
One of the issues that arises with flat priors is how far out from the origin they ex­
tend. For example, we might use a prior that gave equal probability to all labeled
histories, with the time back to the root node drawn from a uniform distribution
on the interval (0. B]. The times of the interior nodes could then be drawn uni­
formly between 0 and the time of that node, and assigned in a way consistent
with the topology of the tree. (Exactly how the times are parameterized is less im­
portant than one might think, as Jacobian terms for the density of the prior will
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usually cancel out; in some more complicated cases a "Hastings term" is created,
which also cancels out.)

Controversies over Bayesian inference
Although the use of Markov chain Monte Carlo methods has greatly increased
interest in Bayesian methods, Bayesian methods remain somewhat controversial
in statistics. The issues at first seem to be technical ones in statistics; in fact, they
are really issues in the philosophy of science. Different positions on statistical
inference are really different positions on how we should think about drawing
inferences from scientific data. I will not try to cover these issues in any detail
here. For philosophers' viewpoints supportive of Bayesian methods, see Howson
and Urbach (1993) and Rosenkrantz (1977); for one critical of Bayesian inference,
see Mayo (1996). For a likelihoodist view see Royall (1997). The likelihoodist
monograph of Edwards (1972) was originally inspired by his work on inferring
phylogenies.

All of the controversy is about the priors. The issue of whether we can say that
there really is a prior (for example, whether we can put a probability on whether
there are or are not Little Green Men on the planet Mars) leads us directly into phi­
losophy, and beyond the scope of this book. Two other issues concerning the prior
are worth note here: whether one person's prior can be another's, and whether
Jat priors lead to trouble in cases of unbounded quantities.

Universality of the prior
TIle researcher doing a Bayesian analysis of a data set applies a prior of their own
.:hoice. When the software chooses the prior, it is one chosen by the author of
[he software. Even when the software allows the user the choice, the issue arises
',,'hether this is the same prior that would have been chosen by the reader of the
~esulting paper. If it is, there is no problem, but if it differs by much from the
~eader'sprior, the conclusion can be affected.

For example, suppose that we send a space probe to Mars and have it use a
~amera to look for Little Green Men. It sees none. Assume further that it would
....ave had a 1/3 chance of not seeing them if they really were there (and of course
.:;. 100% chance of not seeing them if they really weren't there). If my prior belief in
=-ittle Green Men would give odds of 4: 1 against their existence, we can use the
-dds ratio formulation to calculate that the posterior odds ratio for the existence
i Little Green Men is 1/4 x 1/3 = 1/12. But if I publish this, it reflects my prior.

=~ vou were willing to give odds 4: 1 in favor of the existence of Little Green Men,
ur posterior odds ratio would have been 4/1 x 1/3 = 4/3, a very different result,
It might be argued that the correct thing to do in such a case is to publish

-_-:e likelihood ratio 1/3 and let the reader provide their own prior. This is the
"':..::elihoodist position. A Bayesian is defined, not by using a prior, but by being
'illing to use a controversial prior.
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Figure 18.4: A flat prior on the scale of the net probability of change
(left) and the prior on branch length to which this corresponds (right)
under a Jukes-Cantor model of base change.

Flat priors and doubts about them
One way of reducing the controversy over priors is to use flat priors (sometimes
called "uninformative" priors). It becomes important to know what scale we are
on. To discuss this, we will use the simplest case of parametric inference of phylo­
genies. Imagine that we have only two species, and infer the tree connecting them.
If we use a simple Jukes-Cantor model of DNA sequence evolution, the resulting
tree is unrooted. There is then no issue of tree topology. Inference of the tree is in
effect the same as estimating the distance between the hvo species.

Issues of scale. In our example, if we use a scale of branch length, this
can go from 0 to x. Alternatively, we could use a scale of the net probability p of
change at a site. This goes from 0 to 3/4. Figure 18.4 shows (on the left) a flat prior
between 0 and 3/4. On the right is the prior on the branch length that this implies,
using equation 11.17. It should be immediately apparent that this is far from a flat
prior on branch length.

If we were doing likelihood inference, it would not matter which of these two
quantities we used. Figure 18.5 shows the case in which we have observed 10
sites, of which 3 differ between the two sequences. On the left the likelihood is
plotted as a function of the branch length t, on the right as a function of the net
probability of change p. These look quite different, but the maximum likelihood
estimates correspond exactly. The value of t (0.383119) at which the likelihood is
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Figure 18.5: Log-likelihood curves for the case of two DNA sequences
differing at 3 sites out of la, under a Jukes-Cantor model. Left, plotted
as a function of branch length t. Right, plotted as a function of the net
probability of change p. The maxima are at precisely corresponding
points on the two scales.

-=-.dximized is exactly the value of t that corresponds to the value of p (0.3) at which
:,:-:e likelihood is maximized. This property of the estimate being independent of
:':--.e scale is called the functional property of maximum likelihood. It does not hold
':,r Bayesian inference.

Flat priors on unbounded quantities. More problems are uncovered if
'c try to put a flat prior on a quantity that is unbounded. The problem is that if

.._rior is to be flat from ato 00, the density will be zero everywhere. So we must
- .';\'e the prior be truncated somewhere. Figure 18.6 shows what happens if we
...5€ d flat prior on t that is arbitrarily truncated at t = 5. When plotted in terms

: IJ, the prior is strongly slanted toward values of p near 3/4. Even worse, when
'2 change the truncation to occur at (say) lOa, the slanting on the p scale is even

-::-onger.
It might be hoped that it would not matter much where a flat prior on twas

--illcated. It can matter, but this depends on how we are summarizing the pos­
'-=~ior distribution. If we note only the single tree of highest posterior probability,

-.:5 ,·"ill also be the maximum likelihood estimate of the tree and will not depend
=- where the prior is truncated, as long as that is beyond the position of the ML
-imate. If we instead make a Bayesian "credible interval" which contains (say)
-2 middle 95% of the posterior distribution, this can depend critically on where
-2 truncation point is.
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Figure 18.6: A flat prior on t between aand 5, and the prior on p which
is equivalent to it. The larger the number at which the flat prior is
truncated, the more strongly the prior on p is attracted to p = 3/4.

To see this in our Jukes-Cantor model example, note that the likelihood curve
as a function of branch length t (see Figure 18.5) has a long tail that stretches in­
finitely far to the right. It has very low density, but, as it goes out to infinity, it
contains an infinite area. If we try a prior that is truncated sufficiently far out, it
will have most of the posterior be in that long, low tail. Figure 18.7 shows the up­
per and lower ends of the credible interval as a function of the truncation point.
When it reaches about 700, the credible interval does not contain the maximum
likelihood value 0.383119. This shows that flat priors on quantities like branch
lengths can lead to strong truncation point effects.

The problem can be severe when credible intervals are defined in this way. But
there are alternative ways of defining them that do not suffer from this difficulty.
Instead of defining the interval by having 2.5% of the posterior probability lie be­
yond each end, we can make it as short as possible, by preferentially including the
highest parts of the posterior density. The probabilities beyond each end of the
interval are then asymmetric, but the mode of the distribution always lies withiIl
the interval, so in this case the interval always contains the maximum likelihood
estimate.

Applications of Bayesian methods
Although it is still early days for Bayesian methods in phylogenetic inference, they
have already been applied to a number of problems beside inferring the phylogeny
itself:

• Huelsenbeck, Rannala, and Yang (1997) have tested hypotheses about rates
of host switching and cospeciation in host/parasite systems. This is dis­
cussed further below in Chapter 31.
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Figure 18.7: Effects of having a flat prior of branch length, in our ex­
ample of a two-species phylogeny with 10 sites, when the flat prior is
truncated at various large branch lengths. As the truncation point T
becomes large, both the upper and the lower ends of the Bayesian 95%
credible interval rise, so that ultimately that interval does not contain
the maximum likelihood value 0.383119.

• Thorne, Kishino, and Painter (1998) used an autocorrelated prior distribu­
tion on rates of evolution among branches to sample from combinations of
rates on different branches of a phylogeny in doing MCMC integration of
likelihood of a phylogeny. This has been discussed above in Chapter 16.

• Huelsenbeck, Larget, and Swofford (2000) had a similar model for change of
rates among branches, different in changing rates at discrete points on the
tree. This has also been discussed above in Chapter 16.

• Huelsenbeck, Rannala, and Masly (2000) have used them to infer the rate
change of states of a character (horned soldier castes in aphids) and the bias
in the rate of gain of the character.

• Suchard, Weiss, and Sinsheimer (2001) have chosen among models of base
change using Markov chain Monte Carlo methods on a space that includes
both trees and models. We have mentioned this in Chapter 13.

• Huelsenbeck and Bollback (2001) have used a Bayesian framework to inves­
tigate the accuracy of inference of ancestral states. This has the complica­
tion that on some phylogenies a given ancestral node (such as the immedi-
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ate common ancestor of chimpanzees and humans) may not exist. We have
mentioned this work in Chapter 16.

• Metzler et a1. (2001) placed priors on the parameters of a model that al­
lows for deletion and insertion and samples alignments of a set of related
sequences. This will be discussed below in Chapter 29.

• Huelsenbeck, Bollback, and Levine (2002) have inferred the position of the
root of the tree, testing the relative merit of basing this on a clock, on an
outgroup, or on nonreversibility of the model of DNA base change.

• Bollback (2002) used Bayesian inference to choose among models of DNA
change in the light of the specific data set.

There is no reason to believe that this list will not expand until it covers all hy­
potheses of any interest.



Chapter 19

Testing models! trees, and
clocks

this chapter I will consider the ways in which likelihood ratios can be used
ro test hypotheses about phylogenies or about evolutionary models. I will also
discuss the related issue of "interior branch tests" and the wider issue of tests of
:Tee topologies. After considering testing of the molecular clock, I will also cover
:11ore direct approaches to statistical testing and confidence intervals, ones that
.:io not use the asymptotic framework of likelihood ratio testing. Tests involving
"::>ootstrap and other resampling methods, tests involving invariants, and paired­
~ites tests will be covered in later chapters.

Likelihood and tests
=-ikelihood does not only allow us to make a point estimate of the phylogeny; it
~~so gives us information about the uncertainty of our estimate. We can see in
:~ e odds-ratio form of the likelihood equations (equation 16.1) that the likelihood
-:ltio affects the posterior probabilities of different hypotheses. Even when we do
-ot have prior probabilities (and hence do not have posterior probabilities), there
~ a way of using the likelihood curve to test hypotheses and to make interval
::-:timates.

From one data set to another, the likelihood surface moves back and forth
'::-ound the true parameter values. Our estimates of them vary, and the height
, the curve at the peak is greater than the height at the true estimates. We can test
-:-tether some suggested parameter values are too far down the likelihood surface

. be the true values.
Asymptotically, with large amounts of data, the parameter values are esti­

-3ted with great accuracy, so that as long as we are in this "asymptopia" we
':::1 consider only the values of the parameters near their true values. For well-

307
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behaved likelihood curves the log-likelihood will be close to quadratic in this re­
gion. (One can simply consider it as approximated by the first few terms of a
Taylor series in that vicinity.) In these cases it is possible to show that the max­
imum likelihood estimate is asymptotically distributed as a multivariate normal
distribution, with mean zero and variance given by the negative inverse of the
matrix of curvatures of the expectation of the log-likelihood function. We will not
attempt the proof here: it is straightforward but too tedious. It will be found in
many theoretical statistics texts, such as Kendall and Stuart (1973, pp. 57ff.) and
Rao (1973, pp. 364££., p. 416).

Likelihood ratios near asymptopia
If only one parameter, B, is being estimated, the asymptotic variance of the estimate
of B is given by the curvature of the log-likelihood:

(19.1)

With multiple parameters, the variance is replaced by a covariance matrix, the
curvature by a matrix of curvatures, and the inverse by matrix inversion:

Val' [0] = V :::::; _C- 1

where C is the matrix of curvatures of the expected log-likelihood:

.. _ [D2
l0g(L)]

G'J - E DBi DB)

(19.2)

(19.3)

(19.4)

the B'i being the individual parameters that we are estimating. The expected log­
likelihood is not known in most cases; however, one can substitute the observed
log-likelihood and make only a small error if one is in asymptopia.

These rules about the variances and covariances of parameters are closely con­
nected with asymptotic distribution of the likelihood ratio. Consider the case of a
single parameter B. Asymptotically, with large amounts of data, the ML estimate
(j is normally distributed around its true value Bo, as we have already mentioned.
Suppose that its variance, which is also the inverse of the curvature of the log­
likelihood, is called v. Then, using this mean and variance, a standard normal
variate is

(j - BoVi! ~ N(O.l)

The likelihood will (by definition) be highest at the estimate (jand ,>omewhat lower
at the true value of B, which we will call Bo. How much lower? It is relatively easy
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to see, since we know the negative of the curvature of the log-likelihood, l/v, and
we are so close to the peak that we can consider the log-likelihood curve as lo­
cally quadratic. The log-likelihood is approximately its value at e, less a quadratic
function with that curvature:

(19.5)In L(e)In L (00 )
1 (00 - (f)2
2 v

Subtracting In L((0 ) from both sides and using the normal distribution in equation
19.4, we can rearrange equation 19.5, and we immediately see that twice the dif­
ierence in the log-likelihoods between the peak and the value at the true value 00

will be distributed as the square of a standard normal variate. This is a chi-square
\-ariate with 1 degree of freedom:

(19.6)

This result is a consequence of the fact that asymptotic variances of the param­
eters turn out to be obtainable from the curvatures of the log-likelihood surface. It
~ llows that there is a simple rule for how far down the log-likelihood surface the
:rue value of the parameter is expected to be. If 00 is in fact the true 0, it should not
"=,e too far down the curve. That is, maximizing over all 0 should not improve the
~:kelihood too much above the likelihood of the true O. If we select some tail prob­
:..bility (probability of Type I error) such as 0.05, we can compute the left-hand side
of equation 19.6 by doubling the difference of log-likelihoods between the peak
:..nd a proposed true value of O. We see whether that exceeds 3.8414, which is the
::'5th percentile of the distribution of X2 with 1 degree of freedom.

Thus we have a test of the hypothesis that e= 00 , rejecting it when some other
--alue of 0 fits the data significantly better. Alternatively, we could use the same
.ogic to make an interval estimate of O. The acceptable values of 0 are those whose
.og-likelihoods are within 1.9207 (= 3.8414/2) of the peak of the likelihood curve.
::or the likelihoods themselves, this implies that they should be within a factor of
-. 26 of the maximum.)

\1ultiple parameters
::L1r multiple parameters, we can use the same logic to get the distribution of the
:~elihood ratio between the maximum likelihood estimates and the true param­
:::er values. Suppose that there are ]J parameters (such as branch lengths on the
::' ~ vlogeny) that are being estimated from the data and their values are made
.:"".to a vector () = (01,02 .... ,Op). We have seen that, in the asymptotic limit of
:..rge amounts of data, these will be distributed in a multivariate normal distribu­
-:on with means equal to the true parameter values and covariance matrix _C- 1

,

here C is the expectation of the curvatures of the log-likelihoods. We now go
:'"'Iough a process very similar to the one-parameter case. The likelihood can be
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expanded around the true parameter values in a multivariate Taylor series. Since
the slopes of the likelihood at the maximum likelihood value () are zero,

1 TInL(()o) :::::: InL(()o) - 2 (()o - ()) C (()o - ())

We know that the maximum likelihood estimate () is multivariate normally dis­
tributed around the true value ()o with mean 0 and covariance matrix _C-l. It
follows from the usual sorts of manipulations of normal distributions that

T ?(()-()o) C(()-()o) rv Xp (19.8)

as it is the sum of squares of]J independent standardized normal variates. The
result is a straightforward extension of equation 19.6:

(19.9)

To test whether the null hypothesis that the parameter values are ()o is acceptable,
we double the difference between the highest log-likelihood and the log-likelihood
of this value, and we look this up in a X2 distribution with ]J degrees of freedom.
Intervals can also be constructed in a straightforward way although they will be
ellipses in]J dimensions.

Some parameters constrainedt some not
If we have a total of p parameters, and under the null hypothesis q of them are con­
strained, there is a very similar rule. It turns out that we can double the difference
in log-likelihoods between the two hypotheses, and then look up the resulting
quantity in a table of the X2 distribution with q degrees of freedom:

(19.10)

This includes all the other cases. (For example, equation 19.9 is simply the case
in which q = p.) Thus the number of degrees of freedom of the )(2 is the number
of parameters that are constrained to get to the null hypothesis. This includes not
only the cases in which q parameters have their values specified, but also cases in
which q algebraic relationships between the parameters are proposed.

Conditions
The likelihood ratio test (LRT) requires some rather stringent conditions. Most
important is that the null hypothesis should be in the interior of the space that
contains the alternative hypotheses. If there are q parameters that have been con­
strained, there must be a possibility to vary in both directions in all q of them.
Thus if we are testing hypotheses about a parameter e that can takes values be­
tween 0 and I, the null hypothesis that it is 0 does not allow for the usual form of
the likelihood ratio test.
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A modification is possible in such cases. In the one-parameter case, when the
null hypothesis is at the end of the possible intervat as random sampling effects
in the data cannot cause the parameter to vary in both directions, the probability
of achieving a given likelihood ratio is only half as great as it would be if the null
hypothesis were in the interior of the region. If the data were to try to recommend
a value less than 0, we would estimate the parameter to be 0 in those cases. Thus
if Lo restricts one parameter to the end of its range, the distribution of the doubled
log of the likelihood ratio has half of its mass at 0 and the other half in the usual
chi-squared distribution. Thus in this case we should compute the likelihood ratio
statistic, look it up in the usual chi-square table with one degree of freedom, and
then halve the tail probability. This distribution has been described by Ota et al.
(2000). They have also gone on to consider more complicated cases where more
:han one parameter are constrained to be at the limits of their range.

It is important to keep in mind that the LRT is only valid asymptotically. The
~roof of its validity requires that we be close enough to the true values of the
?arameters that we can approximate the likelihood curve as being shaped like a
:Lormal distribution. That is true with very large amounts of data. Statisticians are
:1ccustomed to using it with modest amounts of data, but it is well to remember
:- at it is an approximation in all such cases.

urvature or height?
~ we do not have an infinite amount of data, there are two possible ways to pro­
~eed. One is to use the curvatures of the expected log-likelihood (as approximated
:'~. the curvatures of the observed log-likelihood) and assume that the estimates
.:;Ie normally distributed, with covariances defined by the inverse of the curvature
::'.latrix. The null hypothesis is then rejected if it lies too far out in the tails of that
:-:ormal distribution.

The other method is simply to use the likelihood ratio. It is not at all obvious
":hich of these methods will be better, for in the asymptotic case in which the
'::erivations take place, both of them are the same. In fact, there is some reason to
:elieve that the second procedure (the use of the likelihood ratio) will generally be
-::'.ore accurate.

Interval estimates
:-:atistical tests such as the likelihood ratio test can be used to make estimates of
_-.:ervals that might contain the true values. As we have seen, this is done by
-_,ding the maximum likelihood estimate (of whatever you are estimating) and
-':.en finding all values that cannot be rejected compared to it, using the test. For
:--.e moment we will talk in terms of parameters of an evolutionary modet for as

'e will see, tree topologies are more difficult to deal with. Interval estimates are
~:s of values, all of which are acceptable given the data. As they go hand in hand

·:th tests, we will discuss both simultaneously.
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Figure 19.1: Likelihood curve for the transition/transversion ratio R
in the F84 model, for a 14-species primate data set selected by Masami
Hasegawa. For each value of R, the tree of highest likelihood is found
and the resulting likelihood plotted. Note that the horizontal scale is
logarithmic. The maximum likelihood estimate of R is approximately
29, and the likelihood interval for R is (14.68,59.7).

Testing assertions about parameters
As examples of likelihood ratio tests, let us consider testing assertions about the
parameters of the model of evolution. For the moment, we defer consideration of
testing different topologies, as that turns out to have some serious complications.

If we have DNA sequences and a model of change of the bases (such as the
Tamura-Nei model), we can imagine testing various hypotheses about the param­
eters of the model. We will use a particular data set, 14 sequences each of 232
bases, assembled by Masami Hasegawa, as our example. Note that this data set
omits sites that were first or second positions of codons, so it is not contiguous se­
quence. If we use the F84 model of base change, we have three parameters for the
base frequencies (the fourth is determined by those three as the frequencies must
add to 1), plus a transition/transversion ratio. Suppose that we try different tran­
sition/transversion ratios, plotting the likelihood against that ratio, which we call
R.

Figure 19.1 shows the likelihood curve we get as we vary the transi­
tion/transversion ratio R. The peak, which is at -2616.86231, is near 29. As we
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are specifying one parameter, we are restricting one degree of freedom in looking
at anyone point on this curve. We can reject those that have their log-likelihood
less than the maximum by more than 3.8414/2 = 1.9207. This defines an interval of
acceptable values between 14.68 and 59.7. Given the limited amount of data, this
rather wide confidence interval is reasonable. Although the computation searches
for the best tree for each one of these points, the tree topology found is the same
for all the values shown here. The computation can be speeded up by simply
keeping the tree topology unchanged and searching only among different branch
lengths. This would have to be checked occasionally by a full search among tree
topologies. It may seem that the curvature of the log-likelihood could also have
een used give a good approximation to this interval, as the curve is close to a

quadratic. But note that the horizontal axis is the logarithm of R: In fact, the inter­
yal is quite asymmetric.

We could also vary other parameters such as the base frequencies. We could
define the interval of acceptable base frequencies by finding all those combina­
:ions of base frequencies that achieved a log-likelihood no more than x§ (0.95)/2 =

~.815/2 = 3.908 below the maximum. Alternatively, we could have a Bayesian
rior on models. Suchard, Weiss, and Sinsheimer (2001) have used a Bayesian

: lCMC method to choose among models of DNA substitution at the same time as
:hey choose among trees.

oins in a barrel
:::or some parameters, the matter is not quite so simple. In the preceding chapter
. 'e saw that likelihoods could be computed for multiple evolutionary rates, and
:hat variation of rates over sites could be modeled by a hidden Markov model
HMM). Consider the case where there is no autocorrelation of rates, so that each
olte has its evolutionary rate drawn from a distribution of rates. There is the per­
?lexing question of how many different rates to use. As we add rates one by one,
2dch model contains the preceding model as a subcase, because by adding an ad­
.:iitional rate that is the same as one of the previous rates we do not change the
:.:..,·elihood. Therefore, the likelihood can never decrease on adding a new rate ­
:: will usually increase at least slightly. Each rate brings with it two new parame­
:2rs: one rate and one expected fraction of times that this rate will be used. What
0: ould we do? Add rates until the increase is not significant? This is tempting,
~'_lt it leaves the possibility that adding one more rate would again increase the
":':',elihood substantially.

We can see the dilemma, and one type of solution to it, by considering a simpler
:2.se, that of Coins in a Barrel. We imagine that we have a large barrel filled with
'ell-mixed coins. We draw coins from it, toss each 100 times, and then return

:':'l.em to the barrel. The barrel is large enough that we draw a new coin each time.
-=-:'1.e coins do not necessarily all have the same probability of heads. We want to fit
-:,potheses about the mixture of heads probabilities. If, for example, we wanted
-.' fit the hypothesis that there were three kinds of coins, one having frequency h
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and heads probability PI, one frequency 12 and heads probability P2, and one with
frequency 1'3 and heads probability P3, the probability of a sequence of N tosses
that got M heads and N - j\[ tails would be

L = h (~)prI(l-pdV-J\J + fz(~~)P~I(1-P2)N-M + 1'3(~)p~I(1-P3)N-J\J
(19.11)

We can immediately see that, as with evolutionary rates, we will usually increase
the likelihood each time we add another type of coin, and there is the puzzling
issue of when to stop and consider the model to fit adequately.

As with evolutionary rates, the heads probabilities could be slightly different
for each coin. Thus it would make more sense to imagine a distribution f (p) of the
heads probabilities. The likelihood for a set of tosses would then be

L = (1 f(p) (N)pi\! (1 _ p)N-J\J dp
)0 M

At first sight, this problem appears even worse. There are uncountably infinitely
many possible density functions, f(p). But a closer examination shows that equa­
tion 19.12 depends on those density functions only through the first N moments
of each (the kth moment is the expectation of pk). If the functions f(p) have N
moments, with the jth moment being

j
.l

M j = E[V] = 0 f(p) pj dp (19.13)

and if we expand the powers of (1 - p) in equation 19.12, it follows that the like­
lihood L is a linear combination of j\h, ]l.f2 , . . , . JUN. Two functions f that have
the same first N moments, but different values of j\!/.N+l, will achieve the same
likelihood L.

Thus, if we can find the first N moments of the distribution of p, we can maxi­
mize the likelihood. Finding a sequence of real numbers while ensuring that they
are possible moments of a distribution is a well-known problem in statistics. The
point that is relevant here is that only N quantities are involved - it is possible
(though not easy) to find the likelihood of the best-fitting model. Note that the
process is not the same as fitting a different heads probability for each coin tossed
- that would estimate far too many parameters.

Evolutionary rates instead ofcoins
Turning to evolutionary rates, we find a case that behaves this way. For D A
likelihoods, if autocorrelation of rates among sites is not permitted, the likeli­
hood is a function of the data through the observed pattern frequencies of patterns
of nucleotides. For n species, there are 4n possible patterns (AAAA ... A through
TTTT ... T). Each of these has an expected frequency for each possible phylogeny.
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Two combinations of rates will have distinct likelihoods only if they differ in the
expected frequencies of some of these. So all combinations of rates that achieve
the same expected frequencies of patterns have equally high likelihoods. The best
we can do is to achieve the best set of pattern frequencies that can be predicted by
a tree. This is not the same as the set of pattern frequencies that is exactly the same
as the observed pattern frequencies; usually those will not be expected from any
tree.

Most of the models of DNA change have the property that the transition
probabilities are linear combinations of exponentials, as in Table 13.1 where the
Tamura-Nei model has probabilities that (for branch lengths rt) are functions of
-"xp[-(etR +3)rt], exp[-(ay + j-3)rt] and cxp( -(3 lLt). This in turn means that, us­
ing equations like 16.10 and 16.11, we can write the pattern frequency of any given
, attern as a sum of exponentials of sums of branch lengths

Prob (ACCCG) = L Ci exp ( - L aij r Vj)
. j

(19.14)

In this equation, the first summation (i) is over all ways that states can be as­
signed to hypothetical ancestral nodes in the tree, and the second summation is
owr branches in the tree. For each branch in each reconstruction, the coefficient

j is either 0 or is one of aR + /3, ay + /3, or ,3, depending on what kind of event
:tas been reconstructed in that branch. The coefficient Ci also depends on the de­
:ails of the reconstruction. It contains, for the Tamura-Nei model, only constant
:erms that do not depend on the branch lengths or evolutionary rates.

When we take expectations over the distribution of rates, the upshot is that
:he expected pattern frequencies depend on terms like IE [exp( -rx)], where r is the
2,"01utionary rate and :c is a weighted sum of some of the branch lengths. This
2:\pression is the Laplace transform of the distribution of evolutionary rates, eval­
'Jated at -:1.:. There will be a large number of different values of ;r:, but we can at
:cast say that any two distributions of evolutionary rates that have the same values
:'r their Laplace transforms at that large set of values will achieve the same likeli­
:-lOod. This again gives us the hint that the structure of the problem with varying
;?,"olutionary rates is similar to the structure of the coins-in-a-barrel problem. A
':erivation closely related to this is given for phylogenies by Kelly and Rice (1996).
" "e break off here; no one has yet solved the problem of maximizing the likelihood
:"er all possible rate distributions.

Choosing among nonnested hypotheses: AIC and BIC
.':',5 in the case of evolutionary rates, we often have sets of models with ever-greater
:-..lmbers of parameters. We can test these by likelihood ratio tests, but it may be
2fficult to know which model to prefer. It will always be the case that a more gen­
<al model will have a higher likelihood than a restricted subcase of that model.
=;"oosing the model with highest likelihood may lead to one that is unnecessarily
:omplex.
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Statisticians have come up with methods that try to compromise goodness of
fit with the complexity of the model. The most famous of these is the Akaike infor­
mation criterion (AIC). It computes the expectation of the log-likelihood for a new
data set of the same size as the current one. The argument is roughly as follows:

• The expectation of the log-likelihood is highest at the true value of the pa­
rameters.

• However, we can't compute it directly; we can only compute the log­
likelihood for the current data.

• If there are P extra parameters in our model, the parameter estimate for the
current data is at a point where the expectation of the log-likelihood is on
average P units lower.

• With a large amount of data, the shape of the log-likelihood curve is about
the same as the shape of the (unknown) expected log-likelihood curve, only
displaced from the true values.

I realize that, put this way, the argument is hard to follow, but we do not have
space here for a more exact derivation. If we take the negative of twice the log­
likelihood of each hypothesis and penalize it by adding twice the number of pa­
rameters, so that for hypothesis 'j with Pi parameters,

AIC; = -21nL; + 2Pi (19.15)

we get quantities that can be compared among hypotheses. One prefers the hy­
pothesis that has the lowest value of the Ale. We could equally well subtract Pi
from the log-likelihood and maximize that.

An alternative to the AIC is the Bayesian information criterion (BIC). It differs by
using a penalty that is dependent on the sample size 71.:

DIG; = -21n Li + Pi In(n) (19.16)

It is justified by a rather general Bayesian argument that places priors on hypothe­
ses but does not place many requirements on those priors. For all cases with
more than a few data points, the penalty for extra parameters in the model will
be greater for the BIC than for the Ale.

Of these the AIC has been most frequently used. Hasegawa (1990), Kishino
and Hasegawa (1990), Hasegawa et al. (1990), and Reeves (1992) discussed its use
to select among models. Kishino and Hasegawa (1990) also used it to select among
tree topologies. Completely resolved tree topologies all have the same number of
parameters (their branch lengths); thus choosing the best AIC or BIC value is the
same as choosing the tree of highest likelihood. However, when one tree has a
multifurcation, it thereby has fewer parameters, so that it may be preferred if it
does not lose much likelihood.

Ren, Tanaka, and Gojobori (1995; see also Tanaka et al., 1997, 1999) have pre­
sented a "model-based complexity" criterion. It is closely related to the mini­
mum description length (MOL) criterion of J. Rissanen. In effect it adds to the
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log-likelihood a term depending on the number of internal nodes in the tree, and
one depending on the number of parameters in the model of evolution. The net
effect is very much like the BIC criterion. All of these criteria can be used to decide
among models of evolution and whether multifurcating trees are to be preferred
to bifurcating trees that further resolve them.

Posada and Crandall (2001) discuss the AIC and BIC criteria, which are avail­
able in their model-testing program (Posada and Crandall, 1998).

An example using the AIC criterion
To illustrate the use of the AIC criterion, I have run the 14-species primate mi­
:ochondrial DNA data set (which we used in Figure 19.1). Table 19.1 shows the
:og-likelihoods, the numbers of parameters, and the AIC criterion for a series of
,10dels of evolution. The Jukes-Cantor, Kimura two-parameter, and F84 models
"re evaluated, the latter two with transition/transversion ratio R either estimated
or set to a value common for mammalian nuclear DNA. As this is not nuclear
:J~A, that value is essentially an arbitrary one. In this case, the AIC prefers the
::10st complicated of these models. The set of likelihood ratio tests that can be per­
Cormed on these hypotheses is shown in Figure 19.2. These form a lattice. Posada
.:.. d Crandall (2001) have suggested using likelihood ratio tests with a Bonferroni
~orrection for multiple tests. In this case there are seven arrows in the diagram. In
,oJ cases the unrooted tree topology is identical, a condition which is needed for
:.: e likelihood ratio test to be valid. Using the tail probability 0.05/7 = 0.00714,
, 'e find that six of the arrows correspond to significant tests. Following these ar­
: "'\\'S, we arrive at the same conclusion about the best model that we would with
:.-e AIC criterion.

Table 19.1: An example of the use of the AIC criterion to choose a
model of evolution. The 14-species primate mitochondrial data set is
used, evaluated with PAUP* for a variety of models of evolution. The
F84 model with estimated transition/transversion ratio R = 28.95 is
the preferred model among those shown here.

Number of
lodel 111L parameters AIC

Jukes-Cantor -3068.29186 25 6186.58
K2P, R = 2.0 -2953.15830 25 5956.32
K2P, R = 1.889 -2952.94264 26 5957.89
F81 -2935.25430 28 5926.51
F84, R = 2.0 -2680.32982 28 5416.66
F84, R = 28.95 -2616.3981 29 5290.80
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Parameters

29 F84, T estimated

~I
28 F81 F84, T=2

27

26 K2P, T estimated

/
25 Jukes-Cantor K2P, T=2

Figure 19.2: A lattice of likelihood ratio tests, for the cases shown in
Table 19.1. The number of parameters in each hypothesis is given on
the scale to the left, and the arrows represent likelihood ratio tests. The
tests that come out strongly significant are shown as dark arrows; the
one that is not significant is shown as a thin arrow.

Posada and Crandall (2001) compared movement in a likelihood ratio test lat­
tice with use of the AIC and BIC criteria. In simulations in which the true model
was known, the likelihood ratio test lattice did well and outperformed AIC and
BIC. However, it is not always easy to see in which order to perform the likeli­
hood ratio tests. In the example shown here, if one starts with K2P with R = 2,
and first tests whether that parameter should be estimated, one might be tempted
to abandon the effort to move further. A different route would lead to the top, in­
cluding use of an estimated value of R. It is also not obvious what number of tests
to use in computing the Bonferroni multiple-tests correction. If we start at the sim­
plest hypotheses, we may stop after considering only some of the possible tests,
so we would overcorrect if we corrected for the presence of all of them.

The problem of multiple topologies
We have so far avoided the issue of testing assertions about tree topologies, and
for a reason. Naively, we could imagine taking two tree topologies, maximizing
the likelihood for each, and comparing their likelihoods. How many parameters
are there in each case? If we have an unrooted tree with n tips, there are 2n - 3
branch lengths. These are the parameters (though there may be others as well that
are parameters of the model of evolutionary change). One might want there to be
parameters for the tree topology, but technically there are not. The tree topologies
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are discrete and cannot be considered to be parameters. The theory of the likeli­
hood ratio is asymptotically correct with large amounts of data. In that case we are
so close to the true tree that there is only one possible topology. Thus the theory
gives us no hint as to how to test tree topologies.

LRTs and single branches
If the two trees that we compare are both fully resolved and unrooted, both have
'2n -3 degrees of freedom. Thus the difference in the number of degrees of freedom
must be O. We cannot do a likelihood ratio test between them, as neither will be
a subcase of the other. Thus there is no easy way to do the likelihood ratio test
between two trees.

One might think that we could do a conservative test by comparing each tree
to an appropriate multifurcation, as I have myself suggested (Felsenstein, 1988b).
This will not work. For example, suppose that we have one tree on which we see
:he groupings ((Human,Chimp),Gorilla). If we can reject the tree that is a trifur­
.::ation: (Human,Chimp,Gorilla), compared to ((Human,Chimp),Gorilla), does this
mean that we can rule out other topologies such as ((Chimp,Gorilla),Human)? In
~act, we cannot. The likelihood may actually have a peak within both of these bi­
:1-1rcating topologies, but be substantially lower at the trifurcation that is between
:hem.

Figure 19.3 shows a simple numerical example of the presence of two peaks in
?djacent tree topologies, for the case of a molecular clock. The example data has 64
:.·tes and three species, A, B, and C. Of the sites, 37 are invariant, while the other
"'.:.i have nucleotide patterns ;t;.'Ey, :r;y.'E, and yxx in proportions 14: 13: O. There are
, 0 sites with pattern xyz. When analyzed with a Jukes-Cantor model, the results
"re as shown. Note that if we were to test the internal branch length t, we would
ind that the value 0 can be excluded, as it is more than 2.2 units of log-likelihood
_:own from the peak. But there is another peak within the tree topology ((A,C),B),
' .. hicl, is only 0.78 units lower than the highest peak.

We can test against the trifurcation with one degree of freedom, for the trifurca­
:::.on restricts one branch length of the bifurcating topology to be O. As the example
~~ows, this does not exclude the possibility of alternative peaks, including fairly
:-lausible ones. An example equivalent to this, and coming to the same conclusion,
,= given by Farris, Kii.llersjo, and De Laet (2001).

If we cannot use the likelihood ratio test on the length of an internal branch
::' rule out nearby topologies, can we do a likelihood ratio test between them di­
-2ctly? Sadly, we cannot. Both bifurcating trees have the same number of branch
:?ngths varying. The difference in their numbers of parameters is O. We cannot
:'0 the test with 0 degrees of freedom. More to the point, the two topologies are
- ot nested within each other. Neither of them is a subcase of the other. There is
-0 way that branch lengths of ((Human,Chimp),Gorilla) can be restricted so as to
'::'tain a tree of topology ((Chimp,Gorilla),Human). We could do this to get the

-=-. 'urcation, but not to get an alternative bifurcation.
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Figure 19.3: A numerical example of multiple peaks within different
tree topologies, for a 64-site three-species case described in the text.
Note that the scale of branch lengths runs backwards on the left-hand
side of the graph. The log-likelihoods are plotted against the internal
branch length t, for the case of a molecular clock. The log-likelihoods
are profile log-likelihoods; that is, for each value of t, they show the
highest log-likelihood that can be achieved by optimizing the value of
the other branch length parameter.

Thus there is the open issue of how to make a likelihood ratio test of different
tree topologies.

Interior branch tests
Another class of tests for tree topology are the interior branch tests. These were in­
troduced by Nei, Stephens, and Saitou (1985). Other variations on interior branch
tests are due to Li (1989), Tajima (1992), and Rzhetsky and Nei (1992). We have
seen in Chapter 11 that for methods such as least squares, we can compute the
variance on the estimate of the length of a branch in the interior of the tree, al­
though at the expense of a fair amount of computation. In all of these papers,
various approximations are made enabling quick computation of the variance of
the length of an interior branch in the tree, without considering the topology of
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other parts of the tree. In these cases, the authors argue that when the length of
a branch is significantly different from 0, we regard the reality of the branch as
established.

Variances of branch lengths can be computed in distance matrix methods, and
this has been done by Chakraborty (1977), who approximated sequence evolution
by a Poisson process, assuming that the tree was obtained by a UPGMA cluster­
ing method. The likelihood approach mentioned above can also address the same
questions. We have seen that we can plot likelihood against branch length. This al­
lows all other branches to adjust their lengths in response to changes in the length
of this branch. The curvature of the log-likelihood of the tree as a function of
length of this branch allows us to compute an approximate standard deviation of
the branch length. Alternatively, we can use the height of the log-likelihood rather
than its curvature; this may be more accurate.

If we were to use this height to construct an equivalent of the interior branch
test, we would accept the branch if the LRT against a branch length of 0 was sig­
nificant (d. Navidi, Churchilt and von Haeseler, 1992). In the numerical example
I gave in Figure 19.3, the result would be misleading. Does this prove that inte­
rior branch tests are dubious? Although this case is disquieting, it is not strong
evidence against interior branch tests. The data set was one concocted by hand,
rather than occurring in nature or in a computer simulation. (A similar argument,
also based on a concocted data set, is given by Farris et al., 1999.) Real data sets,
especially real simulated data sets, would rarely have this strong signal for two of
the three possible topologies, with lack of signal for the third. In generat the logic
of the interior branch test will not be misleading, particularly if a branch length of
ois strongly rejected.

Sitnikova, Rzhetsky, and Nei (1995) have compared the behavior of bootstrap
rests and interior branch tests. In generat they found good concordance of their
results: When an interior branch test recommended a branch strongly, so did the
bootstrap. (Bootstrapping is covered in Chapter 20.) They argue for the superiority

f the interior branch test, when one particular branch is of interest. Dopazo (1994)
and Sitnikova (1996) used bootstrapping to calculate the variance of the length of
an individual branch; Sitnikova found that this was more robust against variation
'I\ evolutionary rates among sites than was the standard interior branch test. She
also presented corrections for the P value computed from the estimated branch
:ength and its variance, to correct for the tree topology having been chosen on the
'::>asis of its having a positive estimate of that branch length.

Interior branch tests using parsimony
-\lthough most of the literature on interior branch tests has used distance ma­
~ix methods and likelihood can also be used, there has been at least one attempt
..ising parsimony. Sneath (1986) used parsimony reconstructions of the number
:>t changes in branches of the tree. Taking an interior node of a bifurcating tree,
.~,e considered the three branches connecting to it. For each he calculated a stan-
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dard deviation, assuming that the number of changes was drawn from a Poisson
distribution, as it would be if these were observed changes and evolution were
sufficiently clocklike. This enabled him to place a P value on the presence of the
branch. When the length of one of the branches is not significantly different from
zero, this is taken as an indication that rearrangement of the topology in that re­
gion of the tree is not ruled out.

Sneath's method is limited by its assumption that the parsimony method al­
lows the reconstructed changes to be treated as observations. As with all the in­
terior branch tests, it also treats branches in isolation without consideration of co­
variation in their statistical uncertainty.

A multiple-branch counterpart of interior branch tests
If a tree has b branches, each of which has a length, then when we test a proposed
tree with given branch lengths, it restricts b parameters. Thus the trees (of that
topology) that should be in the interval are ones whose log-likelihoods are less
than the maximum by an amount that is half the size of a significant chi-square
variable with b degrees of freedom. This is a more general counterpart of the
interior branch test, in which one finds an interval that is supposed to contain
the whole tree.

For example, if an unrooted tree has n tips, it has 2n - 3 branches. For n =
10, that means that there are 17 branches. The value ofaX2 variate that has tail
probability Q = 0.05 with 17 degrees of freedom is 27.6. Thus all trees that come
within 27.6/2 = 13.8 of the log-likelihood of the maximum likelihood tree are
within the interval.

This sounds interesting, but it has the same difficulty as the interior branch
test - there may be trees of a different tree topology that have likelihoods in this
range. The asymptotic theory that justifies this interval does not allow for multiple
topologies, so that it is not clear how seriously to take the interval if it extends over
multiple topologies. There is also the very real issue of how one finds and reports
the trees that are in this interval. This is a serious computational task that has
received too little attention as yet.

Testing the molecular clock
When tree topology is not an issue, we can consider how to test the hypothesis of
a molecular clock. There are two forms of the clock hypothesis. One asserts that
all lineages have the same rate of evolution, which does not change through time.
A less restrictive version asserts that all lineages have the same rate of evolution,
but do not prevent it from changing through time, as long as the changes apply si­
multaneously to all lineages. Here we will be primarily concerned with the latter.
Unless we have sampled individuals at different times, we cannot distinguish be­
tween these two forms of the molecular clock. I briefly summarize here the large
literature on testing the molecular clock.
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Parsimony-based methods
The first attempt at a comprehensive statistical test of the molecular clock was
made by Langley and Fitch (1973, 1974). Using protein sequences, they assigned
amino acid replacements to branches in a known tree. They then used these as
if they were known data, and estimated branch lengths by maximum likelihood.
They then constructed a chi-square test of whether the number of substitutions
on each branch were proportional to these clocklike branch lengths. In spite of
this statistical sophistication, their test relies on the accuracy of the parsimony
reconstruction, and is limited by it. A similar issue arises for the paper of Cutler
(2000a), which extends Langley and Fitch's work to allow for an episodic clock
that has bursts of substitution.

Distance-based methods
One can also use distances on trees fit by least squares, and use variance ratios
:0 test for a clock. I gave such a test (Felsenstein, 1984) in which the increase in
,he sum of squares imposed by assuming a clock is to be compared with the sum
of squares without a clock. This can be done if the two tree topologies are the
.,ame. The test is an F ratio with degrees of freedom n - 1 in the numerator and

11 - 2)(n - 3)/2 in the denominator, when a triangular distance matrix is used.
The difficulty with this test is that it assumes that the distances have independent
:-loise, which will not be true if they are based on molecular sequences. Some
,::orrection for the covariances of the errors can be made, as we have seen in the
jiscussion of generalized least squares in Chapter 11. In principle this could be
.lsed to make a more accurate distance-based test. But the computational burden
-.\-ould be heavy.

Likelihood-based methods
-::he likelihood ratio test can be used to test the molecular clock (Felsenstein, 1981b,
~ 988b). Suppose that we have estimated a phylogeny under a molecular clock and
:llso one without it. Suppose further that these turn out to have the same unrooted
=ee topology. Restricting our search of topologies and branch lengths to those
::':',at reflect a molecular clock cannot result in a higher likelihood. If we have done
:",1.e search properly, the search in the absence of a clock will consider all trees that
:"'.a\·e a clock as well as all trees that do not, so that it cannot find a worse tree. If
- ·e restrict our consideration to trees that are clocklike, we are searching in fewer
':~mensions. With n tips, the clocklike trees are specified by knowing the branch
'2 gths down from the tips to each of the n - 1 internal nodes. The full tree has
_ - 3 branch lengths, each of which can be varied, while a clocklike tree of the
o:lme topology has n - 1 lengths that can be independently varied. The test of a
--::'.olecular clock thus has (2n - 3) - (n - 1) = n - 2 degrees of freedom.

If n = 3, there are 3 degrees of freedom in a nonclocklike tree, but only 2 in
o clocklike tree. If the tree has topology ((A, B), C), the likelihood ratio test of
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A B C D E Constraints for a clock

v I v2 vI = v21 v4 Vs

v3 v4 = Vs
v6

Vs vI + v6 = v3

v7 v3 + v7 = v4 + vs

Figure 19.4: The constraints resulting from a molecular clock in a case
with six species, in which there are 3 degrees of freedom constrained
in enforcing a molecular clock. The bottommost constraint does not
actually have an effect in restricting V7 + VS, so it is not counted.

the clock is in effect testing whether the branches leading to A and to B are the
same length. That places one restriction on the three branch lengths, reducing the
number of parameters free to vary to 2. The likelihood ratio test has one degree of
freedom.

Figure 19.4 shows a tree with 6 species, and the branch length constraints that
are involved in making it adhere to a molecular clock. Note that although there
are four equations in Figure 19.4, the last one does not place a constraint on the
value of one of the branch lengths in the unrooted tree.

The relative rate test
Sarich and Wilson (1973) introduced the idea of a relative rate test, testing whether
the two ingroup branch lengths (such as the ones leading to A and to B in the above
example) are equal. They did not develop it as a statistical test. This has been done
by Wu and Li (19S5). They considered the number of sites at which sequences A
and C differ, the number of sites at which Band C differ, and they gave an ap­
proximation for the variance of the difference between the differences. They also
gave similar expressions for the differences based only on transitions. An approx­
imate normality of the difference of differences is justified in most cases, and their
simulations showed that the variance approximations were appropriate. Tajima
(1993) presented a simplified test that simply counted whether the patterns x:,p
and yxx occurred in significantly different numbers, where the species are in the
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order ABC. He also presented extensions that distinguished between transitions
and transversions.

Muse and Weir (1992; see also Weir, 1990) addressed the problem in a likeli­
hood framework, using the likelihood ratio test mentioned above, with one de­
gree of freedom. They showed by simulation advantages of the likelihood ratio
test when rates of transition and transversion differed greatly.

Extension to multiple species. The difficulty with the relative rate test is
that when there are many species, one has many tests to perform if all triples are
considered, and there will be considerable nonindependence of these tests. Tajima
(1993) shows a table with many tests performed for a 6-species data set. When
some of these are significant, it is hard to know how to combine them to infer
where in the tree there are rate inequalities, and how to correct for multiple tests.
Li and Bousquet (1992), Takezaki, Rzhetsky, and Nei (1995), and Steel, Cooper, and
Penny (1996) showed ways to compute the variance of a relative rate test statistic,
when the statistic compared the average distances of members of two clades to
an outgroup. The latter authors also showed how to narrow confidence intervals
on the timing of the root of the tree when there are multiple species in the data.
Robinson et al. (1998) presented a method for weighting these averages to take
the internal structure of the clades into account and presented simulations show­
ing that this improved the statistical power. A full likelihood approach would be
better yet, allowing all forms of nonindependence in the data to be taken into ac­
count. We have seen above that a likelihood ratio test can make a simultaneous
est of the whole tree for clockness.

Discovering local violations of clockness. Bromham et al. (2000)
showed by simulation that relative rate tests between triples of species have rela­
'ively poor power to detect lineages that are evolving at a different rate. We may
1:Je interested in tests that focus on particular parts of the tree or that explore which
?arts have the least clocklike behavior. It would in principle be possible to take
any partition of the species into two or more groups and test the hypothesis that
ips within each partition have equal height. Takezaki, Rzhetsky, and Nei (1995)
suggested such an approach. For each nonroot interior node in a rooted bifurcat­
:ng tree, they test whether the two clades descended from the node have equal
cates of evolution. They use average distance calculations and use the structure
·.\-ithin each clade to calculate covariances of the distances. This is not a likeli­
: ood approach but does take the structure of the tree partly into account. They
suggest a sequence of such tests coming up from the root, with clades being elimi­
. ated from the tree if they have rates of change sufficiently different from the rest.
-:-hus groups that were judged clocklike at one level could later be judged to have
~ubclades that did not adhere to that clock. They eliminate groups; the tree that
,"'mains has its branch lengths re-estimated under the constraint of a clock. They
:all this a "linearized tree".
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A
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G

Figure 19.5: A tree with seven species, used as an example in the dis­
cussion of testing various parts of it for a molecular clock.

A similar sequence of tests could be done coming down from the tips, using
likelihood ratio tests or other tests. As an example, in Figure 19.5 we could ask
whether the sets of species {A, C, F}, {D, E}, and {B, G} represent three different
heights, with A, C, and F all at the same height, D and E at another height, and B
and G at still another. There is a large lattice of such tests, one for each partition of
the set of 7 species into sets. Some of these are restrictions on others. For example,
the test for these three sets is a further constraint on the test of the pair {D, E}. The
least constrained tests are the one with all species in different subsets (no clock at
all) and the one with all species in the same subset (one overall clock).

This framework raises all sorts of interesting questions about how one would
search among all possibilities and do tests in a way that allowed for the large num­
ber of tests possible. But perhaps this approach is not worth pursuing. If we ask for
these tests where the inequalities of rates in the tree would have to be, it becomes
immediately apparent that many of the possibilities are not biologically sensible.
If two of the subsets have their species connected by lineages that overlap, then
those lineages will be evolving according to two different clocks at the same time.
For example, the pairs {A, C} and {B, G} are connected by paths that overlap, and
we cannot assume that those branches simultaneously have two different rates of
evolution.

It becomes apparent that we should be interested only in subsets connected by
nonoverlapping paths. One combination of tests that seems natural follows the
hierarchical structure of the tree. Table 19.2 shows the sequence of tests we would
do, and which ones are possible only after others show clockness. The tests are, in
effect, one for each interior node of the tree, and each test is only meaningful if all
the tests for nodes above it in that subtree are passed. ote that there is no test for
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Table 19.2: Tests of clockness in different parts of the tree in Figure 19.5,
showing for each which previous tests must have shown clockness for
it to be meaningful.

Test Tests equal Meaningful if
number rate in set pass test(s)

1 {A, B}
2 {A, B, C} 1
3 {D, E}
4 {F, G}
5 {D, E, F, G} 3 and 4

the bottommost node of the tree, as there is no outgroup allowing for relative rate
tests for pairs of species in the different subtrees there.

The five tests account for the 5 degrees of freedom (n - 2) in the overall clock
test. They can each be done by a likelihood ratio test that constrains the tips in that
set to be at a common height. As there are multiple tests being done, a correction
such as the Bonferroni correction would need to be done, to ensure that the overall
probability of rejection of a clock in some region of the tree would be less than the
desired value such as 0.05.

There is more to be done on this subject, but I must leave that as an exercise for
:he readers.

Using relaxed clocks. I have noted, in Chapter 16 that a number of au­
:hors have discussed reasons why the clock may be violated, and that some of
:hem have put forward models of relaxed clocks. Likelihood analysis is difficult
:mder relaxed clock models. One has to allow for bursts of evolution within sites,
o d also for the presence of these bursts to be correlated in different sites. This
:1onindependence of evolution in different sites is particularly troublesome. One
??proach that has been used is to assume that a parsimony method correctly re­
:onstructs how many changes have occurred in each site in each branch of the
::-ee. This is the approach taken by Langley and Fitch (1973, 1974) and later by
~mderson (1997,2002) and by Cutler (2000b). These papers make statistical tests
:: constancy of the rate of change, using the parsimony reconstructions as if they
-ere data.

A more tedious, but more accurate, approach is to use Markov chain Monte
'::::lrlo techniques. In effect, these average over various patterns of rates along the
~2e. The variation of rates is addressed by letting the MCMC algorithm assign
-.::.res to different parts of the tree, sampling from the patterns that are possible. We
-,,,-e discussed above (in Chapters 16 and 18) the papers of Thorne, Kishino, and
-linter (1998), Huelsenbeck, Larget, and Swofford (2000), and Kishino, Thorne,
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and Bruno (2001) that use MCMC methods to carry out Bayesian analysis of mod­
els in which rates of evolution vary through time. These analyses allow more fully
for the uncertainty of reconstruction of placement of substitutions. By inferring
posterior distributions for the parameter that affects departure from a clock, these
papers can test the molecular clock against a model that departs from a clock.

Simulation tests based on likelihood
We have seen that the standard Likelihood Ratio Test is often wrong or dubious,
for two reasons. For tests of different tree topologies, the hypotheses are not nested
properly and thus do not satisfy the assumptions of the LRT. Even when the hy­
potheses are nested properly, the use of a chi-square distribution may be unwar­
ranted if the sample size is not large enough for the asymptotic approximations to
be valid.

Goldman (1993) has proposed using computer simulation to find the distribu­
tion of the LRT statistic, using a method first introduced in other statistical contexts
by Cox (1961). For the case of a relative rate test, it would work like this:

1. Infer the phylogeny with and without a clock, calling these trees Tc and T
and their log-likelihoods .ec and .e.

2. Use the null hypothesis that the tree is clocklike, by taking the tree to be
our best clocklike estimate, Tc , and simulating a large number R of data sets
using the same statistical model of evolution.

3. For each these simulated data sets, find Tc , T, and their likelihoods.

4. Consider the distribution of the differences of log-likelihood f - f c for all R
replicates. Include as well this difference of the log-likelihoods computed
from the original data.

5. If the original difference is in the upper 5% of these R + 1 differences, we
may reject the hypothesis of clockness at the 95% level.

In effect, Goldman's test uses simulation to empirically tabulate the distribution
of the log-likelihood ratio test statistic and uses that empirical tabulation instead
of the chi-square distribution. If the chi-square distribution were actually ade­
quate, then we would also expect Goldman's empirical distribution to be close to
it. When we are far from asymptopia, one cannot prove that this simulation test
makes optimal use of the data. Perhaps a test statistic different than f - f c would
be better, but I would guess that this LRT statistic does about as well as can be
done.

Huelsenbeck and Bull (1996) have suggested using a simulation test to deter­
mine whether two data sets suggest different trees for the same group.

In the next chapter, when we discuss the bootstrap method, we will see that
these simulation tests are in effect an application of the method called the para­
metric bootstrap. As in that case, the simulation test relies heavily on the approx-
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imate correctness of the stochastic model of evolution. That reliance is shared by
all uses of the Likelihood Ratio Test.

Further literature
For a more extensive discussion of the use of likelihood ratio tests of models and
tree topologies, and of the use of computer simulation to generate the distribu­
tion of likelihood ratio test statistics, the reader is referred to the review article
by Huelsenbeck and Crandall (1997). Posada and Crandall (2001) have argued on
grounds of theory and simulation for use of a hierarchical lattice of models of evo­
lution, with likelihood ratio tests used to select a model out of a complete set of
models.

More exact tests and confidence intervals
likelihood ratio tests are useful and powerful, but we may wish to derive tests
or confidence intervals from first principles, in order to avoid assuming that we
are in asymptopia. Cavender (1978) has been the pioneer of direct approaches to
statistical testing. He took the parsimony statistic as the relevant one; he exam­
ined its distribution on all possible tree topologies in a four-species case without a
:nolecular clock. As he was using the symmetric 0/1 model, it turns out that in the
~\'orst case, long branch attraction could cause as many as one-third of the char­
.:Kters to misleadingly favor the wrong tree topology. Cavender therefore argued
: at if the number of characters favoring a tree was significantly greater than 1/3,
:c~ey could not be the result of long branch attraction. For nucleotide sequences,
=--1.e analogous worst case has 3/16 of the characters favoring a particular wrong
:opology. Cavender's argument came at the same time as my own discovery of
:ong branch attraction (Felsenstein, 1978b) and must be considered an indepen­
'::'ent discovery of that phenomenon.

We can take the primate data set of Hasegawa (which we have used earlier in
=--1.is chapter) as an example. If we consider only the four species Human, Chimp,
:;orilla, and Orang, we find that ((Human,Chimp),(Gorilla,Orang)) is the best­
:,·~pported unrooted tree topology. Of the 232 characters, 24 have differences in
=--~e number of changes on the three tree topologies, and of those, 12 support this
-::ee and 6 support each of the two alternative ones. The fraction 12/232 is far less
:..-.an 3/16, so that in this case Cavender's test would not distinguish between the
:::-ee topologies.

We might hope to make Cavender's test more powerful by discarding invari­
:>.t sites. In our example, this raises the fraction 3/16 to 3/15, which does not
_-ange the result much. If we are more daring and discard all sites that show no
:'-:·erence between the topologies (leaving us with only the "phylogenetically in-
::mative" sites), we pay a terrible price. The worst case would be one that has all
: the phylogenetically informative sites backing the wrong tree topology. Thus
e would not be able to reject any topologies using this approach.
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Tests for three species with a clock
We can make the test more powerful by assuming a molecular clock. In the mito­
chondrial data example, we could assume that the clade of Human, Chimp, and
Gorilla follows a molecular clock. I have investigated tests based on simple statis­
tics in such cases (Felsenstein, 1985c). In those cases we can ignore all sites that d
not vary, as well as those that show three different states in the three species. In
the case of a clock, this leaves us with those sites that show patterns :r;r:IJ, :C:lJX, or
yXX. For this example, there are 85 such sites, and these patterns occur 33, 29, and
23 times, respectively.

This is support for the ((Human,Chimp),Gorilla) tree. For the other two pos­
sible rooted bifurcating trees, the closest fit to these data would be obtained by
assuming that the interior branch was as short as possible, so that the tree was in
effect a trifurcation. In a trifurcation, all three patterns would be expected to oc­
cur equally often. I investigated two statistics. One was 5, the difference between
the number of steps favoring the best tree and the next best tree. For this case, we
would have 5 = 33 - 29 = 4. The other statistic 0, was simply the number of sites
favoring the best tree (here 0 = 33).

A confidence interval is constructed by taking a statistic and, for each possible
hypothesis, finding the set of values of the statistic that are in the extreme tail for
that statistic. Thus, for the 5 statistic, we want to know for each possible tree
what the probability is that 5 exceeds the observed value of 4. The confidence
interval is obtained by "inverting the test," finding all those trees for which 4 i
not an extreme value. A tree could be excluded from a 95% confidence interval if
the value of 5 favored another tree by enough that a value that large in favor of a
wrong tree would occur less than 5% of the time.

In this simplified case, I assumed that the worst case had a zero-length inter­
nal branch, so that there was a trifurcation (in fact, this can be proven). We need
to know for 5 = 4 whether the probability of favoring one of the two wrong trees
by four steps or more is less than 5%. In this simple case that can be done by
enumerating all possible cases and working out by direct tabulation the probabil­
ities of favoring the wrong tree by four steps or more. Taking the probabilities of
the three outcomes to be equal, the probability that we get n" n2, 773 in the three
classes is simply

(19.17)

Table 19.3 shows values of the 5 and 0 statistics that are significant at the 95%
level.

Bremer support
The 5 statistic measures the difference between the number of changes for a tree
with a particular group and the number without it. I did not put this statistic for­
ward for general use in situations with more than three species and/or without a
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Table 19.3: Values of the 5 and C statistics that are required to have
the boundary of the 95% confidence limits in a three-species tree with
a clock exclude the two other tree topologies.

Characters 5 C Characters 5 C
4 4 4 21 7 12
5 5 5 22-23 7 13
6 4 6 24-26 7 14
7 5 7 27-28 7 15
8 4 6 29 7 16

9-10 5 7 30 8 16
11-12 5 8 31-33 8 17

13 5 9 34-35 8 18
14 6 9 36-38 8 19

15-16 6 10 39 8 20
17-19 6 11 40 9 20

20 6 12 50 9 24

clock. Bremer (1988) suggested an index (called by various authors Bremer support,
the support index, or the decay index). He used it for all groups on a tree. For each
oroup he asked what tree which did not have the group had the fewest changes
of state. If the most parsimonious tree that had group ABC had 138 changes of
state, and the most parsimonious tree that lacked that group had 143 changes, the
Bremer support for that group would be 143 - 138 = 5. Bremer support has no
. mediate statistical interpretation in the general case. With three species and a
clock, the above table shows that the level of Bremer support that is significant
jepends on the number of characters that illuminate that trichotomy. As we see
:ater in this section, we cannot specify what level of Bremer support is statistically
significant in more general cases. Gatesy (2000) has suggested a measure of joint
Bremer support for two branches of a tree.

Zander's conditional probability of reconstruction
The three-species clock calculation bears comparison with the test used in Zan­
ier's (2001) Bayesian calculation of posterior probabilities of different ways of re­
~olving a trichotomy. Zander takes a tree inferred by parsimony and, for each
_'1.ternal branch, considers the two possible nearest-neighbor interchange (NNI)
-earrangements of the tree at that branch. For each he reconstructs by parsimony
:: e number of changes seen on the interior branch. Suppose that the original tree
snows 60 changes in the interior branch, but only 37 and 30 in the corresponding
_ terior branch when we do the two NNls. He then assumes that these three num­
::-ers can be treated as observations, and uses a chi-square test with three classes to
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test these three numbers against equality. If they significantly depart from equality,
he does a subsidiary test of the two smallest of the three numbers to see whether
they are significantly unequal. In this example, the three numbers are significantly
unequal and the inequality of 37 and 30 is not significant. He then uses the tail
probability of the former chi-square as the probability that the tree is correct at
this point. For these numbers, the chi-square value would be 11.64, with 2 degrees
of freedom. A chi-square variate with 2 degrees of freedom would be smaller than
or equal to this 0.997 of the time, and Zander takes the posterior probability of the
original resolution to be 0.997.

We can compare Zander's test to the confidence limits in the three-species
clocklike case. In the numerical example there would be 60, 37, and 30 charac­
ters supporting the three trees. With 127 characters in all, the values of C and 5
that are significant will be 54 and 14. In this case the values of C and 5 are 60 and
23, which is strongly significant, as Zander's test was as well. The probability of
exceeding C = 60 is 0.00159, which is about half the tail probability that Zander
gets. The two tests are thus similar, though not identical. Zander intends his test to
be used in nonclocklike cases and for all interior branches of a tree. This cannot be
justified, as the expectation of equal numbers of changes in the interior branches
of all three trees will not hold in such cases, and in the extreme, long branch at­
traction may make his test declare the wrong tree significantly supported.

In cases where the three numbers of changes are small enough to make the chi­
square calculation dubious, Zander takes the posterior probabilities of the trees
to be proportional to the numbers of changes in the interior branches of the three
trees. This leads to some curious results, such as the statement that when there
is 1 step in one of them and 0 in the two others, the posterior probability for the
best tree is 100%. This will not be similar to the confidence statements in the clock­
like three-species case, and looks difficult to justify. I have already commented in
Chapter 18 on the difficulties of interpretation of Zander's posterior probabilities
as Bayesian posteriors.

More generalized confidence sets
Can this result be generalized? Only a little is known. It is not simple to generalize
it to resolving a trifurcation in the interior of a larger clocklike tree. In that case
the lineages leading from the trifurcation are of unequal length and then split into
various numbers of lineages. The application of the Sand C statistics is not simple,
especially since many characters may vary within each of the lineages. Inequalities
of the lengths of the lineages have a serious effect on the use of statistics like 5 and
C. It is no longer true that, when there is a trifurcation, characters supporting the
three possible tree topologies are equally frequent. If the lineages leading to A
and to B were long, and that leading to C was short, we expect more characters
in which A and B share the same derived state than we do for any other pair of
lineages. In the extreme case in which there is long branch attraction, we will be
back in Cavender's worst case. Williams and Goodman (1989) suggest that the
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three-species test using the C statistic is valid even when there is no molecular
clock; I do not see why it would then be valid.

Even in the case of three species with a clock, we do not know that the Sand
C statistics are the most effective for delineating confidence sets. Some results
can be obtained for the C statistic that at first seem to offer hope. Using the clas­
sic confidence region machinery due to Neyman and Pearson, one can examine
:esting of one hypothesis against another. Neyman and Pearson pointed out that
j one wanted a confidence region with (say) a 95% probability, the most power­
cuI test would exclude those regions that had the greatest ratio of the probability
of that point (or density there) under the alternative hypothesis to that under the
:lUll hypothesis. Thus one wants to use the ratio of the likelihoods under the two
~\'potheses,excluding those regions that had the highest ratio.

In our three-species example with only the three character patterns used, this
:ikelihood ratio for topology ((A,B),C) versus topology (B,(A,C)) is

Prob (11,1. 11,2· 11,3 IPI, qd

Prob (nl, 11,2, n3 IP2· q2)

~s is simpler as a log-likelihood:

p~' q~2 q~3

q;'l p~'2 q;'3 (19,18)

:~ the null hypothesis were the trifurcationp2 = q2 = 1/3, then the likelihood ratio
iepends only on 11,1 - (11,2 + 11,3), which is 211,1 - n. Thus the best statistic to define
::<e test and the confidence region is the compatibility statistic 11,1. A 95% region is
iefined by taking the values of 11,1 that are in the lower 95% of its distribution. It is
::-lost powerful against all alternative values of Pl. That most powerful test is then
iescribed as "uniformly most powerful."

Before we get intoxicated by this success, we have to remember that it is only
:or the trifurcation tested against one particular alternative topology. When the
:.'ther topology is considered, it is reasonable to use the analogous statistic and to
:-.d\'e the rejection regions guard equally against the two alternative trees. But the
:esulting test is then not uniformly most powerful, because for anyone alternative
=ee, the most powerful test is one that does not take any account of the other
?ossible alternative topology. Tests (and their associated confidence regions) that
::.Jow for both alternative topologies cannot be as powerful against one of them as
.:. test specifically designed for it.

Equation 19.19 shows that even for a comparison of two specific tree topolo­
::::.es, there is no uniformly most powerful test or confidence region. For example,
~ \\'e have data of 11,1 = 60,11,2 = 25, and 11,3 = 15, and if we compare a tree of
'opology ((A,B),C) with one of topology (B,(A,C)), if PI = ])2, the log-likelihood ra­
:'0 is a function of 11,1 - 11,2. But if instead])2 = 1/3, it is a function of only 11,1, as we
-3\\' earlier. So the most powerful statistic differs, depending on which trees are
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being compared. Any confidence region we form using one statistic is necessarily
a compromise based on different possible alternative trees.

All of this considers only three of the five base patterns. If we take all of them
into account, the news cannot improve. And there the matter rests. There has been
no recent work on confidence regions for trees beyond the work reported here.
Though there is little reason to expect easy and powerful methods, the problem
does bear more looking into.
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Bootstrap, jackknife, and
permutation tests

A.s likelihood requires us to believe the probability model of evolution, it may un­
,erestimate the amount of uncertainty about the tree. It would be desirable to
: ave a less parametric approach to testing phylogenies. Bootstrap, jackknife, and
~andomization tests are one way to be less dependent on a complete paramet­
~c model. They use empirical information about the variation from character to
~, aracter in evolutionary processes. A second reason for using these resampling
:e hniques is that they allow us to infer the variability of parameters in models
::'at are too complex for easy calculation of their variances.

Bootstrap and jackknife tests on phylogenies started with the work of Mueller
':::l.d Ayala (1982), who used a jackknife approach to estimating the variance of
:::e length of a branch in a UPGMA phylogeny from gene frequency data. This

'as followed by my own paper on the bootstrap (1985b) and those of Penny
~"1 Hendy (1985, 1986), who used random partitioning of the characters into two
-?,l\'es.

The bootstrap and the jackknife
~ e jackknife and bootstrap are statistical techniques for empirically estimating
:.-e variability of an estimate. They differ, but are of the same family of techniques.
-: e jackknife, which is the older of the two, involves dropping one observation at
, ime from one's sample, and calculating the estimate each time. The variability
: he estimate is then inferred from the rather small variations that this causes,

~ .. an extrapolation. The bootstrap involves resampling from one's sample with
':::-lacement, and making a fictional sample of the same size. We start by giving a
'=:::1eral explanation of the bootstrap, and then consider how it can be applied to
~ -dogenies.

335
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Estimate of e ~ (Unknown) tme value of6

1
¢::J~

Empirical distribution of sample
~Boot'c 'eplkate'

(Unknown) true distribution

Distribution of estimates of parameters

Figure 20.1: The bootstrap. The distribution of independent data items
is taken as an estimate of the unknown true distribution. In this case
the true distribution is a 60: 40 mixture of two normal distributions,
with means 7 and 14 and standard deviations both 1.5. By drawing
samples of size n (in this case n = 150) from it and analyzing these,
we can approximate the kinds of variation in our estimate that would
be seen if we could draw new samples of that size from the unknown
true distribution. The parameter estimated in this example is the pop­
ulation mean.

The bootstrap was invented by Bradley Efron (1979) as a general-purpose sta­
tistical tool analogous to the jackknife. Figure 20.1 shows a diagram of the method.
Imagine that we have some data points Xl. X2. X3 . .... X n that are drawn indepen­
dently from a distribution F(e), that depends on an unknown parameter, e. From
them we are computing an estimate t(x], X2, . .. , x n ) of the parameter e. We would
like to know the variability of the distribution of these estimates. If we knew the
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family of distributions from which F came, and if the estimator t(x) were math­
ematically tractable, then we could know the distribution of estimates and how
it depended on the true e. For instance, when F(e) is a normal distribution with
mean eand variance I, and t(x) is simply the sample mean, we know precisely
what the distribution of estimates of e is for every possible value of e. (It is nor­
mal, with mean e, and variance lin.) That helps greatly in understanding what an
estimate of eimplies.

However, we may not know the distribution F, or the estimator t(x) may not
oe mathematically tractable. Efron's insight was that in this case, if the sample
size n is sufficiently large, we can consider the empirical distribution of data in
our sample (which we can call F) to estimate the true distribution F. Of course,
the overall estimate of e is not precisely correct, but the kinds of variation that
che collection of values ~.cl' X2 . ... : X n display should be typical of the variation we
\\'ould see in any large sample from the true distribution.

We would like to know what variation we would see in the estimate, (f, if we
rew new data sets of size n from the unknown distribution and analyzed them

:.n the same way. The bootstrap infers this variation by using our current data!et,
":>\' drawing new data sets not from F but from the empirical distribution F in
our data. Drawing a sample of size n from the empirical distribution is the same
3S drawing a sample of points x~, X2' ... x;, from the existing data, drawing them
:.ndependently, and sampling with replacement. If we instead sampled n points
·.\-ithout replacement, we would simply end up drawing each point once, and we
·.\·ould back get our original data, although the points would be in a different order.
:rus would not result in a different estimate of e. But drawing with replacement
:-:leans that points in the original data may be sampled different numbers of times.
30me may be sampled twice, some once, some not at all (and some larger numbers
. i times). The numbers of times each one is drawn, ml' m2 .. .. , m n is a sample
:-:-om a multinomial distribution with n classes that have equal probabilities of
:eing drawn.

This sample x* is called a bootstrap replicate. Each such replicate can be analyzed
.:sing the estimator t to get (f* = t(x*). To get a picture of the variation of the
-:-stimates e, we draw many different bootstrap replicates and infer e from each

:-Ie. The amount and kinds of variation in the resulting cloud of estimates of
- is then taken to be typical of the kinds of variation we would see if we could
-Jmehow sample new data sets from the unknown distribution F. For many well-
::--2haved distributions and many well-behaved estimators t(x) there are theorems
-ssuring us that this picture of the variability of (f will be accurate, if n is large and
::- a large number of bootstrap replicates are taken.

Bootstrapping and phylogenies
- J use the bootstrap to assess the uncertainty of our estimate of the phylogeny,
-e data should be a series of independently sampled points. We typically have,
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Figure 20.2: The bootstrap for phylogenies. Sites (or characters) are
drawn independently, with replacement, with the order of species
within each column of the data matrix remaining the same. Data sets
with n characters are drawn, and each is analyzed to infer the phy­
logeny. The resulting sample of phylogenies should show approxi­
mately the same variation as a sample obtained by collecting n new
sites for each tree.

instead, a matrix of species x characters. We cannot consider the species to be in­
dependent samples - they come instead as tips on an unknown phylogeny, some
closely related to each other. In fact, the whole point of our analysis is to discover
this structure. The characters (or sites) are a better candidate for being indepen­
dent samples. If different characters evolve independently on the same phylogeny,
they will satisfy the independence assumptions of the bootstrap, since the outcome
of evolution at each character cannot be predicted from that in neighboring charac­
ters. Of course, evolutionary outcomes and processes in different characters may
be related, in which case the independence assumption is incorrect. We return this
subject later in this chapter.
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To apply the bootstrap, we sample whole characters from the set of n charac­
ters, with replacement, and do so 11, times. The result is a data matrix with the same
number of species and the same number of characters as in our original data ma­
trix. Some of the original characters may have been sampled several times, others
left out entirely. Figure 20.2 shows the process. For each data matrix we use our
favorite phylogeny method to infer the phylogeny. The method may be a parsi­
mony, distance matrix, or likelihood method. If a distance matrix method is used,
the resampling occurs on the original character data (or sequences) before the dis­
tance matrix is computed. We end up with a collection of different estimates of the
phylogeny. Some methods may give us more than one estimate of the phylogeny
(parsimony methods, for example, often find multiple trees that are tied for best).
In such cases we can consider that if 10 tied estimates are found for one bootstrap
replicate, we consider each to be one-tenth of a tree, so that the results from that
bootstrap replicate are not overemphasized when the trees are combined.

The delete-half jackknife
Other resampling methods are possible, and may have approximately equivalent
behavior. The delete-half jackknife (e.g., Wu, 1986; Felsenstein, 1985b) is one, which
has many of the same properties as the bootstrap. It involves sampling, not TL

:imes with replacement, but 11,/2 times without replacement. Thus we are taking a
random half of the characters. Actually, if there are r parameters being estimated
for each sample, we are supposed to take a random fraction (n + r - 1)/2 of the
.:haracters. For largish n this will not make much difference, and it is hard to know
'.,'hat the value of r is for a phylogeny. The matter needs a closer examination.

One way to put the bootstrap and the delete-half jackknife into a common con­
:ext is to consider them as randomly reweighting the data. Drawing a bootstrap
o:ample is equivalent to putting new weights on the original data, with the weight
on character i being the number of times, Tni, that it is sampled in the bootstrap.
,--\5 noted above, the weights mi have a multinomial distribution, with n trials and
..qual probabilities for all n characters. It is not hard to show that the mean weight
)f a character is then L and the variance of the weight is 1 - 1/'11,. Their coefficient
)f variation (the ratio of the standard deviation to the mean) is then VI - l/n,
-dLich is nearly 1.

A jackknife that deletes a fraction f of the characters can be thought of as
-eighting the deleted characters 0 and the included characters 1. This implies

, mean weight per character of 1 - f and a variance of f(l - f). The coefficient
:: variation is then Jf /(1 - f). When f = 1/2 we have a coefficient of variation
:: 1. It can be shown that any random weighting scheme that achieves the same

: -efficient of variation will also approximate the bootstrap.
It is not clear whether the delete-half jackknife has any substantial advantages

--er the bootstrap.
Farris et al. (1996) have advocated using a delete-1/e jackknife together with

, parsimony estimate of the phylogeny (their "Parsimony Jackknife"). 1/e is
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0.36788, so this amounts to deleting substantially fewer characters, so that groups
will appear to have more support than they would under a delete-half jackknife
(or a bootstrap). We can evaluate this method by checking its behavior in a case
where exact computations can be done. Suppose that we have 100 characters,
10 of which back group I, and 8 of which back group II, these two groups being
incompatible. The other 82 characters do not discriminate between the two al­
ternatives. We can calculate by exact enumeration of outcomes, calculating the
probability of each, that a bootstrap sample will favor the first group 0.63836
of the time, with a tie 0.08461 of the time. It seems fairest to count the resam­
pIing as favoring the first group half of the time when there is a tie. This will be
0.6386 + (0.08461)/2 = 0.68066 of the time. If we do a delete-half jackknife, the
corresponding number is 0.67555, while in a delete-IIe jackknife that samples 63
characters it is 0.72402. Thus the delete-half jackknife gets results much more con­
sistent with the bootstrap.

Farris et al. chose delete-lie based on the behavior when all the support is for
group I. If two characters support group I and none group II, then the probability
of favoring group I is 0.86738 for the bootstrap, 0.75253 for the delete-half jack­
knife, and 0.86545 for the delete-IIe jackknife. However, this match between the
delete-l I e jackknife and the bootstrap vanishes quickly as more characters favor
group II. With just a few of them, the delete-half jackknife becomes closer to the
bootstrap. Of course, if the bootstrap is to be the standard, this speaks in favor of
using it instead.

The bootstrap and jackknife for phylogenies
Once we use the bootstrap (or the jackknife) to resample characters, we will have
a cloud of trees, the results of estimating the phylogeny for each bootstrap or jack­
knife replicate. In the simple case of estimating a real-valued parameter, we can
make a histogram of the estimates. How are we to do this with phylogenies? They
have discrete topologies, but continuous branch lengths. We could use the boot­
strap to make a histogram of branch lengths, but only if the branch in question
existed in all of our estimates of the phylogeny. We might then, for example, make
an interval estimate of the branch length by finding the upper 95% of the branch
length histogram, so that we could infer a lower limit on the branch length.

If this lower limit were positive, we would then be asserting the existence of
that branch. But suppose that the branch is missing in some of the bootstrap (or
jackknife) estimates of the phylogenies. It seems reasonable to assume that those
cases can be lumped with ones that have a zero branch length for this branch. If
we do that, then we can assign the probability P to the branch if a fraction P of the
bootstrap (or jackknife) replicates have the branch present. In cases where there
are several tied trees in a bootstrap (or jackknife) estimate, some with the branch
and some without, we can count each one as conferring fractional support for the
branch. An alternative, and equivalent, way of looking at this is to imagine an
indicator variable that is 1 if the branch exists in the bootstrap (or jackknife) esti-
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Trees: E AC F B D E CA BD F
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Number of times each partition of species is found:

AE I BCDF 3
ACE I BDF 3
ACEF I BD 1
AC I BDEF 1
AEF I BCD 1
ADEF I BC 2
ABDF I EC 1
ABCE I OF 3

Majority-rule consensus tree of the unrooted trees:
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Figure 20.3: A set of five trees and their majority-rule consensus tree,
with the percentage of support for each interior branch shown. Note
that the majority-rule consensus tree is not identical to any of the five
trees. Although shown here as if rooted, the trees are considered un­
rooted in the computation.

- "te, and 0 if it does not exist. If we make a histogram of this indicator variable,
':-.J make an interval estimate for it by finding the upper 95% of this histogram,

--en when the branch appears more than 95% of the time, the upper 95% confi­
:::,nce interval contains only cases in which the branch is present, and so we can
=- .:tce a P value of 0.95 or greater on the hypothesis that the branch is present.

To implement this method, we must scan through the bootstrap or jackknife
~jn1ates of the trees, tabulating how often each branch occurs. We are only inter-

."':ed in ones that occur a large fraction of the time. If we have many branches that
-e of interest to us, keeping track of all of this is a tedious task. Fortunately, there
- 3. consensus tree method that helps with this. Margush and McMorris (1981) de-
--.ed the M£ family of consensus tree methods. One of these is the majority-rule
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consensus tree. A consensus tree is, as we shall see in more detail in Chapter 30, a
tree that summarizes a series of trees. Margush and McMorris's majority-rule con­
sensus tree is simply a tree that consists of those groups that occur in a majority
of the trees. It may not be obvious that these will form a tree. In fact, they will. If
two groups each occur in more than 50% of the trees, then there must be at least
one tree that has both of them. If two groups are compatible, then they are either
disjoint, or identical, or one must be contained within the other. Suppose that we
make up for each group a 0/1 character, which has Is for each species that is in
the group, and Os otherwise. The compatible groups will then all have compati­
ble characters. The pairwise compatibility theorem that we saw in Chapter 8 then
guarantees that all these groups can be placed on the same tree.

The majority-rule consensus tree is found by tabulating all groups that occur
on all trees and retaining those that occur on a majority of the trees. When we use
it on the bootstrap estimates of the tree, the result is a single tree. All of the groups
that appear on it are present in more than 50% of the bootstrap estimates. A simple
extension of the majority-rule consensus tree is to note, next to each group, in what
fraction of bootstrap replicates it has appeared. We can quickly see which groups
have strong support, and which weak support. Figure 20.3 shows five trees and
the resulting list of partitions of the species, as well as the majority-rule consensus
tree.

The P value for each branch is intended to give an estimate of the amount of
support the branch has. As we shall see below, this number turns out to be biased,
underestimating the value of P when it is large.

The multiple-tests problem
One problem with the use of these P values is that we may not know in advance
which group interests us. If we instead look for the most strongly supported group
on the tree and then report its value of P, we have a "multiple-tests problem"
(Felsenstein, 1985b). If there were actually no significant evidence for the exis­
tence of any of the groups, then P values on the branches would be drawn from
a uniform distribution, with 5% of them expected to fall above 0.95. So one out of
every 20 branches of a tree would be expected to reach the "significance" level of
0.95.

One way to correct for this is to use the well-known Bonferroni correction. In
this case that simply amounts to dividing the desired tail probability (say 0.05)
by the number of tests. Thus if we want to know for which value of P the most
significant out of n tests has only a 5% chance of reaching that value, when the
null hypothesis (of no significant structure) is true, we should require our groups
to attain a support of P = 1 - 0.05/n. Thus with (say) 15 groups in a tree, the
P value required for significance would be taken to be 1 - 0.05/15 = 0.99666.
This is a conservative procedure and allows for us to find the most significantly
supported group out of n, even when the support for different groups is not quite
independent.
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Independence of characters
The most telling criticism of the bootstrap for phylogenies is that the assumptions
of independence of the characters may not be met (Felsenstein, 1985b). The easiest
way to see what effect this has is to imagine a case in which pairs of characters are
identical. In other words, in collecting characters, we have inadvertently collected
two characters that are so closely correlated that they are effectively providing the
same information about evolution. We have done this so often that each character
hast somewhere in our data, an identical partner.

A little consideration will show that the proper method of bootstrapping
would be to draw once for each identical pair, as we then have n/2 indepen­
dent characters, not n. The proper bootstrapping technique would be to draw
1)/2 times, each time drawing one character. If instead we draw n times, we will
be sampling too often, the variation between bootstrap samples will be too small,
and the trees they generate will be too similar. There will appear to be more cor­
roborating evidence for groups on the tree than there really is.

Less complete correlation between characters is more realistic. It will cause
similar problems - the appearance of too much evidence for groups on the tree.
Unfortunately, there is usually no easy way to know how much correlation there
is between characters, and thus no easy way to choose the number of characters
to draw in a bootstrap sample. In certain cases, such as molecular sequences, one
may be able to assume that the correlation of characters occurs mostly between
nearby sites in the sequence. For example, we might have correlations that are
mostly between sites that are within five nucleotides of each other.

Kiinsch (1989) has proposed a block bootstrap method that can cope with that
correlation. He suggests drawing, not single sites, but blocks of B sites, the start­
ing position for each block being drawn at random. Instead of drawing n indi­
\'idual sites, he draws n/B blocks of B sites, so that the bootstrap sample ends up
consisting of n sites. Kiinsch shows that this corrects for autocorrelations along the
sequence that are no longer than B sites. If the distance between correlated sites
averages five sites, then B = 10 would seem to be a good choice. If we are mis­
taken and there is actually no autocorrelation, block-bootstrapping has the happy
property of being a correct method anyway.

Note that in the imaginary example above, where pairs of characters have per­
fect correlation, if these pairs were adjacent characters, the data set would consist
of n/2 adjacent pairs. One could use Kiinsch's method with, say, B = 4 in such a
case.

Identical distribution - a problem?
In drawing a statistical sample, one commonly assumes that the draws are in­
dependent and identically distributed (i.i.d.). This is also the assumption of the
bootstrap. We have seen that nonindependence is a potentially serious difficulty
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for the bootstrap, particularly if the dependent characters are not adjacent. Is fail­
ure to be identically distributed an equally difficult problem? I don't think so.

It is evident that the evolutionary processes in different characters (and in dif­
ferent sites in a molecule) can differ substantially. The differences in evolutionary
rate from site to site in molecules are one example. Given that, is there any way
to use the bootstrap? The approach I have proposed in such cases (Felsenstein,
1985b) is to consider the characters as samples from a larger pool of characters.
Suppose that rates are assigned independently to sites in a molecule, so that each
site has a rate randomly drawn from a distribution of rates. The characters have
randomly assigned rate of evolution, and then the outcome of evolution is the re­
sult of a random process running at that rate. To get the data for a character, we
draw a rate from the pool of rates, then evolve the character independently at that
rate. In that case, the outcomes at the characters are still i.i.d., even though their
rates of evolution differ.

In that original paper, I may have created unnecessary difficulties by saying
that the bootstrap assumes that "each character is ... a random sample from a dis­
tribution of all possible configurations of characters," and by describing the sys­
tematist as sampling from "a pool of different kinds of characters." Others (Car­
penter, 1992; see also Sanderson, 1995) have rejected this argument by disagreeing
with the notion that characters are drawn from the universe of all possible char­
acters. Although the notion of there being such a universe is indeed dubious, it is
not actually necessary to the argument. All we need to assume is that the charac­
ters are drawn independently from some universe of characters, from some pool of
characters.

In both molecules and morphology we may have characters that occur in
blocks, such as data sets that have 10 skull characters followed by 10 limb charac­
ters, or molecules that have a fast region followed by a slow region. The issue that
these data sets raise is not identical distribution, but independence. If we could
consider successive characters as independently drawn, having a mix of rates of
evolution, or a mix of body regions, would not endanger the bootstrap. The ex­
istence of these blocks of characters calls into question the assertion of indepen­
dence, but the heterogeneity of evolutionary processes in the different characters
is not the problem.

Invariant characters and resampling methods
The bootstrap and related resampling methods have also been argued to be sensi­
tive to the number of invariant characters included in the data set. Suppose that
we are using a method of phylogenetic inference, such as parsimony, that is not
affected by the presence of characters that show no variation. Will we get sub­
stantially different bootstrap values by omitting the invariant characters from the
analysis? It has been repeatedly argued (Faith and Cranston, 1991; Carpenter,
1992; Kluge and Wolf, 1993; Farris et al., 1996; Carpenter, 1996) that the bootstrap
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Table 20.1: The probability of a character being omitted from a boot­
strap sample, for different numbers of characters (N) in the data set.

N (1 - l/N)N N (1 - l/N)N N (1 - l/N)N

1 0 14 0.35434 60 0.36479
2 0.25 15 0.35526 70 0.36524
3 0.29630 16 0.35607 80 0.36557
4 0.31641 17 0.35679 90 0.36583
5 0.32768 18 0.35742 100 0.36603
6 0.33490 19 0.35798 150 0.36665
7 0.33992 20 0.35849 200 0.36696
8 0.34361 25 0.36040 250 0.36714
9 0.34644 30 0.36166 300 0.36727

10 0.34868 35 0.36256 400 0.36742
11 0.35049 40 0.36323 500 0.36751
12 0.35200 45 0.36375 1000 0.36770
13 0.35326 50 0.36417 00 0.36788

will give substantially different results without the invariant characters. Harsh­
man (1994) has argued that it will not.

Consider a single character that does show variation in the data set. How often
\\'ill it appear in the bootstrap replicates? If there are N characters in all, it will
_e chosen with probability 1/N each time a character is sampled. Thus it will be
omitted 1 - l/N of the time for each character sampled. The chance that it will be
omitted entirely is thus (Harshman, 1994) (1 - l/N)N.

Adding l\I invariant characters to a data set changes this probability by in­
::reasing the value of N. Harshman argues that this quantity is very close to being
::onstant at e- 1 = 0.36788, no matter what the value of l\I. Farris et al. (1996) ar­
sue that it is not constant, that its complement (the probability of the character
"::leing included) "decreases as N increases." Table 20.1 shows the probabilities of
: e character being omitted.

The values do increase (and the probabilities of inclusion decrease), but not by
:nuch: They reach 90% of their ultimate value at N = 6, and 99% of the ultimate
--alue at about N = 50. We can conclude, with Harshman, that the inclusion or
",,,elusion of invariant characters will have little effect on the support given any
,::,articular group by the bootstrap method. The delete-half jackknife will behave
~ imilarly.

Of course, if the method for inferring phylogenies assumes that all characters
:.re present (as do distance and likelihood methods), then we cannot drop invari­
"nt characters without doing serious violence to the trees.
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Biases in bootstrap and jackknife probabilities
For years after the introduction of the bootstrap method for phylogenies, people
had complained that the P values that the bootstrap method provided seemed
too pessimistic. When they were noticeably lower than 95%/ there still seemed to
be a very high chance that the groups were real. Zharkikh and Li (1992; Li and
Zharkikh, 1994) carefully examined the statistical properties of this inference and
showed that the support was indeed underestimated. Hillis and Bull (1993) car­
ried out a large simulation study that reached the same conclusion. They argued
that a P value as small as 70% might indicate a significantly supported group.
Felsenstein and Kishino (1993) have agreed that the bias is present, but they ar­
gued that it is not due to the bootstrap sampling itself, but instead to the use of a
P value to describe the presence or absence of particular clades. Efron, Halloran,
and Holmes (1996) argued that there was not always a bias downwards; they are
correct, but for high values of P the bias is almost entirely in that direction. New­
ton (1996) has verified the validity of the bootstrap for discrete entities such as tree
topologies, and has also verified that there is this bias.

P values in a simple normal case
To show that this bias is not due to the bootstrap, we argued that it would appear
even in cases where there was no bootstrapping. For example, suppose that we
draw n points from a normal distribution whose standard deviation is known to
be 1/ but whose mean is unknown. We are interested in whether the mean is
positive or negative. This is analogous to asking whether a branch is present or
absent, with the value of the mean playing the same role as the branch length. Our
estimate of the mean will be the empirical mean of the sample, x.

To obtain a level of significance for the proposition that the true mean is pos­
itive/ we consider that the sample mean is normally distributed around the true
mean with variance l/n. The conventional way of constructing P values is to use
pivotal statistics. Thus we have the difference between the true meant /1. and the
sample mean x/ which is x - jJ. That difference has a normal distribution with
mean 0 and variance l/n. It follows that when we multiply it by J1i it will be­
come a quantity with mean 0 and variance 1. The probability that this quantity is
greater than some particular value is then easily computed from tables of the nor­
mal distribution. We can then say, for example, that there is a 95% probability that
J1i (x - 11.) is greater than 1.64485. This can be turned into a statement assigning
a level of significance to the statement that jJ > O. For example, if n = 10 and
x = 0.7/ we know that .JIO (0.7 - jJ) has a normal distribution with mean 0 and
variance 1. The probability that jJ < 0 is then the probability that a standard nor­
mal deviate lies below 3.162 x (-0.7) = -2.214/ which is about 0.014. Then the
probability that jJ > 0 is thus approximately 0.986.

We will have to return and ask what this really means. It seems entirely too
neat (and so it is). But for the moment it tells us how to assign a P value to the
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Figure 20.4: An example of assigning values of P to regions of a space
that resemble tree topologies. We draw a sample of points from a true
distribution (dashed curve) and there is a resulting distribution of the
mean of n such points (density function with darkest line). The two
other density functions show what we might infer this density function
to be if the mean came out a bit closer to, or a bit farther away from O.
In each case the P value assigned is given by the shaded area of the
curve.

statement that p, > O. We consider the distribution of x, which in this case we
know. For each observed value of x we ask how many standard deviations away
'rom it 0 is. The area of the standard normal distribution for the appropriate tail
then gives us P. Figure 20.4 illustrates this process. It shows the distribution from
which the individual data points are drawn (the dashed curve), and the regions
above and below 0, which are the two "topologies." The density function with
he darkest curve is the true distribution of x. The actual value of x could come

from anywhere in this distribution. Three possible outcomes are shown - having
it come out equal to the true mean p" having it come out somewhat higher, and
somewhat lower. For each one we will make a different estimate Ii = x, and
consider a different estimated density function. The P values we will get in each
case are the fractions of those distributions that are above 0 (the shaded areas of
[he curves).

The correct P value to assign is the tail area of the true distribution of x, which
:ells us the probability that our samples will get the true "tree topology." The ac­
:ual P values vary around this, and it is immediately apparent that they do not
"ary symmetrically. When x is too close to 0, they drop substantially. When it is
LOO far from 0, in an event that is equally likely to occur, the P rises by a much
smaller amount.

The result is that there is a bias in P. When P should be (say) 0.95, the value
'·\'e get is on average smaller than 0.95, leading to statements that are on average
:00 conservative. Figure 20.5 shows the average P values as a function of the true
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Figure 20.5: The expected value of P for the hypothesis that IL > ain
the case of 11 points drawn from a normal distribution with expectation
~L and variance 1 (as in Figure 20.4). The expectation of P is plotted as
a function of the true probability that a sample will have i; > O.

P values, which are easily computed for this example (Felsenstein and Kishino,
1993). The bias of P is apparent. It is always toward 0.5, which, for the large
values we are interested in, means that the P's are on average too conservative.

In Figure 20.4 we can also see that when the "true" value is P, the estimate Pe

will be greater than P half of the time, and less than P the other half of the time. It
is less obvious, but also true, that the estimate Pe will be greater than 0.5 a fraction
P of the time. Thus when the true P = 0.95, the estimated P will exceed 0.95 half
of the time, and the fraction of times that Pe will exceed 0.5 is 95%.

One of the sources of the conservatism of the estimated P values is that we are
taking statements about the "branch length" ~L and reducing them to statements
only about the "tree topologies" ~ > a and ~ < O. If the observed mean turns
out to be above 1.95996/vn (the one-tailed 95% point of a normal distribution),
we will conclude that the confidence set is entirely of "topology" 1. When it is
below -1.95996jjn, we conclude the opposite, that it is entirely of "topology" II.
Anywhere in between, we will conclude that both "topologies" are possible.

If the true value of ~ were (say) infinitesimally less than 0, so that the "topol­
ogy" was II, but just barely so, we would draw the wrong conclusion 5% of
the time, as that is how often we would get an observed mean that exceeded
1.95996/ jn. The other 95% of the time the confidence set would include the cor-
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rect "topology." For any more negative value of ).L, the probability of type I error
(falsely rejecting the true "topology") is less than 5%, often considerably so. For
example, when n = 10 and).L = -0.1, the value 1.95996/VlO = 0.61979 is 2.27619
standard deviations away from that true mean. Thus we get the false conclusion
that the "topology" is I only about 0.0114 of the time, as this is the fraction of a
normal distribution that lies beyond 2.27619.

These results are true for the analogy of tree topologies with regions of positive
and negative values of a normally distributed quantity. Will similar behavior be
seen for actual tree topologies? This is not known, but I suspect that topologies
will behave very similarly.

This analogy leads us to one interpretation of the bootstrap P value. If we see
a group that occurs a fraction P of the time, we can say that the probability that
it would have obtained this much support if it were not actually present on the
true tree is less than 1 - P. Thus a group that obtains a P value of precisely 95%
will be expected to obtain that much support, when it is not actually present, less
than 5% of the time. We must, however, note that the proof of this conservative
interpretation has not yet been made for the case of phylogenies.

Methods of reducing the bias
The bias of the P value becomes even greater when consider that we are in a space
of trees and consider the multiple topologies near each tree. As we will see, the
effect is to increase the bias. Four methods have been proposed to correct for
this bias. I will describe each briefly, and then suggest some connections between
them.

• The complete and partial bootstrap. Zharkikh and Li (1995) developed a
method which at the time seemed strange. It looks much less strange now
that it has been joined by other methods and the connections between them
become more apparent. Zharkikh and Li considered a case where there were
K different character patterns, each backing a different tree topology. Using
normal approximations and simulations, they showed that the bias of the
bootstrap P value grew greater as K got much larger than 2. They went on
to derive the complete and partial bootstrap method to correct these P values.
We do not know what the relevant value of K is for a space of tree topolo­
gies. But they noted that for the case of K classes, if we do two bootstrap
analyses with different numbers of characters resampled, we can estimate
the effective values of K and of the probability of the correct class, and then
use it to correct the bias. Suppose that we draw a regular bootstrap sample
and obtain P = P*. We also do partial bootstraps, in which we sample only
1/T as many characters (thus, if T = 3, we resample a number of times only
one-third the number of characters). Call the fraction of these smaller resam­
plings that support that particular outcome P,":. Zharkikh and Li then were
able to compute from the values of P* and P,": what was the effective value
of K, and use that to correct the bootstrap P value.
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• The method of Efron, Halloran, and Holmes. Efron, Halloran, and Holmes
(1996) applied a correction due to Efron (1987) to get a less biased P value for
presence of a group in a phylogeny. They first bootstrap the data and infer
trees. I have noted above that bootstrapping can be regarded as a reweight­
ing of characters, where each of the original characters has a weight corre­
sponding to the number of times it occurs. Thus if character i occurs ni times,
this would be the same as having it have weight ni. They now take the sam­
ples that do not show the particular group, such as {Human, Chimp}. For
each of these they try to adjust the weights back toward equality, so as to ar­
rive at a set of weights that results in the group just barely being absent. One
searches for the fraction f that determines weights f + (1 - f)ni' such that
these weights just barely result in the absence of the group. Efron, Halloran,
and Holmes point out that this can be done by a simple "line search." The
data set with these weights is a least favorable case, one that lacks the group
but comes as close as possible to the original data set. They now bootstrap
from these reweighted data sets. If the weights are 'Wi, the bootstrap draws
character i with probability 'Wi. Analyzing this second level of bootstrap
samples, they see what fraction of the resulting trees contain the group. After
computing a constant a from the weights for each of these reweighted data
sets, they then use a formula from Efron (1987) to calculate a bias-corrected
P value.

• The iterated bootstrap. Rodrigo (1993) adapted methods invented by P.
Hall and R. Beran in the statistical literature to propose the iterated bootstrap.
He uses no less than three levels of bootstrapping. First one takes the usual
R bootstrap replicates and estimates the tree for each. Then for each of these
bootstrap sampled data sets, one bootstraps R more times from it, so that one
has done R+ R 2 bootstrap samples in all. Not content with this, one goes one
more level, to make a triple bootstrap with a total of R + R 2 + R 3 replicates.
We assume that our interest is in some particular group (such as {Human,
Chimp}), and we want to discover what fraction of times P it should appear
in the bootstrap estimates to make its appearance give us 95% confidence in
its existence.

We would ideally like to know the true tree, sample more data sets generated
on it, and see how often we rejected the group when it was present on the
true tree. This we cannot do: If we knew the true tree, we would not even
bother to ask the remaining questions. The iterated bootstrap takes the R
bootstrap estimates of the tree as true, and for each takes the R 2 second-level
bootstrap samples to approximate the variation of data generated on such
trees. Then the third level of sampling is used to find out, for each of these
R 2 data sets, whether the group in question would be judged to have signif­
icant support. This is done for the first-level trees that have the group and
for the first-level trees that do not. These are used to approximate the proba-
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Table 20.2: P value for the 50% partial bootstrap at which the corrected
P value does not reach 0.95, for the Zharkikh and Li method and the AU
method.

ZL AU ZL AU
P* for complete P > 0.95 when P* for complete P > 0.95 when

bootstrap P; less than bootstrap P,; less than

0.99 0.9602 0.9704 0.86 0.7499 0.7137
0.98 0.9354 0.9445 0.84 0.7257 0.6820
0.97 0.9143 0.9213 0.82 0.7024 0.6515
0.96 0.8952 0.8989 0.80 0.6799 0.6222
0.95 0.8776 0.8776 0.75 0.6265 0.5532
0.94 0.8611 0.8571 0.70 0.5765 0.4899
0.93 0.8454 0.8374 0.65 0.5288 0.4314
0.92 0.8303 0.8182 0.60 0.4833 0.3772
0.91 0.8159 0.7997 0.55 0.4394 0.3270
0.90 0.8019 0.7818 0.50 0.3969 0.2804
0.88 0.7752 0.7468 0.40 0.3152 0.1976

bility that a group that is not present will be significantly supported, and the
probabilities that a group that is present will be significantly supported.

• The AU method of Shimodaira. Shimodaira (2002) has developed a method
similar to Zharkikh and Li's complete and partial bootstrap. It uses a series
of bootstraps of different sizes. One might be the original bootstrap, another
might sample n/2 sites, and another 277 sites (which is perfectly possible
since sampling is with replacement). By fitting curves through the resulting
P values, he obtains constants needed for a correction formula. Shimodaira
and Hasegawa (2001) have described a computer program to do this.

The correction formulas for three of the methods look generically similar,
'd1ich suggests that the methods are related. They have much in common. The
:"Jst two explore the shape of the region of data space that lead to inferring the
;roup. The partial bootstrap (used in the Zharkikh and Li method and in the AU
::1ethod) has us spread out more widely from the original data set and see what
:~s does to the probability of inferring the presence of the group. The Efron­
:-Ialloran-Holmes (EHH) method moves to the nearest edge of the region and uses
::'1e bootstrap to ask about the geometry of the region there. They argue that they
~e in effect asking about the convexity of the region in that neighborhood. Shi­
_. odaira discusses the matter in more detail and points out the close relationship of
"'is method with these two methods. It is less easy to see that the iterated bootstrap
~50 does something similar, as it works more empirically without any explicit ge­
::Tletry.
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The methods differ in computational effort. The iterated bootstrap can be quite
tiresome, as it replaces bootstrap R replicates with more then R3 replicates. This
would replace 100 replicates by more than a million replicates. The method of
Efron, Halloran, and Holmes takes a fraction of the bootstrap replicates, reweights
their characters, and then resamples from these. This will be tedious but not
nearly as burdensome as the iterated bootstrap. The complete and partial boot­
strap method and the AU method are the least difficult because they can be carried
out with as few as two bootstrap samplings. However, those samplings may need
a large number of replicates to obtain sufficiently accurate P values. Shimodaira
presents computer simulation results comparing the ZL, AU, and EHH methods,
and finds that AU is most accurate.

We can make tables to carry out both of these methods with two bootstraps.
Suppose that we have a complete bootstrap plus a partial bootstrap that samples
half as many characters. Call their observed bootstrap P values P* and P,":, re­
spectively. Table 20.2 shows for each method which values of P; are small enough
to allow the bias-corrected P to reach 0.95 for a number of different P values for
the complete bootstrap.

The drug testing analogy
In Hillis and Bull's (1993) simulations, they asked what fraction of the time a group
that had 95% bootstrap support would be on the true tree. They found that groups
that had as little as 70% support had a 95% chance of being true. This was the
outcome of a simulation in which they took randomly branching trees and evolved
characters along them.

Will this prove to be a general result? If so, then we might hope for general
rules allowing us to correct the P values and interpret the result as a probability
that the group is correct. The following Bayesian analogy shows that there is some
reason for doubting this. Suppose that we are carrying out product tests for a
pharmaceutical company, testing whether their drugs cure a particular disease.
We do a blind test of the proposition that the drug is ineffective, and come up with
a tail probability a for the test. Some of the time we reject this null hypothesis.
Consider a group of proposed drugs that have each achieved a = 0.05. What
fraction of them actually work?

It depends heavily on who selected the drugs. They are submitted to us by the
drug development branch of the company. If that branch is highly competent, they
will submit to us mostly drugs that work. In that case many of them will reach the
a = 0.05 threshold, and the probability that a drug that reaches a = 0.05 actually
works is then very high, probably much higher than 0.95. On the other hand, if
the drug development branch is not competent, then the drugs they submit for
testing will mostly be ineffective. Few drugs will reach the 0.05 threshold, and
when one does, it will have a small chance of being one that actually works, being
more likely to be one of the 1 drugs in 20 that accidentally appears to work.
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Hillis and Bull (1993) had, in effect, a fairly competent drug development labo­
ratory. They used computer simulation on randomly branching trees. If there is a
moderate amount of evolution on the branches of the tree, and a large number of
characters, the groups recovered will tend to have a large probability of being cor­
rect. If, however, there is too much change between nodes on the tree, the groups
recovered will reflect mostly random noise, and have a good chance of being in­
correct.

We can use the normal distribution analogy to show this phenomenon. Sup­
pose that /-I' itself is drawn from a normal distribution with mean 0 and variance
ry2. We know that, for n characters, a group reaches P = 0.95 when its sample
mean x is 1.95996/vn. If we take n data points from a normal distribution with
\'ariance 1, whose mean is itself normally distributed with mean 0 and variance
ry2, that mean, x, will come from a normal distribution with mean 0 and variance
} 2 + lin. We can now ask about the conditional distribution of the true f..L given
the observed x. This too is normal. It has mean b/L'x x, where b/L.x is the regression
of f..L on x. That regression is the fraction of the total variance (J2 + lin which comes
from the variation of j.L, namely

(20,1)

The variance of J1 given x is also easy to obtain. It is the residual variance in j.L after
the variance due to regression is taken out, which can be calculated to be

Using equation 20.1, this variance is easily shown to be

(J2
Val' (j.L Ix) =

rw2 + 1

(20.2)

(20.3)

Thus given a group that has significance level P, we can calculate the probability
:hat it truly has j.L > O. All we need to do is (1) find the standard normal deviate
:hat has area P below it, (2) multiply this by J(J2 + lin to get the corresponding
\'alue of x, (3) multiply that by the regression coefficient (J2/ ((J2 + ~) to get the
mean of j.L, (4) calculate how many standard deviations this is from 0 when the
\'ariance is given by equation 20.2, and (5) work out what fraction of that condi­
clonal distribution of j.L'S lies above that point. Note that 0 lies in the left tail of this
distribution of j.L'S, and thus we are asking about the area above that point.

This has been done by Felsenstein and Kishino (1993). Figure 20.6 shows the
,esults, with the probability that j.L > 0 plotted against P. The result depends
on the value of n(J2, and these values are indicated next to the curves. When

(J2 = 0.1, in effect there is very little genuine signal (the drug development group
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Figure 20.6: The probability that ~l > 0 when we draw n points from a
normal distribution whose expectation ~l is itself normally distributed
with mean 0 and variance (J2. The probability is plotted as a function
of the P value for the observed mean. The value of n(J2 is shown next
to each curve.

is sending drugs that are generally ineffective). Even when a test reaches P = 0.95,
the probability is not much greater than 50% that the true mean is above O. When
n(J2 is I, the curve is nearly a straight line, and when a test reaches P = 0.95, it has
a bit more than 95% chance that the true mean is above O. Hillis and Bull's (1993)
results looked more like the case TW

2 = 2, as they found that when P = 0.70, the
group appeared on the true tree about 95% of the time.

These results are for the normal distribution analogy. What use can a user of the
bootstrap make of them? Until further simulation testing on phylogenies is done,
one has to be cautious. We do not know whether Hillis and Bull's rule of thumb
is general. We do not know whether other cases are similar in the parameters
that correspond to n(J2. Note that with more information (larger n) the bootstrap
becomes more conservative. One way to get a feel (but no more than that) for
the conservatism of the bootstrap would be to look at all the P values on the tree.
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If they are all large, this indicates that n is large, and we may then cautiously
conclude that P values much less than 95% may indicate groups that have a high
probability of being true. But if the P values are mostly small, then n is not large
and we must be much more cautious in concluding that they indicate that a group
is true.

Berry and Gascuel (1996) have argued that if correctness of trees is judged by
the symmetric difference metric (which will be explained in Chapter 30), and if we
count Type I and Type II errors as equally serious, the best value of P to use to
resolve the tree partially would be P = 0.5. Their argument relies on a particular
form of the relationship between the measured P value and the probability of
the grouping being correct, one which makes this probability 0.5 when P = 0.5. It
seems unlikely that this is true in general, so that their proposed rule needs further
examination.

Alternatives to P values
,-\nother difficulty with P values on groups is that one "rogue" species that is of
uncertain placement can disrupt the signal in a majority-rule consensus tree. If the
group ABCDEF occurs in most trees, but half of the time with species G in it and
half of the time without, the majority-rule consensus tree may not contain either
.-\BCDEF or ABCDEFG. The majority-rule method does not give a group credit for
a partial appearance, or for appearance only in a larger group. Sanderson (1989)
has suggested coping with this by setting a number n of extra individuals allowed
into a group. Thus, if n is 2, we note that ABCDEF is present whenever a group
containing those species and no more than 2 others is present. In the example
above, ABCDEF would be given high support when n = I, as then ABCDEFG
,-ould count towards it being present.

Wilkinson (1996) proposed another method: computing a reduced majority­
cule consensus tree which shows trees of groups that are present among the boot­
:'trap estimates of the trees, when we drop various species from consideration.
Thus, dropping species G, we find ABCEDF present a large fraction of the time.
:-Ie did not present efficient algorithms for finding the set of reduced majority-rule
~onsensus trees. He notes that they require us to specify the desired tradeoff be­
:-"xeen number of species dropped and strength of support for groups. Algorithms
:0 find these trees efficiently are still lacking.

In both cases some of the problems from noise are reduced by asking a some­
-:hat looser question. Computational issues aside, the question that must be faced
.5 whether this looser question is meaningful enough. Is it helpful to know that
:..:"e group {Human, Chimp} occurs often if some additional species are allowed in
:::. e group, if the broader group turns out to be {Human, Chimp, Mouse}?

Brown (1994a) suggests other questions: Does a group appear significantly
::lore frequently than another, and does a group appear significantly more often
:..,an 50%7 I cannot see that these are useful: With enough bootstrap replicates a
:'"oup that appears 51% of the time will be declared to appear significantly more
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often than 50%. But does this mean that its appearance on the true tree is sup­
ported? I suspect not.

Probabilities of trees
An alternative to the puzzle of how to describe support for groups is to simply
take the distribution of trees and measure support for the different tree topologies.
If we have a modest number of species we may be able to look at all possible trees.
With 5 species and unrooted trees, there are 15 bifurcating tree topologies, and we
can count how often each of them occurs among the bootstrap estimates of the
topology. One way of constructing a confidence interval on trees is then to take
the most frequent topologies until their probabilities add up to at least 95%. As
the number of species increases, it will be less and less practical to do this. The
number of possible phylogenies increases greatly, and it will soon become rare
that two bootstrap replicates will lead us to estimate the same tree topology. We
then end up with two classes of tree topologies-those that occurred once, and
those that did not occur. We might order the ones that occurred once according
to their goodness-of-fit to the original data (as judged by likelihood, parsimony,
or whatever criterion we are using). The real problem is that we are then not
concentrating our attention on the trees that contain a group of interest, so that we
lose power in evaluating such a group.

Tree probabilities estimated from a bootstrap are used in Lake's (1995) "boot­
strapper's gambit" method. There each bootstrap sample has its quartets ana­
lyzed, and if these all are compatible, a tree is constructed from them. When the
tree probabilities are calculated, their interpretation is marred by the omission of
all bootstrap samples that have incompatibilities among their quartets. Lake's tree
probabilities must therefore be regarded as upper limits on the actual values.

Using tree distances
In Chapter 30 distance measures between trees will be described, in particular the
symmetric difference metric. Penny and Hendy (1985, 1986) used this difference,
together with the jackknife, to discover how far from the true tree we are. They
randomly sampled a fraction of all characters, and constructed a tree from this re­
sampled data. They calculated the mean distance between the trees from different
samplings. They could show that, as the fraction of characters that were sampled
increased, the trees became closer to each other. Plotting the decline of distance be­
tween trees against the number of characters sampled allowed them to infer how
much sequence data was necessary to infer the true tree accurately.

Miller (2003) has used a similar plot (although using distance from a reference
tree rather than distance between different sampled data sets). Like Penny and
Hendy, his interest is in distances between trees, in order to understand the accu­
racy of the whole tree.
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Jackknifing species
Early on, Lanyon (1985) suggested using a jackknife across species, removing one
species at a time from the tree to see what effect this had on the estimate of the rela­
tionships of the remaining species. It is not easy to see what statistical meaning this
jackknifing of species will have. Species are not independent and identically dis­
tributed - they come to us on some phylogeny, where they are highly clustered.
This has been a major barrier to any attempt to make a statistical interpretation of
jackknifing or bootstrapping species instead of characters.

Parametric bootstrapping
In the bootstrap, the resampling of the data set is intended to mimic the variability
that we would get if we could sample more data sets from the underlying true
distribution. In effect, that would be what we would get if we could simulate data
sets on the true tree using the true model. The data sets we get from bootstrapping
would be similar in the kinds of variability they contained. As we have seen in the
discussion of biases, the trees they yield vary around the estimate that the original
data set gives rather than around the true tree.

On the assumption that our estimate of the tree is somewhere near the true
tree and that our model is somewhere near the true model, we could also imagine
using our estimate and making new data sets on it by computer simulation. We
would hope that these data sets also contain the same kinds of variability as would

Computer
simulation

Estimation
of tree

L---_-'----.,

L---_-' ----.,

L---_-' ----.,

Figure 20.7: The parametric bootstrap. The data sets are obtained by
simulation on our best estimate of the tree rather than by resampling
columns of the original data matrix.
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data sets from the true tree. The data sets could be treated in much the same way
as are bootstrap samples. This method is the parametric bootstrap. The technique
was introduced by Efron (1985). It was introduced for phylogenies by a number of
people (Felsenstein, 1988b; Goldman, 1993; Adell and Dopazo, 1994; Huelsenbeck,
Hillis, and Jones, 1996).

The closeness of the relationship between parametric bootstrapping and the
ordinary bootstrap has led to the latter being referred to as the nonparametric
bootstrap. With a single variable this is particularly apparent. Sampling from the
original data is the same as sampling from an empirical histogram of data points.
This histogram is regarded as an estimate, hopefully a close one, of the original
distribution from which the data were drawn. Parametric bootstrapping replaces
this histogram with a distribution from a parametric family, with the parameters
being those that would be inferred from the data.

Figure 20.7 diagrams the process of using the parametric bootstrap with R
replicates:

1. A single best estimate of the tree is made from the data set.

2. R (in this case, 100) computer simulations are then used to produce R data
sets of the same size from this tree.

3. Each of these simulated data sets is used to infer the tree, using the same
method used on the original data set.

4. The resulting trees are then analyzed in the same way as in the ordinary
(nonparametric) bootstrap, such as by making a majority-rule consensus tree
and P values for branches in the tree.

Advantages and disadvantages of the parametric bootstrap
Parametric bootstrapping can be used as a general replacement for nonparametric
bootstrapping. For small data sets, it will have the advantage that it can sample
from the desired distribution, even when sampling columns of the data matrix
might leave many kinds of variation in the data unrepresented. The main concern
is its close reliance on the correctness of the statistical model of evolution. When
the model is correct, the type of variation that we will get between different boot­
strap sample data sets will closely mimic the type of variation that we will get
between the simulated data sets. It will not matter much whether we use para­
metric or nonparametric bootstrapping. But when the model is not correct, they
will behave differently. The sampling of columns of the data matrix in ordinary
nonparametric bootstrapping will reflect the variation in the correct model, while
the simulation in parametric bootstrapping will reflect the variation in our incor­
rect model. In this situation, the ordinary (nonparametric) bootstrap will have the
advantage. The more trust we have in the adequacy of our model, the more we
will be willing to use instead the parametric bootstrap.
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Permutation tests
An alternative to resampling is to reorder one's data. Permutation tests are stan­
dard methods in nonparametric statistics. For example, if we have two samples,
one with 34 points and one with 43 points, that are supposed to be drawn indepen­
dently from the same distribution, we can do a nonparametric version of at-test
by computing the difference in their means. Rather than assume we know the dis­
tribution from which they came, we can simply reshuffle the points many times.
Suppose that we take all 77 values and shuffle them into a random order. Take
the first 34 as being in sample 1, the second 43 as being in sample 2. Compute the
difference in their means.

If we continue shuffling into random orders, and each time compute the dif­
ference of means, we get a large sample from the distribution of means under the
null hypothesis that the two samples are from the same distribution. If we draw
(say) 999 such samples, we can take these differences of means, and consider also
the actual difference of means. Of these 1,000 numbers, if the actual difference lies
in the top 25 or the bottom 25, we can reject the null hypothesis with a = 0.05.
Under the null hypothesis, all 1,000 values are from the same distribution, and the
probability of being in these tails is 0.05.

Notice that the samples are not precisely from the full distribution because
they always involve the same 67 numbers. Notice also that there are only a finite
number of possible outcomes. There are only 77!/(341 43!) possible outcomes, but
this is a satisfyingly large number, over 8.1 x 1021

. The power of the test is also
ependent on the intelligent choice of a statistic. If the underlying distribution is

one that generates samples whose means are dominated by a few extreme values,
this test would not be particularly sensible.

A number of permutation strategies have been suggested:

Permuting species within characters
.-\rchie (1989) and Faith and Cranston (1991) have suggested a permutation test for
:he presence of taxonomic structure in a data set. It is often called the permutation
:,Jil probability test (PTP). They take each character (column) in the data matrix and
shuffle its values, reassigning them to species at random. All of the columns are
shuffled independently of each other. The hope is that this will produce data sets
:hat have no phylogeny but have numbers and distributions of states that are typ­
:cal of the data. The distribution of goodness-of-fit measures such as likelihood or
~ arsimony score among these permuted data sets are then compared to the value
::rom the original data. If the actual value lies far enough into the tail (in the di­
~ection of higher likelihood or lower parsimony score), then there is significant
:a.xonomic structure in the data. Kallersjo et al. (1992) suggest some approximate
strategies for more rapidly sampling trees and approximately computing the tail
?robability, based on Chebyshev's inequality and an exponential approximation
: the distribution of tree lengths.
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There are two difficulties with the PTP test. One is that structure may be de­
tected for relatively trivial reasons. Suppose that two species are sibling species
and that these are nearly identical. This may be enough to cause the test to be sig­
nificant. It is true that there is then relatedness among species being detected, but
it is only this rather obvious relationship between sibling species, and it does not
mean that other larger-scale relationships are being detected. For reasons similar
to this, Slowinski and Crother (1998) argue that the PTP test too readily detects
significant structure. Simulation tests of the PTP method have disagreed whether
or not its probability of type I error is too high (Peres-Neto and Marques, 2000;
Wilkinson et al., 2002).

A second, and more serious problem was pointed out by Thorne (in Swofford
et al., 1996). A tree with only a single internal node, with all lineages branching
from it in a great multifurcation, can show significant structure in the test, if the
branches are of substantially unequal lengths. An example of such a case is given
in that paper. One possible response to this is that such a case does have structure.
If one lineage is much longer than the others, and if the tree is unrooted and we re­
gard it as the outgroup, then the other species can be regarded as forming a group
distinct from the outgroup. Kallersjo et al. (1992) have suggested that, rather than
using parsimony score to characterize the degree of monophyly, we use a total
support criterion, which is the sum over all branches of the Bremer support val­
ues. This will be zero if there is no unambiguous support for any monophyletic
group. Farris et al. (1994a) gave an example data set where there was no such
unambiguous support for any monophyletic group, but where the PTP test using
parsimony score is significant. The example shows definite structure - for exam­
ple, placing the species in a linear order - so that it is possible to argue that the
behavior of the PTP test is appropriate. There has been debate back and forth over
these examples (Carpenter, 1992; Faith, 1992; Kallersjo et al., 1992; Trueman, 1993;
Faith and Ballard, 1994; Farris et al., 1994a; Farris, 1995; Trueman, 1996; Carpenter,
Goloboff, and Farris, 1998). The debate revolves around what the null hypothe­
sis and alternative hypotheses of the PTP test really are. Some of these concerns
have been raised on philosophical grounds (Goloboff, 1991; Bryant, 1992), but the
matter will be more readily resolved in a statistical context. This needs more ex­
amination, so that we can understand what are the assumptions and behaviors of
the test.

In an effort to concentrate the test's attention on hierarchical structure, Alroy
(1994) has suggested using the PTP permutation strategy but computing different
statistics, based on the number of pairs of characters that are compatible.

A variation of the PTP test is suggested by Faith and Cranston (1991). The tree
topology is held constant and the data permuted, evaluating each permutation
on that topology. This is held to test whether that tree has support greater than
random. As this way the tree cannot adapt to the data, the test is quite likely to
reject randomness. Brown (1994a) suggests using the permutation while examin­
ing whether a particular group appears significantly more often among bootstrap
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estimates than among estimates from the permuted data. As the presence of al­
most any internal structure within the group can cause that to happen, this seems
~tnlikely to be a useful question.

Topology-dependent permutation of species. Faith (1991) developed
.3. version of this permutation method designed to test whether a specific branch,
-,\-hich divides the species into two groups, is supported. He permutes the data
as above, but instead of computing the total parsimony score for each data set, he
computes the Bremer support for a given split of the species into two groups. For
each data set we must compute the difference between the best tree and the best
~ee that does not contain this split. Faith argues for randomization that does not
:nclude the outgroup species. Swofford et ai. (1996) disagree and prefer random­
:zation of each character over all species. Faith's randomization test, the topology­
..ependent permutation tail probability (T-PTP) test, is designed to test whether there
:s nonrandom support for that particular split.

There has also been some uncertainty as to what should be done with the out­
:::J oups in the randomization process. Trueman (1996) argued that exclusion of the
outgroup species from the randomization process was appropriate, and suggested
-.\-ays of making the test more conservative.

As with the PTP test, there has been much discussion of the usefulness and
\-alidity of this test (Faith, 1992; Trueman, 1993; Farris et aI., 1994a; Faith and Bal­
:ard, 1994; Trueman, 1996; Faith and Trueman, 1996; Carpenter, Goloboff, and
Farris, 1998). I note here one particular criticism. Swofford et ai. (1996) concen­
~ated on whether other, irrelevant structure in the data could cause the test to
~eject randorrmess too often. (Farris, 1995 had earlier made an equivalent sugges­
.·on.) Swofford et ai. simulated evolution on a tree of topology (0, (A, B, (C, D))),
.ind found that the group (B, C, D) was supported too often. The presence of group
C, D) thus made the randomization procedure inappropriate, as it often broke up

:his group. The T-PTP test may thus have a null hypothesis of no structure any­
-. -here in the tree, which dilutes its focus on the monophyly of the one group. Faith
md Trueman (1996) have argued that this criticism is invalid, being based on the
.'"fong choice of null hypothesis.

?ermuting characters
_. [any phylogeny inference methods are insensitive to the order of the characters
:he exception is likelihood or Bayesian methods that allow for autocorrelation
: rates among sites). It might thus seem uninteresting to permute the order of

:: e characters in a data set. But when there are two data sets, we might wish to
·.now whether they are inferring noticeably different trees. If the data sets have,
-2spectively, nl and nz characters, this can be addressed by a permutation test. We
:.::.'e all nl +nz characters, and allocate them randomly into two data sets of size nl
-:td nz. This is most easily done by permuting the order of the nl + nz characters,
':td taking the first nl to be the first data set and the second nz to be the second
::1ta set.
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The test is carried out by doing this R times, and measuring for all of these
replications some aspect of the difference between the phylogenies inferred from
the two data sets. We add the original data set into the picture and see whether
the difference between their phylogenies is in the top 5% of these R + 1 numbers.
Permutation tests like this are standard in statistics; in systematics they go back at
least to the paper of Rohlf (1965), who did not compare phylogenies but measured
the correlation between distances inferred from both data sets. Penny and Hendy
(1985) used random divisions of a data set into halves to measure the average
distance between the resulting trees, and from that get an idea of how accurately
the tree was being estimated. The permutation test of whether the trees from two
data sets are significantly different was introduced by Farris et al. (1994b) as the
incongruence length difference (ILD) test, and independently by Swofford (1995) as
the partition homogeneity test. It is most often known by the former name.

For the ILD family of tests, one computes for each replicate (and for the
original two data sets) a measure of the extent to which the two data sets re­
sult in different trees. This can be done for parsimony, distance matrix, or like­
lihood methods. For parsimony, suppose that T(D) is the tree estimate from
data set D, and N(D. T(D)) is the number of changes required to evolve data
set D on that tree. If the data sets are D1 and D2 , and if when combined
they are the larger data set D, then the suggestion of Farris et al. (1994b; Far­
ris et aI., 1995b) is to use the measure of Mickevich and Farris (1981), which is
N(D. T(D)) - N(D 1 . T(Dd) - N(D2 . T(D2 )), a number that cannot be negati,oe.
(I leave it to the reader to discover why.) Swofford (1995) notes that the first term
is unnecessary as it is the same in all permutations of a data set.

There are other possible measures. For example, one could use a tree distance
(for which see Chapter 30) to measure how dissimilar the two trees are. General­
izations using the criteria for distance or likelihood methods are also straightfor­
ward, as long as one takes into account that higher is better in likelihood. In any
of these cases one tests whether the measure of difference in outcome for the ac­
tual data sets is in the top 5% of the distribution, where the other R replicates are
generated by permutation. If it is significantly extreme, this is an indication that
the two data sets have significantly different signal.

ILD tests have been fairly widely used to analyze real data sets.
The ambiguity in these permutation tests is exactly what a significant result

implies. Trees can be different in topology and/or in branch length. Simulations
by Dolphin et al. (2000), Dowton and Austin (2002), Darlu and Lecointre (2002),
and Barker and Lutzoni (2002) found that inequalities of rates of evolution in dif­
ferent data sets, using the same tree, could cause an elevated rate of rejection of
the null hypothesis. This suggests caution in concluding that two data sets imply
different trees.

Skewness of tree length distribution
A technique that is not really a permutation test, but which should be discussed
along with them, is the skewness test of Hillis (1991; see also Fitch, 1979, 1984),
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which is discussed more extensively by Huelsenbeck (1991). This looks at the
numbers of changes on all possible tree topologies, using parsimony. There is
judged to be phylogenetic signal in the data if the distribution is significantly
skewed. The rationale for this is that a few trees of much lower score than the
others will create negative skewness. It can be computationally burdensome to
examine all possible topologies, when the number of species is not small. The bur­
den can be largely avoided by instead sampling randomly from the distribution of
all possible topologies.

This method has been criticized by Kallersjo et al. (1992), who gave a data set
on which it did not behave properly. The fact that skewness is affected by all parts
of the tree distribution, and does not concentrate its attention on the better trees,
means that it may be of limited power in detecting phylogenetic signal.
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Paired-sites tests

A relative of likelihood ratio tests and bootstrapping is the class of tests that I ,,-i.:...
call paired-sites tests. The exact relationship of these tests to bootstraps and likel.:­
hood ratio tests is not obvious, but there is one. Paired-sites tests were first de­
veloped by Alan Templeton (1983a, b) for restriction site data. His test was rath :­
complex, owing to his grouping the sites according to which restriction enzyn e
cuts them. A simplified version of the test was developed by Allan Wilson (i.;­

Prager and Wilson, 1988; also analyzed by Felsenstein, 1985c), called the winllii:~~

sites test. Kishino and Hasegawa (1989) introduced a form of paired-sites test a
propriate for maximum likelihood trees. It has come to be known as the KH te~:

or the KHT test.
The basic idea of paired-sites tests is that we can compare two trees for eithe:­

their parsimony or likelihood scores. The expected log-likelihood of a tree is the
average log-likelihood we would get per site as the number of sites grows with­
out limit. If evolution in different sites is independent (as we will assume in thE
chapter), then if two trees have equal expected log-likelihoods, the differences ir
log-likelihood at each site will be drawn independently from some distributior.
whose expectation is zero. If we do a statistical test of whether the mean of these
differences is zero, we are then also testing whether there is significant statistica~

evidence that one tree is better than another. A similar principle holds for parsi­
mony.

There have been a number of forms of the test proposed. They include:

• The winning sites test. For each site, score which tree is better, so that each
site is assigned either a + or a - (or is assigned a 0 if both trees are tied at tha:
site). Use a binomial distribution to test whether the fraction of + versus ­
is significantly different from 1/2.

• The z test. I suggested (in documentation for my PHYLIP program pack­
age in 1993) assuming that the differences are normally distributed. We can

364
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then estimate the variance of the differences of the scores at each site, from
this calculate the variance of the sum of differences, and from that calculate
by how many standard deviations the sum of differences departs from O. We
use the table of the normal distribution to calculate the probability that the
mean would differ by this much or more from O. A similar normal approxi­
mation was made by Kishino, Miyata, and Hasegawa (1990).

• The t test. Swofford et al. (1996) suggested using a t test instead of a z test.
Thus the test reduces to a standard test of whether means from two normal
samples are equal. Of course, we intend to test sums of the differences rather
than means, but this turns out to be the same test, as these differ by a multiple
of n (the number of sites), and so do their variances.

• The Wilcoxon signed ranks test. Templeton's (1983a, b) original method
used the Wilcoxon signed ranks test, which replaces the absolute values of
the differences by their ranks, then re-applies their signs. The sum of these
values for whichever sign is less numerous is used as the test statistic. In
practice, above 16 sites this test becomes a z test, with mean and variance
known from the distribution of ranks.

• The RELL test. Kishino and Hasegawa (1989) developed a suggestion of
mine (d. Kishino, Miyata, and Hasegawa, 1990) to use bootstrap sampling
to infer the distribution of the sum of differences of scores and see whether
olay in the tails of the distribution. This is perhaps the most accurate test.

An example
-=-0 give the reader some idea of how these tests differ, let us carry them out on
" data set. Consider the 7-species 232-site mitochondrial DNA data set selected
~ \. Hasegawa, Kishino, and Yano (1985) from the 896-site data set of Brown et al.
:982), with five great apes and two other mammals (Mouse and Bovine). Sup­

?ose that we want to compare the two tree topologies shown in Figure 21.1, using
::taximum likelihood with an F84 model of evolution with transition/ transversion
~3.te of 2.0 and equal rates of change at all sites. We infer the branch lengths for
23.ch tree (they turn out to be the ones shown in the figure). The two trees differ
._ rimarily in the position of the Chimpanzee. Figure 21.2 shows part of a table of
~~e log-likelihoods of sites for these two trees. The trees differ by 3.19 in their total
.og-likelihood. Figure 21.3 shows a histogram of the differences in log-likelihood
-'.: all 232 sites. These have a noticeably nonnormal distribution. The histogram
~~ows them grouped in classes of width 0.05.

H we carry out the tests listed previously, here is what we find:

• The winning sites test. Of the 232 sites, 160 show tree I to have higher
log-likelihood, 72 show tree II to have higher log-likelihood. The binomial
probability that, out of 232 coin tosses, 160 or more would come out heads,
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,------------- Mouse

Tree I

Tree II

1-------- Bovine
,----- Gibbon

r--- Orang
Gorilla

Chimp
Human

,------------- Mouse
1-------- Bovine

,------ Gibbon
,----- Orang

Gorilla
L-J._- Chimp

Human

Figure 21.1: The two trees that are used as an example for the paired­
sites methods. They differ primarly in the position of the Chimp. The
trees are inferred as uillooted trees.

or that 160 or more would come out tails, is very small, about 3.279 x 10-9
. If

we instead carry out a chi-square test on the observed numbers 160: 72 with
expectations 116 : 116, we get a similar result, that X2 = 33.37931 with one
degree of freedom, so that the probability of a value this large or larger is

Tree
Site

1 2 3 4 5 6 231 232 In L

I -2.971-4.483-5.673 -5.883 -2.691 -8.003

II -2.983 -4.494 -5.685 -5.898-2.700 -7.572

-2.971 -2.691 -1405.61

-2.987 -2.705 -1408.80

Diff +0.012+0.111+0.013+0.015+0.010 -0.431 ... +0.012+0.010 +3.19

Figure 21.2: Partial table of log-likelihoods at different sites for the trees
of Figure 21.1.
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Difference in log likelihood at site

Figure 21.3: Histogram of log-likelihood differences between the two
trees in Figure 21.1, with values grouped in classes of width 0.05.

3.791 X 10-9 . The winning sites test thus speaks strongly for the significance
of the difference between the two trees.

• The z test. The difference in the sum of log-likelihoods is 3.18907. The vari­
ance of differences in log-likelihoods is 0.0487867, so that the variance of the
sum of differences is 232 times as great, or 11.31852. The standard deviation
of the sum of log-likelihoods is thus 3.364302. The z statistic is the ratio of the
difference to its standard deviation, so that z = 3.18907/3.364302 = 0.948104.
This statistic is assumed to be normally distributed. The probability that a
normal variable is farther than 0.948104 away from zero (in either direction)
is 0.343077, which speaks strongly against the significance of the difference
between the two trees.

• The t test. As there are 231 degrees of freedom, a paired t test turns out to be
essentially the same as a z test, thus giving the same result. Above 30 degrees
of freedom, t tests are approximated by doing z tests.

• The Wilcoxon signed ranks test. If we take the differences, rank their abso­
lute values, and then add up the ranks of those that are negative, we get a
rank sum of 8,573. With samples of size greater than 16 sites, the Wilcoxon
test uses a normal approximation. The rank sum with n sites has expecta-
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tion in(n + I), and its standard deviation will be In(n + 1)(2n + 1)/24. A
n = 232, the value of 8,573 is drawn from a distribution expected to be ap­
proximately normal with mean 13,514 and standard deviation 1,023.39386.
Thus it is 4.82805 standard deviations below its expected value (i.e., there
are too few negative values). The Wilcoxon test then amounts to a two-tailed
test from the normal distribution. The probability that the value is more than
4.82805 standard deviations away from its expectation is 0.000001378765.

• The RELL test. We draw a large number (here, 10,000) of bootstrap samples
of sites. For each we ask whether the sum of differences of log-likelihoods is
positive or negative. In this case out of 10,000 samples, 8,326 had a positive
sum. This would imply a one-sided tail probability of approximately 0.167.J
so that the two-sided tail probability is double this, or 0.3348. This is quite
close to the result with the z test.

Which of these tests is correct? My own favorite is the RELL test, and the z and
t tests seem to be giving the same answer. The winning sites test and the Wilcoxon
test give a different answer. A look at the histogram of log-likelihood differences
(Figure 21.3 shows that the distribution is not normal and not symmetrical. The
two classes closest to 0 are very unequal in size, with far more values above 0 than
below. The winning sites test is impressed by this disparity. Further out along the
axis, we see a smaller number of sites that make a much larger positive or negative
contribution to the log-likelihood. The RELL, z and t tests respond mostly to the
signal from those sites, and as there are far fewer of them, they give much less
significance to the difference of log-likelihoods between the trees. The Wilcoxon
signed ranks test is somewhere in between, not responding fully to the sizes of the
sites that have a large effect.

An examination of the sites with large differences of log-likelihoods shows that
all that have a log-likelihood difference greater than 0.5 in absolute value show
a difference in parsimony score between the two trees. These are the sites that
reconstruct changes of state within the {Human, Chimp, Gorilla} clade. Of 15 sites
that show a log-likelihood difference greater than 0.2, 11 of them have parsimony
score differences between the two trees. Of 13 sites that show parsimony score
differences, 12 of them have log-likelihood differences greater then 0.2. The RELl,
z-test, and t-test results are influenced mostly by these sites.

There are interesting exceptions, such as site 130, in which all species have A
except Human and Orang, which have G. There is no difference in parsimony
score between the two trees at this site, but the log-likelihood difference is 0.41608,
favoring a {Chimp, Gorilla} clade. This presumably reflects the low frequency of
G in the sequences, which leads a likelihood method to prefer to explain the G as
having arisen once in the lineage leading to the {Human, Chimp, Gorilla, Orang}
clade, and then having been lost once in the ancestor of Chimp and Gorilla. This is
an interesting example of way likelihood uses base frequency information in ways
that have no parallel in parsimony methods.
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The remaining sites show smaller log-likelihood differences because they are
reconstructed as changing in other areas of the tree. Small branch-length differ­
ences between the trees then influence whether they seem to favor one tree or the
other. There are many more of these sites that favor Tree I than Tree II, and thus
the winning sites test and the Wilcoxon test back Tree I much more strongly than
do the other tests.

I tend to be impressed by the evidence from the few sites of large effect, and
mimpressed by the disparity of signs between sites of small effect, so I end up

feeling that the RELL, Z, and t tests are giving the most meaningful results. You
may feel differently.

Like the bootstrap, the KHT class of tests compares likelihood differences
among tree topologies to the empirical variation in log-likelihoods. This gives
J some robustness against small violations of the models. Hasegawa and Kishino
1994) gave simulation results showing the RELL method to arrive at probabilities
~or tree topologies very similar to those from a full bootstrap sampling. Emer­
30n, Ibrahim, and Hewitt (2001) found in a simulation test that the KHT test coped
"::>etter with violation of the evolutionary model than did others.

\1ultiple trees
J\ many cases (including the tests I built into my own phylogeny program pack­
_'l;:,e), when there are many trees to test, confidence intervals on the acceptable trees
_ave been constructed by comparing each tree to the best tree, and accepting all
:Tees that cannot be rejected by the KHT test. Shimodaira and Hasegawa (1999)
.md Goldman, Anderson, and Rodrigo (2000) have pointed out that this is an in­
~orrect way of doing multiple tests, and will accept too few trees. When only two
::-ees are being compared, but one is chosen because it is the overall maximum
: 'elihood tree, one can correct the test by treating it as a one-sided test instead of

.'l two-sided test.
It might be thought that the problem is the number tests being done, and that

.: simple multiple-tests correction such as the Bonferroni correction can be used
:0 solve the problem. That it is not this simple is seen by considering a t test to
::-lace confidence limits on the mean of a normal distribution. We can carry out
:':,e t test of the observed sample mean against any proposed other value, in the
.:sual way. Each proposed value is compared with the observed mean, and a t
-::>st carried out. Those proposed means that are not rejected by this test form the
~onfidence interval for the mean. Note that in doing this we make no correction
'or the number of proposed values we try. There could be one, or there could be a
-:Ullion - the test for anyone value is not affected. There should be no correction
-or the number of tests because the results of all such tests respond to fluctuations
_..... the data in a highly correlated way. In the phylogenies case this is not true ­
:"-.ere needs to be a correction for all the different ways the data can vary, ways that
-.1pport different trees.
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The SH test
Shimodaira and Hasegawa (1999) have described a resampling method that ap­
proximately corrects for testing multiple trees. They suggest that we

1. Make R bootstrap samples of the N sites. For each compute the total log­
likelihood. (This is most conveniently done by RELL sampling where we
add up sitewise log-likelihoods without re-estimating branch lengths or
other parameters.)

2. For each tree, subtract from the sum of the resampled log-likelihoods its
mean across all R bootstrap samples. This "centering" has the effect of ad­
justing all trees so their resampled log-likelihoods have the same expecta­
tion. Thus if the total log-likelihood of the ith tree in the jth bootstrap sam­
ple is £ij, compute the centered value for it as

_ _ 1 R _

R ij = £ij - Ii L til;; (21.1)
k=l

3. For the jth bootstrap replicate, compute for the 'ith tree how far that centered
value is below the maximum across all trees for that replicate:

(21.2)

4. For each tree i, the tail probability is then taken to be the fraction of the
bootstrap replicates in which 5;j is less than the actual difference between
the maximum likelihood and the log-likelihood L i of that tree.

The trees with tail probabilities above our target value (say, 0.05) cannot be re­
jected. In effect, the resampling constructs a "least favorable" case in which the
trees show the same patterns of covariation of site evidence as in the actual data
but don't differ in overall log-likelihood. Resampling mimics data sets arising in
such a case, and it asks how often a particular tree falls as far below the maximum
across these trees as it was observed to do in reality.

An alternative to the SH bootstrap resampling procedure has been suggested
by Shimodaira (1998). It computes a covariance matrix of log-likelihoods from
the table of log-likelihoods per site for each tree. From that one can estimate the
covariances of sums of log-likelihoods. Sampling from a normal distribution with
means zero and this covariance matrix, we can get values of the likelihood more
quickly than in the RELL sampling mentioned above. This is analogous to the
normal distribution approximation of Kishino, Miyata, and Hasegawa (1990).

One limitation of the SH test is that it assumes that all of the proposed trees
are possibly equal in likelihood and resamples under that "least favorable" as­
sumption. This means that if we have 10 reasonable trees to evaluate, but out of
defensiveness we add another 90 implausible trees to the analysis, they make the
test more conservative. The presence of the implausible trees makes it harder to
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reject any of the 10 plausible trees, by giving the resampling more opportunities to
result in a large log-likelihood difference. Shimodaira and Hasegawa (1999) warn
against including too many trees in the analysis, as it will dilute the power.

Other multiple-comparison tests
Bar-Hen and Kishino (2000) have another alternative based on the multivariate
normal distribution. They compute covariances of the log-likelihoods per site
(these are simply l/n of the log-likelihoods, so have similar covariances). They
make use of the asymptotic multivariate normality of the log-likelihoods per site,
and base some multiple-comparisons statistics on that. If l(e i ) is the log-likelihood
per site for the ith tree, then the sum of squares of differences of it between all
pairs of trees is approximately a multiple of a chi-square variate with approximate
degrees of freedom:

L I)l(ei)_l(e j )]2 = ~ ([Ll(ei)f - Ll(e;f) rv

't J>2 '2

(21.3)

\\'here the multiple a and the effective degrees-of-freedom b can be computed from
he trace of the variance-covariance matrix A of log-likelihoods per site, and from

the trace of its square:

a
tr(A2

)

tr(A)
(21.4)

b
[tr(A)f
tr(A2

)

This gives them a test of the hypothesis that all members of the set of trees have
indistinguishable likelihoods. When there are only two trees, the test is identical
:0 the z test mentioned above. They also give a test of whether a tree is different
J\ log-likelihood than a set of others.

Their tests assume that the trees are designated as of interest in advance. It is
. ot inevitable that the set of trees of interest after the fact will be those with the
iighest likelihoods, but this will often be true. It would be of great interest to have
:l sequential testing procedure that could work its way along a series of trees in
-:>rder of decreasing log-likelihoods, deciding when to reject all trees beyond that
::,oint.

Goldman, Anderson, and Rodrigo (2000) point out a test first mentioned by
:-\\'offord et al. (1996), which they call the SOWH test. For the 'ith proposed tree,
.: uses parametric bootstrapping, with tree i taken to be the true tree. Data sets
::enerated by simulation on that tree, and for each the maximum likelihood tree is
:ound, as well as the likelihood of tree i. The distribution of the differences of log­
..kelihoods between these is found, and the same quantity is calculated from the
. riginal data. It is significant if the value is in the tail of the distribution. Note that
::\. using tree i as the true tree in the simulation, we automatically are in the "least



372 Chapter 21

favorable" case. Goldman, Anderson, and Rodrigo (2000) give some variations
on the SOWH test as well. These tests are more computationally burdensome
than the SH test. Buckley (2002) makes some comparisons of the behavior of the
SOWH test, the SH test, and Bayesian approaches using data sets in which the
true tree is considered well-known. He finds that the SOWH test and Bayesian
methods place too much credence in the correctness of the assumed model of base
change, while the SH test is more conservative. Like the nonparametric bootstrap,
it uses empirical variation between sites rather than generating it from a model, as
parametric bootstrap methods and Bayesian methods do.

Testing other parameters
The discussion so far may make it seem that paired-sites tests are useful primarih­
to compare tree topologies. Certainly they are very useful for that, but they can
compare any aspect of trees or of models. We can compare sitewise likelihoods
with different lengths of a branch and the same tree topology, or we can compare
different transition/transversion rates. We can compare clocks with no clock.

Perspective
The generality and robustness of the paired-sites tests guarantees that they will
continue to be of great interest. If they lose a bit of power, they make up for this
in robustness. They are open to criticism for relying heavily on the assumption
that there is no correlation of evolutionary rates or outcomes among nearby sites.
The SOWH test could be made to cope with autocorrelations-the others assume
that it is absent. It is clear that the testing of multiple trees is an area still under
active development, so that we can expect to see more convenient and relevant
test procedures in the future.
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Invariants

~,\-ariants provide a very different way of looking at the inference of phylogenies.
~-sually we start with possible phylogenies. For each we ask what patterns of data
:: e phylogeny predicts, and then we try to choose the phylogeny that makes the
:-est overall prediction. We do so by searching in tree space and inferring branch
.2ngths. Invariants work in the other direction - looking at specific patterns in
::"'.e data to see whether they show relationships that are predicted on particular
::-ee topologies. They escape from the need to infer branch lengths and may also
.:.Jow us to rapidly eliminate many tree topologies.

Invariants methods start with the same probabilistic models as do distance ma­
=--_, and likelihood methods. If these models assume independent evolution at
:::3.ch character (given the tree), then they predict particular pattern frequencies for
:::3.ch tree. For example, for DNA sequences, a phylogeny with eight species gives
:'3.rticular predicted frequencies to all 48 = 216 = 65,536 possible nucleotide pat­
-::-:TIS, from AAAAAAAA through AAAAAAAC to TTTTTTTT. If we consider all
:...-.e eight-species trees that have one given bifurcating tree topology and we vary
-~ "2 x 8 - 3 = 13 branch lengths, then each of them will predict the values in a
::-ctor of 65,536 expected pattern frequencies. Although the vectors of pattern fre­

:"-iencies are in a space with 65,535 dimensions (one is lost as the frequencies have
add up to 1), the collection of vectors that are predicted using the model and the

-2e will only have 13 dimensions, as each combination of the 13 branch lengths
::2dicts a different vector of 65,536 quantities. These expected frequencies thus
:2 arranged in a subspace that is only 13-dimensional.

.'\ simple counting of degrees of freedom will lead us to expect that the ex­
--=-:ted pattern frequencies must obey many constraints, as they only vary in a
:-dimensional subspace. Every time we specify an equation that the expected

-o::ern frequencies must obey, we reduce the dimensionality by one. For exam­
_ if we insist that all the expected patterns .Ii satisfy an equation such as

fAAAAAAAA fcccccccc = fGGGGGGGC frTTTTTTT

373

(22.1)
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we find that we are constraining ourselves to a subspace one dimension smaller
To reach a l3-dimensional subspace, we would expect there would be 65,535 ­
13 = 65.522 such constraints. There should be 65,522 equations we could write­
down in the expected pattern frequencies, all of which would be satisfied for a'
trees of that topology. If we express all these equations in the form

F (fAA4AAAAA. fAAAAAAAC' .... hTTTTTTT) = 0 (22._

then the expressions are called the invariants. They are zero for all the expecte .
pattern frequencies, no matter what the branch lengths.

Some of these equations might be satisfied for all tree topologies; others woul .
be satisfied for some tree topologies but not all. These latter are called the phyloge­
netic invariants (Felsenstein, 1991). If we know the phylogenetic invariants for each
possible tree topology, we can tabulate the pattern frequencies, and we can then
look at the observed pattern frequencies to see what the values of the phylogenetic
invariants are. If the observed pattern frequencies are close to their expectations.
by seeing which invariants come close to their expected values we should be able
to find the tree topology.

There are two catches: knowing what the phylogenetic invariants are for each
possible tree topology, and allowing for the random variation of the observed pat­
tern frequencies around their expected values. The development and terminolog\'
used in this chapter will follow a paper of mine (Felsenstein, 1991) that tried to list
all invariants for a case with four species and a Jukes-Cantor model of base change,
and that named some of them the phylogenetic, symmetry, and clock invariants.

We will frequently use counts of the degrees of freedom. Evans and Zhou
(1998) have proven for a relevant class of symmetric models of base change that
the number of invariants is in fact equal to the number of degrees of freedom left
after the parameters are estimated: that is, the difference between the number of
possible base patterns and the number of parameters estimated. It wasn't obviou
that this had to be true: The notion of degrees of freedom comes from linear mod­
els, whereas invariants are often nonlinear. Hagedorn (2000) gave a more general
proof that the degrees of freedom gives the correct count.

In this chapter I will discuss four topics. For simple three- and four-species
trees and a Jukes-Cantor model, we will attempt to find all invariants. In the pro­
cess we will see examples of the best-known classes of invariants. As we do so,
for an eight-species tree I will try to count the number of each of these kinds of
invariants, showing that they account for most but not all of the degrees of free­
dom. I will also discuss papers that present general machinery that can be used to
find all invariants in some cases. Finally, I will try to explain why invariants are
potentially important, although not at present very useful.
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Table 22.1: Different pattern types for eight species, the number of
types in each category, then number of patterns of each type, and the
resulting number of invariants for each category.

Category Example Pattern types Patterns Total invariants
of types of a type of that category of that type that result

8x xxxxxxxx 1 4 3
7x,ly xxxxxxxy 8 12 88
6x,2y xxxxxxyy 28 12 308
5x,3y xxxxxyyy 56 12 616
4x,4y xxxxyyyy 35 12 385

6x, 1y, 1z xxxxxxyz 28 24 644
5x, 2y, 1z xxxxxyyz 168 24 3,864
4x, 3y, 1z xxxxyyyz 280 24 6,440
4x, 2y, 2z xxxxyyzz 210 24 4,830
3x, 3y, 2z xxxyyyzz 280 24 6,440

5x, 1y, 1z, 1w xxxxxyzw 56 24 1,288
--lx, 2y, 1z, 1w xxxxyyzw 420 24 9,660
3x, 3y, 1z, 1w xxxyyyzw 280 24 6,440
3x, 2y, 2z, 1w xxxyyzzw 840 24 19,320
2x, 2y, 2z, 2w xxyyzzww 105 24 2,415

Totals: 2,795 62,741

Symmetry invariants
Some of the invariants are simply consequences of the symmetry of the model of
'::,ase change, and will not be phylogenetic invariants. These I have called symmetry
'luariants. For example, if the model of base change is the Jukes-Cantor model,

:ne four bases can be exchanged without altering the pattern frequency. If we
: ave eight species, the expected frequency of the pattern ACAATTAA should be
:: e same as the expected frequency of CGCCAACc, a pattern that is obtained by
~eplacingA, C and T with C, G and A, respectively. Thus one of the invariants will
::,e:

fACAATTAA - !CCCCAACC = 0 (22.3)

-:.-here are other such replacements that would also lead to invariants. In fact,
~Lis pattern should have the same frequency as any pattern of the form xyxxz­
=xx, where x, y and z are any three distinct nucleotides. Thus for pattern type
:-c'xxzzxx, there will be 4 x 3 x 2 = 24 different patterns, all of which will have

::.:jual expected pattern frequencies. That implies that there are 23 invariants, one
~ which is in the equation above.
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Table 22.2: Pattern types for four species with a Jukes-Cantor model,
showing the number of symmetry invariants that result.

Category
of types

4x
3x,1y
2x,2y

2x, ly, lz
lxlylzlw

Example
of a type

xxxx
xxxy
xxyy
xxyz
xyzw

Totals:

Pattern types
of that category

1
4
3
6
1

15

Patterns
of that type

4
12
12
24
24

Total invariants
that result

3
44
33

138
23

241

Table 22.1 shows the pattern types for the case of eight species, an example of
each, how many such patterns would be possible, and how many invariants each
would give rise to. Note the rather obscure terminology: A pattern would be, say,
AACAAAGT, its pattern type would be xxyxxxzw, and that would be a member
of the category of pattern types that had 5x's, 1y, lz, and 1w.

Of the 65,536 total degrees of freedom, one is lost to the trivial requirement that
the expected frequencies add up to 1, and 62,741 of the remainder are symmetry
invariants, leaving only 2,794 that could help us discriminate among phylogenies.

In the four-species Jukes-Cantor case we have 256 patterns, and lose one degree
of freedom because they sum to 1. Table 22.2 counts the symmetry invariants ­
there are 241 of them, leaving us with only 255 - 241 = 14 degrees of freedom.

We can use the symmetry invariants to test the symmetry of the model of base
change. For example, one could take a pattern type such as xyxzyxxw and test
whether the 24 different patterns of this type are equally frequent. This could be
done by a chi-square test, except that in practice many of the patterns might have
a low expected frequency, rendering the chi-square approximation dubious. The
test could be done in that case by computer simulation of the distribution of the
chi-square statistic. There may even be some cases in which all of the patterns of a
given type are absent, rendering the test of their equality moot.

Three-species invariants
If we inquire how many invariants are present in cases with few species, this turns
out to find some that can be used in larger cases. The simplest possible case is a
one-species "tree." That, of course, is just a single DNA sequence. The symmetry
invariants amount to a test of whether the sequence has equal numbers of As, Cs,
Gs, and Ts. The case of two species is a tree with one branch, connecting the two.
The pattern types are xx and xy. There are 16 degrees of freedom. One disappears
because the pattern frequencies must add to 1. There are 3 + 11 = 14 symmetry
invariants. That leaves one degree of freedom. This is soaked up by estimation of
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the branch length between the species (in effect, as we have seen, estimation of the
distance between them). There are then no additional invariants.

The smallest case that has real nonsymmetry invariants is three species. There
are 4 x 4 x 4 = 64 total degrees of freedom. The table of pattern types is:

Pattern type Number Symmetry invariants

xxx 4 3
xxy 12 11
xyx 12 11
xyy 12 11
xyz 24 23

Total 64 59

Thus there are 5 degrees of freedom (64 - 59) available that are not symmetry
invariants. One is lost owing to the requirement that the pattern frequencies add
to 1. Three more are lost by estimation of the lengths of the three branches in the
unrooted three-species tree. That leaves one degree of freedom unaccounted for.

In fact, it does correspond to a nonsymmetry invariant. We can see this by
writing the equations for the five pattern frequencies. In the Jukes-Cantor case,
which we consider, the probability of net change on a branch of length Vi can be
written as (see equation 11.17)

(22.4)

A bit of careful consideration (Felsenstein, 1991) will then show that we can
write the expected pattern frequencies as

Pxxx

Pxxy

Pxyx

Pxyy

Pxyz

(1 - pd(l - P2)(1 - P3) + PIP2P3/9

(1 - pd(l - P2)P3 + 1/3 PIP2(1 - P3) + 2/9 PIP2P3

(1 - pdp2(1 - P3) + 1/3 Pl(l - P2)P3 + 2/91hP2P3

Pl(l- P2)(1 - P:3) + 1/3 (1 - pdp2P3 + 2/9 PIP2P3

2/3 PIP2(1 - P3) + 2/3 PI (1 - P2)P3

+ 2/3 (1 - pdp2P3 + 2/9 PIP2P3

(22.5)

These five equations must add up to 1 (that is, the fifth equation can be obtained
y adding the others and then subtracting that sum from 1). Thus there are in

effect four equations in three unknowns. This means that there is one relationship
that must hold between the P's for the equations to always yield the same p's no
matter which three of the four equations we choose to solve.

Each equation is linear in each of the Pi. So in principle we can solve the equa­
tions by solving the first one for PI, then substituting that expression into the sec­
ond equation. We then have an equation with P2 and P3 but no longer any Pl. This
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second equation can then be solved for P2, and the resulting expression substitute.:
into the third equation, which now has only P3. Solving for that, we then have e\.­

pressions in the P's for Pl, P2, and P3. These can be substituted into the four ;..
equation, yielding the equation that is the constraint on the P's that is needed ('
make the whole system self-consistent. That equation tells us the invariant.

This is possible with computer algebra systems, but there are easier ways. IT
the Appendix to my paper (Felsenstein, 1991) I show a derivation that is mar
straightforward, if idiosyncratic. The result is the invariant

3 (2Pxx:r - 2PTXY - 2Pxyx - 2P;£yy + I?
- [4(P."xx + Pxxy ) - 1] [4(PXX2: + Pxyx ) - 1] [4(P."xx + Pxyy ) - 1] 0

(22.6
It is rather difficult to give any simple intuitive explanation of this invariant. I:
seems to be testing whether the substitutions in different branch lengths are inde­
pendent, whether having changed away from a base you are more likely to return
to it. If one of the three branch lengths (let's say, V2) is zero, then it turns out to b
simply a test of whether the pattern xyx is, as expected, half as frequent as xyz.

Note that the three-species cubic invariants are not, and cannot be, a phyloge­
netic invariant. There is only one possible unrooted tree topology. In cases with
more species, each triple of them has a three-species invariant. We can compute
them by taking those three species. In our eight-species example, there is one
three-species invariant for each of the 8 x 7 x 6/ (1 x 2 x 3) = 56 ways that we
could choose a triple from the eight species. These invariants are all independent,
as they are each based on a three-species marginal distribution of the full eight­
species distribution of nucleotides. It is rather easy to show that there are pairs
of sets of the full eight-species expected pattern frequencies that have the same
marginals for species I, 2, and 3, but different marginals for (say) species 2, 3,
and 4. Even knowing all but one of the three-species marginal distributions does
not allow us to predict the remaining three-species marginal. Thus all 56 of these
three-species invariants are independent. We have already reduced the number of
invariants that could be phylogenetic invariants to 2,795. These 56 invariants can
be removed from that number, as they are definitely not phylogenetic invariants
since they hold for all tree topologies. Thus we have 2,739 degrees of freedom left.

For the four-species Jukes-Cantor model there will be four three-species in­
variants, one for each possible three-tuple of species. This leaves us with but 10
degrees of freedom.

Lake's linear invariants
One of the two original papers that founded work on invariants was the paper
of Lake (1987), in which the technique is called "evolutionary parsimony." Lake
considered a more general model of evolutionary change than the Jukes-Cantor
model. He considered the probabilities of sites that have, among four partic­
ular species, two with a purine and two with a pyrimidine. The two purines
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mayor may not be the same, and the two pyrimidines mayor may not be the
same. If we use the IUB ambiguity code and let R stand for purine and Y for
pyrimidine, Lake asks about the patterns RRYY, YYRR, RYRY, YRYR, RYYR, and
YRRY. These naturally divide into three pairs of patterns, according to whether
the purine/pyrimidine distinction unites species A and B, A and C, or A and D.
Consider one of these, say, the pair RRYY and YYRR which unite species A with
B.

Lake considered the probabilities of two events:

1. The two purines are the same and so are the two pyrimidines, or the two
purines differ and so do the two pyrimidines

2. The two purines differ but the two pyrimidines are the same, or else the two
pyrimidines differ but the two purines are the same.

.-\ useful notation of his is to denote the base in the first species as 1. If it is a purine,
call the other purine 2. If it is a pyrimidine call the other pyrimidine 2. Now find
the next species that does not have either base 1 or base 2. Call its base 3, and the
remaining one 4.

Considering the purine/pyrimidine patterns RRYY and YYRR, these could be
1133, 1134, 1233, or 1234. Lake considers the total frequency of patterns 1133 and
1234, and compares this to the total frequency of patterns 1134 and 1233. He shows
:hat for the trees ((A,C),(B,D)) and ((A,D),(B,C)), the expected frequencies of these
tWO classes of patterns are equal. In other words:

(22.7)

This is true when the central branch of the four-species tree separates the two
?urines from each other and the two pyrimidines from each other.

Lake's invariants distinguish strongly between the purines and the pyrim­
:dines, but they work even when there is a Jukes-Cantor model. In terms of com­
:-nonly used models, they are valid for the Kimura two-parameter model, of which
:he Jukes-Cantor model is a special case. In terms of the pattern classes that we de­
ined for the Jukes-Cantor model, 1133 is the portion of the pattern xxyy in which
:.: and yare one purine and one pyrimidine (in either order). This will be 2/3.
:"ikewise, 1134 is 1/3 of xxyz, 1233 is 1/3 of xyzz, and 1234 is 1/3 of xyzw. Thus
:he Lake invariants for the tree ((A,B),(C,D)) will be, in that notation,

2 1 1 1
(22.8)"3 P,rY1;y + "3 PXyz 't/J 3"PXY"z "3 P"YZY = 0

3nd
2 1 1 1
"3PXYYX + "3 P1;YZW - 3"P"YZX "3PXYYZ = 0 (22.9)

In the eight-species case that we have been using as our example, there will be
:wo Lake invariants for each quartet of species. As there will be 8 x 7 x 6 x 5/(1 x
~ x 3 x 4) = 70 four-species quartets, there will be 140 Lake invariants. These will
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be phylogenetic invariants. The number of other invariants as yet unaccounted fC'~

is now down to 2. 739 - 140 = 2,599.
In the four-species case there are two Lake invariants for each tree topology

leaving us with eight degrees of freedom still unaccounted for.

Cavender's quadratic invariants
The other original paper on invariants was that of Cavender and Felsensteir.
(1987). Cavender discovered two quadratic invariants in the case of two states (m\'
own contribution to that paper came long after he had discovered them). These arc
known as the J( and L invariants. Although they are presented as rather arbitrary
quadratic expressions, both of them can be derived in straightforward ways.

The K invariants
The K invariant is a consequence of the Buneman four-point metric (FPM) condi­
tion (Drolet and Sankoff, 1990). This was discussed in Chapter 13. It simply say"
that, for the four-species tree ((a,b),(c,d)), that if Vij is the total branch length be­
tween species i and species j,

Vae + Vbd = Vbe + Vad (22.10

That this is true is easily seen: The expressions on both sides of the equation are
equal to the sum of all five branch lengths, plus the length of the interior branch.

In the Jukes-Cantor case, the expected fraction of difference between two
species (say, the Dae ) is a simple function of the branch length between them.
Calling that branch length vae'

(22.11)

(as we saw in equation 11.17). Solving for v in terms of D, we get

(22.12)

(which we also saw in equation 11.18). We can plug these into Buneman's equation
22.10, and the factors of -1 will disappear. We have

in (1- ~Dae) + in (1- ~Dbd) = in (1- ~Dad) + in (1- ~Dbe) (22.13)

from which we can exponentiate both sides to eliminate the logarithms and turn
the sums into products to get

(22.14)
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This simplifies to

(22.15)

The D's can be written in terms of the pattern probabilities. The expected dif­
ference Dac will, for example, be the sum of the probabilities of all patterns that
differ in the symbols for the first and third species. The equation is:

P xxyo; + P'1;XYY + P xyyx + P xyyy + P xxyz

+ P xyyz + P xyzx + PEYZY + P xyzz + P xyzw

There are similar equations for the other differences:

P xxxy + P xxyy + P xyxy + P xyyy + P.7:XYz

+P.7:YXZ + P xyyz + P'1;YZY + PEYZZ + P'1;YZW

P xxY7: + P'1;XYY + P'1;YX:r; + P xyxy + PX'EYZ

+ P xyxz + P"yzx + P"yzy + P xyzz + P xyzw

P xxxy + P xxyy + P.7:Yxx + P xyyx + P xxyz

+ P xyxz + P xyyz + P xyzx + P xyzz + P xyzw

(22.16)

(22.17)

We have given the derivation in terms of four-state differences. Cavender
Cavender and Felsenstein, 1987) gave it for a two-state model. Though it won't
e obvious, the two invariants are the same (with replacement of ! by 2). One can

see this by noting that when we take the purines as one state and the pyrimidines
as the other, the two-state differences we obtain are 2/3 the size of the four-state
differences. Noting that, it is easy to show that the four-state invariant becomes
,he two-state invariant.

Every quartet of species in the data will have one of these J( invariants. How­
ever these are not all independent of each other. Note that the J( invariants depend
on the data only through the pairwise differences. For n species there are n(n-1) /2
of these, and they have 2n - 3 branch-length parameters predicting them. Thus we
.::annot have more than (n - 3)(n - 2)/2 independent quantities among them. For
example, in our eight-species example, there cannot be more than 15 of them. By
.:ontrast there are 8 x 7 x 6 x 5/(2 x 3 x 4) = 70 quartets possible. So many of the J(

:I\variants must depend on each other. Taking out the 15 independent invariants,
:he number of degrees of freedom left is 2,599 - 15 = 2,584.

For the four-species Jukes-Cantor model, there is for each tree topology one J(

:I\variant, as given above. Now we are down to seven degrees of freedom.

The L invariants
':::avender's L invariants are another set of quadratic invariants. They have a par­
::'cularly nice interpretation, one which also makes them easy to generalize. Con­
"ider a symmetric model of D A change (such as the Jukes-Cantor D A model,
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or the two-state model that Cavender originally used), As Cavender and I pointeC
out (Cavender and Felsenstein, 1987), when the tree is ((A,B),(C,D)) whether O~

not species A and species B are identical depends on events that have occurred a
the branch between them, Likewise, whether or not C and D are identical depend~
on the events in the branches between them. As these two sets of branches do n :
overlap, this implies that the identity of these two pairs of species is independent
Then the probability of both happening is simply the product of the probabilitie~

of each:

Prob [(A = B) & (C = D)] = Prob [(A = B)] Prob [(C = D)] (22.1u

The probability of both being equal is, for the four-species Jukes-Cantor case.
P XXX3; + P xxyy . The probability that (A = B) is 1 - Dab, and the probability tha­
(C = D) is 1 - Dcd ' The expressions for these are analogous to equation 22.16:

and

PTYXX + Fryxy + P XYY3; + P xyyy + P xyxz

+P xyyz + P:cyz:c + PI;YZZ + P xyzy + P xyzw

P xxxy + P XY3;y + PXYY:l' + P xxyx + Pxy:cZ

+P xxyz + P xyyz + P xyzx + P xyzy + PTYZW

(22.19

(22.20)

Substituting all these into 22.18 results in a quadratic equation in the P's, which
yields the L invariant. It is not given here.

The L invariant thus is a simple expression of the independence of similarity in
different parts of the tree. As such it can be easily tested statistically: One would
simply construct a 2 x 2 contingency table, with individual sites counted to test
whether (A = B) and (C = D) were independent across sites.

One might assume that the same independence would hold even when the
model of DNA change is asymmetric. In fact, it will not hold in that case. Suppose
that the tree is rather small, composed of short branches. Suppose further that one
base (say G) is far more frequent than the other three. Knowing that (A = B) is
then usually the knowledge that both of these species share the frequent state. As
the central branch of the tree is short, this also informs us that species C and Dare
most likely also in state G. Thus the two events (A = B) and (C = D) are far from
independent. In the symmetric case knowing that A and B have the same state
does not give us any information that helps us know whether C and D share the
same state.

Generalization of Cavender's L invariants
Sankoff (1990) has shown that Cavender's L invariants can be generalized to larger
numbers of species rather straightforwardly. For example, in the five-species tree
in Figure 22.1 we could ask whether the patterns in the pair of species aand b differ,
and also whether the differences in the triple of species c, d, and e differ. In this tree
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a

b

c
d

e

Figure 22.1: A five-species tree used as an example.

topology, with a symmetric model of base substitution such as the Jukes-Cantor
model, the differences between these two sets of species should be independent.

To be more precise, the pair of species a and b could have either of two patterns,
xx and xy. The triple of species cde could have anyone of five patterns (xxx,
xxy, xyx, xyy, and xyz). As these two sets of species can be isolated from each
other by dissolving a branch, in a tree of this topology the pattern that is seen in
each of these sets of species depends only on events within the set of branches
that connects them. We could imagine testing this postulated independence of the
patterns by making up a 2 x 5 contingency table. It would have (2 -1) x (5 -1) = -±
degrees of freedom.

In the same tree, there is another internal branch that can be dissolved, and
it too has four degrees of freedom, implying four invariants. Sankoff (1990) has
pointed out that there are advantages to paying attention to the invariants that test
important conflicting hypotheses about the structure of the tree, and not spending
effort on most of the invariants. He also notes that in trees of six or more species,
one can dissolve more than one internal branch at a time and test the simultaneous
independence of three (or more) sets of species.

We have been discussing a hypothetical eight-species tree. How many L in­
\-ariants would it have? This may depend on the tree topology. For example, with
the eight-species tree topology of Figure 22.2, there are five internal branches that
could be dissolved. Making the L invariants for each of these branches (dissolv­
ing only that one branch), we see that the contingency tables would be 2 x 6,3 X 5,
~ X 4, 2 X 6, and 6 x 2 in size, and would, respectively, have 5, 8, 9, 5, and 5 in­
\-ariants. I am assuming without proof that these would all be independent. They
a.ccount for 32 degrees of freedom, leaving us with 2,584 - 32 = 2,552 degrees of
creedom.

We can also dissolve two branches at a time as long as they do not leave us
-.\-ith anyone-species sets. There are five ways to do this, leading to the partitions

'I b Icd Ie.f9h}, {ab Icdc fig h}. {abc Ide fig h}. {abe Idghie f}, and {abed Iefig h}.
::or each of these partitions, the number of independent invariants should be the
?roduct over its sets of one less than the size of the set. Thus they should have
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a

b

c d

e f
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h

Figure 22.2: An eight-species tree used as an example in counting the
number of generalized L invariants

1 x 1 X 3, 1 x 3 x L 2 x 2 X 1,2 x 2 x Land 3 x 1 x 1. This is a total of 17 invariants,
leaving us with 2,535 degrees of freedom.

In addition, there is one way that the species can be partitioned into four sets,
with each set having more than one species. It is {ab[cdleflghL which has one
invariant. Sankoff also points out that we can also make invariants for less than
the full set of species. For example, dropping species a, we have a seven-species
tree. It has 24 degrees of freedom for L invariants. Dropping the other species one
at a time, we find that three of the other seven-species trees have 24 L invariants,
and four of them have 26 L invariants. Thus the seven-species trees have 200 L
invariants in all.

Dropping two species at a time, we find that of the 28 ways we could drop
two species, 6 have 10 L invariants, and 22 have 11 L invariants, for a total of 302
degrees of freedom. The 56 ways of dropping three species at a time yield five­
species trees, each of which have four L invariants, for a total of 224 degrees of
freedom. There are 70 ways of dropping four species at a time, yielding one L
invariant each, for a total of 70.

The result is that, if all of these L invariants are independent, we now have
reduced the number of degrees of freedom down to 2,535 - 200 - 302 - 224 ­
70 = 1,739. This argument has not shown that all of these degrees of freedom are
independent, so the reduction of degrees of freedom may be less than this.

In the four-species Jukes-Cantor modet for each tree topology there is one L
invariant, leaving us with six degrees of freedom. As there are five branch lengths
to estimate, this leaves us with one degree of freedom still unaccounted for.



Invariants 385

Drolet and Sankoff's k-state quadratic invariants
Drolet and Sankoff (1990) generalized the Cavender J( and L invariants to a k­
state symmetric Jukes-Cantor-like model of change. They prove for k = 2, k = 3,
and k = 4, and conjecture for higher values of k that the Cavender J( invariant is

[k (Pxxxx + P xyxy + P xyxz + P xyzy ) - 1]
x [k (Pxxxx + P xyxy + P xyyy + P xxyx + P xyxx + P xxxy ) - 1]

+ k (Pxyyy + P xxyx - P xyxz ) x k (Pxyxx + P xxxy - P xyzy )

- [k (Pxx~;x + P xyyx + Pxyz:r + Pryyz) - 1]
x [k (Pxxx:r + P xyyx + P xyyy + P:rxxy + P:r:ryx + P:ryxx) - 1]

- k (Pxyyy + P:rxxy - P:ryzx) x k (Pxxyx + P xyxx - P xyyz ) = 0

(22.21)

We will not try to count how many degrees of freedom this accounts for. In the
four-species case it might be thought to account for the last remaining degree of
freedom, but Ferretti and Sankoff (1993) have shown that this is not so. It is not an
independent invariant in that case - they show that it can be written as a linear
combination of the other invariants. For the four-species case, after taking out five
degrees of freedom for the branch lengths, we are left with one degree of freedom
unaccounted for, so there must be another invariant, or unknown form. For the
eight-species, case, we have at least 1,739 degrees of freedom unaccounted for.

Clock invariants
\ Ve have been discussing invariants for trees that are umooted and have no as­
3umption of a molecular clock. If we impose the molecular clock, that places
constraints on the branch lengths. That in turn means that there are more de­
yees of freedom since there are fewer branch length variables. Thus there are
30me more invariants. For example, in our hypothetical eight-species case there
::lre 8 x 2 - 3 = 13 branch lengths in the tree, but when a clock is imposed, there
"re only seven degrees of freedom used to specify the tree. These are the times
CIt the seven ancestral nodes. There then must be six constraints on the pattern
:':'equencies that come from the assumption of the clock.

Finding them is easy. Consider the eight-species clocklike tree in Figure 22.3.
'. 'e need only look at the six interior nodes other than the bottommost one. These
:-:ave been numbered for easier reference. In this tree the species happen to be in
~phabeticorder left to right, which makes discussion easier.

If there were only three species, a, b, and c then there would be one clock con­
3:raint: that the pattern xyx should have the same expected frequency as yxx,
·.'hich is more properly called xyy. We can apply the same condition to any triple
.:: species in the tree. That appears to be far too many conditions. In fact, many of
:.: ese triples test redundant information. The total number of degrees of freedom
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a b c d e f g h

1
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5

Figure 22.3: Eight-species clocklike tree used as an example in the dis­
cussion of clock invariants. The internal nodes of the tree have been
assigned numbers.

accounted for by clockness with 17. species is 17. - 2. For eight species, that is, seven
degrees of freedom. At the moment there is not a convenient way of writing down
all seven of the linear clock invariants.

General methods for finding invariants
The methods used above of finding invariants are informal, and not easy to repli­
cate in other cases. There are formal ways of finding all invariants.

Fourier transform methods
A quite general method of finding invariants is the Fourier transform approach
originated by Evans and Speed (1993) and discussed further by Evans and Zhou
(1998). It applies to the case in which the model of base change is the Kimura
3ST model (see Table 17.5 in Chapter 17, which includes the K2P model and the
Jukes-Cantor model as special cases).

Evans and Zhou's algorithm starts with a rooted tree with 17) tips and a total of
17. nodes, counting the interior nodes and root as well. Their algorithm examines
all but one of the 4m patterns of bases. For each it uses a rule based on the mul­
tiplication table in a well-known group called a Klein 4-group to assign states to
interior nodes of the tree. These assignments are in turn used to set coefficients of
1 or 0 in 317. vectors, each of length 4m

- 1. Standard matrix algebra computational
methods are then used to find all the coefficients of the basis vectors in the null
space of this set of vectors (that is, to find a minimal set of vectors that each are or­
thogonal to all of the 317. vectors and can generate all vectors orthogonal to them
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as linear combinations). They then give a simple recipe for turning the coefficients
of these basis vectors into polynomials. These are all of the invariants.

They also show how the same can be done for the K2P model and the Jukes­
Cantor model, and also for cases in which the state distribution at the root of the
tree is not assumed to be in equilibrium under the base substitution model. For
our four-species Jukes-Cantor model, their method constructs five equations in
255 variables. The null space for these will consist of 250 vectors. The coefficients
of these define 250 invariants, and we also have the trivial sum invariant, which
declares the sum of the expected frequencies of all patterns to be 1.

Evans and Zhou's machinery establishes that in these cases the count of invari­
ants is always equal to the degrees-of-freedom count, which we have been using.
Evans and Speed (1993) had conjectured that the degrees of freedom count held
in general; Evans and Zhou confirmed this for the Kimura 3ST model and its sub­
models.

Grabner bases and other general methods
Ferretti and Sankoff (1996) and Kim (2000) have noted that finding the invariants
for a tree is the problem of finding a "Grabner basis" of a set of polynomials in al­
gebraic geometry. This is discussed by Hagedorn and Landweber (2000) and by
Kim (2000). Hagedorn (2000), for a fairly general framework, proves that the num­
ber of invariants is in fact given by the degrees-of-freedom count. The difficulty
with using the computational machinery for the Grabner basis is that, although
cut-and-dried, it involves quite heavy computation even for cases as small as four
species. By contrast, the Evans and Zhou machinery is much less onerous. The
case they treat is also the one that the Hadamard machinery (covered in Chap-
er 17) handles. In fact, there is a close relationship between these works. The

zeros in the Hadamard conjugation correspond precisely to the phylogenetic in­
\-ariants. For the Kimura 3ST model, the invariants can be found readily from the
expressions that must then be zero.

The most general method so far described is due to Allman and Rhodes (2003).
Their methods find all invariants for the case with general transition probability
:natrices on all branches of a rooted tree. It requires only matrix algebra, and is
~ oth more general than the Hadamard methods and easier computationally than
Grabner basis methods.

Expressions for all the 3ST invariants
.=teel et al. (1993) use this approach to find all invariants for any number of species
~or the Kimura 3ST model. Their expressions avoid any need for heavy compu­
:ations. They treated the case of n species with a rooted tree with arbitrary base
::-equencies at the root. I have concentrated here on the more interesting case in
-':hich the base frequencies at the root are equal, as if they resulted from evolution

der the Kimura 3ST model. Their results could be simplified for this case, and
01so for the K2P and Jukes-Cantor models.
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Finding all invariants empirically
A quite novel and simple method of finding invariants was invented by Ferretti
and Sankoff (1993, 1995). It takes the phylogeny and the substitution model, and
picks random values of the parameters (such as the branch lengths). For each set
of parameters, they compute the expected frequencies of all nucleotide patterns.
They do this many times. Suppose that in the jth set of parameters the frequency
of the ith pattern is Pij . The points in the 4r1-dimensional space of pattern frequen­
cies then lie in a subspace. We need to find equations in the pattern frequencies
that define this subspace. For example, suppose we look for linear equations. If
the invariant we seek is

4"

L ai P ij = 0
'i=l

(22.22)

then this should hold for all the sets of parameters. If we take 4r1 sets of parameters
we then have a set of equations

4"

L ai Pij = 0,
i=l

j = 1,2, ... , 4r1 (22.23)

as we know the Pij , we can solve this set of equations for the ai, (once we stan­
dardize one of the ai to 1). Similarly, if we searched for a quadratic formula, we get
a similar set of equations with both linear terms P ij and quadratic terms P ij H.;j.

Those quadratic terms are known, and the equations are all linear in the unknown
coefficients ai and bik. So these can always be found by solving linear equations.
One can go on to find cubic and quartic invariants in the same"empirical" way.
Then number of equations can get large for higher-order invariants; a more seri­
ous problem, which Ferretti and Sankoff did not entirely solve, is simplifying the
resulting set of invariants.

All linear invariants
There is a literature on finding all linear invariants, which I will mention only
briefly. The difficulty is that these are of limited interest. In the symmetric mod­
els of base change, most of the linear invariants test the symmetry of the model; in
the four-species Jukes-Cantor case, only two of the linear invariants, the Lake in­
variants, are phylogenetic invariants. Testing for symmetry is of interest, but can
be done straightforwardly as described above in the section on symmetry invari­
ants. Papers on finding linear invariants include those of Cavender (1989, 1991),
Fu and Li (1992), Fu (1995), and Steel and Fu (1995).

Hendy and Penny (1996) consider models with and without a molecular clock.
The invariants they find are of particular interest as they should include all the
clock invariants.
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Special cases and extensions
I have concentrated on the symmetric models of base change, with the base fre­
quencies at the root of the tree being equal, as these are the cases of greatest in­
terest. Many of the papers mentioned have also dealt with one or another asym­
metric case. These are of interest, but no one model of asymmetric change has
been subject to a comprehensive treatment. For example, Lake (1987) treated a
case in which the tree is rooted and no assumption of equilibrium base composi­
tion is made at the root. His model of base change was fairly asymmetric, with
only certain symmetry assumptions made. Nevertheless, the part of his work that
connects to the other papers in the invariants literature is its specialization to the
Kimura K2P model. Ferretti, Lang, and Sankoff (1994) gave a detailed discussion
of the problem of finding invariants in asymmetric models of base substitution.
The issue of how invariants can be extended to allow for correlation of evolution
in adjacent sites is discussed by Steel et al. (1993).

Invariants and evolutionary rates
Invariants are defined for a particular evolutionary model, usually one with the
same rate of evolution at all sites. What happens to them if the rate of evolution
jiffers from site to site? Cavender and Felsenstein (1987) and Lake (1987) consid­
ered this problem, and both came to the conclusion that the quadratic invariants
'xere no longer valid in such a case. However, Lake pointed out that the linear in­
',ariants continued to be invariants of a model with different evolutionary rates at
each site, and even for models in which the rates differ in each character in each
'::>ranch of the tree.

This would seem to make Lake's linear invariants appropriate for use when
~ates may vary among sites, whereas quadratic invariants would not work. The
iifficulty with practical use of the Lake invariants is that they account for only a
~mall fraction of the information in the data set. They are computed using only
::e.ose sites that have two of their bases purines and two pyrimidines, ignoring the
:....tformation from all other sites. Consequently, computer simulation tests have
~~own that other methods have much greater power to discriminate among phy­
.ogenies (Huelsenbeck and Hillis, 1993; Hillis, Huelsenbeck, and Cunningham,
~994).

Testing invariants
. ':e have seen that linear invariants can be tested using a simple chi-square test
: a contingency table. Some quadratic invariants (such as the Cavender L in­
3.riants) can also be tested using contingency tables. It would also be possible

.... test other invariants for data sets with many sites, by using asymptotic formu­
~s for their variance generated by the well-known "delta method." In principle,
: \\'e test all invariants, we are testing whether the model and tree fit the data. It
- -:. uld be equivalent (at least asymptotically) to testing whether all the nucleotide
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patterns are occurring at their expected frequencies. Navidi, Churchill, and von
Haeseler (1991) have suggested doing such testing. However, in practice, such
tests almost always reject the model. The tree may be strongly supported by the
data, but the combination of the model and the tree is strongly rejected. This re­
jection results mostly from violation of some of the symmetry assumptions. Thus
we might have strong evidence for the tree, but find that since AAAAA is very
unequal in frequency to CCCCC, the fit of model plus tree is poor. Thus, at the
moment, simultaneous statistical tests of all invariants are not of much use.

What use are invariants?
If invariants typically have problems with rate variation, and typically do not all
fit their expected values, what use are they? They have found some use in compar­
ative genomics, where Sankoff and Blanchette (1999) have used invariants with a
Jukes-Cantor-like model of the appearance and disappearance of breakpoints of
chromosome rearrangements. Sinsheimer, Lake, and Little (1997) have integrated
use of Lake's linear invariants with a parsimony method, and they report that the
combination helps counteract the low power of use of the invariants alone.

But these uses aside, invariants are worth attention, not for what they do for
us now, but what they might lead to in the future. They are a very different way
of considering tree topologies and branch lengths. Instead of crawling about in a
tree space, trying to find the tree of best fit, they have us look at relationships of
pattern probabilities in a space of pattern frequencies, and build up our inferences
of the tree in that space. For the cases in which both invariants and the Hadamard
conjugation apply, this is essentially the same as looking at which partitions show
support in the Hadamard transform analysis. Both invariants and the Hadamard
conjugation lead to interesting mathematics, and both give us a view of phylo­
genetic inference from a new direction. That alone would be enough to justify
continued development of these interesting methods.
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Brownian motion and
gene frequencies

\lany morphological characters that are used for phylogenetic inference are not
:tiscrete, but in their original form they are quantitative characters measured on
a continuous scale. Although in practice they are often discretized before being
~lsed, it is of interest to know how to treat the original data without making them
discrete. Gene frequencies are another type of continuous data. The original phy­
:ogeny methods of Edwards and Cavalli-Sforza (1964) were developed to analyze
: em. Edwards and Cavalli-Sforza's method was to approximate the process by
Brownian motion. I will describe Brownian motion, and how likelihoods are com­
?uted and maximized for a phylogeny using it. This involves much use of the
:tensity function of the normal distribution. Then I will consider how well the ap­
: roximation describes gene frequencies, and (in the next chapter) how well it de­
~cribes quantitative characters. At the end of this chapter there will also be some
.::onsideration of parsimony methods for gene frequencies.

Brownian motion
~obert Brown (1773-1858) was a systematic botanist and microscopist. In fact,
:,e was the first to distinguish the gymnosperms from the angiosperms, the first
:0 distinguish the monocots from the dicots, and it was he who discovered and
. amed the cell nucleus. In 1827, he observed that pollen grains in solution jiggled
.::easelessly. The explanation, in terms of random molecular impacts, came much
:ater, and led on to Einstein's work on the subject. Ford (1992) gives a good account
of Brown's work on Brownian motion.

Mathematicians, notably Norbert Wiener, have constructed a stochastic process
:hat is intended to approximate Brownian motion. In it, a particle takes a great
:11any small steps on an axis. Each step is independent of the others, and each

391
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displaces the particle by a random amount. The mean displacement is zero, and
the variance of the displacements is the same no matter where the particle is on
the axis. If the variance of one displacement is 8 2 and there are n displacements,
the net displacement is the sum of the individual steps. Its variance is the variance
of this sum, and as the individual steps are independent, the variance of the sum
is the sum of the variances n82 .

Wiener's mathematical process of Brownian motion is the limit as we take the
variance 8 2 smaller and smaller, and the number of steps n larger and larger, such
that their product remains constant. The process is thus infinitely jiggly, unlike the
physical process of Brownian motion, which has discrete impacts. There are many
fascinating facts about the mathematical process of Brownian motion, mostly con­
nected with its infinite jiggliness. For our purposes we do not need to consider
them, but need only know what the distribution is of the net displacement after
time t.

The displacements are independent and are summed, so that their variances
can be added up. Thus if a 2 is the variance that is expected to accumulate per unit
time, then the variance of the net displacement after time t will be a 2 t. The fact that
the total displacement along a branch is the sum of a large (in fact, infinite) number
of independent quantities implies that it is normally distributed. Thus when we
approximate an evolutionary process by saying that it follows a Brovvnian motion
with variance a2 per unit time, we know that the net change along a branch of
length t is drawn from a normal distribution with mean 0 and variance a 2t. The
displacements in different branches of a tree are independent, because the small
steps of which they are composed are all independent.

We now have to show what this implies for evolution. There were in fact al­
ready some interesting connections between Robert Brown and evolution. Charles
Darwin knew Robert Brown and asked his opinion on what microscopes to take
with him on his voyage on the Beagle. Brown's connection with evolution goes
further, and did not even stop with his death. His death made available a meeting
time slot before the Linnean Society: It was filled by the famous session at which
Darwin's and Wallace's theories of natural selection were first presented. Brown
would probably have been astounded, and perhaps dismayed, to see his observa­
tion of Brownian motion become the basis of Edwards and Cavalli-Sforza's paper
on the numerical inference of phylogenies.

Likelihood for a phylogeny
If we have a measurable character that we know evolves according to a Brown­
ian motion process, we can compute the likelihood for any given tree rather eas­
ily, owing to the normality of the distributions of changes in individual branches,
and the independence of the change in each branch. This was done by Edwards
and Cavalli-Sforza (1964; see also Cavalli-Sforza and Edwards, 1967), who showed
how to compute the likelihood for a given tree on which the values of the charac-
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ters at each interior node were known. This turns out to give a likelihood with
unpleasant singularities.

David Gomberg (1968), in an unpublished manuscript that nevertheless influ­
enced subsequent workers, formulated the problem in Bayesian terms, with prior
probabilities on trees provided by a random process of branching of lineages. He
used the result that the joint distribution of the tips of the tree was multivariate
normal. He did not have a very practical computational method, but understood
the structure of the problem well.

Figure 23.1 shows a tree, with the observed values of the character at the tips,
and true unknown values at the interior nodes. The change of the character in
each branch, which is the difference between the states at each end of the branch,
is shown. The branch lengths are given as the Vi.

The Brownian motion process, as we are using it, has the property that its
changes in different lineages are independent. As with the other stochastic pro­
cesses that we have used for phylogenies, sister lineages start at the same point,
but their changes are independent. The character value at the end of lineage 5 in
Figure 23.1 for example, is the sum of four terms:

(23.1)

Except for xo, which is a constant, the terms for changes on the right side are
all independent and drawn from normal distributions. This guarantees that their
sum is also normally distributed. Its mean is Xo and its variance is the sum of the
\'ariances of the individual terms, so that

(23.2)

where (J"2 is the variance that accumulates in the Brownian motion per unit branch
length.

Similarly, the character value for lineage 7 in Figure 23.1 is the sum of normally
distributed terms:

(23.3)

and of course
V .() 2 2 2 2ar X7 = (J" V12 + (J" Vn + (J" VlO + (J" V7 (23.4)

The values Xs and X7 are not independent of each other, because the expressions
on the right sides of equations 23,1 and 23.3 share some terms. It is easy to show
:hat the covariance of two such random sums is simply the variance contributed
, v the terms that they share; in this case it is

(23.5)

One can do this for all pairs of tips on the tree, with the analogous result. They
"re jointly multivariate normally distributed, all with the expectation xo, and with
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Figure 23.1: A tree with a character that has evolved by Brownian mo­
tion. The values of the character are shown at each tip, and the un­
known true values at each interior node, including the starting value
at the root. Next to each branch is shown the branch length v, as well
as the net change of the character along that branch. Note that these
true values may differ from any estimate that we might make of them.

covariances that are the variance contributed by the branches that are shared by
the path from the root up to the most recent common ancestor of these two tips. In
matrix terms, if N indicates the (multivariate) normal distribution,

(23.6)
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where 1 is a column vector of Is, and T is the matrix whose (i,)) element is the
branch length shared by the paths from the root up to tips i and j, As an illustra­
tion, here is the T matrix for the tree in Figure 23,1:

: + 'Us + 'Ug 'Us + 'Ug 'Ug 0 0 0
l'S + 'Ug 'U2 + 11S + Vg Vg 0 0 0

'Ug 11g 'U3 + vg 0 0 0
o 0 0 114 + 1112 V12 ['12

o 0 0 1112 V5 + VII + V12 L'll + 'U12

o 0 0 V12 Vll + V12 V(j + VlO + Vll + 'U12

o 0 0 V12 Vll + V12 'UIO + 'Ull + 'U12

o
o
o

1)12

"ll + 1112

VlO + Vll + V12

V7 + VlO + 'Ull + V12

(23,/)

This matrix has a structure strongly reminiscent of the tree (and not surpris­
ingly so, given the way we constructed it). It is of the form

alb c 0 0 0 0
bid c 0 0 0 0
c c e 0 0 0 0
0 0 0 f g g g

0 0 0 g h z i
0 0 0 g i j Ik
0 0 0 g i k I l

(23.8)

Figure 23.2 shows a realization of Brownian motion of one character, on a five­
~pecies tree. The open circles indicate where the forks are - these tend to get
obscured by all the criss-crossing of curves just after them. In fact, the tree has
: e same topology as Figure 23.2. The character shows how noisy the relationship
:-etween anyone character and the tree is. It takes multiple characters to make a
jecent estimate, even when the Brownian motion process applies exactly.

What likelihood to compute?
,lthough we still have not shown how to do the likelihood computations or search
-or the best tree, so far everything seems straightforward. This section will show
:':-:at it is not. We will look closely at the two-species case, where the algebra is
-:''1l.plest. Nevertheless, a detailed mathematical derivation will be needed. The
'"suIts are startling - maximum likelihood estimation does not work, and needs

g.
Imagine that we have collected values of p different characters in two species.

=- ",note the value of character i in species 1 by :EIi, and the value of that character
.::. species 2 by X2i. We will assume that the expected variance per unit of branch
:::1gth in character i is aT- In most analyses one standardizes the characters so
--"t at = 1, but we will not need to do that here. There is only one possible tree
. -:::,ology, with two branch lengths, VI and V2. We also need to use the value of the
_-"racter i at the root, which we call XOi'
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Figure 23.2: A Brownian motion process in one character on a five­
species tree. Open circles show the locations of the forks. The tree has
the same topology as Figure 23.1.

The likelihood is the product of terms for each character, since the character
evolve independently on the tree. It is also the product of the probabilities of the
changes in each of the two lineages. In lineage I, character i changes from XOi to
Xli, the probability of this change being the density of a normal distribution whose
variate is Xli -XOi and whose expectation is 0 with variance O}Vl. There is a similar
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(23.10)

(23.13)
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term for the second lineage. Since the probability density for a normal variate x
whose expectation is p, and whose variance is CJ2 is

.f (x;p,.CJ2 ) = _1_ exp [_ (x - ~)2]
CJV21r 2CJ

and since p, is 0 and CJ2 is CJlVl' the probability density at the observed values is
then the product of p pairs of these normal densities:

L = IT 1 exp ( __1_[(XJi- XOi)2 + (X2i- X Oi)2])

i=l (21f )CJl y'Vl V2 2CJl Vl V2

This has parameters Vl, V2, and the XOi.. We are going to try to find values that
maximize it.

We start with the XOi. Holding Vl and V2 constant, we search for the value of XOi

that maximizes L. Since XOi appears in only the ith term in the product in equation
23.10, we can simply find the value that maximizes that term. The relevant part of
the term is

Q,
(Xli - :£Oi)2 (X2i - XOi)2

= + (23.11)
Vl V2

which is to be minimized. To find the minimum of this with respect to XOi, we take
the derivative of Q and equate it to zero:

dQ = -2 (Xli - XOi) _ 2 (X2i - XOi) = 0 (23.12)
dXoi Vl V2

The result is a simple linear equation in XOi whose solution is

lXl' + lX2
......... Vi 1. V2 1,

XOi =
l+l
VI '1)2

So far, so good. The values look very reasonable: The starting point X()i for evo­
~ution in the -ith character is simply a weighted average of the tip values for that
-:haracter, with weights that are the inverses of the variances for the two tips.

Now we need to substitute the maximum likelihood estimates of all the XOi into
J tr expression for the likelihood. Substituting the estimates into Q in equation
::3.11, we find after collecting terms that

2

Q
__ (Xli - X2i)

(23.14)
Vl + V2

:3 Ibstituting that into the full likelihood (equation 23.10), we can move the product
:.cross characters into the exponent, where it becomes a sum:

L =
(23.15)
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ow we have our likelihood in terms of two parameters, v, and V2 (as we
are treating the a} as known, and have set the XOi to their maximum likelihood
values). It is usually easier to maximize the logarithm of the likelihood rather than
the likelihood itself, and one obtains the same estimates of the parameters. Taking
the logarithm of L in equation 23.15,

P P 2
"'"' 1 1 "'"' (Xli - X2i)lnL = -pln(2Ti)-2L...,ln(Ji--pln(V1V2)-- L..., 2( )

2 2 (J. Vl + V2
i=l ;=1 t

(23.16

All that remains is to maximize this with respect to Vl and V2. To simplify this, we
replace the variables Vl and 1)2 by, respectively, FUT and (1 - F)VT, so that l)T is
the total Vl + V2 and F is the fraction of it that is due to Vl. Making a one-to-one
transformation of variables like this should not affect the maximum likelihood:
after finding the best values of VT and F, we can easily find which values of t',

and V2 those imply.
To simplify equation 23.16 we will also replace the sum of squares of standard­

ized differences in the 2;'s by D 2
:

(23.17)

This is, in effect, a squared distance measure between tips 1 and 2 in the coordi­
nates of the phenotype space, with each axis being standardized by its Brownian
motion variance (JT. The result is

1
InL = J( - 2P In[FvT(l-F)vT] (23.18)

Here K is just a placeholder for the terms in equation 23.17 that do not have F or
VT in them. We can rewrite equation 23.18 a bit more simply as

1 1 1 D 2

lIlL = J( - -p lnF - -p In(l - F) - plnvT - --
2 2 2~

(23.19)

ow we are ready for the horrible shock. We could maximize this with respect
to VT easily enough, and we do that later. But if we look at the way the likelihood
depends on F, we see something strange. As F decreases towards zero, - In F
goes to infinity. And if instead it increases toward 1, -In(l - F) goes to infinity.
There is a point (F = 0.5, in fact) where the slope of the log-likelihood with respect
to F is zero, but that is a minimum rather than a maximum! By taking ForI - F
to zero, we can make the likelihood infinitely large. This corresponds to allowing
v, to go to zero, or else allowing V2 to go to zero.

In fact, Cavalli-Sforza and Edwards (1967) found an exactly analogous behav­
ior in their pioneering studies of maximum likelihood phylogeny estimation, and
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it blocked their use of the method. They estimated the phenotypes not only at
the root, but also at all interior nodes on the tree. They found that if any interior
branch of the tree was taken to be of zero length, then the inferred phenotypes at
the nodes at the two ends of that branch would become equal, and the likelihood
of the tree would become infinite.

This bizarre behavior has a simple explanation. Remember that the likelihood
we are computing is not the probability of the observed data, but the probability
density at the observed data. By allowing the root to coincide with one of the data
points (which is what happens if we take v] or V2 to zero) we are making the
probability of the changes on that branch be 1. For any other value of v] and V2 we
have an infinitesimally small probability of this change, as the probability density
is multiplied by an infinitesimal, dx. By allowing (say) Vj to go to 0, we in effect
multiply the likelihood by IId:r;, which is infinite. The result is an infinitely strong
attraction to shortening a branch to length O. Another way of thinking about this
is that by allowing a branch length to shrink to zero, we are permitting the method
to drop a parameter from the estimation problem.

Assuming a clock
There are several possible ways to solve this problem. One is to constrain the
branch lengths. For example, we could decree the presence of an evolutionary
clock and insist that v] = V2. That would fix F at 1/2. This was the approach taken
by Elizabeth Thompson in a brilliant but difficult monograph (1975) for the more
general case of n populations. It eliminates the singularity and the infiniteness of
the likelihood. In our case, where n = 2, the likelihood becomes

1 D 2

lnL = J{' - plnvT --­
2 VT

(23.20)

(the constant J{' having absorbed the now-uninteresting terms in F). This is read­
ily solved by differentiating with respect to VT to get

duch of course means that

VT = D 2 /(2p) (23.21)

(23.22)

This would be an entirely satisfactory solution, although it leaves us unable
:0 handle nonclocklike cases, and also is a strongly biased answer. In fact, the
,lnswer is only half as big as it ought to be. We can detect this by computing the
e'Cpectation of D 2 and putting it into equation 23.22. Note that in character i,

(23.23)
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and that the two terms on the right side are independent; they have expectation
zero and variances a-fvl and OfV2' Then the expectation

(23.24)

So that the expected value of D 2 is

(23.25)

As a result, the expectation of ih and of 1h, from equation 23.21, is

(23.26)

This is a bias by a factor of two. Nor is this bias confined to the case of two popu­
lations. In use of Thompson's n-population results, one frequently finds multiway
splits at the base of the tree, often founvay splits. These are symptoms of a ten­
dency to collapse small branches near the base of the tree.

In fact, this bias is an old and familiar one. In the case of two populations,
if all the o"T happen to equal 1, the estimation of Vl (or, of course, V2) is exactly
equivalent to estimating the variance of a set of distributions that all have the same
true variance but different means. It is well known in statistics that if we estimate
the variance Vl of a sample of two points from its maximum likelihood estimator,
we compute

( _)2 ( _)2Xl - X + X2 - X

2
(23.27)

This estimate is biased, because x is an estimate rather than the true mean. It is
common to use instead the unbiased estimator, which requires a denominator of
n - 1 rather than n, to correct for x being too close to the observed values ;Tl and
X2. In the case n = 2, the factor (n - l)/n, which is the bias in the estimate of the
variance, is 1/2. In the case of p characters, we average over p characters a series
of estimators of Vl that are each biased by being too small. The number of data
points provides a spurious sense of accuracy.

Another way of thinking of this bias is that it arises from having to estimate
so many parameters other than Vl and V2. There is one original phenotype per
character to be estimated, namely the quantities XOi. The number of parameters
to be estimated rises proportionally to the number of characters examined. The
ratio of data points to parameters thus does not rise indefinitely, but approaches
an asymptote. It is in cases like these that the so-called infinitely many parameters
problem arises; frequently it causes serious problems for likelihood.

Thompson's (1975) solution is to assume an evolutionary clock and to press
ahead in the face of any concerns about biases near the root of the tree, consider­
ing bias an irrelevant criterion. However, there is another possible approach that
avoids the issue of bias and does not need to assume a clock.
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The REML approach
In my own papers (Felsenstein, 1973c, 1981a) on the problem I have adopted a dif­
ferent approach. It avoids the bias and the assumption of a clock, but at a different
cost, that of omitting a bit of the data. It is a part of the data that seems not to be
relevant anyway. The approach is to use only the differences between the popula­
tions and to omit any information about where they actually are in the phenotype
space. Thus if we have a set of populations that, for the first character, had pheno­
types Xl, X2, X3, ... X," we would use only their differences. That means we would
know that X2 was X2 -:I:1 above the first population, that population 3 was X3 - Xl

above the first population, and so on. We discard all information about where Xl

is on the phenotype scale. Note that we are not reducing all information to a set of
pairwise differences between populations, as we keep track of the differences in
each character separately.

Offhand, this would not seem to be too severe a limitation. It should be imme­
diately obvious that taking a set of populations and increasing the phenotypes in
all of them by the same constant J( should have no effect on our estimate of the
tree, only on the estimate of the starting phenotype XOi. What we are doing is to re­
tain the information on relative positions on the phenotype scale but to discard the
information about absolute positions. Then we will do maximum likelihood esti­
mation of the phylogeny from the differences. This procedure, applied to mixed
model analysis of variance, is the REML procedure of Patterson and Thompson
(1971). The acronym "REML" has been variously translated as "restricted maxi­
mum likelihood," "reduced maximum likelihood," and "residual maximum like­
lihood." It is most generally described as taking the contrasts among the obser­
vations, and then doing maximum likelihood estimation as if we were given only
those contrasts and not the original data. We have dropped the overall mean of the
characters, so that we know only their relative displacement from each other, and
not where they are located on the character axis. REML drops a small, and seem­
ingly irrelevant, part of the information, so there seems some chance that it would
be almost as powerful as maximum likelihood. We will see that it eliminates the
problem of the bias.

In the two-species example that we have been using, the REML procedure con­
sists of reducing the information for each character to the difference Xl - X2, thus
discarding the information about where on the phenotype scale Xl actually is. The
expectation of the difference Xl - X2 is of course 0, and the variance is (Jf (V1 + V2).

The likelihood is then from equation (23.15) the product

rrp 1 (1 (Xli - X2i)2)L = exp - - -'-----'----=-'-'--

i=l ~(JiVV1+ V2 2(Jf V1 + V2

J we take logarithms in the usual way, this becomes

]J 1 n (XiI - Xi2 ) 2
In L = J( - -2 In (V1 + V2) + L

2(V1+V2)i=1 (Ji
(23.29)
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where K contains all the uninteresting terms that do not have any of the Vi s. The
summation on the right side is just the standardized distance D 2 as before, so this
becomes

p D2

lnL = K - -In(vI +V2) + .() (23.30)
2 2 VI + V2

We cannot estimate Vl and V2 separately in this case, as they always appear as
their sum Vy. Putting it in,

P D 2

ln L = K - - ln (Vy) + -
2 2vy

(23.31)

and when this is differentiated with respect to Vy and the derivative set equal to 0,
we get the maximum likelihood estimate

(23.32)

Note that this differs from equation 23.21 by the all-important factor of two. In
fact, unlike the estimate of equation 23.21, it is not biased at all, having expectation
VI + V2. We obtained this lack of bias by dropping any attempt at estimating the
starting point xo, but this does not seem too great a sacrifice to make.

The result is that we can estimate, in a reasonable manner, the unrooted phy­
logeny and its branch lengths. We cannot infer the position of the root on that
phylogeny, or in the phenotype space. The derivation here has been for only two
populations (n = 2), but the method applies to larger numbers as well. In matrix
terms, if we define C as the (n - 1) x n matrix of contrasts between the popu­
lations, then the joint distribution of the contrasts will be a normal distribution
with means 0 and covariances calculated using the matrix of contrasts C and the
original covariance matrix of populations V:

y = ex", N (0. C veT) (23.33)

Note that this is the equation for the distribution of a vector of values, the contrasts
y between populations. However it is for a single character. The variance of the
Brownian motion for that character, (JI, is contained in the covariance matrix V.

Multiple characters and Kronecker products
A more complete set of data will have multiple characters, as we have been assum­
ing in our discussion of the two-population case above. For now, let us consider
the case in which the characters evolve independently on the tree. If Xij is the
value of the ith character in the jth population, it seems sensible to take the same
set of contrasts for each character. The result would be a set of Yij. For each char­
acter we have a vector of n - 1 values, one for each of the n - 1 contrasts.

We can use matrix notation to express this by taking the vectors Xl. X2 ... . and
stacking them on top of each other. The values of all n characters in population 1
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are on top. Below them are the values of all n characters in population 2, and so
on. The resulting np x 1 vector has a normal distribution. We are assuming for
the moment that the characters are uncorrelated with each other, so the covariance
matrix of these characters will consist of an p x p array of blocks, each block being
n x n in size. The covariance matrix looks like this:

y(l)

o

o

o
y(2)

o

o
o

y(n)

(23.34)

From equation (23.6), the covariance matrices y(i) are aTT, where aT is the Brow­
nian motion variance in character i. Thus if we were to make up a matrix

A

o o

(23.35)

one could say that the overall covariance matrix consisted of each entry in A mul­
tiplied by the tree covariance matrix T. This kind of a product is called a Kronecker
product. In the Kronecker product A 0 T, the elements of A are each replaced by
the entire matrix T, with every term in that T being multiplied by that aij.

Thus we can write the overall distribution of x as

x ~ N(O, A0T) (23.36)

We will see in the next chapter that this expression generalizes easily to the case of
nonindependent characters.

When we take the same n - 1 contrasts for each of these p characters, the matrix
of contrasts applied to the stacked-up vector of values x is

o
c

o j1
(23.37)

and this can also be written as the Kronecker product of the p x p identity matrix
and C, so that it is 10 C, which is an (n - l)p x (n - 1)]J matrix. We will call
:he resulting stacked-up vector of contrasts y. We saw that for one character the
:ovariance matrix of the contrasts was CYCT

. For ]J characters it is

(23.38)
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This can be simplified using two rules for Kronecker products: The transpose of
A 0 B is AT 0 B T

, and the product of (A 0 B) and (D 0 E) is (AD 0 BE). Ap­
plying these we see that the distribution of the stacked vector y of contrasts of the
p characters is

There are many possible sets of contrasts that could be taken, but in the next sec­
tion we will see one that is particularly convenient, as it results in contrasts that
are statistically independent, and easy to compute from the form of the tree. We
will see that they also simplify a great deal the task of computing the likelihood of
the tree.

Pruning the likelihood
If we have a set of n species (or populations) that have been measured for p charac­
ters, and these are assumed to have undergone evolution by Brownian motion, we
can use the contrasts to simplify the calculation of the likelihood of a phylogeny.
In fact, we can read the contrasts off the tree, and compute the likelihood, all at the
same time.

Consider as an example the tree in Figure 23.1. The method for computing
contrasts and likelihoods will start by finding two adjacent tips, that is, two tips
that are sister species. On that tree there are two such pairs, (1,2) and (6,7). We will
choose (1, 2). We can make a contrast in each character between tips 1 and 2. In
character i it will be a::h - :[;2i. The variance of this contrast will be (by equations
23.6 and 23.7)

Var [Xli - X2i] Var [Xli] + Var [:[;2i] - 2Cov [Xli, X2i]

a} (VI + V8 + V9) + a} (V2 + V8 + vg) - 2a; (vs + vg)

af (VI + V2)
(23.40)

This will be a general result: When a contrast is taken among two adjacent tips, the
variance of the contrast will be the sum of lengths of the branches between them,
multiplied by the variance of the Brownian motion.

We can also imagine computing a weighted average of the character in the
two tips, choosing the weight so that the average is independent of the contrast.
Suppose that the weighted average is fXli +(1- f)X2i. What value of f should we
use? We want the covariance of the weighted average with the contrast between 1
and 2 to be zero:

COY [Xli - X2i, fXli + (1 - f):£2i]

f COY [Xli, xd - (1 - f) COY [X2i. X2i] + (1 - 2f)Cov [Xli. X2i]

f Var [Xli] - (1 - f) Var [X2i] + (1 - 2f) Cov [Xli, :[;2i]

a;[J(Vl+VS+Vg) - (1-f)(V2+V8+V9) + (1-2/)(v8+vg)]

a; (IVI - (1 - /)V2)
(23.41)
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which will be zero when 1: 1 - 1 = V2 : VI' The result is

(23.42)

The interesting fact about the weighted average is that we can consider it to be
the "phenotype" of the interior node 8, at least insofar as that can be inferred from
its descendants. If we calculate

VI
---X2
VI + V2

(23.43)

we can ask about the variance of this fictional value, and its covariance with the
other tips. The covariance is easy. We already know that for any other tip j,

so that

COy [.1:8i, COy [J;);li + (1 - f);r2i,

1 COY [Xli, Xii] + (1 - f) COY [X2i, Xji]

(23.44)

(23.45)

50 the covariances of the new "tip/' 8, with the remaining tips are the same as the
covariances of 1 and of 2 with them.

We also need to know the variance of the new "tip." This can be computed as:

Val' [x il Val' [IXli + (1 - 1)x2il

p Val' [Xli] + (1 - 1)2 Val' [X2i] + 21(1 - 1) COY [Xli> X2i]

(Tnp (VI + Vs + V9) + (1 - 1)2 (V2 + Vs + V9) + 21(1 - 1) (vs + V9)]

(TT [(V~VI + ViV2) / (VI + V2)2 + Vs + V9]

(TnVI V2 / (VI + V2) + Vs + V9]

(23.46)
in other words, we compute the XSi as a weighted average of the two tips above it,
:he tips being weighted inversely by their values of Vi. The resulting fictional tip
:--tas the same covariances with other tips as the two immediate descendants had.
::-Iowever, it has some extra variance, as if the branch leading to node 8 had been
.engthened by VI V2 / (VI + V2) , which is twice the harmonic mean of VI and V2. We
:nus have a new branch length, which may be denoted vs'

The result of the contrast between 1 and 2, is to decompose the tree into two
:Tees. One has only a single tip and change Xli - X2i from the root to that tip (or it
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can be considered to have two tips with phenotypes .X1 and X2). The other has n-l
tips. We have carried out a linear transformation of the original tip phenotypes, so
that the result is still a multivariate normal distribution. The n values that we had
are now separated into one that is independent of all the others. So the likelihood
is the product of the likelihoods of these two parts of the data, in effect the product
of the likelihood of the two new trees. This process is shown in Figure 23.3. We
have not mentioned the Jacobian of the transformation. We will have the density
of the multivariate normal distribution be the product of the two density functions
only if the Jacobian of the transformation happens to be 1. Fortunately this is true.

We can continue the process, of course. We can take the new tree that has n - 1
tips, find two of them that are sister lineages, and form another contrast. Now the
original tree has been decomposed into three trees, the two contrasts and a tree of
n-2 tips. The likelihood is the product of their likelihoods. We continue until there
are n - 1 contrasts. The original tree has now been decomposed into n trees. The
last of these trees has a single tip, and its phenotype values are weighted averages
of all the original tip phenotypes. It is possible to compute the ordinary likelihood
by taking the product of the likelihoods of all n trees. However, the REML like­
lihood is also computable, by taking the products of the likelihoods of the n - 1
contrasts, and ignoring the likelihood of this weighted average phenotype.

This process rapidly computes the REML likelihood of the tree, in an amount
of effort proportional to the product of nand p. In effect it diagonalizes the covari­
ance matrix. Owing to the special structure of that matrix, this can be done rapidly,
in a way related to the structure of the tree. The computation of the independent
contrasts and the computation of the likelihood in this way was introduced by
me (Felsenstein, 1968, 1973a, 1981c). I call it "pruning," in analogy to the method
of "peeling" for computation of likelihoods along pedigrees in human genetics
(Hilden, 1970; Elston and Stewart, 1971; Heuch and Li, 1972).

Maximizing the likelihood
The pruning process also gives us a natural way to optimize branch lengths of
a given tree topology. The method is entirely analogous to the one we have al­
ready seen for molecular sequence likelihoods (Chapter 16). It will turn out, on
close examination, that the likelihood for REML treatment of the Brownian mo­
tion model depends only on the unrooted tree, not on the placement of the root. (I
leave this as an exercise for the reader.) This is true for the REML likelihood but
not for the ML likelihood, as the Brownian motion model is not reversible. Given
the unrootedness of the tree in Figure 23.1, for example, the likelihood depends on
branch lengths Vg and V12 only through their sum, Vg + V12. Therefore, for our pur­
poses, we can consider this as one branch, which we may call branch O. Its length,
Vg + V12, will be called Va.

We can use pruning to compute the conditional likelihoods at both ends of
branch 0, that is, at nodes 9 and 12. Note also that this means that we also compute
augmentations to the lengths of branches 9 and 12. Call these 09 and 012. Now we
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Figure 23.3: "Pruning" REML likelihoods on a Brownian motion tree
by decomposing the tree into a two-species tree and one with n - 1
species. The likelihood is the product of the likelihoods of these two
trees. The pair of sister species that are pruned off are replaced by a
single tip whose phenotypes are weighted averages of the phenotypes
in the two species (this is done for all characters). The weighted aver­
age and the extra branch length that must be added to the new tip are
shown in the equations in the box. The process can be continued until
the tree is decomposed into n - 1 two-species trees plus a single tip.
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have a two-species tree with one branch, namely branch O. Using equations 23.3_
and 23.17, we can easily compute the REML estimate of this branch length. We
can then get the estimate of 'Va by subtracting 69 + 612. On occasion, the resulting
branch length is negative. If so, it is not hard to show that the best estimate of 1'0

is zero.
As the tree is effectively unrooted, we can relocate the root anywhere without

affecting its likelihood. It is therefore possible to carry out this procedure on any
branch. We relocate the root to that branch, prune the likelihoods down to both
ends of the branch, and obtain a REML estimate of the branch length. In each
case, we are optimizing the REML likelihood with respect to the length of that
one branch. As we did in the ML estimation for molecular sequences, we can
move around the tree, successively maximizing the likelihood with respect to the
length of one branch after another. If we repeatedly visit all branches, the process
should converge. Technically, all we know is that the likelihood converges, as
it is a monotone sequence bounded above (by the value of the maximum of the
likelihood). When the likelihood stops changing, it is quite probable that we are
at a maximum of the likelihood function. Strictly speaking, we have not proved
this, but I have never seen a real case in which this was not true. Note that we
find a maximum but not necessarily the highest maximum. This complication is
unlikely to occur in real data.

We thus have an effective method for finding a maximum of the likelihood for
a given tree topology, though it is not inevitable that it always finds the highest
likelihood in that tree topology. As with all other cases in which we maximize a
criterion over all tree topologies, we can make use of the heuristic search methods
outlined in Chapter 4. The problem of searching among tree topologies is just
as difficult in this case as in all the others; in this case, the presence of maximum
likelihood does not result in any analytical proofs that provide improvements over
standard rearrangement methods.

Inferring ancestral states
We have seen in Chapter 16 that one can use likelihood to infer the states of an­
cestors, for models with discrete states. This can be done as well for characters
evolving by Brownian motion. If we wish to infer the state at an interior node i of
a tree, we can reroot the tree at that node and then use the pruning algorithm to
obtain the estimate of the state Xi at that node, as well as the increment 6i of the
variance there. We can infer the ancestral state to be Xi, and the variance of this
estimate is 6i.

This is equivalent to the procedure of Schluter et al. (1997). Note that the pro­
cedure uses ML, not REML, since REML dispenses with the position on the scale,
leaving us unable to infer ancestral states. Maximum likelihood inference in the
Brownian motion case has the ancestral state as one of its parameters. In this it dif­
fers from the reversible models of evolution used for molecular sequences. If we
want to infer ancestral states at more than one interior node, these cannot all be
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parameters of the model at the same time. One way to avoid these issues is to ask
whether the objective is to infer the ancestral states. Usually it is not: The objective
is to make an inference about correlation of traits with each other or with an envi­
ronment. The ancestral state is not data - it is an inference that can be treated as
data only by ignoring the uncertainty of the inference. The comparative methods
that will be discussed in Chapter 25 are a sounder basis for such inferences than is
treating ancestral states as if they were directly observed.

Squared-change parsimony
One can also find that combination of values at the interior nodes of the tree that
makes the largest contribution to the likelihood. For this the method of squared­
change parsimony is useful. It searches for the combination of values that minimizes
the sum of squares of changes along the tree, where the squares are weighted
inversely by the length of that branch:

branches ( . )2
Q = ~ Xi - Xi'

~ V
';=1 l

(23.47)

(where i and if are the nodes at the opposite end of the branch). The unweighted
case of this criterion (with all the Vi equal) was introduced by Huey and Bennett
(1987). It was suggested to them by me, in hopes that it would find a reasonable
combination of ancestral phenotype values. A simple iterative algorithm exists to
obtain the :ri for any tree and set of values at the tips. It can be shown that if node
i is connected to nodes ], k, and eby branches of length Vj, Vk, and Vt, then the
most parsimonious value of Xi is the weighted average

(
Xj Xk Xt)/(l 1 1)

X - -+-+- -+-+-
,- Vj Vk Vt Vj Vk Vt

(23.48)

which weights the value of each neighbor inversely by the branch length to it. If
we compute this iteratively for one node after another, then each pass through the
tree will cause the values to converge closer to the most parsimonious values. For
the case in which the Vi are all equal, this is simply an unweighted average of the
neighbors' values.

Wayne Maddison (1991) stated the general weighted case (as above) and gave
a dynamic programming algorithm to find the most parsimonious combination of
values. McArdle and Rodrigo (1994) showed how to do the same computation
in matrix form. Maddison also proved that the squared-change parsimony solu­
tion is more than that - it is also the combination of values that makes the largest
contribution to the likelihood if there is a Brownian motion model. This makes
it analogous to the criterion of Yang, Kumar, and Nei (1995), which sought the
combination of discrete ancestral states that made the largest contribution to the
likelihood. Maddison's algorithm is the continuous counterpart to the dynamic
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programming algorithm of Pupko et al. (2000). Generalized least squares meth­
ods can also be used to infer ancestral states (Martins and Hansen, 1997). Martin
(1999) shows computer simulation studies indicating that squared-change parsi­
mony, maximum likelihood, and generalized least squares all yield closely similar
estimates of ancestral states.

For a broader review of ancestral state estimation by likelihood and parsi­
mony methods, see Cunningham, Omland, and Oakley (1998). Webster and
Purvis (2002) have made an interesting empirical test of several methods with
foraminiferan data where the ancestral states can also be observed directly. They
found that a likelihood method based on the Ornstein-Uhlenbeck process (which
will be described in the next chapter) did the best job of predicting ancestral states.

Gene frequencies and Brownian motion
The model that Edwards and Cavalli-Sforza used for gene frequencies involved
approximating genetic drift by Brownian motion. This they had to do because ge­
netic drift itself is not sufficiently tractable. It is not easy enough to calculate tran­
sition probabilities between different gene frequencies over the length of a branch
of a phylogeny. For example, the distribution showing where the gene frequency
is expected to be in a population of constant size N after t generations, given that it
starts at 0.6, cannot be calculated exactly under the classical Wright-Fisher model
of theoretical population genetics without multiplying large transition matrices.
Even in the approximation of genetic drift by a diffusion process, this density func­
tion cannot be computed without using a power series of Gegenbaur polynomials.

Edwards and Cavalli-Sforza therefore assumed instead that the gene frequen­
cies wandered on an infinite scale by Brownian motion. This is a good approx­
imation for small divergence times, which is what they were considering. With
Brownian motion, the gene frequency change is the sum of a huge number of very
small changes. The change after t units of time has expectation zero, but a vari­
ance (J2t. The variance that is expected to accumulate is the same in all parts of
the scale. In this the process differs from gene frequency change, which necessar­
ily has variance that dies away to 0 as the gene frequency reaches the ends of its
scale, at frequencies of 0 or of 1. Recall that the variance of gene frequency change
in one generation in a two-allele case is the binomial variance p(l - p)/(2N).

We might hope to make gene frequency changes better approximated by
Brownian motion by changing the scale on which the diffusion occurs. To some
extent this is possible. A simple example is the case of two alleles. The classical
arc-sine square root transform method of equalizing variances when there are bi­
nomial distributions attempts this scale change. Suppose that we change from the
gene frequency scale p to

y = sin-1 (ViJ) (23.49)
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A bit of algebra finds that

ely

elp

1
(23.50)

The standard"delta method" of approximating the variance of a transformed vari­
able says that for small values of Var (p),

(
elY) 2Var(y) ~ elp Var(p) (23.51)

which on substituting from equation 23.50 leads to the one-generation variance of
change

1 p(l-p)
Var (y) ~ 4p(1- p) 2N

1

8N
(23.52)

We seem to have found that by using not the original gene frequencies, but
their arc-sine square root transform, we have approximately equal variances at all
points on the new scale. Does this mean that the stochastic process on the new
scale is a Brownian motion? Alas, no such luck. We have ignored the mean of the
process. It was zero on the original scale, but it is not on the new scale. We can
use a Taylor series (in effect, the delta method again) to compute it. Expanding it
to the second-derivative term,

(23.53)

We then substitute in the derivatives of y with respect to p. Taking the second
derivative using equation 23.53:

1 1 [ 2] 2po - 1
JE(y) ::::0 Yo + JE [(p - Po)] 2, ;;n;:~. + -2 JE (p - Po) 4[ (1 )]3/2 (23.54)vPo v .1. - Po Po - Po .

Since the expectation of p - Po in binomial sampling is 0, and the expectation of its
square is the binomial variance p(l - p) / (2N),

1 2po - 1
JE(1'j) ::::0 '('jo + - -;:::=:;:===;=

. . 8N vPo(1- Po)
(23.55)

The mean change is thus not zero, as it is in Brownian motion and as it was
on the original gene frequency scale. Instead it has a directional force that pushes
the gene frequency away from 1/2 and toward 0 or 1. The process on the new
scale may be a diffusion process with constant variance, but it is not Brownian
motion. Thus any treatment of gene frequency evolution by Brownian motion is
of necessity an approximation.
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Using approximate Brownian motion
In spite of the approximateness of the Brownian motion model, one can go ahead
and use it. Cavalli-Sforza and Edwards (1967) used the arc-sine square root trans­
formation of one allele's frequency for two-allele loci. For multiple alleles the issue
is more complex. One method proposed by Edwards (1971) replaces a k-allele lo­
cus with k variables. If the gene frequencies in a population are P1, P2, .... Pb the
new coordinates are

Yi =
2(ffi) 1

k - Jk'
1 + L Vp.;jk

i=l

'i = 1,2..... k (23.56)

This transformation does exaggerate differences somewhat when the alleles are
not equally frequent. The new variables all lie in a plane, and thus the k of them
change in only k - 1 dimensions. To obtain variables that change independently
one can take any set of orthogonal contrasts of the Yi (Thompson, 1975, p. 26).
Thompson (1972) has investigated Edwards's transform further and has shown
that it does an optimal job of approximating genetic drift by Brownian motion.
The transform is centered at the point where all alleles are equally frequent. It
would be even better to center it near the centroid of the frequencies in all observed
populations. This would amount to the transform

Yi = 'i = 1. 2, .... k (23.57)

where Pi is the mean gene frequency of allele 'i across populations.

Distances from gene frequencies
Rather than using likelihood, one can compute genetic distances based on gene
frequencies. These have a large, complex, and remarkably confusing literature,
largely because there has been no agreement on a common task for the distances to
perform or common standards for the distances to be judged by. The authors often
sound as if they are competing for the prize for "most mathematically beautiful
distance measure." When we are inferring phylogenies the task is clearer and the
criteria more straightforward. I have made (Felsenstein, 1985d) an examination of
bias of these genetic distances in the case where the divergence of species is due
entirely to genetic drift.

For the case of pure genetic drift, suppose that the gene frequencies in two
populations at allele j of locus 'i are Xij and Yij, with a total of n loci. One popular
distance is the chord distance of Cavalli-Sforza and Edwards:

DCSE = 4L(1- LJXijYii)
t .J

(23.58)
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Another is the distance of Reynolds, Weir, and Cockerham (1983):

DRWC (23.59)

These have been given here in a form that is expected to rise linearly with elapsed
time when two populations have been separated and diverge through genetic
drift.

When there is mutation, the genetic distance of Nei (1972) is by far the most
widely used:

(23.60)

Nei's distance assumes that all loci have neutral mutation at the same rate, with
each mutant to a new allele. Nei's distance does a better job when there is mu­
tation, but is still liable to rise nonlinearly with time when mutation rates vary
among loci. When there is no mutation, Nei's distance is not particularly well­
behaved (Felsenstein, 1985c) but this should be no surprise as in this case it is
being used when its model is inapplicable.

Use of an appropriate distance measure with distance matrix methods is a
reasonable competitor to likelihood using Brownian motion models, particularly
when there is mutation.

A more exact likelihood method
:'-Jielsen et al. (1998) give a likelihood method, allowing for coalescent phenomena
within species, in the absence of mutation. We will explain this further in Chap­
ter 28 where we cover coalescent effects in trees of closely related species. Their
likelihood calculation can compute likelihoods for trees of populations within a
species or trees of species. It infers not only a tree but a set of effective popula­
tion sizes, one for each branch. As the effective population size is used in the form
t/(2Ne ), the likelihood does not actually depend on the time and population size
separately. The approach of Nielsen et al., unlike the Brownian motion approxima­
tion, is almost exact. It requires Markov chain Monte Carlo methods to evaluate
the likelihood.

Gene frequency parsimony
In addition to likelihood and distance methods, there are also parsimony meth­
ods for gene frequencies. Edwards and Cavalli-Sforza (1964) introduced the first
of these, which minimized the sum of the distances between adjacent nodes in
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the tree, using ordinary Euclidean distance. Thompson (1973) developed furthe:­
methods for finding this tree. Swofford and Berlocher (1987) introduced methocE
minimizing the length of branches using the sum of absolute values of differenc :
of gene frequency (the Manhattan metric, which we mention further in Chapte:­
24). They used well-known linear programming methods to infer the gene fre­
quencies at each locus at the interior nodes of the tree. They later (Berlocher anc.
Swofford, 1997; see also Wiens, 1995) proposed an approximate optimality crite­
rion that was easier to compute, and they argued that it tended to choose the same
trees as the original criterion.

There are also methods that code alleles only present and absent, usinc
discrete-characters parsimony without taking allele frequencies into account
(Mickevich and Johnson, 1976; Mickevich and Mitter, 1981, 1983). These lose mud',
information by not taking gene frequency changes into account and are also overl~'

sensitive to the use of small population samples, which may omit an allele tha:
is actually present. They have been criticized by Swofford and Berlocher (1987
among others.

Wiens (2000) has examined the performance of different methods of taking
gene frequencies into account. He comes to the conclusion that using maximum
likelihood with the Brownian motion approximation does at least as well as other
methods, even when gene frequency changes are affected by mutation in additio
to genetic drift. As comforting as this might be, I suspect that taking mutation into
account in the statistical model would be preferable in such cases.
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Quantitative characters

Brownian motion models have also been used as approximate models of the evolu­
tion of quantitative characters. Quantitative characters are those that are described
by values on a continuous numerical scale. They are also called "continuous char­
acters" and sometimes "polygenic characters," the latter being on the presumption
that their variation is controlled by many loci.

The theory of the quantitative genetics of these characters has made use of a
model, which traces back to Fisher (1918) and even before, that has the characters
as the sum of effects contributed by a number of loci, these effects being inde­
pendent of each other and of environmental contributions to the trait. By using a
simple sum, we are ruling out all interaction among the loci. Frequently the model
is taken further, and it is assumed that the number of loci contributing to the varia­
tion of the character is large and the individual contribution of each locus is small.
In that case the sum will be normally distributed.

The theory of quantitative genetics, under these conditions, allows the com­
putation of within-population covariances among relatives, and the response to
directional selection. All of the relevant information about the loci and their gene
frequencies affects this theory through only a few quantities: the population mean
and the additive, dominance, and environmental components of variance. The
theory can also be extended without difficulty to multiple characters, taking into
account by genetic covariances the pleiotropy of the loci, the extent to which the
same alleles affect multiple characters. The result is an enormously powerful and
supple theory that links observable quantities by a few parameters (/-L, VA, VD , VE)
and avoids having to know the detailed genomics of the characters. We can infer
the variance components from covariances among relatives, and we can predict
selection response from that, without actually having to know how many loci are
affecting the trait, where they are in the genome, or what are the effects of their al­
leles. Falconer and MacKay (1996) and Lynch and Walsh (1998) are good places to
start to explore the large literature of quantitative genetics.

415
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As remarkable and powerful as this theory is, its limitations are many. It is
basically a short-term theory. Quantities such as the additive genetic variance 1:,­
depend on the gene frequencies at all of the relevant loci, and they change as these
gene frequencies change. The response to selection then also changes, and so the
relationship between the measurable quantities is not reliable over the long run.

Neutral models of quantitative characters
Brownian motion comes closest to being an adequate model of change of quanti­
tative characters when their mutations are selectively neutral. A number of quan­
titative geneticists (Lande 1976; Chakraborty and Nei, 1982; Lynch and Hill, 1986
have constructed models of evolutionary change in which neutral mutations oc­
cur at multiple loci, acting additively on a phenotype. The implications of such
a model for the process of character change is most easily seen by making it as
simple as possible. Suppose that there are n unlinked loci, whose alleles ha\'e
numerical values that are added to get the genotypic contribution to a charac­
ter. A normally distributed environmental effect is then added, independently for
each individual. In other words, there are no dominance or epistatic effects, no
genotype-environmental interaction, no genotype-environmental covariance.

We assume that the environmental effect has mean aand variance (71. We will
also assume a mutational process at each locus that is the same, so that the n loci
are fundamentally equal in their contribution to the variance. Each allele has a
probability f.L per generation of mutating. The mutation adds a quantity 10 to the
numerical value of the allele, where E is normally distributed with mean a and
variance (7;'. Note that assuming that the mean is ahas major implications. Even
if the allele currently has a large positive value, mutation is no more likely to make
it smaller. There are thus no limits to the extent of phenotypic evolution.

In an idealized population of newborn diploid organisms, suppose that the
genotypic mean (the totals of the values of the alleles) has variance \fA among the
newborn individuals. If the next thing that happens is genetic drift caused by ran­
dom survival to adulthood, with N individuals surviving, the adult generation
will be a sample of N individuals drawn at random from the distribution of new­
borns. It is not hard to show that the mean of such a sample will differ from the
parental mean by a random amount whose mean is aand whose variance is \fA/1\-.

But what happens to the variance \fA as a result of this sampling?
In the sampling process of genetic drift, it is, on average, reduced. If the geno­

typic mean (the sum of allelic effects) for adult individual i is g.;, the deviation of a
random one of the survivors (say individual 1) from the mean of the survivors is

(24.1)
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As the 9i are independently drawn from a distribution whose variance is 1:-l, the
variance of this weighted sum is that variance times the sum of squares of the
coefficients:

Var(gl-g) = [(1_~)2+_1 +_1 +... +_1]VA = (l-~)VA
N N2 N2 N2 N

(24.2)
We have not specified what the distribution of the gi is. The adults will be a ran­
dom sample of N from the newborns, with a variance that is, by the above equa­
tion, on average 1 - tv times as great. It is possible to show that, when we derive
2N gametes from these survivors and combine them at random, the genetic vari­
ance 114 is reduced, not by tv, but by 2~' once one takes within-individual genetic
variability into account. Thus, on average, a fraction 2~ of the variance disap­
pears with each generation of genetic drift. However, this varies randomly, and
some generations may see an increase of variance.

After they reach adulthood, the individuals will be assumed to reproduce, pro­
ducing infinitely many offspring who make up the newborns of the next genera­
tion. The distribution of the genotypic means is no longer normal, but it is easy
to show that its expectation and variance do not change. Each allele in the new­
borns mayor may not have suffered a mutation. It will have added to it a random
quantity, which is 0 with probability 1 - fJ, and with probability fJ is drawn from a
normal distribution with mean 0 and variance (J";n- It is easy to show that the vari­
ance of the amount added to the allele is then fJ(J";n' If there are 17, such loci, each
with two copies of the gene, the total amount added to the genotypic mean of the
individual will be the overall mutational variance

(24.3)

(24.4)

and, as there are infinitely many newborns, the variance among them will be in­
creased by exactly this amount.

If we stop at this point, survey the newborns, and compare them to the previ­
ous generation's newborns, their mean will have changed by an amount which is
random but has mean 0 and variance VA/N. Their variance will have an expecta­
tion

E [v(t+lJ] = V(tJ (1 __1)+ V
A A 2N M

Taking expectations in generation t, we can equate E[VA] in the two successive
generations and find that at equilibrium we can solve equation 24.4 to get

(24.5)

This is the amount of genetic variance that we expect at an equilibrium between
mutation and genetic drift. This will not be the value of VA, only its expectation.
The actual value of VA will fluctuate around it, sometimes higher and sometimes
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lower. In neutral phenotypic evolution, this process occurs essentially indepen­
dently at each locus. The more loci (the higher the value of n), the more the fluc­
tuations in VA will tend to average out across loci. For large values of n it will be
found that v'4 stays nearly constant; for small values it will fluctuate. Similarly,
for large N the process of genetic drift proceeds slowly and the amount of genetic
variance maintained at equilibrium will be nearly constant.

The genetic variance thus fluctuates around an equilibrium. But the population
mean does not. Each generation it changes by a random amount whose mean is 0
and whose variance, as we have seen, is VA/N. If V:4. ;:::::; 2NVM , then the variance
of the change in population mean is

(24.6)

This equation was first derived by Clayton and Robertson (1955). The conditions
for it to hold are discussed by Turelli, Gillespie, and Lande (1988). It is strik­
ingly like Kimura's famous result for neutral molecular evolution: The long-term
change of the phenotype depends only on the mutational processes, and the pop­
ulation size cancels out! In each generation the population takes a step in random
walk, a step whose variance is the total mutational variance VM. In actuality, these
steps are not independent. The variance of the step may be higher in one gen­
eration than in another, as the standing genetic variance VA in the population
fluctuates up and down around its expectation. The number of loci n and the
population size N affect how much fluctuation there is in values of VA from gen­
eration to generation. Note that although the distribution of genotypic means will
be approximately normal, it will not be exactly normal.

Thus the mean of the population undergoes a random walk which, added up
over generations, is not far from a Brownian motion. The standing genetic vari­
ance in the population will be, on average, 2N times the variance of change per
generation. The approximation of the process by Brownian motion is fairly robust,
but only if we can continue to assume that mutation is not affected by how far the
process has wandered. If there is a tendency for mutations to push the allele ef­
fects back towards some particular value, the process will be approximated better
by the Ornstein-Uhlenbeck process, of which we hear more soon. It is the random
walk of an elastically bmmd particle, which is tethered to a post by an elastic band.
It does not wander infinitely far from the post in the way that a Brownian motion
does. To know which kind of model is more appropriate, we need to think hard
about the process of mutation.

The model we have discussed is for one character. The same result holds for
multiple characters - the covariance matrix of the characters in the population
will be N times the covariances of their mutational changes, and the covariance
matrix of mutational changes will be the covariances of change through time. The
same approximations and qualifications apply.
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Changes due to natural selection
:\feutral models of quantative characters have a limited range of application. They
may work well near the species level, but large changes, such as we might see
over longer periods, are much more likely to be constrained or encouraged by nat­
ural selection. In fact, it is also possible to model responses natural selection by
Brownian motion. To do so it is helpful to start with the classical quantitative ge­
netic theory of selection response, which is due to R. A. Fisher and Sewall Wright.
As made widely known among animal breeders by Lush (1937), their major result
was that the change per generation due to selection (t:.z) was the product of the
heritability (h2 ) times the selection differential S:

(24.7)

(24.8)

The heritability is the fraction of phenotypic variance (Vp ) that is due to the addi­
tive genetic component (V4). The selection differential is the difference between
the means of the selected individuals and the herd from which they are chosen.
The same equation applies to natural selection. The question is, what the selection
differential will be. If there is a fitness curve w(x) that relates fitness to phenotype,
then it turns out that the difference between the means before and after selection
is the phenotypic variance times the slope of the log of mean fitness with respect
to mean population phenotype

S = V dlog (w)
p dx

(Lande, 1976). Alternatively, we can combine this with equation 24.7 and note that

t:.z = (VA/Vp ) Vp d log (w) = VA d log ('Lv)
dx dx

(24.9)

For the simple case in which fitness is an exponentially rising function exp(aP)
of phenotype, the derivative of log mean fitness (w) will be the same as the deriva­
tive of log fitness. (It is different in other cases, the more different the more the
"itness function departs from an exponential curve.) There is also a multivariate
\"ersion of all of these equations, in which VA and Vp are replaced by additive­
Jenetic and phenotypic covariances among the characters, the change t:.z by a
\"ector of changes, and the gradient of log fitness by a corresponding vector of
jerivatives.

Selective correlation
The point of all of this is that the change in anyone generation is a product of
:erms, one reflecting the additive genetic variance, and the other the effect of the
~haracter on fitness. For multiple characters these are products of a matrix and
?, vector. If we consider a lineage changing through time, the wanderings of the
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mean will depend on the additive genetic covariances and also on the vagaries 0:
the way fitness depends on phenotype. Characters can evolve in a correlated wa~­

for either or both of two reasons:

1. The characters are genetically correlated, owing to the same alleles having
effects on both.

2. The selection pressures on the characters are correlated.

This last has been called "selective correlation" by Stebbins (1950). For example,
suppose that a mammalian lineage enters a cold environment. Its limbs grm,­
shorter, its body grows larger, and its color grows darker. These are (respectively)
Allen's, Bergmann's, and Glogler's rules. They result, not from any correlation in
the genetic basis of these traits, but because selection tends to favor all three in
the same circumstances. Thus both genetic correlations and selective correlations
must be understood in order to predict the correlations of changes of characters
through time.

Covariances of multiple characters in multiple lineages
In the previous chapter, we saw that for multiple characters the Brownian motion
model could be written with the covariance matrix of multiple species and mul­
tiple characters being a Kronecker product of a matrix representing the tree and
a matrix reflecting the different variances of the different characters. That model
assumed that all characters were evolving independently, although with possibly
unequal variances of change through time. In fact, the equation continues to hold
when characters can covary. If A is the covariance matrix of changes in the char­
acters per unit time (or branch length) in a single lineage, the covariance of those
characters after t units of branch length will simply be tAo If two lineages evolve
together for tk units of branch length and then separate, and if we observe charac­
ter i in one lineage and character j in the other, the covariances of the changes in
these two characters will simply be tkA, as after the lineages separate there can be
no further covariance. The upshot is that when we consider a vector that has the
values of all p characters "stacked" atop other such vectors for all n species, the
covariances of this vector of TIp numbers are the Kronecker product

Cov[x] = T0A (24.10)

In effect this means that for populations i and j, whose common ancestor is at
branch length tij above the root, the covariance of character k in population i with
character t in population j is

(24.11)

The model is still a multivariate normal model; if we knew the covariances of
change in characters in evolution, we could use it to infer the tree, which is re­
flected in the matrix T. Note that A will reflect both genetic covariances and co­
variances of selection pressures.
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P

Phenotype

Figure 24.1: The Gaussian optimum selection curve that is the most
mathematically tractable scheme of selection for an optimum. The op­
timum phenotype is at the peak, and the distance out to the inflection
point (arrow) is~. The larger that value, the weaker is the selection.

Selection for an optimum
.'v1any characters are selected for closeness to an optimum value. Fitness may
fall off as one departs from the optimum. The simplest mathematically tractable
model of this is to take the fitness curve to have a Gaussian shape, with fitness 1
at the peak. If the optimum value is p and the mean is m, fitness is taken to be

[
(x p)2]

w(x) = exp - 2V
s

(24.12)

The "variance" term v;, is here simply a quantity inversely related to the strength
of selection. When very wide departures from the optimum are tolerated, Vs is
large, but when selection is strong, Vs is small. Figure 24.1 shows the shape of
this adaptive peak. There is also a multivariate version of this fitness curve, with
mean and phenotypic optimum vectors and the quantity Vs replaced by a matrix
of coefficients.

It is particularly easy to derive the change in phenotype when the selection
is of the form of equation 24.12. If the distribution of phenotypes is Gaussian,
with mean Tn and variance Vp, some tedious but straightforward completing of
squares will show that after the selection, the mean of the phenotypes of survivors
becomes

I _ (m p ) / ( 1 1 ) _ V, m+ Vp P
171, - -+- -+--

Vp Vs Vp Vs Vs + Vp

and therefore the change in phenotype among them is:

(24.13)

rn/-rn=
Vsm+ Vpp
-----=--rn =

V. + Vp

Vp
--- (p-m)
Vs + Vp

(24.14)
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(24.157n' - 7n =

We can then say that the change that selection makes in phenotype within a gen­
eration is a fraction of the difference between the optimum and the mean.

The response to this selection is roughly the product of the right side of equa­
tion 24.14 with the heritability VA/Vp , so that it is

V4
V

s
~ Vp (p - m)

Multivariate versions of this exist as well, with m and p replaced by vectors; V-\,
Vp, and V, by matrices; and the inverse replaced by matrix inversion.

Brownian motion and selection
Equation 24.15 implies that m moves toward the optimum, to the extent that ther
is selection, and that there is additive genetic variance. If we wait long enough and
the optimum stays at the same value, then the phenotypic mean should approach
the optimum and go to the top of the fitness peak. If the peak keeps moving.
however, the mean phenotype constantly chases the peak. In the long run, th
phenotype goes where the peak goes, so its long-term movement will be a rough
image of the movement of the peak. We can invoke a Brownian motion model
for the phenotype, but only by making the assumption that the optimum pheno­
type wanders in an approximately Brownian matter. The mean phenotype will
then wander after it, though it will not actually carry out a Brownian motion, bu'
instead a smoother process that is roughly similar in its gross features. It will be
smoother because the phenotype will change the direction of its movement on1\­
when the peak passes the phenotype. As long as the phenotype is on one side 0:
the peak, it will continue to move in that direction. Thus the short-term proper­
ties of the phenotype's movement will show much less noise than does Brownian
motion.

We can add to this picture a genetic drift process as well; it will cause the pop­
ulation mean to wander about the peak even when the peak does not move. The
effect would be to cause short-term change to be less smooth. The population
mean will still track the movement of the peak in the long run.

Correcting for correlations
If we want to use Brownian motion models and make maximum likelihood infer­
ence of phylogenies, we need to ensure that there are no covariances among the
characters, and that they are expected to have equal variances of change through
time. These are the assumptions of the likelihoods for inferring phylogenies under
Brownian motion. They will typically require that the characters be transformeci
to remove covariances and to standardize the Brownian motions of the new char­
acters.

In the case of neutral evolution, we would be able to do this only if we kne,\­
the covariance matrix of mutational changes. However, the standing covariatioE
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Figure 24.2: A phylogeny of 40 species with a punctuated equilibrium
model. At each speciation event, the daughter lineage undergoes a nor­
mally distributed change, while the parent lineage does not change.
This is reflected by having a branch length of 1.0 in the daughter lin­
eages. In this figure, a small branch length has been assigned to the
parent lineages, so that the tree topology is more easily seen. The la­
bels (A-Z and AA-OA) are arbitrary and are randomly assigned.

in the population is N times this, so it can be used to estimate the mutational
ariance and remove the correlations. This does, however, require that we use the

additive genetic covariances, whereas we may have observed only the phenotypic
:ovariances.

In the case of natural selection, the situation is even worse. We still need to
:'I10W the additive genetic covariances. It is possible to estimate these by breeding
::,xperiments, though this information is not usually available in studies of mor­
?hological evolution. But we need more: We need to know the selective covari­
?nces. It is not obvious how we are to infer these, absent a mechanistic model of
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L......r--r--J
A

H

Figure 24.3: A random subtree of 10 species chosen from the tree of
the previous figure. The shape of the tree is less obviously punctua­
tional, with only two speciations (those involving E and D) having an
unchanged parent species visible.

natural selection on the traits and much information about the changes of envi­
ronment.

I have discussed these dilemmas (Felsenstein, 1973a, 1981c, 1988a, 2002) and
concluded that we cannot at present correct for character covariation. We may
instead want to use molecular sequences to infer the phylogenies and then use the
changes of the characters along the phylogenies to infer the covariances of their
evolutionary changes. We will see in the next chapter that this can be done once
an underlying Brownian motion is assumed.

Punctuational models
The models above have been strictly gradualist. Change continues along a branch
of a phylogeny, and there is no special process of change when a speciation oc­
curs. We may wonder what a punctuational model would look like. It woulc.
show stasis (no change) within branches, and change only at the time that a branch
originates. If we see all the species that ever existed, with each origin of a new lin­
eage reflected by a fork in the tree, then change should occur only at forks. For
most punctuational models, only one of the two lineages emerging from each for~­

changes, the one that is the daughter lineage. One way to reflect this is to as­
sign daughter lineages all the same length (say 1.0), and parent lineages alllengtt
O. Brownian motion on such a phylogeny will then reasonably well reflect the
punctuated equilibrium model. Figure 24.2 shows a phylogeny produced by i:

stochastic process of birth events, with daughter lineages displaced from the par­
ent lineages and with the assignment of branch lengths that would come from i:
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punctuated equilibrium model. If we saw this tree, we could readily discern that
it was the result of punctuational processes.

In fact, Figure 24.2 is not realistic, because we do not sample all of the species
that ever arose. Figure 24.3 shows the subtree consisting of only the randomly se­
lected species A-J. It shows a considerably less punctuated character, with nonzero
branch lengths on both sides of most splits, and the species more nearly equidis­
tant from the root than in Figure 24.2. As the fraction of all species that we are
examining becomes smaller, either as a result of extinction occurring, or as a result
of sampling of species by the biologist, the tree will look less and less obviously
punctuational.

Change of characters through time will be far from a Brownian motion process
in the punctuational case, as the character shows no change at all most of the time.
As the branches come to reflect multiple punctuational events (as in Figure 24.2)
the net change will be more nearly like a Brownian motion, as it will reflect su­
perposition of multiple normally distributed changes. Interestingly, if we express
branch lengths in units of time, punctuational models will depart from Brownian
motion. But if we express them instead in terms of the total variance that accumu­
lates as a result of the lineage being the daughter lineage in a series of speciations,
the net change will be normally distributed and there will be no departure from
Brownian motion. This can be done because being a daughter lineage is an expe­
rience shared by all characters.

Inferring phylogenies and correlations
Ve have seen that if we can correct for the variances and covariances of evolution­

ary change in the characters, we can make a maximum likelihood estimate of the
phylogeny. We shall see in the next chapter that, given a phylogeny, we can make
a maximum likelihood estimate of the covariances. Is there any hope of making a
joint maximum likelihood estimate of both? It seem that there is, though one may
:teed a large number of species to make it work well.

The phylogeny with n species has 2n - 3 branch lengths to estimate, plus, of
.::ourse, the tree topology, which does not count as parameters. The character co­
-ariation for p characters involves p(p + 1)/2 parameters. Since branch lengths
~ the tree are expressed in terms of expected accumulated variance, these two
sets of parameters must have one parameter in common. Thus there are a total of

271 - 4) + p(p + 1)/2 parameters to estimate. Is this too many? 0, if there are
enough species. With n species and p characters, we can estimate (n - l)p param­
eters, when we do REML inference that discards the mean of each character. Thus
-.,-ith (say) five characters and five species, there are 23 parameters to estimate and
only 20 degrees of freedom of the data. But with eight species there are 29 pa­
~ameters to estimate and 35 degrees of freedom in the data. In general, when the
_umber of species is more than twice the number of characters, there are enough
_ata to think of estimating both the tree and the character covariation.

For the moment we defer doing this until the next chapter.
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Chasing a common optimum
When a number of species all are being selected towards a common optimum, Ke
can model their motion by the Ornstein-Uhlenbeck (aU) process, which is Brown­
ian motion with a force continually pulling towards a point. If we have a single
character changing according to an OU process, with variance 11E accumulating
per unit time, and a returning force pushing toward an optimum at a per unit
time, the transition probability density will be a normal distribution with mean
Xo exp( -at) and variance

(24.16)

Starting at Xo = 0, a group will end up in a multivariate normal distribution,
and the model will become Brownian motion if we transform time appropriately.
However, this is not actually worth pursuing, as with multiple characters the
transformations of time for different characters, subject to different forces return­
ing them toward their optima, are different. A number of people (Lande, 1976;
Felsenstein, 1988a; Hansen and Martins, 1996) have proposed using the Ornstein­
Uhlenbeck model for evolutionary inferences. Webster and Purvis (2002) found
that a single-character Ornstein-Uhlenbeck model did a superior job of inferring
ancestral states of quantitative characters, when used on foraminiferan data where
fossils made it possible to check against observed ancestral states.

For multiple characters it would require not only phylogenies but enough
species to permit the estimation of the optimum values and also the transforma­
tion to a space in which covariation around these optima would be independent.
This is a tall order, and methods based on this attractive model have not yet been
made practical.

The character-coding "problem"
It is often considered desirable to carry out parsimony analysis of continuous
quantitative characters. As many parsimony computer programs assume discrete
characters, methods have been sought to convert continuous characters to dis­
crete ones, to enable their analysis by discrete parsimony methods. A variety of
methods have been proposed. These include gap coding (Mickevich and Johnson,
1976), segment coding (Colless, 1980), and generalized gap coding (Archie, 1985).
An early review covering some additional methods was done by Archie (1985);
more recent references and further methods will be found in the papers by Thiele
(1993) and Wiens (2001).

Gap coding places boundaries between states at parts of the numerical scale
where there are gaps between species. If we have histograms of values of the
quantitative character, whenever these overlap the two species are coded as being
in the same discrete state. Figure 24.4 shows a hypothetical example resulting in
three states.
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Figure 24.4: An example of gap coding. The discrete character has three
states, the boundaries of these states being the gaps in the distribution
of the quantitative character.

Generalized gap coding and segment coding do not simply use the gaps but
take into account how large these gaps are. Generalized gap coding finds the same
gaps as gap coding, but creates additional gaps as well. The resulting states cover
ranges of values, which can be overlapping. Additive binary coding (see Chapter
7) is used, with each of the new states coded present or absent in a series of new
binary factors. Segment coding divides the range of species means into as many
states as possible, placing each species into the state that results. This has the effect
hat a gap is not simply coded as a change of state, independent of how large it

Observed scale

Figure 24.5: Two interpretations of a gap between species histograms
on a quantitative scale. On the left, as a result of a nonlinear mapping
from an underlying character to the visible character, it is a region in
which species change rapidly and from which they tend to move. On
the right, it is simply a region separating values that are on opposite
sides of a deep fork in the tree.
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is. In Figure 24.4, segment coding and Thiele's (1993) "step-matrix gap weighting"
might require one or more additional states to cover the large gap. The four species
might then have states 0, 0, 1, and 3, allowing us to take the size of the large gap
into account to some extent.

There is an implicit assumption in gap coding that gaps are not historical arti­
facts, but are regions of the scale that evolution traverses with difficulty and per­
haps does not like to remain in. Figure 24.5 shows two interpretations of a gap:
on the left, that it represents a region of the scale in which a species does not re­
main long, and on the right, that it is a region across which there happens to have
been more time to evolve. Consideration of other characters could in principle
distinguish between these.

However, it is not at all obvious that we should reduce quantitative characters
to a discrete coding. The methods of Thiele (1993) and Wiens (2001), as well as the
earlier segment coding (Colless, 1980) are, in effect, using discrete-state parsimony
programs to approximate the results of remaining on the original scale and using
parsimony. We have seen that there are statistical methods for likelihood analysis
of quantitative characters. There are also, as we will see in the next section, parsi­
mony methods that remain on the original scale. Too hastily moving to a discrete
scale may lead us to ignore correlations between characters; it would be better to
make some attempt to remove these. When methods exist for using the original
scale (or a reasonable transformation of it), it would seem best to "just say no."

Continuous-character parsimony methods

Manhattan metric parsimony
If we are not converting continuous characters into discrete characters, but using
their values on the continuous scale, in addition to likelihood methods there are
also parsimony methods available. In fact, some of the early parsimony methods
allowed values to be on a continuous scale. Kluge and Farris (1969) and Farris
(1970) assumed that the character values lay on an ordered scale, on which they
could be either continuous or discrete. They gave algorithms for reconstructing
states on the interior of the tree and for counting the total change required in that
character on that tree. This they give as

d(AB) = L IX(A,i) - X(B,i)1 (24.17)

where X (A, i) is the value of character i in node A on the tree. The sum of absolute
differences is defined both for continuous characters and for discrete characters
that are points on the continuous scale. The values at the interior nodes are easy
to calculate, as they are the medians of the values of the nodes to which that node
connects (Kluge and Farris, 1969). Of course, one may need to iterate the taking of
medians, as the nearby nodes may themselves be interior nodes. Maddison and
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Slatkin (1990) have shown that the assignment of values to interior nodes in the
tree under this iterated median rule results in values that do not depend on the
spacing of the species values on the scale, but only on their ranking.

We can consider the species to be points in a continuum, with their character
values for the ith character being the ith coordinate of the points. Thus a species
with five characters, whose values are I, 2.5,0,3.4, and 6 occupies the point (1, 2.5,
0,3.4,6) in five-dimensional Euclidean space. The parsimonious tree is a Steiner
tree in this space (see Chapter 5), with the measure of distance between points
A and B being given by equation 24.17. This is well-known mathematically as
the L] metric, and is often called the Manhattan metric, as it measures the distance
between points in the regular grid of streets where one is not allowed to go diago­
nally. It is approximated by the street map of Manhattan, New York (provided one
ignores the East Side Highway, Broadway, the roads in Central Park, and nearly
everything below 14th Street).

Other parsimony methods
Another parsimony method, squared-change parsimony, was mentioned in the
previous chapter. It has been used mostly to infer ancestral states under a Brow­
nian motion model, rather than to choose among phylogenies. The original parsi­
mony method of Edwards and Cavalli-Sforza (1964) summed the distances rather
than the squared distances between nodes on the tree. It has not been applied to
quantitative characters, but only to gene frequencies.

Threshold models
Many morphological characters come to us as discrete characters (such as pres­

ence or absence of a ridge on a scale, when that ridge may have been observed but
not measured). Quantitative character models can be used to analyze such traits.
The literature on this goes back to Sewall Wright (1934), who used a "threshold
model" to analyze the inheritance of different numbers of digits on the hind foot
of guinea pigs. It was further developed by Falconer (1965) as a model of disease
in human populations, particularly diabetes. The model assumes an underlying
quantitative character, called "liability," which cannot be directly observed. That
character is assumed to be normally distributed. There is a developmental thresh­
old, and if the liability exceeds the threshold, the observed character has state 1
rather than state O.

In the genetics literature, the model has been used with inbred strains or pedi­
grees. It remains to adapt it to phylogenies. I have discussed doing so (Felsenstein,
1988a, 2002), though without presenting a practical method. The model would as­
~ume a quantitative character evolving by Brownian motion, with the observed
character being determined by whether the character in an individual exceeded
:he threshold. Note that the model predicts not only change between species but
:)olymorphism within species as well. If a species had its mean liability 1 standard
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Figure 24.6: A simulation of evolution in a threshold character, with
threshold 0 and standard deviation of liability 1. The mean population
liability is shown at each node of the tree. The branches are shaded to
show (in black) the fraction of the population that are of state 1. Four
of the species end up with most individuals having state 1.

deviation below the threshold, we would predict that 0.8413 of the individuals in
the population will have state 0, and 0.1587 of them will have state 1. Another bio­
logically appealing feature of the model is that it predicts that after state 1 arises in
a population, it can more easily be lost in the near future than later. When the pop­
ulation has just become mostly of state 1, it is fairly close to the threshold value,
and further wanderings might soon carry it back across the threshold. But later
on, it may well have wandered further from the threshold into the zone for state
1, and then it will be less likely that we will soon see reversion to state 1.

Figure 24.6 shows a simulation of evolution of a 0/1 threshold character on a
simple phylogeny. The threshold is assumed to be at 0, and the standard deviation
of the liability is assumed to be 1. In this simulation I arbitrarily started the liability
at a value of O. At each node in the tree we see the mean liability, and the branches
of the tree show the fraction of the population (in black) that have state 1.

The liability is on an arbitrary scale, so we may as well choose the thresh­
old value to be 0 (in two-state cases) and choose its standard deviation to be 1.
Wright (1934) modeled a meristic character with many states (and even with par­
tial states), using multiple thresholds.

If we have observed one individual at each tip, the likelihood for a given phy­
logeny under the threshold will be the total probability of that combination of
individuals. Thus for five species, the first four of which are 1 and the last 0,

L roo J'ex:; roo rcc J'o
Jo a Jo Jo -00

Prob CE1 > O. X2 > O. X3 > O. X4 > O. :1:5 :::; 0 I /-£, T)

dX1 dX2 dX3 dx.. dX5

(24.18)
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where the tree T is specified with branch lengths and the probability of the Xi is the
usual Gaussian density with covariances depending on the branch lengths. This
is an integral of a corner in a multivariate normal density. It also depends on the
starting liability /1.

The model has the additional great advantage that it can easily be extended
to allow for correlations among discrete traits, simply by assuming that the un­
derlying Brownian motions are correlated. For p characters we then need only
p(p - 1)/2 additional parameters for their correlations, and there is the hope of
inferring them, given enough species. But there is one major disadvantage. In­
tegrals of corners with multivariate normal densities have no analytical formula.
Such integrals are difficult to compute by conventional numerical integration - it
looks like they will yield only to Markov chain Monte Carlo methods. Note that
our model is essentially a hidden Markov model as well, with the liability being
the hidden state.
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Comparative methods

Comparative methods use the distribution of traits across species to make infer­
ences about the effect on their evolution of other traits or of environments. Gallons
of ink have been spilled over the years by biologists writing about the importance
of the comparative method, but only in the last 25 years have they understood that
use of the comparative method requires phylogenies and statistical methods that
use them. Figures 25.1 and 25.3 show how, when we do not use phylogenies, a
seemingly straightforward analysis of individual species can create an artifactual
signal.

An example with discrete states
Figure 25.1 shows a phylogeny with 10 species and two 0/1 characters. On the
phylogeny both characters happen to change once, in the same branch. When the
species are taken as individual sample points and a contingency table is created, it
appears to support a strong correlation between the states of the character. Yet the
phylogeny makes it clear that this is an illusion. If all branches on the phylogeny
were of equal length, it would be safer to make a contingency table of branches.
If the branch where both characters changed was longer than the other branches,
the coincidence would be even less surprising.

The contingency table on the left side of the figure shows the apparent tight cor­
relation between the two characters. If we accepted the species as being indepen­
dently distributed, we could use a Fisher's exact test and we would find that the
probability of a correlation this close or tighter is very small, 1/210 = 0.0047619.
This would seem to establish that the two characters have evolved in a closely cor­
related manner. But if we made the calculation this way, we would be deceiving
ourselves. The species cannot be regarded as independent outcomes of evolution.
They are related, having evolved on a phylogeny.

A more relevant way of looking at the evolution of these characters is to con­
sider on which branches of the phylogeny the characters changed. The figure re-

432
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Character 1: 0 0 0 III ~ III III 0 0 0
Character 2: III III 0 0 0 DOD III III

Species states Branch changes

#2
0 III #2

#1 Y N
#1

0 0 6 Y 1 0

III 4 0 N 0 18

Figure 25.1: An example of two discrete two-state characters evolving
along a phylogeny so that their distributions among the species are
correlated. Each branch of the phylogeny consists of two regions side
by side, for characters 1 and 2. Shading shows which state each is in.
The states of the two characters are shown at the tips of the tree by
empty or shaded boxes.

constructs where each character changed. Both changes happened on the same
branch of the phylogeny. Not counting the root, there are 19 branches on this phy­
logeny (18 if we remove the root and unite the two most basal branches). The
probability that both characters would change on the same branch would be 1/18
= 0.05555. This fails to be significant; it is far less extreme than the previous prob­
ability.

An example with continuous characters
Figure 25.2 shows a tree with 22 species, which has two clades of 11 species each.
The vertical scale indicates the branch length. There is no structure within each
f the clades, but they have been separated for some time. Figure 25.3 shows two

.::haracters that have evolved by Brownian motion along this phylogeny, with no

.::orrelation between the evolution of the characters. The 22 species are plotted
3.S points, and in the left plot there seems to be a correlation between the two
.::haracters - a larger value of one goes with a larger value of the other. But on the
:ight side we have shaded in the points according to which clade they come from
the shadings are the same as in Figure 25.2).

Looking at the shaded points, we can see that within each of the clades there
:5 no particular sign that the two characters are correlated. All of the correlation
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Figure 25.2: A tree with 22 species and two clades, which was used to
evolve the characters shown in Figure 25.3.

arises from the difference between the clades - from the changes of the two char­
acters along the two large internal branches of the tree. Those two branches are
effectively only one branch, as we have no outgroup to give us separate informa­
tion about the root of the tree. So the correlation in a plot of 22 points comes from
11 of them being displaced upwards and to the right, compared to the other 11.
This is due to a single event, a burst of change in the branch separating the two
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Figure 25.3: Two characters that evolved in an uncorrelated fashion on
the tree of Figure 25.2. There appears to be a correlation, but when
the points are shaded to show which clade they came from, it becomes
apparent that this is an artifact of the phylogeny, as within each of the
two clades there is no correlation. The scales on the axes are omitted,
as they are arbitrary.
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clades. The number of points (22) is a misleading indication of the number of in­
dependent sources of variation.

The whole point of phylogenies is that species did not evolve independently,
but that historical events affected large groups of species. Only by untangling the
correlation of the species can v,'e untangle the correlations of the characters.

The contrasts method
That there was a problem in the statistical analysis of the comparative method was
recognized by a number of evolutionary biologists in the late 1970s (d. Clutton­
Brock and Harvey, 1977, 1979; Harvey and Mace, 1982; Ridley, 1983). Methods
based on analysis of variance were attempted (Harvey and Mace, 1982), and Ri­
dley (1983) discussed how to analyze data on discrete characters. We return to
Ridley's method and other discrete characters methods later; for the moment we
concentrate on the analysis of continuous character data, for which the answer is
found in the contrasts method.

The contrasts method was introduced by me (Felsenstein, 1985a), using tech­
niques developed for computational efficiency when computing likelihoods on
phylogenies where the characters have evolved by Brownian motion. In Chapter
23 we have seen that, for any character evolving by Brownian motion along a phy­
logeny, we can find a series of contrasts between the character values at the tips
that are statistically independent. Figure 25.4 shows a phylogeny, together with
the contrasts it implies. Below the figure are the contrasts that are derived from
this phylogeny, together with their variances.

The contrasts are expressed by their coefficients, shown in the figure. When
these are used, the resulting numbers may be called contrast scores. The contrast
scores may be taken as new variables. They express all the variation between
species, leaving out only the grand mean of the character. We can also divide each
-ontrast score by the square root of its variance, so that (in our example):

Y1 ydVOA

Y2 ydVO.975
(25.1)

Y3 Y3/ v1P2
Y-l Y4/ V1.11666

.:1l1.d we obtain standardized contrast scores.
Assuming that the Brownian motion model is correct and so is the tree, the

.::ontrasts all have the same expected mean and variance. Note that

1. The contrasts all have expectation zero.

2. They assume that we know the mean phenotype of the populations at the
tips of the trees precisely.



436 Chapter 25

c
da e

0.1 0.1

0.3 b
0.1 0.65

(0.7)
0.25

(0.2) 0.9

Contrast

Yl X a Xb

Y2 ~ X a + i Xb XC

Y3

Y4 1 X + ~ Xb + 1 X
"6' a 3' e

1 O''2 "~d

X e

1
'2 X"

Variance
proportional to

0.4

0.975

0.2

1.11666

Figure 25.4: An example phylogeny and the independent contrasts
that it implies under a model of evolution by Brownian motion. The
branch passing through the bottommost node has total length 0.9, as
two branches of length 0.2 and 0.7 separate these two clades.

3. If the tree's branch lengths are all multiplied by the same constant (say, 2.347)
the contrasts will still all be independent, have zero means, and all have the
same variance; their variances will all be divided by 2.347.

Figure 25.5 shows the contrasts for the numerical example of Figures 25.2 and
25.3. The points for the contrasts within the two clades have the corresponding
shadings, and the single contrast between the clades is unshaded.

Correlations between characters
If we have two or more characters, we can apply the contrasts method to each
simultaneously. The contrast formulas will be the same in each character. We
have seen in equation 23.39 that when there are multiple characters undergoing
correlated Brownian motion, a set of contrasts can be found that are independent.
The covariances of the characters in these contrasts will be proportional to the
covariances (A) of evolutionary change among the characters.
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Figure 25.5: The contrasts for the two characters in the example of Fig­
ures 25.2 and 25.3. The 10 contrasts within each of the two clades
are shaded correspondingly, and the single contrast between the two
clades is unshaded. The scales are in standard deviation units.

As an example, consider the tree of Figure 25.4 with three characters. We have
five species and three characters, so that we have 15 species means. If we take the
four contrasts in each of the characters, for contrast Yl we will have three values,
one for each of the characters. The covariance matrix of changes in the three char­
acters along the tree (A) will then also be the covariance we expect to see among
the three values of Yl. There will be a similar covariance among the three values
of Y2, with the same covariance matrix. But the Yl values and the Y2 values will be
independent.

Thus we can simply take the four contrast scores for each of the three charac­
ters, and feed them into a standard multivariate statistics package. They give us
four samples with which to estimate the covariances among the characters. We
can do the usual kinds of multivariate statistical analysis on them, such as using
principal components to find the combination of characters that shows the most
change along the tree.

When the tree is not completely known
The contrasts method requires that we know the phylogeny, including its branch
lengths. Frequently, some regions of the tree have unresolved structure, as they are
considered to be poorly known. These are often described as "soft polytomies,"
as they are not positively known to be polytomous, but describe our ignorance
instead. A number of suggestions have been made as to how to deal with these:
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• I suggested (1988a) that we bootstrap-sample the original data that inferred
the tree, inferring a tree from each bootstrap sample. The comparative
method would be performed on each bootstrap sample. To place a confi­
dence limit on an inferred parameter such as a slope, one would make a
histogram of its values from all these analyses, and reject a value such as 0
only if it fell in the appropriate tail of the histogram.

• Grafen (1989), Harvey and Pagel (1991), and Pagel (1992) proposed meth­
ods of dealing with polyfurcations in the tree, methods that go beyond the
contrasts computation. Purvis and Garland (1993) suggested reducing the
degrees of freedom to count for the polyfurcation. Garland and Dfaz-Uriarte
(1999) presented simulation results arguing that this worked well. Rohlf
(2001) pointed out that in their method if the tree were a complete multi­
furcation, there would be zero degrees of freedom in spite of the presence of
data.

• Martins (1996a) proposed that when a tree topology is completely unknown,
one simulate trees at random for these species, then analyze the data on
each and take the mean of the inferred quantity as the best estimate. Hous­
worth and Martins (2001) suggested ways of simulating random parts of
trees when only a portion of the tree is unknown. Abouheif (1998) suggested
that randomly generated bifurcating trees will give the same result as hav­
ing only a single multifurcation. In this he was supported by the simulations
of Symonds (2002). It would seem possible to treat this analytically. The
approach of Martins and Housworth (2002) would seem relevant.

If polyfurcations in the tree are taken to be real ("hard polytomies"), the correct
way of dealing with them is to resolve them into bifurcations by adding zero­
length branches in any reasonable way. It can be shown (Rohlf, 2001) that how
this is done does not affect the values of regressions and correlations calculated
from ordinary multivariate analyses.

Inferring change in a branch
McPeek (1995) has discussed using the contrasts method to infer the amount of
change along a particular branch. If we take the tree as unrooted, then prune
the phenotype values down to both ends of the branch, we will obtain values
such as x~ and x;, with extra variances 01 and 02 added to the two ends. If the
branch has original length V3, a simple regression argument shows that the ac­
tual change of the character along that branch is distributed normally around a
mean x; - X2' multiplied by V3/(V3 + 01 + 02)' The variance of the distribution is
V3(01 + 02)/(V3 + 01 + 02)' McPeek points out that reconstructed changes on dif­
ferent branches can be correlated (in fact, all of them are). However, his formulas
for the reconstructed changes differ from the ones I have given here. His formulas
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give nonzero reconstructed change even when /'3 = 0, while the above formulas
correctly infer that change is zero in such a case.

Sampling error
Ricklefs and Starck (1996, p.169), in the midst of a skeptical review of applicabil­
ity of contrast methods, make an insightful point about sampling error. If we do
not have the actual character mean for each species, because we have only a finite
sample of individuals, this adds an extra source of error beyond the randomness
of Brownian motion. This sampling error will depend on sample sizes, but not
on branch lengths of the tree. If a contrast is taken between two species that are
neighbors on the tree, the contrast will be divided by a small quantity, the branch
length separating those two tips. This assumes that the variance of the difference
between them is substantially smaller than if they had been farther apart on the
tree. But if sampling error is an important source of variance, the variance of the
contrast between neighbors is then underestimated. Ricklefs and Starck find that
contrasts of closely related species are often outliers in their regressions. This is
presumably an artifact of sampling error (some of which could be due to measure­
ment error).

The solution to this problem is to take the sampling error explicitly into ac­
count. Riska (1991) discussed the need to include sampling error in our models.
We must add a variance component due to variation between individuals within a
population, and allow for its variance when inferring covariances between charac­
ters. Each individual's measurement is distributed normally, with a term added to
the model for within-species variation. We have seen that if all the variation is due
to evolutionary change of population means, the covariance matrix of multiple
characters in multiple species is T ® A. When there are also sampling effects, sup­
pose that we draw multiple individuals from species i. The covariances between
characters k and {i will then have an extra component a h:£ if they are measured in
the same individual. This means that an extra component of variance (which we
call ek/) is added to covariances of characters in the same individual.

The model can be written concisely by taking the individuals as the unit. We
can imagine a phylogeny like Figure 25.6 connecting all the individuals in the
study. The tree that is shown is basically the same as in Figure 25.4, except that
extra branches have been added for the individuals sampled for each species. In
this model, the covariances added by these branches are not derived from the
covariances of changes in phenotype in evolution, but from the covariances of
characters within species. The effect of this is that the covariance matrix can be
written as

(25.2)

where T is a matrix for a tree that has tip i replicated ni times, where ni is the sam­
ple size for species i on that tree. The extra branches that are added have length O.
The new term in this covariance matrix, I®E, adds covariances of different charac-
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Figure 25.6: The same tree as in Figure 25.2, but with extra branches
for each species, one per member of the sample for that species.

ters within each individual, which are the within-species phenotypic covariances
of characters. The distribution of phenotypes in individuals is

(25.3)

where x is a vector that not only stacks up the different species, but within them
the members of the sample and within those their different characters, and where
T is a tree with a branch of length 0 for each sampled individual.

We cannot simply regard these extra branches, one for each individual in the
samples, as involving the same differences as those that accumulate in evolution.
It is true that contrasts among these individual branches can be taken, and they
are independent of each other. If a species has 'no, individuals in its sample, it
is quite easy to construct n, - 1 contrasts among the individuals, all of which
are independent. However, the character covariances in those contrasts are the
covariances E, the within-species phenotypic covariances, and these may be quite
different from the covariances A of between-species phenotypic change. If we
take all the within-species contrasts, this leaves at each species its arithmetic mean
phenotype, as seems appropriate.

You might think that there is a neat separation between one set of contrasts
that measures within-species phenotypic variation and another that measures
between-species changes. But when we set out to take between-species contrasts,
we should remember that the species means reflect not only the random changes
between species, but also our sampling error due to having only a limited num­
ber of individuals when there is within-species variation. For example, if species a
has a sample size of 3, then when the within-species variance of a character is (J2,
this creates an extra variability of (J2/3 in the species mean beyond the variability
of evolutionary change.
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It will not necessarily be true that the covariation of characters among species
due to evolutionary change is proportional to the covariation within species due to
phenotypic variation and finiteness of the samples. Two characters could covary
positively within species, and yet change in a negatively correlated way between
species.

One case of this model has already been treated in the literature. Lynch (1991)
used a model where, in addition to its phylogenetic covariances, each species has
a component due to recent change that is specific to that species and has its own
covariances. This gives the same model as if we had sampled only one individual
per species. Using an REML method from quantitative genetics, Lynch was able
to provide iterative equations for estimating the different variance components.

I have (Felsenstein, in prep.) provided an alternative method of computation
for the model with sampling error, using contrasts that are not standardized in the
usual way, but are orthonormal contrasts (the sum of squares of their coefficients
sum to 1). As we saw with the variance of a single character, the finiteness of the
sample sizes implies that a small portion of the within-species phenotypic covari­
ances becomes added to the between-species covariances. The computation must
be iterative, converging on REML estimates of the within- and between-species
covariances. We can no longer simply take the contrasts of all characters and feed
them into a standard multivariate statistics package, but we can maximize like­
lihood with respect to the general model and with respect to a restrictive model
(such as a model that has no phylogenetic covariance between two characters),
and do a likelihood ratio test in the usual way.

The effect of allowing for sampling error and within-species phenotypic vari­
ation is to discount many of the contrasts between closely-related species. If we
have a pair of species that are close relatives, ordinary contrasts analysis inflates
the contrast between them, dividing it by the square root of the branch length sep­
arating them. But if there is also sampling error, most of the contrast may come
from that. When the sampling error is properly taken into account, the contrast
between that pair of species may contribute little to the inference of phylogenetic
covariances and correlations. This makes intuitive sense.

When Lynch's method was tested (E. Martins and M. Lynch, personal commu­
nication; Felsenstein, in prep.) it was found that estimates of phylogenetic correla­
tion between traits tend to be too extreme. This simply reflects the small effective
sample sizes; if we have 20 species, but many fewer clusters of closely related
ones, the correlation coefficients are estimated mostly from the between-cluster
contrasts, which are fewer. Correlations are usually biased to be too extreme, and
this bias is serious when sample size is small. For example, when sample size is
? we know that the correlations that can be observed are almost always +1 or -l.
The extreme values found in simulations reflect the fact that the between-species
observations are equivalent to a rather small number of independent points.
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Correction for sampling error is still rare in comparative studies; hopefully i:
will become more common. It should place a premium on having a sufficientl~'

great diversity of species in the study.

The standard regression and other variations
Grafen (1989, 1992) has given a multivariate statistical framework that is an al­
ternative to the contrasts method; he calls it the standard regression. In the case it:
which the tree is fully bifurcating, careful consideration of his method will shOi"
that it is simply an alternative computational scheme to contrasts and will alwa\'~
give the same results. His methods use matrix calculations instead of recursi,'e
derivation of contrasts. The computation of the contrasts is, in effect, a way o~

obtaining eigenvalues and eigenvectors of the covariance matrix of species.

Generalized least squares
Martins (1994) presents an alternative generalized least-squares framework that is
not exactly the same as REML, but that will approximate it in most cases. Rolili
(2001) argues that these two methods are actually equivalent. Paradis and Claude
(2002) suggest using generalized estimating equations (GEE) rather than the gen,
eralized least squares (GLS) framework of Martins. Their method is more gen­
eral than GLS but reduces to it in the Brownian motion case. The chief utility of
these methods is that when we have other evolutionary mechanisms, they can be
modified to approximate them. Martins, Diniz-Filho, and Housworth (2002) haw
examined by computer simulation how robust some of these methods are to vari­
ations in the evolutionary model.

Phylogenetic autocorrelation
Cheverud, Dow, and Leutenegger (1985) used a method developed to correct for
geographic structure in data, adapting it to phylogenies (see also Gittleman and
Kot, 1990). Their "phylogenetic autocorrelation" method has been tested against
contrasts methods in simulations, with indifferent results (Martins, 1996b). It has
been criticized by Rohlf (2001) as having some assumptions that conflict with any
possible evolutionary mechanisms. Chief among these is the way error enters the
model. Differences between closely related species are expected to be as variable
as differences between distantly related ones; this is inconsistent with mechanisms
such as Brownian motion.

Transformations of time
Gittleman and Kot (1990) added to their method a transformation of the time scale.
Suspecting that the Brownian motion model might not accurately represent the
evolutionary process, they allowed the time scale to be nonlinearly transformed.
Actually, their scale was not so much time as it was a distance that represented
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taxonomic dissimilarity. By adding a parameter 0' to make the covariances propor­
tional to this distance raised to the O'th power, they allow the data to dictate how
taxonomic groupings are reflected in covariances. The phylogenetic autocorrela­
tion method also has a constant p that controls how much phylogeny influences
similarity.

Pagel (1994), in his method for discrete characters, used a different approach
in which the length of each branch of the tree is raised to a power, with the power
being estimated.

Should we use the phylogeny at all?
The most drastic modification of the contrast method is to discard it. As phy­
logenetic comparative methods have first disrupted comparative work, and then
become compulsory, this has led to questioning of their celebrity status. A par­
ticularly interesting exchange in the pages of Journal of Ecology raises the issue of
whether seeing an effect of phylogeny proves that the effect is not due to natu­
ral selection (Westoby, Leishman, and Lord, 1995a, b, c; Harvey, Read, and Nee,
1995a, b; Ackerly and Donoghue, 1995). The paper of Ricklefs and Starck (1996) is
another interesting critique.

Freckleton, Harvey, and Pagel (2002) suggest that a parameter defined by Pagel
(1999a) can be used to test whether there are any phylogenetic effects at all. The
covariance matrix between species is taken to be A times the matrix predicted from
the phylogeny, plus (1 - A) times a matrix in which all species are independent.
By doing likelihood ratio tests on A one can test whether there is any sign of an
effect of phylogeny. This is essentially the same as a comparable test in the work
of Lynch (1991) in which the model included both a phylogenetic effect and an
individual species effect.

Paired-lineage tests
An alternative to the contrasts method is to look at pairs of species, chosen from
the tree in such a way that the paths between them do not overlap. Looking at
pairs of related species is an old method that dates back to at least the work of
Salisbury (1942). I have extended it (Felsenstein, 1985a) to allow pairs that are
connected by nonintersecting paths on the tree. Figure 25.7 shows the choice of
such pairs. We can make a sign test of whether two characters change in the same
direction (+) or opposite directions H between members of the pairs. If there is
no correlation in the evolution of the two characters, our expectation is that these
two outcomes would be equally frequent. So a simple sign test suffices.

Figure 25.7 shows a tree with one of the ways that the species can be divided
into pairs. The paths between the species are shown by the dark lines. In general
there are multiple ways that species can be grouped into pairs so that the paths
between the members of the pairs do not overlap. On this tree there is only one
grouping that satisfies this condition and finds four pairs, and it is shown here.
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Figure 25.7: Pairs of species chosen so that the paths between the two
members of each pair do not overlap. The paths between the pairs of
species are indicated by the dark lines.

The paired-lineages test is appealingly simple, but it does lose some statistical
information. A set of 19 species will have eight such pairs of lineages, but it will
have 18 contrasts in the contrast method. An additional issue is that some pairs
may have long paths between them. Depending on the exact scheme of evolution
these pairs could fail to show a correlation. Of course, the same could be said for
contrasts methods using a contrast with long branch lengths between the groups.

Ackerly (2000) presents simulation results on different sampling strategies
used with different methods of analysis, including paired-lineage tests. He argues
that choosing pairs of species so as to maximize the differences between species in
one character can bias the regression of another character on that one.

Discrete characters
The contrasts method does not help us if we have discrete characters. Both parsi­
mony and likelihood methods have been suggested to test whether characters are
correlated in their evolution.

Ridley's method
Mark Ridley (1983), in probably the earliest method for treating comparative
method data statistically, suggested mapping the two traits onto a tree using par­
simony. Ridley's method is not entirely clear in his book. Wayne Maddison (1990)
expresses some uncertainty as to what it is; Harvey and Pagel (1991) argue that it
involves investigating the independence of the states in two characters at the up­
per ends of all branches. Sillen-Tullberg (1988) interprets Ridley's method as in-
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volving examining whether the origins of the derived state in one character occur
more often with one state of the other character than with the other state. How­
ever, she does not present a statistical test. Still another interpretation is that Ri­
dley intends examining all branches and scoring each character as to whether it
has changed or not in that branch. A contingency table can then be used to test
association (as was done at the beginning of this chapter).

Concentrated-changes tests
Wayne Maddison (1990) has proposed a statistical test with discrete 0/1 charac­
ters. Depending on one's interpretation of Ridley's method, it may be an imple­
mentation of it. It asks whether the chance of a change in one character (call it
character #1) is affected by the state of another character (call it character #2). He
would have us start by reconstructing the regions of a tree that have one state or
the other in character #2. Then he reconstructs the locations of changes in charac­
ter #1. Suppose that there are seen to be seven occurrences of state 1 in character
#1, and that these represent five changes of state in the tree, four of which are in re­
gions with character state 1 in the other character. Is this number (4) a surprisingly
large number?

Maddison uses a recursive algorithm to compute the probability of having four
or more changes, out of five in total, in regions having character state 1 in character
#2. He computes the number of different ways that one could have five changes of
state of character #1 on the tree, and the fraction of those in which there are four or
more changes in the regions that have state 1 in character #2. This fraction is taken
as the probability, under the null hypothesis of no concentration of character #I's
changes.

Sillen-Tullberg (1993) presents an alternative to Maddison's concentrated­
changes test. Like Maddison, she makes parsimony reconstructions, including
assignment of states to interior nodes in the tree. She looks at those branches that
have state 0 of character #1 at their base and makes a contingency table. She clas­
sifies them according to whether or not there is a change to state I, and whether or
not the branch has state 0 or state 1 for character #2. One ambiguity in this test is
when character #2 changes in a branch; it is not obvious which state of that charac­
ter to assign to the branch. If multiple, equally parsimonious reconstructions are
possible in either character, this can also cause trouble.

There are other possible ways to compute a probability for a concentrated­
changes test. One could, for example, randomize the occurrences of state 1 in
character #1 among all the tips on the tree, and count in how many of those cases
there were more than four changes in the relevant regions. This would give a
different result, but it would not be correct, because it would implicitly assume
hat even sister species were not correlated in their states. Maddison's test does

a better job of allowing neighboring species on the tree to have correlated states.
However, it does restrict its attention to those outcomes with a certain number of
rotal changes in character #1. If we had a stochastic model for the evolution of that
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character, we could have randomized over outcomes of evolution. However, in
the absence of that kind of model, Maddison's quantity is probably as good as we
can do.

In addition to this issue, this concentrated-changes test is completely depen­
dent on the accuracy of the reconstruction of state changes by parsimony, as Wayne
Maddison (1990) acknowledges. It assumes that we can know, without error,
where each character's changes of state were. In doing so, it fails to take into
account our full uncertainty as to how characters have changed.

A paired-lineages test
Read and Nee (1995) have proposed a test with discrete binary characters which
is a natural counterpart to the continuous-characters paired-lineages test. Taking
care to keep lineages from overlapping, the test takes pairs of species that differ at
both characters. A simple sign test can then be done to check whether the character
correlations are more in one direction than the other. A difficulty with this test is
that there may be too few pairs of lineages that differ in both characters to allow
for much statistical power. Wayne Maddison (2000) has discussed algorithms for
choosing these pairs in as effective a way as possible.

Methods using likelihood
Pagel (1994) made the first likelihood-based comparative method for discrete char­
acters. He assumed that two characters each have two states, 0 and 1, and that
there is a simple stochastic process of change back and forth between them. There
were two rates of change, so that the probability of change in a tiny interval of
time of length dt would be a dt if the character were in state 0, and (3 dt if it were
in state 1. If the two characters were changing independently, for any given tree
with branch lengths, we could compute the likelihoods for each character on the
tree and take their product as the overall likelihood. The algorithms are essentially
identical to those in Chapter 16, except that the number of states is two instead of
four.

However, if the two characters are changing in a correlated fashion, the state of
each can affect the probability of change of the other. In effect, we then have four
states, for the four different combinations of states at the two characters. If both
characters are in state 0, the combination is counted as being in state 00. There
are also states 01, 10, and 11. If we assume that in any tiny interval of time only
one of the characters can change, the matrix of rates of change of the character
combinations is as shown in Table 25.1.

The notation in the table, which differs from Pagel's, has rates a and ,8 of for­
ward and backward change at the first character, and "y and 0 of change at the
second character. However, they differ according to the state of the other charac­
ter. When character 2 is 0, the rates of change at character 1 are ao and (30' But
when character 2 is I, they are a1 and (31. Similarly, the rates "Y and 6 for character
2 are subscripted according to the state of character 1.
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Table 25.1: Rates of change between combinations of states in Pagel's
(1994) discrete-character comparative method.

To: 00 01 10 11

From:

00 -- ~IO Go 0
01 60 -- 0 Gl

10 f30 0 -- II
11 0 f31 61 --

I will not go into the computational details, but it is possible to compute tran­
sition probabilities and equilibrium frequencies for the four states for this model.
Using them, we can compute the likelihood for a tree (perhaps one obtained by
molecular methods). More tediously, one can maximize this likelihood over the
values of the parameters.

Some hypotheses of interest are restrictions of the values of these parameters.
If the subscripting of 0, ,6, "(, and 6 does not affect their values, then the two char­
acters are evolving independently. This is the set of constraints

00 = 01

,60 = ,61

a = "(1

60 = 61

(25.4)

If we maximize the likelihood while maintaining these constraints, we are restrict­
ing four of the eight parameters. It is possible to do a likelihood ratio test compar­
:.ng this likelihood to the likelihood with unrestricted parameter values, and this

as 4 degrees of freedom. It is also possible to test, in a similar fashion, whether
character 1 is unaffected by character 2, and whether character 2 is unaffected by
-haracter 1. These each involve restricting two of the parameters (0 and,6 or ~( and
;). Pagel noted that one can also test individual ones of these four parameters for
·::>eing unaffected by the state of the other character, and each of these tests has 1
Jegree of freedom.

Another possibility is that one character affects the rate of evolution of the
other, but not the equilibrium frequency of its two states. If 00/80 = oI/81, then
~ aracter 1 will have the same equilibrium frequency no matter what the state of
~haracter 2. There is a similar condition for character 2. Each of these restricts 1
'egree of freedom. A likelihood ratio test of these assertions could be done indi-
·idually or simultaneously. The latter test has 2 degrees of freedom.
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Pagel's framework provides a straightforward test of the independence of
change in two characters. It can be extended to more elaborate forms of depen­
dence. If one is provided with an unrooted tree, it may be necessary to constrain
the two-character model of change to be reversible, so as to avoid having to know
where the root is. This can be done by adding only one constraint, which is that

(25.5)

Advantages of the likelihood approach
Pagel's discrete characters comparative method has some important advantages
over Maddison's and Ridley's parsimony-based approaches. It takes branch
lengths into account, which the methods of Maddison and Ridley cannot (as Mad­
dison pointed out in introducing his method). When some of the branches in the
tree are quite short, it will automatically adjust for this and not assume that there
could be large amounts of change in those parts of the tree. When a branch is
very long, it will treat the evidence from the groups connected to its opposite
ends as relatively independent. Another disadvantage of the parsimony-based
approaches is that they reconstruct the placement of changes and then treat those
events as observations. Any time we find ourselves using something that is an es­
timate, and using it as a definite observation, we should be suspicious. In such
cases the errors that may arise from the uncertainty of the reconstruction are not
taken into account in the analysis.

All of these methods suffer from a common limitation-they use a rather naive
model of character change. Populations do not make instantaneous changes from
one state to another. Having arrived at state 1, they may be more likely to revert
to state 0 soon, but less likely later. None of these are taken into account in par­
simony or likelihood uses of a simple model of change between two states. We
have seen in Chapter 24 that a model with underlying quantitative characters and
a threshold can come closer to reality. It allows for polymorphism within species
and for different probabilities of reversion soon after a change and later. It is also
easier to generalize to covariances of change among multiple characters than the
0/1 stochastic model. It will be important to develop a comparative method that
uses the threshold model.

Molecular applications
Molecular evolutionists frequently want to know whether substitutions at differ­
ent sites are correlated. This might help reconstruct protein structure so as to place
correlated sites near each other in space. The great difficulty with using discrete­
characters comparative methods for this is that there are 20 amino acids, and many
possible pairs of sites to examine, so that there are far too many possible parame­
ters. Any successful application of these methods would necessarily involve con­
straining parameters and examining sets of pairs of amino acids that could all be
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neighbors. Studies of correlated evolution of amino acid positions in a protein
have often used nonphylogenetic measures of correlation. Wollenberg and Atch­
ley (2000) have done so, but have used a parametric bootstrapping approach to
simulate data on phylogenies to see how much of the correlations could be com­
ing from the phylogeny. We have already seen, in Chapter 13, models of change
that maintain pairing of sites in RNA structures.
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Coalescent trees

What happens to phylogenies when we consider individual copies of genes within
populations? Trees do in fact exist, but are no longer trees of species. We are see­
ing the pattern of molecular evolution when it gets down below the species level.
Copies of genes can be related by a tree, but different loci in the same individ­
ual are related by different trees, and the trees can change even within a gene. To
make it clear how these trees form, let us consider a small population, mating at
random in an idealized fashion. Figure 26.1 shows the genealogy of gene copies
at a single locus in a random-mating population of 10 individuals.

The genealogy that is shown in Figure 26.1 differs from ordinary genealogies
in that it shows connections between gene copies, rather than between individu­
als. Each line goes from a gene up to a gene that is descended from it. The mating
system is that of an idealized Wright-Fisher model, commonly used in theoreti­
cal evolutionary genetics to investigate the effects of genetic drift. According to
that model, each gene at a locus comes from a randomly chosen parent, copied
from one of its two genes at random. The population is thus in effect monoecious,
and selfing occasionally occurs when the two genes in an offspring happen to be
descended from the same parent. This may seem biologically unrealistic, but in
evolutionary genetics the effects of other mating systems are usually taken into
account by computing an effective population number N e and putting it in place
of the actual population number. This has been extensively investigated and is
found to work surprisingly well.

The genealogy in Figure 26.1 is the result of a computer simulation of 11 gen­
erations of descent in a Wright-Fisher model with 10 individuals. It is almost im­
possible to comprehend. In an effort to make it easier to look at, we can erase the
circles that indicate individuals (Figure 26.2). The result is still too tangled to con­
vey much. If we abandon any attempt to put genes from the same individual near
each other, we can swap gene copies left-to-right and untangle the genealogy. The
result is shown in Figure 26.3. No lines cross. The figure resembles a branching

450
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Figure 26.1: A genealogy of gene copies in a random-mating popula­
tion of size 10, for 11 generations. Lines connect genes to their descen­
dant copies in offspring. The model of reproduction is a Wright-Fisher
model. Large circles are individuals, small ones are gene copies.
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figure 26.2' The sarn
e

genealogy of genes as in figure 26.1, with the

individuals erased.
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Figure 26.3: The same genealogy of genes as in Figure 26.2, with lines
swapped left-to-right to untangle it, removing all crossed lines.
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river system, with small tributaries at the top feeding ever-larger rivers that flov,"
toward the bottom. In fact, of all the genes in the top generation, the first six are all
descended from the leftmost gene in the bottom generation, and the next 14 are all
descended from the gene number 10 in that generation. All other copies present in
the bottom generation did not leave descendants by the time of the top generation.

Usually we are actually considering, not the entire genealogy of genes in a pop­
ulation, but the genealogy of a sample from the population. Figure 26.4 shows the
genealogy of a particular sample of three copies from the current (top) generation
in the genealogy of the previous figures. The members of the sample are related
by a genealogical tree.

Kingman's coalescent
The structure of these trees of gene copies that form in random-mating populations
was greatly illuminated by the probabilist J. F. C. Kingman (1982a, b, c). Kingman's
result is an approximation, but such a good one that few evolutionary geneticists
have tried to investigate the exact structure of such trees (nor will I). Kingman's
results are generalizations of a result for two copies that was obtained by the fa­
mous evolutionary geneticist Sewall Wright (1931). Wright noted that in a finite
population of size N, which is monoecious and has selfing allowed, the probabil­
ity that two gene copies come from the same copy in the preceding generation is
1/(2N). In each generation there is the same probability. The distribution of the
number of generations until the two copies finally have a common ancestor is thus
exactly the same as the distribution of the number of times one must toss a coin
until "heads" is obtained, where the probability of "heads" is 1/(2N) on each toss.

That distribution is called a geometric distribution. It has mean 2N. It is very
well approximated, as Wright was aware, by an exponential distribution that also
has mean 2N. Kingman's result is the extension of this result to a population with
k copies of the gene. Going back in time, there will be a number of generations
until two or more of these k copies have a common ancestor. Rather than following
Kingman's algebra in detail, we can use a result from my own paper (1971) on
genetic drift with multiple alleles. We compute the probability that no two of
the k alleles in the current generation came from the same copy in the preceding
generation, i.e., that all of them came from distinct copies.

The first copy came from some copy in the preceding generation. The second
has probability 1 -1/(2N) of coming from a different one. Given that (so that two
copies in the preceding generation are now represented), the chance that the third
copy came from a copy different from both of these is 1 - 2/(2N). Given that, the
fourth copy has probability 1 - 3/ (2N) of coming from a different copy from all
of these. Continuing in this fashion, the probability that all k of them came from
different copies is

( 1) ( 2)( 3) ( It - 1)1-- 1-- 1-- .. 1---
2N 2N 2N 2N

(26.1)
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Figure 26.4: A genealogy of three gene copies sampled from the final
generation of the preceding figures.
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The right side can be multiplied out, and yields

Gkk = 1-[1+2+3+ ... +(k-l)]/(2N)
. 1+ terms 111 -i\')

J T-
(26.::

The sum of the integers from 1 to k - 1 is well-known to be k(k - 1)/2. Kingman'"
results amount to showing that ignoring the terms in I/N2 is a good approxima­
tion. This will be true as long as the quantity k(k - 1) is much smaller than the
population size N, which is usually the case. The events that are envisaged in the
first terms on the right side of equation 26.2 are those in which precisely two 0:
the genes are copies of the same parent gene. So Kingman's approximation in ef­
fect says that events in which three or more lineages collide are rare compared C'

ones in which two lineages collide.
We can then say that, to good approximation, in each generation a coin is tosseG

that has probability

G
k(k-l)

1 - kk::::O
4N

(26.3

of "heads." The number of tosses (generations) that are needed to get a "head'
is geometrically distributed, with mean being the reciprocal of the "heads" proba­
bility. Calling this time Uk, we have its expectation as

4N
lE(Uk) = k(k - 1) (26.-1

The time is also well-approximated by an exponential distribution with the same
expectation.

From the process it should also be obvious which lineages are the ones that
collide-a random pair. Thus Kingman's recipe for constructing a genealogical
tree of k gene copies is simply:

1. Go back a number of generations drawn from an exponential distribution
with expectation 4N/[k(k - 1)].

2. Combine two randomly chosen lineages.

3. Decrease k by 1.

4. If k = 1, stop. Otherwise, go to step 1.

The resulting stochastic process was called by Kingman the n-coalescent. The name
has stuck (though without the n): Genealogical trees of ancestry of multiple gene
copies are widely known as coalescents. We should keep in mind that Kingman's
coalescent is an approximation, in which it is impossible for three lineages to col­
lide simultaneously. But as long as k(k - 1) « N, it is a very good approximation.
The remarkable thing about Kingman's coalescent is that it describes the geneal­
ogy of a sample of k genes, without making it necessary to know the genealogy of
the rest of the population. This can be a great economy.
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As the number of copies grows smaller, the expectation of the time for them to
coalesce grows longer. The expected total time for k copies to coalesce is readily
computed. Note that l/(k(k - 1)) = l/(k - 1) -l/k, so that

4N 4N 4N 4N
k(k - 1) + (k - l)(k - 2) + (k - 2)(k - 3) + ... + 2

4N (_1__ ~ + _1 1_ + _1 1_ + ... + ~ _ ~)
k-1 k k-2 k-1 k-3 k-2 1 2

4N (1-~)

(26.5)

The results are a bit surprising. When there are many copies it takes on average
about 4N generations for all of their ancestral lineages to coalesce! But when there
are two copies, it takes on average 2N generations. That implies that a bit more
than half of the depth of a coalescent tree is spent waiting for the last two copies
to coalesce. More generally, (1 - l/n)/(l - l/k) of the time is spent waiting for
the last n copies to coalesce. So with 100 copies in alt 0.9/0.99 or 0.90909 of the
time is spent waiting for the last 10 copies to coalesce. Only 9% of the time is spent
on the first 90 coalescent events! (Of course, we mean "first" in the sense of going
backwards in time.) One gets the picture that lineages coalesce rather rapidly at
first and then the process gradually slows down.

These figures are based on expectations, and as expectations of ratios are not
quite the same things as ratios of expectations, they may be a bit oft but in this
case they are a reliable guide to what coalescent trees look like.

One might also ask how unbalanced these random trees of lineages are. Farris
1976) and Slowinski and Guyer (1989) considered that the basal split of a random

tree with k tips could have any number of lineages from 1 through k - 1 on the
left-hand side. They showed that all k - 1 of these values are in fact equiprobable.
This also gives us useful information about the effect of adding one lineage to a
:ree. If we have 100 lineages and add one lineage, what is the probability that it
-.\-ill connect to this tree below the pre-existing root? Their result shows that the
?robability is only 2/100 that the root of the 101-lineage tree separates one lineage
:Tom the rest. And even if it does, the chance is only 1/101 that this single lineage
~5 the new one that we added. Thus the chance that the new lineage establishes a
:-lew root below the pre-existing one is only 2/(101 x 100) = 0.000198.

Figure 26.5 shows nine realizations of a coalescent with 20 gene copies, all
jrawn to the same scale. This will show both the pattern of increasing lengths
of time for coalescence to occur as the number of lineages decreases, and the enor­
::LOUS variability around that implied by the exponential distributions involved. It
~lso shows a reasonable agreement with the Farris-Slowinski-Guyer uniform dis­
:ribution of numbers of lineages on each side of the bottom split.

Figure 26.6 shows the tendency for the first few lineages to have in their ances­
-::"\- the long lines at the bottom of the tree. It shows a sample of 50 gene copies.
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Figure 26.5: Nine outcomes of the coalescent process with 20 gene
copies, drawn to the same scale.
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Figure 26.6: A sample genealogy of 50 gene copies, with the ancestry
of a random 10 of them indicated by bold lines. Note that adding 40
more gene copies to the sample discloses no new lines in the bottom
part of the diagram.
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The ancestry of a random subsample of 10 of them is indicated by making the lines
bolder. Adding the 40 to the 10 actually adds no new lines to the bottom part of
the tree: They tend to connect to the existing lines by short branches and rarely
add much length to the tree.

Bugs in a box-an analogy
We can make a physical analogy (if a somewhat fanciful one) by considering a box
containing hyperactive, indiscriminate, voracious, and insatiable bugs. We put k
bugs into the box. They run about without paying any attention to where they are
going. Occasionally two bugs collide. When they do, one instantly eats the other.
Being insatiable, it then resumes running as quickly as before. It is obvious what
will happen. The number of bugs in the box gradually falls from k to k - 1, to k - 2,
as the bugs coalesce, until finally only one bug is left.

The analogy is actually fairly precise. The number of pairs of bugs that can
collide is k(k - 1)/2. If there are 2N "places" in the box that can be occupied,
the probability of a collision will be proportional to k(k - 1)/4N. The size of the
population corresponds to the size of the box. A box with twice as many "places"
will slow the coalescence process down by a factor of two. So a simpleminded
physical analysis of the bugs-in-a-box process will have the Kingman coalescent
distribution as the probability distribution of its outcomes.

Effect of varying population size
We have been assuming that effective population size does not change through
time. In reality it will, and we will also want to make inferences about its changes.
Working backwards in time, when we get (back) to the point where the effective
population size is N(t), we will find there that the instantaneous rate of coales­
cence of k lineages is k(k - 1)/4N(t). If the population size N(t) is half the value
that it has today, these coalescences will happen twice as fast as they do now. The
effect is to make it appear that time is passing twice as fast. This suggests a simple
time transformation that allows us to find the distribution of coalescence times in
the case in which the effective population size is N(t) at time t ago.

Suppose that we imagine a time scale in which time passes at a rate propor­
tional to N(O)/N(t), where N(O) is the effective population size now. Let us call
this fictional time scale T, where

N(O)
dT = N(t) dt (26.6)

The total amount of this fictional time that elapses going back from the present to
time t ago will then be the integral

T = .I dT .I N(O) dt
N(t)

(26.7)
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Whatever the course of population size change, as long as its inverse can be inte­
grated, we can use equation 26.7 to derive the formula for the fictional time.

The usefulness of this new time scale comes from the fact that the rate of coa­
lescence of k lineages on it is then k(k - 1)/4N(O) per unit of (fictional) time. On
the fictional time scale, the original Kingman coalescent is valid. Thus if we have
a function N(t) whose inverse can be integrated, we can generate a coalescent for
that population size history simply by generating a coalescent from the original
Kingman process, then converting the times of coalescence from fictional to real
time by evaluating t's , by solving for t in terms of T in equation 26.7.

The simplest interesting example is exponential growth. Suppose that the pop­
ulation has been growing exponentially at rate g per generation. Then if time is
measured going backwards from the present,

N(t) = N(O) e-qt

From equations 26.8 and 26.7 we find that

1
T = - (egt

- 1)
g

and we can solve for t:

(26.8)

(26.9)

(26.11)

1
t = -In(l+gT) (26.10)

g

To generate a coalescent outcome in a population that has been growing exponen­
tially, we first generate a coalescent in a population of fixed size N(O). Then we
take the times of coalescence (which are fictional times T) and use equation 26.10
to obtain the real times.

This time transformation was first given by Kingman (1982c) and was used by
Slatkin and Hudson (1991) and by Griffiths and Tavare (1994a).

Done this way, we never need to use the actual distribution of coalescence
times. In fact, the density function for the time u back until coalescence, when
there are k copies at present, is

k(k-1) [k(k-1)(e gt -1) ]
Prob (t ::.; u < t + dt) = . T exp. + gt dt

41Ye 4Ne g

This can be obtained by passing the exponential density of the ordinary coales­
cent through the time transformation of equation 26.10. It was given by Kingman
(1982c) and by Slatkin and Hudson (1991). The density function for a particular
coalescent tree may be obtained from this straightforwardly by taking a product
of these densities.

Migration
If we have more than one population, with migration between them, the analytical
theory becomes very difficult. But simulation of trees from the prior distribution
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Population #1 Population #2

Figure 26.7: A coalescent tree with migration between two populations
(represented by the two cylinders). The migration events are indicated
by the dashed arrows that lead to small clear circles.

is not difficult, nor is the calculation of the density function of a given tree. As we
shall see below, these are the only calculations we will need when doing likelihood
analysis of data.

Imagine two populations, each of effective size N. There is a constant rate of
migration between them. If there are k1 copies in population #1 and k2 in pop­
ulation #2, the rate of coalescence per unit time (going backwards, as usual) is
k1 (k1 - 1) / (4N) + k2 (k2 - 1) / (4N). Another event tha t can occur is for a lineage to
migrate. This has probability m per copy, so that the total rate of migration events
is k1m + k2 Tn. So the total rate of all events is the sum of these,

(26.12)

The time back until the next event is exponentially distributed, with the rate of
occurrence per unit time equal to A. Once one of these events has occurred, we
need to know which. The probability of a coalescence in the first population is the
fraction of A that is contributed by its first term, and similarly for the other possible
events. The lineages that coalesce or the lineages that migrate are chosen from the
possibilities at random.

Figure 26.7 shows the events in a coalescent tree connecting gene copies in two
populations. Migration events are the clear circles. We can generate such a multi­
population coalescent by starting with the numbers of copies in each population
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(/;:1 and k2 in the two-population case), and generating an exponential variable
with the rate A being specified by equation 26.12. Then we know when the first
event, going backward, is. We choose what kind of event it is by choosing from
the four possibilities (coalescence in two populations, and two directions of mi­
gration). These will occur with probabilities proportional to the four terms on the
right side of equation 26.12. If the event is a coalescence, we then choose at ran­
dom two lineages in the proper population. If it is a migration, we choose one
lineage in the proper population to be the immigrant.

It will turn out that to do likelihood computations on coalescents, we need to
be able to compute the probability density for a given coalescent, with the times of
the migration events known. This is straightforward. We work our way down the
coalescent, encountering successive events. In each interval between events, we
have current values of the numbers k1 and k2 of lineages in each population. We
then can use equation 26.12 to compute the current value of A. That interval in the
tree then gives rise to a term cxp( -At). The event at the bottom of the interval gives
rise to a term mij dt if it is a migration arriving in population i from population j,
or 1/2Ni dt if it is a coalescence in population .j.

The resulting expression for the probability density of a tree G is the product
over intervals, the ith of which is ti generations long:

Prob(G) =

[
[- L kji(kji - 1)/(4Nj ) - L k£im£j] ti _ ~i]

II ..€..~£ (II !Jju) II ( 1 )- Je .1 J . .J-r- m.--
, J£ 2N

i j€ j J

(26.13)
omitting the dt terms). In this expression the number of lineages in population

j, kji , may change with each interval, 6j£i is an indicator variable that is 1 if the
event at the bottom of interval i is a migration from population £. to population j,
and aotherwise, and Eij is an indicator variable that is 1 if event i is a coalescence
in population j. If the tree G has its branch lengths in mutational units (so that
an average site has probability 1 of mutating per unit time), then equation 26.13
becomes instead:

Prob(G)
(26.14)

(n (mj€d~)iij£i) TI (21~J"rji
tJ< tJ

_'ote that the migration events each give rise to a single factor of m, not kji of
::'1em, and the coalescence events give rise to 1/(2N), not kji(kji - 1)/(4N). This
~et1ects the probabilities of choosing the particular pairs of lineages that are going
:,) migrate or coalesce.
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Although we can retrospectively calculate the probability density of any par­
ticular tree, you may be surprised to find out that much simpler quantities are
impossible to calculate prospectively. For example, Takahata (1988) derived the
mean time to coalescence of a pair of genes in two populations that exchange mi­
grants, but he was unable to derive the distribution of coalescence times for the
pair. In one population the corresponding distribution is a simple exponential,
and this has been known since Sewall Wright's work of 1931. If we observe one
copy in each of the two populations, there is an exponentially long wait with mean
1/(2m) generations for one of the genes to migrate, following which there is an ex­
ponentially long wait with mean 1/[1/(2m) + 2N] for the pair to coalesce or for
migration to occur again, and so on, until finally they coalesce. Thus the overall
distribution is a sum of a geometrically distributed number of sums of pairs of ex­
ponentials. This does not have a simple density function. Recently, its Laplace
transform has been derived (Bahlo and Griffiths, 2001), and that can be be used to
compute the distribution numerically. And that's the simplest possible case.

Fortunately, for likelihood inference with geographically separated popula­
tions, we do not need to solve any of these prospective problems, but can simply
compute the density function of a given genealogy with given migration events,
retrospectively.

Effect of recombination
We have been assuming so far that there is no recombination in any of the lin­
eages. If there were, then we could not sustain the assumption that each gene
copy comes from a single gene copy in its parent. A recombination event within
the gene would instead mean that part of the copy came from the one of the par­
ent's two copies and the rest from the other. Figure 26.8 shows what a single re­
combination does to a coalescent tree with three lineages. The arrow shows where
there was a recombination between sites 138 and 139 of this gene. There are really
two coalescent trees here, one for sites 1-138, and the other for sites 139-204.

As one moves along the genome, one will have a series of sites that all have the
same coalescent tree, with no recombination anywhere in that tree. But suddenly
there will be a recombination somewhere in the tree. It will cause a particular
kind of rearrangement of the tree (breaking of one lineage and its attachment else­
where). That tree will then hold for a while as one moves along the genome, and
then there will be another breakage and reattachment. After some distance along
the genome, the tree has changed to be totally different.

How far will this be? Your intuition may tell you that it must be many map
units, perhaps enough to have 30% recombination. If so, your intuition is very
wrong. The distance is quite short. We can get a good feel for it by asking how far
one has to go to expect one recombination event on an average lineage that leads
down from a tip to the root of the tree. The length of such a lineage will be about
4N generations. If the recombination fraction between two points in the genome
is r, the average number of recombinations between them on this lineage is 4Nr.
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1-138 139-204

Figure 26.8: A coalescent tree with a single recombination event. The
recombination is between sites 138 and 139 at the point indicated by
the horizontal arrow. The result is a pair of related coalescent trees.

The condition we are looking for is then 4lYr » 1, which is r » 1/(4N), How far
along the genome we have to go to see the tree change substantially thus depends
on the population size.

In humans, one expects about one recombination event every 108 bases. If
we take human effective population size in the (distant) past to have been about
lOci, then 4Nr = 1 will hold when r = 2.5 x 10-5 . That works out to be about
2'::;00 bases. This is a surprisingly small number. Actually, recombination is not
evenly spread along the genome, but is patchily distributed, so the number 2,500
:5 probably too small. But if human population size has instead been closer to
105, the figure of 2,500 bases changes to only 250 bases! This calculation is due to
Robertson and Hill (1983).

Interestingly, the conditions for change of the coalescent tree are actually the
5ame as those for genetic drift not to form a substantial amount of linkage disequi­
:ibrium. Thus trees and D's are closely related, being in some sense just different
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ways of describing the same situation. A perfectly compatible (and hence perfecth'
treelike) set of sites is also one that shows complete linkage disequilibrium.

We must then think of the coalescents in a genome as each holding for only a
small region of the genome, and that there may be a million different coalescen
trees that characterize the ancestry of our genome. Virtually every locus has its
own Eve or Adam, at widely varying times and places. We not only have as our
ancestors mitochondrial Eve and Y-chromosome Adam (who did not know each
other), but also hemoglobin Sam and cytochrome Frieda, and a great many oth­
ers as well. Once we are inside a species, we have lost by genetic recombination
the single branching genealogy that exists between species. But as we will see.
the study of coalescent trees provides an important framework for thinking abou':
evolutionary genetics and estimating the parameters of its processes.

The effect of recombination on coalescents in creating loops in the genealogies
was first discussed by Hudson (1983; Hudson and Kaplan, 1985). The randon
process of forming a coalescent from a present-day sample of k haplotypes ha_
considerable similarity to the process for migration. Going backward from the .
haplotypes, there is a constant risk k( k - 1) /4N per unit time of coalescence. If the
entirety of the k haplotypes can recombine, if each is L nucleotides in length, and
if there is r recombination per base, their total map length is k(L -1 )r. Thus, going
back in time, we have two kinds of events, with a total rate k(k -1)/4N+k(L-1)r.
As in the migration case, we draw from an exponential distribution with this rate,
and then use the relative sizes of the two terms to decide randomly which of the
two kinds of events occur.

In the example of Figure 26.8, k = 3 and L = 204. If (say) N = 106 and r =
10-8, we have rates 3 x 2/(4 X 106) = 0.0000015 of coalescence, and 3 x 203 X 10-8 =
0.00000609 of recombination. We draw the time back to an event, then choose
whether it is to be a coalescence or a recombination, then choose who coalesces
or where the recombination event is. In the tree shown, the first event (going
backward) is a recombination, between sites 138 and 139. Going further back there
are four haplotypes. The rate of coalescence is straightforward: 4 x 3/(4 X 106 ) =
0.000003. But we must be careful about the rate of recombination. We need only
follow recombinations that occur in an interval that ends up in the sample. The
leftmost and rightmost haplotypes have 203 intervals between bases that can have
a recombination. But the second haplotype has only 138 - 1 = 137 bases at which
recombination affects the ancestry of the sampled haplotypes. The third has 204 ­
139 = 65 bases. The total number of intervals between sites in which we want to
keep track of recombinations is then 406 + 137 + 65 = 608 bases. The total rate of
coalescence and recombination is then 0.000003 + 0.00000608. In general, on each
haplotype, there will be a leftmost site that is ancestral to one in our sample, and
a rightmost site that is, and we want to pay attention to recombinations between
these, even ones in interior regions that may happen not to be ancestral to sites
in our sample. Proceeding backward in this way, we can simulate the genealogy
of a recombining coalescent. We need only go far enough back that every site has
coalesced- before that, all coalescences of lineages are irrelevant.
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An alternative way of simulating a recombining coalescent is to draw an ordi­
nary coalescent for the first site. If it has total branch length (say) 107, then we can
ask how far down the chromosome we have to go to encounter a recombination
somewhere on it. We might find that with the rate r = 10-8 we would draw (say)
138.6. This would put the recombination between bases 138 and 139. Choosing a
random place on the tree for the recombination, ,ve break the branch there, erase
the branch below it down to the next coalescence, and then simulate the ancestry
below the place where the recombination occurred. In any time interval in which
there are R. other lineages in existence, the chance of coalescing with each is 1/(2N)
per unit time, for a total rate of coalescence of R./(2N). Once the lineage reattaches
by coalescence, we recompute the length of the tree and again draw how far along
the chromosome the next recombination is. This continues until the last base is
passed. This method of simulating a series of coalescent trees, each applying to a
range of bases, was introduced by Wiuf and Hein (1999).

Coalescents and natural selection
In all the discussion so far, it has been assumed that all genetic variation is neutral,
so that each copy of a locus in the population has an equal chance of surviving.
When that is not true, it is hard to see what the genealogy of a sample will be.
If the sample contains 12 copies of an advantageous allele, and eight copies of a
less favored one, it is likely that the advantageous allele has been increasing in
frequency. Its copies may all be descended from a single mutation, and if so, they
may all have a common ancestor more recently than do the other samples.

If we have one site in a locus that is under selection, and it has two alleles, we
can imagine that we knew the gene frequencies of the alleles at all times in the past.
The gene copies in the population fall into two classes according to whether they
have allele A 1 or A2 . We can consider the two classes of copies as if they were sep­
arate subpopulations. The A] copies coalesce within their subpopulation, whose
size is determined by the past gene frequencies of AI, and similarly for A 2 . Kaplan,
Darden, and Hudson (1988) discussed this process. They considered particularly
the case in which strong balancing selection keeps the two alleles at constant gene
frequencies. In that case, it is easy to generate the genealogy, as the mathematics
is the same as with two populations connected by migration. Mutation of the A]
and A2 alleles to each other moves copies between the two subpopulations and
thus plays the role of migration. Hudson and Kaplan (1988) extended the method
to allow for recombination between neutral sites and the selected site, and Kaplan,
Hudson, and Iizuka (1991) extended it further to allow for geographic structure,
with the possibility of different equilibrium gene frequencies in each population.
Kaplan, Hudson, and Langley (1989) used a similar approach to approximate the
case where favorable mutations linked to a locus affect the genealogy. The result­
ing rapid changes in gene frequency of alleles are called "hitchhiking," "selective
sweeps," or "periodic selection."
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Figure 26.9: An example of an ancestral selection graph, with two se­
lection events (left). In the center, the lineages that are used if the an­
cestral allele at the selected site is A1 are shown in bold. On the right,
those that are used if the ancestral allele is A2 are shown in bold. Mu­
tational events are shown as circles, and lineages where the allele is A2

are dashed.

Neuhauser and Krone's method
Until recently, there were no good ways of drawing samples from the coalescent
with moderately strong natural selection. The best one could do was simulate the
ancestry of the whole population and then retrospectively extract the coalescent
from a detailed population genealogy. This is so difficult that it was almost never
done. Neuhauser and Krone (1997; Krone and euhauser, 1997) have made a
major breakthrough that enables the simulation of coalescents with selection.

I will not attempt to derive their method, but will simply show the algorithm.
Suppose we have two alleles at the selected site, as before A1 and A 2 . The fitnesses
of the three diploid genotypes will be taken to be 1 + 28 : 1+ 8 : 1, and the popula­
tion size to be N. There will be a mutation rate fJ from A1 to A2 and mutations at
rate v in the opposite direction. As with the Kingman coalescent, their process is a
diffusion approximation. We go backward in time from our sample, with two sorts
of events happening: coalescence and a special selection event. The special selec­
tion event happens with rate 4N8 on each lineage. When such an event happens,
there is a fork in the tree, with two lineages below that point. One is designated as
the incoming lineage. This diagram is called the ancestral selection graph.

Figure 26.9 shows such lineages, with the incoming lineages ending in arrow­
heads. To simulate a sample, we start from the root, and choose its state from
the equilibrium distribution under this mutation-selection model. We assign the
state of the selected locus at the base of the tree (either A1 or A2 ). Then we work
our way up, putting in mutations appropriately. Note that the unequal rates of
mutation in the two alleles may make the locations of the mutations dependent
on which allele is present. As the alleles evolve up the lineages, at the selection
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events there is a simple rule that decides which arrow leading into the event is the
real lineage. If the incoming arrow carries an A1 , it prevails; otherwise, it does
not. The middle and right parts of Figure 26.9 show this process with two selec­
tion events each. The two parts correspond to different choices of ancestral allele.
The bold lines (either solid or dashed) in the figure indicate the lineages that end
up supplying genetic material to the sample.

The ancestral selection graph differs from the ordinary coalescent in that the
shape of the graph depends on the alleles at one of the sites. In the usual coales­
cent we can determine the shape before filling in the alleles. The ancestral selection
graph will reflect some of the processes that we might hope to see-that when an
.-1 1 lineage is present among A 2 lineages, it will tend to be more successful. The
ancestral selection graph is derived from the diffusion approximation to gene fre­
quency change. Any two finite-population models that have the same diffusion
approximation will have the same ancestral selection process and will be indistin­
guishable when using them for analysis. Neuhauser (1999) has extended the anal­
~'sis to models in which there is heterozygote advantage or frequency-dependent
selection, using ancestral selection graphs with two incoming lineages in each se­
lection event. Slade (2001a, b) has developed methods for simulating population
samples using the ancestral selection graph,

We will see in the next chapter that the ancestral selection graph does not fit
easily into some methods of likelihood inference for population samples. Never­
theless it is a remarkable advance in our ability to treat natural selection by coales­
cent methods.



Chapter 27

Likelihood calculations on
coalescents

How can we make statistical inferences using coalescents? A basic point is that - =
are not much interested in the coalescent genealogy itself. Every locus in an orgc.:-­
ism may have a different coalescent tree, so that the individual trees are of Ii:- =
interest. Knowing that, at the particular locus we are investigating, Freddie Fie.':
Mouse is the closest relative in our sample to Frieda Field Mouse is not going to =-'"
a very riveting fact, particularly given that the next locus may give a comple e:
different result. In addition, our estimates of each coalescent will usually be \"e::­
poor, as few sites may be varying in that region of the genome.

The individual genealogies are drawn from a population of genealogies, who.:=
parameters reflect population sizes, growth rates, migration rates, and recomb· ~­

tion fractions; these parameters are of great interest to population biologists. \,"­
would like to estimate these and make statements about confidence intervals.

The basic equation
The straightforward way to estimate the parameters is to compute their likeli­
hoods, averaging over the uncertainty in the genealogy. In principle, this is ea;,:
(but only in principle). A simple application of conditional probabilities sho\ ""
that if we consider all possible genealogies, denoting a typical one of them by C"
the likelihood given data D for a parameter a is (Felsenstein, 1988b)

L = 2:= Prob(G*la) Prob(DIG*,p,)
G*

(27.:

The parameter a could be a single number, or a collection of numbers. The im­
portant requirement is that they be the parameters that control the distribution 0:

470
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genealogies, G*. Note that the G* are not simply the tree topologies; they include
the branch lengths.

In equation 27.1 the coalescent parameters n are separated from the mutational
parameter ti. The assumption is that the genetic data D is produced by neutral
mutation acting along a genealogy G*. This is a somewhat restrictive assumption:
For example, it rules out natural selection as the cause of any of the variation in the
data, as the presence of the selection would affect G* , by affecting the probabilities
of birth and death.

The branch lengths in G* are most naturally scaled in generations. However,
when G* is inferred from genetic data D, it is usual for the branch lengths to have
units like neutral mutations per site. In that case, the parameter p, disappears
from the second term on the right side of equation 27.1: The probability of the
data can be computed directly from the rescaled genealogy, which we will call G.
For example, knowing that a branch length is 0.014 tells us that the probability of
change of a given site on that branch is (nearly) 0.014, differing from it only by
considerations of multiple change at the same site.

The mutational parameters disappear from the right term when we change
from G* to G, but they reappear in the other term. Note that Prob (G* In) is simply
the density function of the coalescent, the function which we computed for several
different cases in the previous chapter. In those computations, the branch lengths
t were scaled in generations. They occur in the formulas not by themselves, but
multiplied by the strengths of evolutionary forces. In equation 26.13, for example,
the i-th coalescence interval t i appears only in the products kji (k ji - 1)tij (4Nj )
and kiTnjeti. When we change the time scales to make them reflect mutations per
site rather than generations, these quantities become instead kji(k ji -1)ti/(4Nj !L)
and ki(mje! p,). In addition, terms that were once 1j(2N) and m become 1j(2Np,)
and Tnj p,. We saw this in equation 26.14.

The upshot is that we cannot actually estimate parameters such as N, p" and
mje by themselves. They instead appear in the formulas only in the compound pa­
rameters 4Nj p, or mje!p,. So doubling the m's and p, and at the same time halving
the N's, does not change these compound parameters and does not change the
likelihood at all. Similar considerations apply for cases with population growth
(one gets 4Ng) or recombination (4Nr). If we call the vector of these compound

arameters {3, we can rewrite equation 27.1 as:

L = L Prob (GI{3) Prob (DIG) (27.2)
G

This is the form in which we will use the formula. We will replace the products
and ratios of parameters such as 4Ne jl, each by a single quantity (in that case, 8).

Using accurate genealogies-a reverie
"Ve might wonder how to make use of this formula in the simple case in which
: ere are so many molecular sites that the genealogy G can be estimated with total
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precision. I have addressed the simplest case (Felsenstein, 1992a). In this case, al
of the likelihood is contributed by one gene tree G, with Prob (DIG) being zero
for all other trees. Then we can remove the summation from equation 27.2. If we
let Prob (DIG) be 1 for G and 0 for all others, equation 27.2 reduces to

L = Prob (GI,6) (27.3

In the simplest case, of a single isolated population of constant size, the likelihoo
is the product of n - 1 terms, one for each coalescence event. If we express branch
lengths in terms of expected neutral mutations per site, the product of terms for
n - 1, n - 2, ... , 2 lineages gives the probability density

Prob (G I8) = IT (k(k~ 1)) exp ( -k(k~ I)Uk) dU2 dU3' .. dUn (27.-±
k=2

where Uk is the interval between the coalescence event that produces k lineage:;
and the one that produces k - 1 lineages. This can be rewritten by grouping to­
gether the exponentials and summing their exponents, to get

. ( 10) - n!(n - I)! , (_~ k(k - l)Uk) d d d (27.:;
Prob G 'CJ - (8)n-l exp ~ 8 U2 U3'" Un -

The log-likelihood is the logarithm of the density:

InL In Prob (GI8)

In(n!) + 1n((n - I)!) - (n - 1) 1n(8) - t k(kel)'U k

k=2

(27.6

To estimate 8 we simply take the derivative of equation 27.6 with respect to e.
equate it to zero, and solve for 8. The result is (Felsenstein, 1992a)

d1nL (n-l) 1 ~
d 8 = - 8 + (8)2 L k(k - l)Uk

k=2
(27./

When the right side of equation 27.7 is equated to zero, the resulting estimate is

8

n
L k(k - l)uk
k=2

n-l
(27.

It is also not hard to show, from the variances of the Uk, that the variance of this is
(8? I(n - I), so that its coefficient of variation is II vn-=1.
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Thus if we could only observe the coalescent tree with total accuracy, the ex­
pression for the maximum likelihood estimate of G would be quite simple. Eyen
then, there would be a substantial uncertainty in the estimate, as reflected by the
coefficient of variation, which even for 50 sequences would be as large as 0.1-1,2 .
Note that this means that part of the variation comes from the random variation
in the coalescent tree itself, not just from the mutational variability that makes it
hard for us to infer it.

Two random sampling methods
To cope with the uncertainty about what the coalescent tree actually is, two groups
have proposed Monte Carlo integration methods. The objective is to do the inte­
grals in equation 27.2 by drawing a large random sample of trees. This approach,
obtaining the approximate value of an integral by evaluating the function at a large
random sample of points, is a standard one. It was first intensively used in design­
ing the first hydrogen bombs; now it is being put to a more constructive use. In
this case there is not just one integral but a very large number of them.

Griffiths and Tavare (1994a, b, c) were the first to use this approach to evaluate
likelihoods involving coalescents [see also Griffiths (1989)]. I will start, however,
with an approach from my own group (Kuhner, Yamato, and Felsenstein, 1995),
which is easier to describe. Then I will explain the work of Griffiths and Tavare in
the same terms.

A Metropolis-Hastings method
Kuhner, Yamato, and Felsenstein (1995) described a method of wandering through
tree space that achieves a random sample from a relevant distribution. Suppose
that we have chosen a value of G = 4Ne J..L that seems in the vicinity of the proper
estimate. Call this value Go. Imagine drawing a large random sample of trees from
a distribution which is proportional to the quantity Prob (GIGo) Prob (DIG). We
will show below that, given such a random sample, we can estimate the likelihood
L(G) for any nearby value of G.

To achieve this sample, we use the Metropolis algorithm, which was previ-
usly described in Chapter 18. This works by taking an initial tree, altering it

somehow, and then either accepting or rejecting the alteration. Metropolis et al.
(1953) showed how to do the acceptance and rejection to achieve the proper distri­
bution. Hastings (1970) gave the modification that is needed to cope with biased

istributions of proposed changes. Their methods are general for a wide variety
f problems, not just likelihoods for coalescents. They form the basis of the widely

used optimization method called simulated annealing, though we will not be using
rhat method.

The Metropolis-Hastings method considers a tree G and a proposed change to a
:Tee G'. Suppose that the probability of G' being proposed in this case is Q(G'IG),
~ut the probability of G being proposed if the tree is initially G' is Q(GIG'). The
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Figure 27.1: The Metropolis-Hastings sampler wandering in a space of
coalescent trees, represented here as two-dimensional.

method decides whether to accept a tree by drawing a uniformly distributed ran­
dom variable from the interval [0,1] and accepting G' if that random variable R
satisfies

(27.9)
R < Q(GIG') Prob (G'IGo) Prob (DIG')

Q(G'IG) Prob (GIGo) Prob (DIG)

It thus helps us accept a tree if it has a higher data likelihood Prob (DIG'), or if it
has a higher probability Prob (G'IGo) under the Kingman prior. It also helps us
accept it if it is more likely that G will be proposed when we start at G' than vice
versa. This latter helps counteract the biases of the proposal method.

Note, however, that the method may not always accept a tree if it improves
the expression Prob (GIGo) Prob (DIG), if the Q's differ enough. Most notice­
ably, a tree G' will sometimes be accepted even though it lowers the expression
Prob (GIGo) Prob (DIG). Thus the method will tend to wander towards "peaks"

in the desired distribution, but will continually also wander down off of those
peaks and also explore valleys. It can be proven that if this Metropolis-Hastings
sampler is run long enough, it will explore every part of the space of trees in pro­
portion to its contribution to the integral 27.2. Figure 27.1 shows a cartoon of this
process, in an imaginary case where the tree space is only two-dimensional. It is
actually much more complex than that.

Kuhner, Yamato, and Felsenstein (1995) used this sampler to estimate G. They
used a method of locally rearranging trees, resulting in a slightly different tree
topology or locally different branch lengths, to propose new trees G'. The two
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key problems with this approach are: (1) whether the sampler can be run long
enough to obtain a reasonably representative sample, and (2) whether we can use
the sample to calculate likelihoods for values of 8 other than 8 0 ,

The latter problem is solved by the "importance sampling" formula. Suppose
that we are computing the average of a quantity g(x) over a distribution whose
density is f(x) dx. We could, of course, do this by drawing points at random from
the distribution f(x) dx and averaging g(x) for those points. But suppose that we
instead draw points from a somewhat different distribution, fo(x) dx. Since

lEi [g(x)] J f(x) g(x) dx

J t (.) i(x) (.) d .
JO X fo(x) g x x

lE [ f(x) (.)]io fo(x)g x

(27.10)

it follows that we can also compute it by drawing points from the distribution
whose density is fo (:r) d:r and averaging the quantity [f(x) I fo (:r) ]g(:r) across those
points.

In the present case we are trying to integrate the quantity f (:D)
Prob(GI8) Prob (DIG). We set g(:r) to 1 and fo(x) is Prob (GI80 ) Prob (DIG). The
sampler is drawing points from fo, and we need to average over those points the
ratio f IIo. The term Prob (DIG) cancels out, and we end up with

L(8) 1 t Prob (GI8)
L(80 ) = ;. Prob (GI80 )

·,=1

(27.11)

In theory the sample of points has to be infinitely large, but in practice the sam­
ple G1 . G2 , .... Gn can be sufficiently large when it has a few hundred points, one
drawn every 100 proposed trees. However, the formula in equation 27.11 is then
valid only for values of 8 that were not too far from 8 0 , Kuhner, Yamato, and
Felsenstein coped with that limitation by running a Metropolis-Hastings sampler
for a modest number of steps, computing L(8)1L(8o), and maximizing it with
respect to 8. This new value of 8 then replaced the the previous 8 0 and the pro­
cess continued. By running 10 of these "short chains" and two long ones, Kuhner,
Yamato, and Felsenstein were able to use equation 27.11 to find the optimal value
of 8.

This approach to inferring parameters such as 8 is computationally tedious,
but is also straightforward and does not depend critically on the details of the
model of evolution. It can be done for any situation in which we can calculate
the probability Prob (DIG) of the data on the tree, and in which we can also cal­
culate the coalescent probability Prob (GIj3). Figure 27.2 shows the result of a run
with 10 short chains and two long chains of the Metropolis-Hastings sampler on
a simulated data set if we assume an isolated population of constant size, with 50
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Figure 27.2: A typical likelihood curve inferred for a simulated data set,
using the Metropolis-Hastings sampler. The true e is 0.01, the estimate
from 50 sequences of 500 sites each is in this case 0.00650776.

sequences each of 500 sites. The true value of e is 0.01. In this case the estimate
turns out to be 0.00650776.

Griffiths and Tavare's method
The Metropolis-Hastings method has an unknown computational burden, because
we are not sure how long to run the Markov chain to collect a given number of
reasonably independent samples from the distribution. Griffiths and Tavare (Grif­
fiths, 1989; Griffiths and Tavare, 1994a, b, c) invented a method that is considerably
faster, especially as it samples independent points. Their method was really the
first application of Monte Carlo integration to coalescent likelihoods; we have de­
layed explaining it because it is easier to explain once the other method is under­
stood. The objective of their method is the same as that of the Metropolis-Hastings
method: the computation of the likelihood curve. The models of character evolu-
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tion and of coalescence are also the same. Thus there is no controversy over this
objective.

Although their papers explain the method differently from they way in which
we will explain it here, we can think of their method as computing the integral
in equation 27.2. This justification for their method was introduced by us (Felsen­
stein et al., 1999). There is one important difference between their method and
the previous MCMC method. Instead of the genealogy G/ which is a tree with
a topology and branching times, they use (in effect) a different structure, which
shows the topology and the mutational events, but does not have times of branch­
ing. Let us call this history of events H. In computing a quantity like Prob (DIG),
we needed node times so as to allow us to compute the probabilities of different
numbers of mutations and to average over them. If the mutational events (and the
coalescences) are specified, then the times become irrelevant. For example, we can
calculate the probability of arriving at sequence 82 given a start at sequence 81 if
we know the time separating them, or we can calculate it if we know exactly how
many mutational events occur between them, and at exactly which sites.

The basic equation 27.2 then becomes, trivially,

L = L Prob (HI,6) Prob (DIH)
H

(27.12)

However, the calculation of the terms in equation 27.2 is now different and, in
fact, much easier. Assume that we have described the history H of events by
specifying not only the order of coalescent events, and which lineages coalesce, but
that this ordered sequence of events also specifies the precise order of mutational
events, the site at which each one occurs, and the result of each mutation. Once
this sequence of events is specified, it either leads to the observed data set D, or it
does not. If it does, the probability Prob (DIH) = 1. If not, this probability is zero.
Thus the sum in equation 27.12 reduces to a sum of Prob (HI,6) over all those H's
that lead to the observed data. There are a vast number of these H's.

Each H is specified as a sequence of events, in order. Figure 27.3 shows one
sequence of events leading to a set of four molecular sequences. Note that the
earliest event is that the sequence at the root of the tree is one particular sequence
(CATTAACGTCG). Kingman was able to calculate the probability of a genealogy G
as a product of terms, one for each coalescence interval. Griffiths and Tavare are
able to calculate the probability of one of their histories H as a product of terms,
one for each event. Starting at the present and going back in timet there are (given
the observed sequences) in Figure 27.3 two sequences that are identical, sequences
1 and 3. These might coalesce. The probability of this particular coalescence is
1/ (2Ne ) per generation. Note that although there are five other pairs of lineages
that might have coalesced, the observed sequences rule out the most recent event
involving the coalescence of any but lineages 1 and 3.

For simplicity, let us assume that the model of mutation is the completely sym­
metric Jukes-Cantor model. Then the probability of a mutation is jJ per site per
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Figure 27.3: A sequence of events, leading to four molecular sequences.

generation. Note that we are computing the probability unconditioned on the
present data. All four of the sequences might have mutated. There being 11 loci in
four lineages in this example, each of which might mutate with rate J.L per gen­
eration, the total rate of events that might have been the most recent event i
6/(2Ne ) + 44J.L. Thus the probability of the event that did happen, the coalescence,
is

(27.13)
1

6 +228

1
2Nc

(2~le + 44J.L)

The immediately preceding event is a mutation in site 2 from A to C. This has
probability p/3 per generation of occurring. There are at that point three lineages,
so that there are three pairs of lineages. Thus the probability of coalescence is
3/(2Ne ). Therefore, the probability of this event, given that some event occurs, is

g
3 8

18 + 998
(27.14)
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The successive events, as we work backward down the tree, are in fact indepen­
dent. We can continue in this fashion, working out the probability of each of the
events in the history H until we get back to the bottom of the tree. We take the
product of the probabilities. Then we need to multiply this product by the proba­
bility that the initial sequence is CATTAACGTCG. Under the Jukes-Cantor model this
is simply 1/411 . The result is that the probability of the event history His

( 2k )( 1 )( ~ )
2~e + 4 x llJL 2t

e
+ 3 x l1;L 2t

e
+ 3 x llJL

x (2k+~x l1/t) (2k+~x llJL) (4~1) (27.15)

(6 +\28) Cs +8998 ) Cs +8998 ) (6 +2338 ) C+1118 ) (4: 1 )

If we could enumerate all possible histories H, we could compute these expres­
sions for each, and add them to obtain the likelihood in equation 27.12. There are
infinitely many of them in the DNA sequence case, which is our example. Nev­
ertheless, such a summation is possible in other (infinite-sites) mutation models,
for very small sample sizes and very small numbers of sites. To cope with the size
of the summation in all other cases, Griffiths and Tavare (1994a, b, c) introduced
a technique of sampling from the set of possible histories. As with genealogies,
the problem is that most of the possible histories contribute vanishingly small
amounts to the likelihood. Griffith and Tavare therefore used importance sam­
pling to concentrate the sampling on the histories of interest. They used the prob­
abilities of occurrence of events at each stage, concentrating the sampling propor­
tional to those probabilities. The events they allow are those that are compatible
with the data. For example, in the reconstruction of the history in Figure 27.3 the
most recent event, given the data, could have been a coalescence of lineages 1 and
3 or anyone of 44 x 3 different mutational events. All possible mutational events
could be compatible with the data, because the finite-sites DNA model allows any
change to be reversed later. The coalescence has probability 1/(2Ne ), and each
of the mutations probability /t/3. Griffiths and Tavare sample from among these
e\'ents in proportion to these numbers. Thus, the probability that the coalescence
is chosen (as it was to make the history in Figure 27.3) is

(27.16)
2

2 +448

1
2l\Tc

(2j~, + 44JL)

-.,-hile for each of the possible mutations, the probability of sampling it is (by a
::imilar argument)

g
3 8

G+ 1328
(27.17)
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This sampling is continued until a complete history is sampled. The probability
that it contributes can then be computed by taking the product of the samplinf
probabilities, as in equation 27.15.

However, their sampling is concentrated on some histories, and therefore \\-e
need a correction term for this importance sampling. The method that Griffith5
and Tavan~use is logically equivalent to the importance sampling formula. In thE
case we have a series of stages of sampling, in the 'ith of which there are choice~

dictated by terms whose probabilities are proportional to 1/(2Ne ), fJ,/3, etc. Let ~
call these terms, in the jth choice for the 'ith possible history, aijl(8), aij2(8),
aijn;j (8). Let the probability for the one that actually occurs at stage j of history
be bij (8). The probability of our taking this choice is

(27.1

The probability that we will choose some particular history, Hi, is simply the prod­
uct of this probability over all the choices j = 1, ... , ni that it entails. So

(27.19

The summations and products in equation 27.19 are as long as they need to be in
each history, and this issue need not concern us.

Thus we have replaced sampling from all possible H's by sampling from a
more restricted distribution. It only draws histories H that are compatible with
the data, so that Prob (DIH) is always 1. The discrete probability distributio
that it draws from has probability given by equation 27.19 of drawing a particular
history Hi.

Notice that the basic equation that underlies the method of Griffiths and Tavare
(1994a, b, c) is equation 27.12. This can be thought of as the weighted sum, over all
possible event histories, of Prob (DIH). The weight is the probability of that event
history, given (3. Let us call this prior distribution f and refer to it as the Griffith5
prior. It is like the Kingman prior, but differs in that the events it describes include
coalescences and mutations but do not contain any times for the coalescences. The
Kingman prior is a distribution on possible genealogies that describe no mutations
but do specify the times of the coalescences.

The likelihood we seek to compute is simply the expectation of Prob (DIH
under the Griffiths prior. The Griffiths-Tavare sampling procedure does not sam­
ple from the Griffiths prior (1) but concentrates the sampling on those histories
that are compatible with the data. To correct for this different distribution (which
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we call g), we need to make an importance sampling correction. The importance
sampling correction for an expectation is, as we saw in equation 27.10,

(27.20)

(27.21)

where we want to know the expectation of the quantity Y over samples from a dis­
tribution whose density is I, but we are actually drawing from one whose density
is o9.

The likelihood can then be calculated from this importance sampling formula
(27.10),

£(8) = Ef [Prob (DIH)] = E g [f Prob (DIH)]

but the trees drawn from distribution 09 always have Prob (DIH) = 1, so we can
drop that term from the expression. Substituting expression 27.19 for the proba­
bility of history Hi under distributions f and 9, we get

(27.22)

This expectation is approximated by sampling many trees and averaging this
quantity.

I have not used the notation that Griffiths and Tavare did, which is very pre­
cise but not transparent. Mine is rougher but easier to discuss. I also have pre­
sented their method as one of sampling histories, to make its relationship to the
Metropolis-Hastings sampling method clearer. Griffiths and Tavare view their
method differently, as a recursive method for computing the exact probability of a
data set, with the sampling method simply a way of choosing paths through the
recursion. The two views seem very different, but do not lead to different methods
or formulas.

The remarkable thing about the Griffiths-Tavare sampling method is that the
histories H that it samples are independent. We need not worry about how long it
will take the process to wander to another part of the tree space, as we must with
the Metropolis-Hastings sampler. Each sample is an independent draw from the
distribution. In addition, the process is much faster than the Metropolis-Hastings
sampler. There are no terms Prob (DIG) to compute. In the Metropolis-Hastings
sampler, we must compute that term for each proposed tree. That term is the
likelihood for the tree, which is much slower to compute than the Kingman prior
Frob (G 18). In practice, much of the effort can be avoided by reusing parts of this
tree likelihood that are shared between successive trees. But the Griffiths-Tavare
sampling avoids the data likelihood calculation altogether, achieving much faster
speeds.
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It would seem to be so much more efficient that there would be no sense USlllc
the Metropolis-Hastings sampler at all. But there is one limitation of Griffiths an .
Tavare's sampling that is not shared by the Metropolis-Hastings sampler. Note
that it does not sample from the posterior distribution Prob (H[,B) Prob (D[H .
In the case of nucleotide sequences, the Griffiths-Tavare sampler can waste larg
amounts of time on histories H that make little contribution to this distribution.
Griffiths and Tavare (1994c) have pointed out this problem. They noted that fur­
ther developments may be necessary to concentrate their sampler on the mor
productive histories.

Stephens and Donnelly (2000) have modified the importance samplmg terms
of the Griffiths-Tavare method to concentrate the sampllllg more on the relevan
histories. Their method, which tries to predispose the choice of mutational event:;
so as to converge the sequences more, achieves a substantial speedup. Slatkm
(2002) has described another method of independent samplmg, not based directh'
on the Griffiths-Tavare method, which could compete with these methods.

Bayesian methods
Although both of the sampling approaches have been described as methods for
computing likelihood curves, the Metropolis-Hastings approach can also be used
for Bayesian inference. If we have a prior density for the parameters, Prob (8 ,
the Metropolis-Hastings method can simply sample from a density proportional
to the posterior, one proportional to Prob (8) Prob (G [8) Prob (D IG). The sam­
pling will then wander through not only the genealogy space (the values of G),
but also the parameter space (the values of 8). The acceptance ratio will then ha\'e
an extra term (as we saw in equation 18.8 when Bayesian MCMC was mtroduced).
Bayesian MCMC methods allow changes in either G or 8, or in both. One reason­
able strategy is to change G some of the time and the rest of the tiIne change 8. In
the former case, the term Prob (8) cancels out of the acceptance ratio; in the lat­
ter case, Prob (D IG) cancels out The use of Bayesian MCMC m the coalescent
framework has been pioneered by Wilson and Baldmg (1998) and by Beaumont
(1999).

MCMC for a variety of coalescent models
There has developed a substantial literature using sampling methods to infer pa­
rameters in a variety of models in evolutionary genetics. Although these methods
are not yet widely used, they will be. There is every reason to expect them to be­
come the standard methods of inference in evolutionary genetics. Only if some
progress is unexpectedly made in finding formulas for the integrals over genealo­
gies would we be able to supersede the sampling approaches. Some of the models
used are:

• Models with population growth. The paper of Griffiths and Tavare (1994a)
allowed exponential growth, estimating the scaled rate of growth as well
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as 4Ne J1. Kuhner, Yamato, and Felsenstein (1998) used the same model of
growth with their Metropolis-Hastings approach. (Another such approach
is that of Beaumont, 1999.) They noted that the estimation of growth rate
is strongly biased toward high growth rate, though with a likelihood curve
usually broad enough not to exclude the actual growth rate.

• Models with migration. Beerli and Felsenstein (1999, 2001) applied a
Metropolis-Hastings sampler to inference of population sizes and migration
rates (each scaled by mutation rates) in two-population and in n-population
models. The corresponding method using the Griffiths-Tavare sampler was
developed by Bahlo and Griffiths (2000).

• Models with recombination. The models so far have been for nomecombin­
ing loci. As we saw in the previous chapter, recombination within the region
leads to a genealogy with loops in it (or more properly, a collection of dif­
ferent treelike genealogies, differing for different sets of sites). Griffiths and
Marjoram (1997) have used the Griffiths-Tavare sampler to compute likeli­
hoods with recombination. The Metropolis-Hastings approach to models
with recombination is given by Kuhner, Yamato, and Felsenstein (2000).

• Models with diploidy. The preceding models assumed that haplotypes were
collected. When the genotypes are diploid, there is the problem of resolv­
ing the haplotypes. One cannot actually resolve them-even a maximum
likelihood inference of the haplotypes is not correct. What is needed is a
way to sum over all possible haplotype resolutions. This can be done with
MCMC methods, if we add an additional class of events that are resolutions
of the diploid genotypes into haplotypes. We can wander through the space
of these resolutions as we wander through the space of trees. In fact, one
must move through both at the same time, as a change of a haplotype reso­
lution raises the need for the placement of the haplotype on the genealogical
tree to change as well. Analysis of diploid genotypes by these methods has
been investigated by Kuhner and Felsenstein (2000). With diploidy and re­
combination dealt with, likelihood approaches are becoming available that
will enable the estimation of population parameters and genetic parameters
from nuclear genes, which will add greatly to the information available from
mitochondrial and Y-chromosome sequences.

• Models with SNPs. We have seen that likelihoods can be computed for
phylogenies for molecular sequences, restriction sites, and microsatellites.
SNP (single nucleotide polymorphisms) will playa large role as well within
species. These can be analyzed by using ascertainment corrections similar to
those we discussed in Chapter 15 for restriction sites. The ascertainment cor­
rections needed for SNPs have been outlined by Nielsen (2000) and Kuhner
et al. (2000).
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• Inference of ages of divergence or mutation. There has been much recer::
concern with inferring the age of mutations in humans, and the time of the­
most recent common ancestor of a sample. Relevant papers include tho5t?
of Tavare et al. (1997), Slatkin and Rannala (1997,2000), Griffiths and Tavar.::­
(1999), Stephens (2000), and Nielsen (2002). The time of coalescence and the­
age of an allele are not parameters of the model. Although normally it woul-'
make little sense to infer them, they can provide clues as to when the mode:
may be violated, if their values are outside an expected range.

Models involving two or more species are covered in the next chapter. I will not tn­
to cover this rapidly expanding area more closely here. Sampling approaches wil.:
have a major impact on genomics, as the work on recombination leads natural1­
to sampling-based likelihood analysis of linkage disequilibrium mapping. For aF­
proximate approaches see the papers of Graham and Thompson (1998), Rannala
and Reeve (2001), Garner and Slatkin (2002), Larribe, Lessard, and Schork (200_
and Morris, Whittaker, and Balding (2002). Inference methods involving natura:
selection will also appear in the near future.

Single-tree methods
I have concentrated here on sampling methods, as these compute the fulllikeli­
hood (although approximately). However they are computationally tedious and
can be difficult to understand. We have seen that if we could somehow know the
coalescent tree exactly, we could base inference on it and avoid many of these com­
plications. Given the importance of phylogeny inference above the species leyel
it is tempting to infer the tree, treat that inference as if it were an observation, an .
then proceed using that single tree.

Avise (1989; see also Avise et al., 1987) have taken this approach, though with­
out a detailed statistical methodology. A more statistical approach was taken b,­
Templeton (1998), using the nested clade analysis tree reconstruction methods in­
troduced earlier by Templeton et al. (1988). Although well-defined enough to be
implemented by computer programs (Clement, Posada, Crandall, 2000; Posada.
Crandall, and Templeton, 2000), these methods do not attempt to take into ac­
count the uncertainty of the estimate of the tree, and there has been little study or
their statistical properties. A notable exception is the paper by Knowles and Mad­
dison (2002). Although the need to use manual steps in the analysis limited the
number of replications they could make, they found that the single-tree approach
was problematic.

Slatkin and Maddison's method
Slatkin and Maddison (1989) used a single-tree method to infer rates of migration,
using as their statistic the parsimony count of migration events on a coalescent tree
that was assumed correct. A notable feature of their work was a simulation-based
correction for the biases inherent in this method.
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Fu's method
Another statistically-based single-tree method is due to Yun-Xin Fu (1994). His is
also a phylogenetic method, but needs only one tree. In effect, it estimates the best
tree it can for the data, then makes a correction for the uncertainty of the tree. Fu
obtained the correction by simulation. One need only use his formula to side-step
the messy sampling of alternative trees. The accuracy of his method has not yet
been carefully compared to the tree-sampling methods of Kuhner, Yamato, and
Felsenstein or of Griffiths and Tavan~. When it is, one suspects that it will do well
when the tree is relatively well-known (as in the case of a large number of sites but
a modest number of samples) but will perform less well for fewer sites or larger
population samples.

Summary-statistic methods
For these problems, even before single-tree methods were developed, methods
that summarized the statistical information in single statistics were widely used.
The most famous is Sewall Wright's FST statistic for geographic differentiation of
populations, which has achieved a near-cult status. One of the best-investigated
statistically is the number of segregating sites.

Watterson's method
The simplest method of all is that of Watterson (1975). He derived a simple for­
mula for the estimation of e (mutation rate per locus) for an infinite-sites model.
That model allows mutation to occur only once per site in a population, so that
there is never any ambiguity as to how many mutations have occurred. Watter­
son noted that in a coalescence interval where k lineages are about to coalesce to
give k - 1, the expected number of sites that mutate in a locus of L sites will be
Lf..Lk times the expected coalescence time, where LfJ, is the mutation rate per locus.
In Watterson's model, L is assumed to be very large, so that mutations never oc­
cur more than once per site. The coalescence time is 4Ne j[k(k - 1)], so that the
expected number of mutants during the coalescence interval is 4NeLf..Lj (k - 1) or
() j (k ~ 1). Summing over all n - 1 coalescence intervals, we get the expected num­
ber of segregating sites, lE(S),

n n-1

lE[S] = e L -k1 = B L ~
-1 k

k=2 k=l

(27.23)

Equating the observed S to its expectation and solving for B, we get an estimator
f B:

B =
S

n-l

Ltc
k=l

(27.24)
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Using equation 27.23 we can easily show that this estimator is unbiased:

IE [eJ = IE [-S-1 = JE[S] = e~~: i = e
n-l n-l n-l

'Li 'Li 'Li
k=l k=l k=l

(27.25

The variance of e is also easily computed by considering the variances of the co­
alescence times and the means of the variances of the numbers of mutants per
coalescence. In this way one can compute Watterson's (1975) variance formula.

When it is applied to sequences of finite length, Watterson's estimator willlm­
derestimate e, owing to the occurrence of multiple mutations at some sites. I haw
argued (Felsenstein, 1992a) that Watterson's estimator will be inefficient when the
number of sites is large and the number of samples is also large. Fu and Li (1993
have used conservative approximations to argue that Watterson's estimator, al­
though less efficient than maximum likelihood, is not as bad as I implied, once fi­
nite numbers of sites are allowed. Simulation studies (Felsenstein, in prep.) shm\'
that Watterson's estimator, although not perfectly efficient, is remarkably good. It
remains to be seen whether estimates based on it can be extended to more complex
situations, as the tree-sampling methods can.

Other summary-statistic methods
Examination of summary-statistic methods carries us beyond the scope of this
book, as they do not even attempt to use coalescent trees. evertheless, we should
note some of the statistically better-justified methods using summary statistics.
Wakeley (1998) extended Watterson's estimator to a symmetric migration model.
Weiss and von Haeseler (1998) used a simulation technique to compute likelihoods
for scaled population size and growth rate, when the data were represented only
by the mean pairwise difference and the number of segregating sites. Beaumont,
Zhang, and Balding (2002) have taken a similar approach using a Bayesian frame­
work.

Testing for recombination
There is an extensive literature on methods testing whether a set of sequences
seems to have undergone recombination and reconstructing where the recombina­
tions may have been. Many of the approaches use single-tree or summary-statistic
approaches.

Sneath, Sackin, and Ambler (1975) suggested using compatibility matrices
among sites to detect groups of adjacent compatible sites; this was implemented
by Jakobsen, Wilson, and Easteal (1997; Jakobsen and Easteal, 1996). Similarly,
Sawyer (1989) based a statistical test on runs of adjacent substitutions that might
indicate where the tree had changed. This has some advantages over the earlier
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runs test of Stephens (1985). Hudson and Kaplan (1985) used pairwise compati­
bility among sites to infer the level of recombination.

Hein (1993) inferred recombination events by parsimony, penalizing recom­
binations the same as base substitutions. Maynard Smith and Smith (1998) use
parsimony reconstructions of the tree and test whether the number of cases of ho­
moplasy exceeds that expected. Grassly and Holmes (1997) used a sliding win­
dow, likelihoods, and a parametric bootstrap distribution to detect changes in
phylogeny along a sequence. McGuire, Wright, and Prentice (2000) discussed a
Bayesian hidden Markov model approach to identifying where in a sequence the
phylogeny changes.

Drouin et al. (1999) give an interesting comparison of the behavior of many
of these methods on a large data set. The MCMC likelihood approaches using
outlined above allow a test for the presence of recombination, by comparing like­
lihoods with and without allowing it. This should be more powerful than single­
tree or summary-statistic methods.
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Coalescents and species trees

As the study of molecular evolution nears the species level, coalescent phenomena
become noticeable. There is no longer a simple correspondence between trees of
copies of genes and phylogenies of species. Figure 28.1 shows why coalescents
can cause inconsistency between the species tree and the tree of gene copies. In
the figure there is one copy of the gene sampled from each species. The copies
from A and B have lineages that coexist in their ancestor, the interior branch of
the tree which is delimited by dashed lines. If it happens that these two lineages
do not coalesce with each other by the bottom of that branch, all three lineages
will then find themselves in the same ancestral species. Two-thirds of the time, the
two that coalesce first (going backwards in time) will not be the lineages from A
and B. The result is a genealogy whose topology is different from the phylogeny
of the species. In the figure, the result is that the copies from A and C are more
closely related to each other than either is to the copy from B. If we were looking
at molecular sequences, we might see this relationship.

The cause of the lack of coalescence is, of course, large population size in the
common ancestor of species A and B. If this population size is large, we rrlight
expect such discrepancies to arise fairly often, though there is a chance that when
the lineages ancestral to A and B were in the common ancestor of all three species,
they would happen to coalesce with each other. In that case, the topology of the
coalescent genealogy would be consistent with the phylogeny of species, though
the divergence time between A and B would be exaggerated.

A number of molecular evolutionists noticed that discrepancies between coa­
lescent genealogies and species trees might occur. Gillespie and Langley (1979)
noted that divergence times between gene copies in different species would be
greater than the divergence time between the species, owing to coalescent phe­
nomena. Tajima (1983) and Hudson (1983) gave probabilities that the coalescent
genealogy would be incompatible with the species tree in a three-species case.
Tajima's formulas are for mitochondrial DNA, but they are easily modified to
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Figure 28.1: A three-species phylogeny (light lines) and a genealogy of
gene copies that is inconsistent with it (darker lines). The time span of
the interior branch (t) and the effective population size in that branch
(Ne ) determine the probability of getting a gene tree that is inconsistent
with the species tree.

apply to nuclear genes. Pamilo and Nei (1988) have extended this computation,
considering the effect of adding more independent loci and more gene copies sam­
pled from the populations.

We can get a picture of how population sizes affect the probability of the co­
alescent tree being incompatible with the phylogeny of the species by looking at
Hudson's and Tajima's calculation (the latter modified to apply to diploids). Fig­
ure 28.1 shows a three-species tree and one of the ways that the coalescent geneal­
ogy can be inconsistent with it. The incorrect topology will be obtained if both of
the following hold true:

• The gene lineages from A and B do not coalesce before one gets back to the
common ancestor with C. The probability of this is

• After one gets back to the common ancestor of all three, the two that coalesce
first as one goes farther back are not A and B. The probability of this is 2/3.

These two possibilities are shown in the two trees in Figure 28.2. The net proba­
~ ility of having a tree incompatible with the species phylogeny is

2 t-e- 2Ne

3
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Figure 28.2: Probability, in a three-species tree like Figure 28.1, that
the topology of the coalescent is one of the two incorrect tree topolo­
gies (solid curve) and that it is the correct tree topology (dashed curve).
These are given as a function of the ratio of branch length in genera­
tions (t) to twice the effective population size of the interior branch of
the tree (2Ne ).

trees. The figure shows the probabilities in this case of the coalescent being one of
the two wrong tree topologies, and the probability of it being the right tree topol­
ogy, as a function of t/(2Ne ). As the number of generations becomes larger than
2Ne , the probability of a wrong topology declines to zero. Pamilo and Nei (1988)
have given probabilities of various coalescent topologies in cases with 3, 4, or 5
species. Takahata (1989) has extended their work to larger sample sizes for three
species. Rosenberg (2002) has discussed the difference between the concordance
criteria used by these authors and suggested an alternative definition of concor­
dance appropriate for use with samples of more than one gene copy per species.
For pairs of species, each with a sample of sequences, there is particular inter­
est in the case where the gene tree is consistent with the species trees, so that the
lineages for each species coalesce before we get back to their common ancestor.
Hudson and Coyne (2002) have investigated conditions for reciprocal monophyly,
and discussed the implications of these conditions for use of coalescent trees in
species definitions. An interesting case where discordance of coalescent trees and
species trees must be considered is pointed out by Shedlock, Milinkovitch, and
Okada (2000) who discuss the importance of coalescent phenomena as a source of
discrepancy in using SI E element insertion to delimit monophyletic groups.
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Methods of inferring the species phylogeny
Given that there are possible conflicts between the species tree and the coalescent
genealogy, what methods can be used to infer the species tree? If there is only
one locus and one gene sampled per species, then there is nothing we can do but
accept the coalescent genealogy as being the gene tree. But with multiple copies
per species, and especially with multiple loci, we can hope to iron out the dis­
crepancies. A variety of methods have been proposed to make inferences about
the species tree. I will describe them before focusing on likelihood and Bayesian
methods.

Takahata and Nei (1985) discussed how one could infer species divergence
times from the divergence of gene copies on the coalescent genealogies. Nei and
Li (1979) had proposed that divergence time between two species x and y be esti­
mated using

1 1
d = dxy - - dx - - dy (28.2)

2 2
This assumes that the effective sizes of the two species and of their ancestor were
the same. Takahata and Nei showed that the variance of this estimator is quite
large when the divergence time is much less than 2Ne , the effective size of a
species. They gave a general formula for the variance of the estimator as a func-
ion of the number of copies 'Tn and n sampled from the two species. They found

that while variance could be reduced by taking m and n large, it would be much
ore helpful to use multiple loci. Wakeley and Hey (1997) give other estimators

oased on the number of polymorphic sites that are shared.
The variance from locus to locus is of course precisely due to the variation of

:he coalescence times. Even with enough sites to enable precise knowledge of the
.:oalescent genealogy for a single locus, the variation of its coalescence times has
_ot been subdued. To do so, we need multiple loci that have independent coales­
.:ents. Baum (1992) and Doyle (1992) suggested combining trees estimated from
3ifferent loci by coding each tree as a single multistate character. The nonadditive
_inary coding method, which was explained in Chapter 7, was to be used. That
-'.-ould make each branch of a coalescent tree be represented by a single binary
.::taracter. They suggested using these together with the morphological characters
_ an overall parsimony analysis.

Implicitly, their method assumes that each coalescent genealogy is known
_recisely-they give no way to take its uncertainty into account. However, in
--:,_ost respects their procedure is quite conservative because it does not give credit
::.> the coalescents for the amount of data that went into them. If the effective pop­
.:.:ation sizes N e are small, we may want to give more weight to coalescent trees
:.....at are based on long stretches of DNA, or to ones whose rate of evolution makes
:.-em more likely to be accurate.

Lyons-Weiler and Milinkovitch (1997) have suggested using Lyons-Weiler's
-:..-\5A method (for which see Chapter 12) to test for difference of topology in dif-
-:"ent gene trees. Chen and Li (2001) used parsimony to reconstruct trees for 53
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Figure 28.3: An example of the count of uncoalesced lineages in gene
tree parsimony. The count is made at the dashed lines, which are at
the bottom of each branch. The number of events is the number of
gene lineages reaching the bottom of the branch, less 1. In this tree, the
total number of events is 3.

autosomal regions for hominids. They were able to infer t/ (2Ne ) for the ances­
tor of human and chimp from the fraction of these regions in which humans were
closest to gorillas.

Reconciled tree parsimony approaches
Page and Charleston (1997), Wayne Maddison (1997) and Slowinski, Knight, and
Rooney (1997) have pointed out that the parsimony approach of Goodman et al.
(1979) can be applied to coalescent genealogies. The event that is, in the context of
a gene family, interpreted as a duplication, is in this case considered to be a deep
coalescence. One must ban losses, as they have no natural counterpart when coa­
lescence is the source of discrepancy between the gene genealogy and the species
tree. As explained by Slowinski and Page (1999), one should count, not the num­
ber of duplications, but the number of branches in which lineages fail to coalesce.
They use the number of lineages not coalescing in the branch, less 1, as the num­
ber of events in their parsimony method. Thus if four lineages are in the top of the
branch, with three present at its bottom, that counts as 3 - 1 = 2 events. They call
this method gene tree parsimony.

Figure 28.3 shows an example of a count of uncoalesced lineages in gene tree
parsimony. The dashed line at the bottom end of each branch shows the census
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of "extra" lineages that have not coalesced by the time the bottom of the branch
is reached. There are a total of three of these lack-of-coalescence events. This
parsimony method is easily combined with parsimony of molecular sites or mor­
phological characters. Doing that, one takes into account both the number of sites
in each gene and the discrepancies between the coalescent genealogies and the
species tree. However, the weighting of failures to coalesce in this method is rather
arbitrary.

We may recall (from Chapter 9) that the natural formula for the weight on an
event in a parsimony analysis is -In[p(t)], where p(t) is the probability of that
event happening in a branch of length t. If we have k lineages that do not coalesce
in a branch of length t, the probability of noncoalescence is (from equation 26.3)

k(k-l) t
e-~ (28.3)

so that the weight should be k(k - 1)t/(4Ne ). Like the true weights for all parsi­
mony methods, this depends on the branch length; even if it did not, it would still
be k times as great as the weight assigned in gene tree parsimony. When there are
k lineages at the top of a branch, and all but.i of them coalesce before the bottom,
the probabilities are more complicated and the weights even less obvious. When
the branch is very short, it is coalescence rather than lack of coalescence that is the
rare event that should be counted.

Likelihood
A more comprehensive method would, of course, use likelihood or Bayesian meth­
ods. Estimation of ancestral population sizes has spurred the development of a
likelihood framework for coalescent genealogies in multiple species. Takahata
(1986) had used means and variances of divergence between two species across
a number of loci to infer the population size in their ancestor. Takahata, Satta,
and Klein (1995) used maximum likelihood for two or three species, under the as­
sumption that one could observe all substitutions between each pair of species. In
effect, this assumes an infinite-sites model of change. They used one gene copy
per locus per species and applied their method to human ancestry. Subsequently,
they have (Li, Satta, and Takahata, 1999) also applied it to the Drosophila species
data of Hey and Kliman (1993). Yang (19970.) extended this method to make an
infinite-sites analysis of ancestral population sizes, taking variation of evolution­
ary rate from site to site into account. Edwards and Beerli (2000) have extended
Yang's method for two species so as not to require the infinite-sites model. These
studies pioneered the application of likelihood methods to multiple species and
multiple loci. They all assumed one lineage per species, and some analyzed only
two species at a time. Yang (2002) gave likelihood and Bayesian approaches that
allowed three species with one copy per locus per species, and did not assume an
infinite-sites model. Wall (2003) considered four species, with one copy per locus
per species, with the assumption that we can assign all substitutions to branches
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on the tree (which is close to assuming an infinite-sites model). He used coales­
cent simulations to approximate summation over all genealogies. The simulations
allowed recombination to occur, so that Wall's approach allows for intragenic re­
combination. Nielsen et al. (1998) made a likelihood analysis for the case in which,
with two or three species, we have samples of genes where all polymorphism is
assumed to be pre-existing and where no mutation occurs thereafter. This case had
been the subject of a different likelihood analysis when single copies are sampled
from each species (Wu, 1991; Hudson, 1992).

Each of these studies carried us nearer the goal of an analysis that was fully
statistical, allowed use of standard DNA models, analyzed an arbitrary number of
species, and allowed for sampling of more than one gene copy within each species.
Wayne Maddison (1997) noted that since evolutionary genetics provided formulas
for the probability of coalescence of lineages, a likelihood approach to fitting coa­
lescent genealogies to species trees was possible. Nielsen (1998) has come closest
to the goal of a general treatment, allowing in his analysis for more than one sam­
pled gene copy per locus per species. Using the infinite-sites model and the case
of two species, he used Griffiths-Tavare sampling methods to calculate the likeli­
hood for samples from the two species. The parameters are the divergence time,
mutation rate, and the effective population sizes of the two populations, plus an
effective population size of the population ancestral to both of them. Figure 28.4
shows his model.

An interesting extension of this model was given by Nielsen and Wakeley
(2001). It allows migration between the tvvo populations after they separate. The
ArC criterion was suggested to choose between the model with and without mi­
gration. The model assumes that the population size is constant within each
branch, which is obviously an oversimplification. If we wanted to fit a model
with a population bottleneck at the start of a lineage, that would be an additional
complication, but such complications could easily be accommodated in this frame­
work. In Nielsen's model the mutation rate is not an independent parameter, as
one can scale time by it, so that t and the N i would actually correspond to param­
eters loOd and 8 i = 4Ni l1,.

It is straightforward to generalize Nielsen's likelihood method to an arbitrary
phylogeny, arbitrary sample sizes per species, and an arbitrary model of molecular
change. Suppose that T is the species tree, G the coalescent genealogy, and D the
data. The likelihood can then be written as a fW1Ction of T, the vector of population
sizes N = (NI . N 2 . " .. N n ), and a mutation rate 11, as:

L = Prob(D I T,N,Ji,) = L Prob(D I G,Ji,) Prob(G I T,N)
G

If the times on T and G are scaled in mutational units (so that one unit of time is
the expected time until a base mutates), we can drop the argument Ii and replace
the vector N by the vector E> = (4N j Ji,. 4N2 Ji,· .... 4N2n - I Ji,):

L = Prob(DIT,E» = L Prob(DIG) Prob(GIT.E»
G

(28.5)
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t

Figure 28.4: Nielsen's (1998) model. Each branch on the tree has a
separate effective population size, and the divergence time is also a
parameter of the model.

This equation is for a single locus. For multiple loci we have a separate coa­
lescent genealogy Gi for each locus but common values of T and 8. If D i are the
data for locus i. the counterpart of equation 28.4 is

L = II Prob(Di IT.8) = II 2: Prob(DiIG) Prob(GIT,8)
G

(28.6)

The overall likelihood is simply the product across loci of the likelihoods given
in equation 28.5. Bayesian inference can also be carried out, with a prior on 8 or
perhaps on both T and 8, multiplying that product of likelihoods. In principle,
these methods can also be extended to allow for intragenic recombination as well.

Markov chain Monte Carlo methods would be used to carry out the summa­
'ion, as we saw in Chapter 27. Within each branch the coalescence is governed
y the branch's value of Gi = 4Ni j1,. At the top of an interior branch of the tree,

lineages arrive from the two immediate descendants. These then coalesce going
:lown that branch, under the control of its value of Gj = 4Nj l1. Markov chain
\ [onte Carlo computation of the likelihood is possible, as are estimates of the G i .

lt is also possible to search for the maximum likelihood species tree T, using
methods such as the Metropolis-Hastings sampler. One would update the esti­
:-nates of the genealogy for each locus separately. In updating estimates of the
~pecies tree, one might hold the gene tree constant while changing the species
. ee, and see whether the new species tree was rejected for having too low a like­
~J1ood. This general approach will underly most future statistical inference on the
:':t of coalescent trees to species trees.
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Alignment, gene families, and
•genomlcs

In principle, all parts of the genome are descended from one much smaller an­
cestral piece of nucleic acid. All genes, and all genomes, have originated from
this ancestral genome by gene duplication, loss of parts of the resulting genomes,
insertions, and rearrangements of various sorts. Chromosome complements of
many different species have been known for many decades, and genetic maps of
some of these organisms have been available more recently. Information about
different genes that appear to have been descended from one ancestral gene has
been collected since the 1950s, when the protein sequences of the globin family
became known. As complete genomes have been sequenced, both gene family
and genome structure information have become available in those species, start­
ing with organelle genomes, continuing to prokaryote genomes, and now to eu­
karyotic genomes.

Putting all of this information into a phylogenetic context requires models of
deletion, insertion, gene duplication, and genome rearrangement. Specialized
methods are required to gain an understanding of the events in gene family and
genome evolution, and to use this to assist in inferring phylogenies.

In this chapter I will start with sequence alignment, which involves inferring
where deletions and insertions may have taken place within genes. I then move
on to the analysis of gene families, where I take into account gene duplication
and loss but not the exact placement of the loci in the genome. I then continue to
the making of inferences using the order of genes in the genome, taking explicit
account of the genetic map. Less work has been done on this topic, and there has
been no serious attempt to combine these problems. This will happen inevitably,
and fairly soon.

496
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Table 29.1: A multiple sequence alignment of five nucleotide se­
quences, with gaps at positions 3-5 and 8-9.

Alignment

Alpha
Beta
Gamma
Delta
Epsilon

ACCGAAT--ATTAGGCTC
AC---AT--AGTGGGATC
AA---AGGCATTAGGATC
GA---AGGCATTAGCATC
CACGAAGGCATTGGGCTC

Almost as soon as algorithms for the alignment of pairs of sequences were avail­
able, the issue of how they relate to phylogenies was raised. Alignment is really
an inference of the descent of all bases (or amino acids) at a given position from
a common ancestor. As computational molecular biologists started to develop
methods for alignment of multiple sequences, they were making inferences about
evolution, usually without acknowledging the fact. But the issue had already been
raised in 1973, by 5ankoff, Morel, and Cedergren. Using 55 RNA sequences, they
attempted to find the phylogeny and the alignment, which, taken together, in­
volved the smallest total penalty from base substitutions, insertions, and deletions.
The papers by 5ankoff (1975) and 5ankoff and Rousseau (1975), which we have al­
ready discussed in the section on counting changes in parsimony, were actually
made general enough to encompass insertions and deletions as well. 5ankoff and
Cedergren (1983) expanded on the relationships between phylogenies and mul­
tiple sequence alignment. These pioneering papers were ignored for almost two
decades, until the success of alignment programs such as Clus talV revived in­
terest in the connection between phylogenies and alignment.

Why phylogenies are important
It may seem that we can assess how many gaps (insertions or deletions) are re­
'iuired in a multiple sequence alignment, simply by examining a table of the align­
:nent. Table 29.1 shows a hypothetical multiple sequence alignment. There ap­
:- ear to be two gaps present, one at positions 3-5 and the other at positions 8-9.
:-Iowever, distribution of the gaps relative to each other shows that the two gaps
.:lre incompatible with each other. All four combinations of gapped and ungapped
~egions exist in the data, so that it is not possible for there to be a phylogeny on
','hich the two gaps can be explained with only one insertion (or deletion) event
2ach. Figure 29.1 shows one possible phylogeny for these sequences: It requires
:-·,'0 insertion events and one deletion event. Note that if the tree were rerooted,
:",1.e number of events would not change, but the interpretation of which ones were
_ sertions and which ones deletions would change. In this tree the hash marks are
::'ase substitutions: 10 of them are required as well.
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Beta

Alpha

Epsilon

Delta

Figure 29.1: A phylogeny with a reconstruction of the insertion, dele­
tion, and substitution events needed to evolve the sequences in the
multiple sequence alignment in Table 29.1. The deletions and inser­
tions are indicated by the triangles, which show which positions are
involved. The substitutions are shown by the hash marks on the lin­
eages. In this case, two insertion events and one deletion event are
required.

Parsimony method
Sankoff, Morel, and Cedergren (1973) carried out multiple sequence alignment
and inference of the phylogeny simultaneously, by a parsimony method. They
used the penalty function for alignment of two sequences. This has penalties for
base substitution, insertion, and deletion. They inferred sequences at the interior
nodes of the tree, computed the alignment penalty for each branch of the tree, and
summed these. The resulting number was the total penalty for the tree, and they
chose the tree that minimized this quantity,

In their method, with each tree there is a combination of interior nodes that
achieves the lowest penalty for that tree. Upon choosing the best tree, one auto­
matically finds a multiple sequence alignment (or perhaps several tied alignments)
at the same time.

The computational burden involved is great. In principle, for each tree of 11

species with sequence length about L, the computation can be done by a dynamic
programming algorithm with effort approximately L". This is impractical for all
but a few species. Sankoff, Morel, and Cedergren suggested an approximate al­
ternative. Starting with initial guesses at the sequences in the interior nodes, we
compute improved guesses by evaluating one node at a time. For a bifurcating
tree, we update the sequence at an interior node by considering its three neigh­
bors, using dynamic programming in a three-dimensional array.
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I briefly outline the algorithm here. Each node in that array represents a partial
sequence. Thus if the three neighboring sequences have lengths L 1 . L 2 . and L"
the array is of size (L 1 + 1) X (L 2 + 1) X (L:] + 1). The points in the array are
designated as (i, j, k), where i takes values from 0 to L], and similarly for ) and
k. The number aijk contains the score for the best alignment of the first i positions
of neighbor #1, the first j positions of neighbor #2, and the first k positions of
neighbor #3. As with alignment of two sequences, each possible path through the
array corresponds to one three-species alignment. The algorithm computes the
values for aijk from those of ai-1,j.k, aLj-l.b Oi.j.k-1, ai-1,j-1,k, ai-1,j,k-1,

ai,j-1,k-1, and ai-1,j-1.k-1' The value of aijl;: is taken as the minimum of the
penalties for each of these seven routes arriving at point (i, j, k). For the route
from ai-1,j,k-1, for example, there is a gap added at position j in sequence #2,
and an alignment of position i of sequence #1 with position k of sequence #3.
The cost of this route will be ai-1,j,k-1 + c + d i •b where c is the cost of a gap
of one base, and di,k is the cost for substituting the base at position i of sequence
#1 with the base at position k of sequence #3. This latter will be 0 if these two bases
are identical. The dynamic programming algorithm evaluates all seven possible
routes that arrive at (i, j, k) and chooses the one with the smallest cost. After point
(L 1 , L 2 , L:]) is reached, one can determine the route of smallest overall cost by
backtracking through the array.

This computation involves effort (L] + 1)(L2 + 1)(L:3 + 1), which can be sub­
stantial. For example, if the three sequences are each of length 100, this dynamic
programming algorithm requires 1m:] ~ lOG steps. This is done for each interior
node of the tree in turn. At each step, its three neighbors are used to infer the op­
timal sequence at the interior node. Each time, the total penalty of the tree cannot
increase, as the worst that the three-species dynamic programming algorithm can
do is to find the same interior node sequence as before. Of course, there can be ties
among multiple sequences as the best interior node sequence. One could simply
take one of the tied sequences, but a better choice would be to use the"sequence
graph" of Hein (1989). It summarizes all the tied alignments in one graph.

The method is easily extended to allow for gap events that involve more than
one base, provided that the penalties are linear functions of the number of bases
involved. The array then needs three quantities in each cell instead of one, much
as is done when two sequences are aligned.

The interior nodes of the tree are updated until no further improvement occurs.
Rearrangements of the tree topology can be tried, each one to be evaluated by the
same iterated updating of interior node sequences or sequence graphs. When a
tree is rearranged, many of the previous interior node sequences will be good first
guesses for this iteration.

Sankoff, Morel, and Cedergren (1973) had only been able to do their calculation
by using the most powerful computers available to them; their work did not result
in a practical computer program that could be widely disseminated. Hein (1989,
1990) produced a program, TREEALIGN, that carried out a relative of the Sankoff-
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Morel-Cedergren algorithm, but with some tree-building steps using distance ma­
trix methods rather than evaluating trees strictly by parsimony. More recently
increases in computer speed have permitted some more precise implementations
of the Sankoff-Morel-Cedergren approach (Wheeler and Gladstein, 1994).

An active literature has also arisen in computer science on the complexity of
the computation when we seek the optimal tree and alignment simultaneously.
Wang and Jiang (1993) proved that the problem was in a class called "MAX SNP
hard" which does not have polynomial algorithms that approximate the result
closely. Wareham (1995) simplified the proof. Jiang, Wang, and Lawler (1994; see
also Wang, Jiang, and Lawler, 1996) gave an approximation algorithm that could
be proven to come within a factor of 2 of achieving the minimum cost. Wang and
Gusfield (1997) improved the approximation algorithm. Generally, the heuristic
approximations mentioned earlier do much better than coming within a factor of
2, but they lack theoretical proofs of how well they do. The problem had to be at
least NP-hard, because it contained as a subcase the problem of finding the best
phylogeny using parsimony on base substitution. Further progress on approxi­
mation of the problem has been made by Schwikowski and Vingron (1997a, b).
Gonnet, Korostensky, and Benner (2000) have argued that a circular permutation
of species can be used to put bounds on the score achievable in any phylogeny.

Approximations and progressive alignment
Hogeweg and Hesper (1984; see also Konings, Hogeweg, and Hesper, 1987) and
Feng and Doolittle (1987) have introduced the strategy of progressive alignment.
In this approach a "guide tree" is inferred by doing pairwise alignments among
the sequences, and then using the alignment penalties for the pairs as a distance
measure. Using this tree, neighboring sequences on the tree are then aligned with
each other. As one proceeds down the tree, these alignments are combined using
some rather arbitrary rules. Progressive alignment is a more approximate method
than the original Sankoff-Morel-Cedergrenmethod, but programs based on it have
performed well and have been widely used in multiple sequence alignment. Chief
among these is the ClustalW program (Higgins and Sharp, 1988; Thompson,
Higgins, and Gibson, 1994; Higgins, Thompson, and Gibson, 1996).

The success of programs based on progressive alignment has drawn attention
to the interaction of trees and alignments, and ultimately to methods using less
arbitrary algorithms. The difficulty with progressive alignment is that, once a de­
cision has been made that aligns sequences of some of the species, this alignment
is never reconsidered in light of decisions made for other species. Thus if the tree
contains both mammals and birds, and if at the root of the mammals we have the
alignment

gorilla
horse
panda

AGGTT
AG-TT
AG-TT
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while at the root of the birds the algorithm has chosen

penguin
chicken
ostrich

A-GTT
A-GTT
AGGTT

when these are put together at the common ancestor of both groups, the alignment
is likely to be

gorilla
horse
panda
penguin
chicken
ostrich

AGGTT
AG-TT
AG-TT
A-GTT
A-GTT
AGGTT

rather than allowing the subsequent information to force reconsideration of the
placement of the gap. One's eyeball immediately suggests reconsideration, align­
ing all the gaps in the same column and all the Gs on the same side of them.
A Sankoff-Morel-Cedergren parsimony approach would reconsider this, but pro­
gressive alignment is more approximate and does not.

Another approximate approach was introduced by Vingron and von Haeseler
(1997). They use a sequential addition strategy to add sequences to a multiple se­
quence alignment. The method maintains a tree. As each sequence is added to the
tree, the lineage leading to it branches off of an interior branch of the tree. This lo­
cation divides the previous tree in two. Branch lengths are computed, using the
average alignment scores between the new sequence and the sequences in the two
parts of the tree, as well as the average alignment score between sequences in the
two parts. The location that adds the smallest amount to the total length of the
tree is chosen. Note that this differs from the Sankoff-Morel-Cedergrenmethod, in
that sequences are not reconstructed at interior nodes. Vingron and von Haeseler
point out that their method is more closely related to the "sum of pairs" align­
ment criterion, a nonphylogenetic method. Nevertheless their method is capable
of reconsidering a previous alignment once a new sequence is added.

An even rougher approximation is the "optimization alignment" of Wheeler
(1996). He treats the observed sequences at the tips of the tree as the only possible
states, uses the alignment scores between them as the penalties for change between
them, and then assigns states to ancestors by Sankoff optimization. This rules
out any other sequences existing at interior nodes of the tree. It is very rough,
but fast; interestingly, Wang and Jiang (1993) show that a very similar procedure
approximates the true tree score within a factor of 2.
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Probabilistic models
The Sankoff-Morel-Cedergren approach uses parsimony: It penalizes a gap 0,

a base substitution without regard to the length of the branch on which it oc­
curs, and the method considers only the reconstructions of events that achie\·
the smallest penalty. Obviously, it would be desirable to use a probabilistic mode:
and make inferences based on it.

Bishop and Thompson's method
The pioneering paper on statistical inference using probabilistic models of align­
ment is by Bishop and Thompson (1986). They used a model in which bases could
substitute, but also single bases could be inserted after any base, or at the begin­
ning of the sequence. Single bases could also be deleted. Calculation of transitio
probabilities in such a model is difficult, so they dealt only with cases in which
two sequences were diverged for a small enough time (or branch length) that mul­
tiple gaps could not be superimposed. They were able to calculate the likelihood
for different branch lengths by a dynamic programming calculation. Having the
maximum likelihood estimate of the branch length, they could then find (by back­
tracking through the dynamic programming array) the alignment that made the
largest contribution to the likelihood. Note that this is slightly different from in­
ferring the maximum likelihood alignment. The rest of the papers in the statistical
alignment literature have followed their lead and done the same calculation.

The minimum message length method
Allison and Yee (1990) have used a different framework, minimum message length
(MML), with a model of evolution similar to that of Bishop and Thompson. The'·
allow substitutions and insertions or deletions of one base. For a given pair of se­
quences, they take the probabilities of insertion and deletion to be unknown and
infer these from the data. Like Bishop and Thompson, they compute the probabil­
ity of getting one sequence from another by summing over all possible alignments
of the two sequences using a dynamic programming algorithm. I will describe a
similar algorithm in more detail in the section below for the TKF model. Mini­
mum message length estimation is a framework based on algorithmic information
theory. It gives results that are extremely close to maximum likelihood. At times
it seems to be a recasting of maximum likelihood, though it can actually be shown
to be slightly different.

Thus we can regard the MML method for inferring parameters of a proba­
bilistic model of insertion, deletion, and base substitution as being an extension
of Bishop and Thompson's approach, as it is almost that. Yee and Allison (1993)
explained it further, with simulations showing that it converged on the correct pa­
rameter values. Allison, Wallace, and Yee (1992) extended the results to allow for
more complex models in which there are three or five parameters. Allison and
Wallace (1994) made the further extension to more than two species. This allowed
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the method to infer net probabilities of insertion, deletion, and base substitution
on all branches of a phylogeny. The method did not assume a single model that
operated on all branches, but allowed the model parameters to be arbitrarily dif­
ferent on each branch of the phylogeny.

This MML approach achieves an interesting level of generality, but is lacking
in two respects. There is no model that allows insertions to be made at a site af­
ter others have been made earlier in the same branch. In short, there is no actual
time scale: The model simply infers parameters for the probabilities of insertions,
deletions, and base changes that result. This also makes it difficult to assume the
same process on all branches. For these reasons we will concentrate on explain­
ing the TKF model, which does not have these limitations, but the importance of
this MML model in extending the Bishop and Thompson framework ought not be
overlooked.

The TKF model
Jeff Thorne's TKF model (Thorne, Kishino, and Felsenstein, 1991) is the first model
to allow gap events to overlay one another along a branch of a tree. It involves
a clever bookkeeping method that prevents double-counting of possible events
that could lead from one sequence to another. In the TKF model, each base is
accompanied by a "link" representing the covalent bond connecting it to the next
base in the sequence. A special link called the "immortal link" precedes the first
base. In the model there is a rate of base substitution (which we can set to 1 per
unit time) with an ordinary reversible model of base substitution. In addition,
each link has a rate A at which a new base will be inserted at that link. When it is,
a new link is inserted as well, to the right of the new base. There is as well a rate at
which bases are deleted. Each has a constant risk fJ per unit time of being deleted,
and when it is, the link to its right is deleted as well. Note that all this means that
the immortal link, which is to the left of the sequence, cannot be deleted.

This model implies that the stretch of sequence has its length follow a birth­
death process with imrnigration, with the birth rate and the immigration rate
equal. The probability per unit time of adding a base to the sequence is (n + l)A,
where the current length is n, and the probability of losing a base is nfJ per unit
time. The sequence cannot be lost forever, as even when it is of length 0 there is
a rate at which new bases are inserted. The new bases inserted are assumed to be
drawn with the equilibrium frequencies of the base substitution model. The birth­
death process with immigration is one which is well-known in theory of stochastic
processes. If fJ > A, the equilibrium distribution of lengths will be a geometric dis­
tribution with mean fJ/ A. The equilibrium base composition of these sequences
will simply be that expected from the mutation model.

This model has the great advantage that its transition probabilities can be cal­
culated. Figure 29.2 shows a case that I will use to illustrate this. Under the model,
it is not hard to show that the length of the sequence will be drawn from a geo­
metric distribution with expectation fJ/ (fJ - A). We would like to be able to com-
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T A A G G
T T A A C

Figure 29.2: Two alignments explaining the evolution of one sequence
into another. The different placements of the gap symbols correspond,
under Thorne's TKF model, to different sequences of events that led
from the top sequence to the bottom one. There are many other possi­
ble sequences of events as well.

pute the transition probability from one sequence to another as part of likelihood
(or Bayesian) inference of the divergence time and the parameters. If we haw
an alignment showing which links are homologous, as we do in the figure, we can
calculate the probability that one sequence will arise from the other. For the events
in the top part of Figure 29.2, going from the top sequence to the bottom sequence,
they are:

• A C is inserted after the immortal link.
• A C remains unchanged without insertion or deletion.
• Two Ts are inserted to its right.
• A G is deleted.
• Two Ts are deleted.
• An A remains unchanged.
• An A is deleted.
• Before that A is deleted, an A is inserted to its right.
• A G changes into a C without any insertion or deletion.
• A G is deleted.

Note that this particular combination of events, although it accounts for the change
of sequences, is not the most plausible one. It would seem more likely that the two
Ts in the middle of the sequence remained unchanged and that the G in front of
them was deleted.

Note also that the TKF model makes a particular interpretation of the align­
ment. If we see the alignment

T - A G
T A - G

on the usual interpretation of alignments, this does not seem to be much different
from
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T A - G
T - A G

But in the TKF model these are different events. When a base is inserted, its arises
from the base to the left of it in the alignment. Thus in the first alignment, the
A in the second sequence arises from the T that is to the left of it. In the second
alignment, the A arises from the A in the first sequence. Under the TKF model
these are separate events with separate possibilities, and to compute the sum of all
these probabilities we need to compute both of them. Figure 29.3 shows the three
kinds of events that are possible under the TKF model.

The transition probability from one sequence to the other is computed by sum­
ming over all possible sequences of events. As usual with sequence alignments,
there are a very large number of these. One great advantage of the TKF model
is that it allows us to sum up the probability of getting one sequence from an­
other, using a dynamic programming algorithm. Although there is not enough
space here to go through all the details, we can sketch the method. The probability
that a link ends up having n links as its descendants is given by one of the three
quantities Pn(t), p~(t), and p~(t), depending on whether the link is a mortal link
that itself survives, is a mortal link that does not itself survive, or is the immor­
tal link. The probabilities of all of these can be computed from well-known results
for birth-death processes. With the one-base insertion scheme in the TKF model,
it turns out that Pn(t) = [;3(t)A]n p1 (t), with this being true for all three quantities
with the same value of 8(t). Thus the three functions of n all are geometric series
for n > 1, all declining at the same rate.

Consider the first Tn bases Am of the first sequence, and the firstn bases En of
the second sequence. Define three likelihoods, conditional on different events at
the end of the sequences:

Prob (Am, En I rightmost link of Am has 1 descendant)

Prob (Am, En 1 rightmost link of An has 0 descendants)
(0)

Lmn(A, IL, t)

(1) ( )L rnn A, IL, t

(2) (L mn A, IL, t) Prob (Am, En I rightmost link of Am has 2': 2 descendants)

(29.1)
These are joint probabilities of the two subsequences, given the parameters. It can
then be shown that we can compute each of these from the three subsequences that

h b b I (0) b d f (0) (1)are sorter yone ase. For examp e, Lmn can e compute rom L,n-1,n' Lm- 1,n

and L~~~l.n' This is possible because if we have a gap opposite the last nucleotide
in sequence Am, this could represent the extension of a gap (0), the initiation of a
gap after an aligned nucleotide (1), or the initiation of a gap after insertion of one
or more bases in E n - 1 (2). The probabilities of insertion and deletion in the single­
base insertion and deletion model make these expressions cover all possibilities

for computing L}~~.
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_____ GTACGTAC
substitute

GTACCTAC ~sert- GTACCATAC
* delete

~ GTAC-TAC

Figure 29.3: The three types of events possible under the TKF 1991
model. They are base substitution, insertion of a single base to the
right of the link, and deletion of a single base and its link. The star
indicates the base at which these events happen, and the consequences
are shown to the right.

As we have a dynamic programming algorithm for computing the likelihood
for given parameters t, A, and !-L, we can use it to infer those parameters by maxi­
mum likelihood, in the usual way.

Hein et al. (2000) have made improvements in the calculation, including sim­
plification of the recursions and "corner-cutting" approximations. These speed up
the calculation greatly. They have also discussed goodness-of-fit testing for this
model. Thorne and Churchill (1995) have used an EM algorithm for inferring pa­
rameters. They have also sampled from different alignments in proportion to their
contribution to the likelihood to indicate the range of possible alignments. A sim­
ilar sampling was used in the MML framework by Allison and Wallace (1994).
Metzler et al. (2001) have assumed priors on the parameters of the TKF model,
and have used Bayesian MCMC methods to sample the posterior distribution of
alignments and parameter values.

Multibase insertions and deletions
The one-base model of substitution that Thorne, Kishino, and Felsenstein (1991)
used has the great advantage of allowing computation of the likelihood by a dy­
namic programming algorithm. But it has the great disadvantage of omitting
multibase insertions and deletions. As actual insertions and deletions of more
than one base at a time are common, this is an obvious defect. If not remedied,
for a long gap it would lead us to infer many deletions instead of one long dele­
tion, and would thereby overestimate the probability of deletion (and similarly for
insertion).

Thorne, Kishino, and Felsenstein (1992) attempted to remedy this by assum­
ing that it was not individual bases, but instead multibase segments that were
inserted and deleted. There could be a distribution of lengths of these segments.
This model has an obvious limitation: Once a segment has been inserted, if it is
deleted thereafter, the whole segment must be deleted. There is no event that can
delete part of a segment once it has been inserted. Thus overlapping gaps cannot
be handled properly. Metzler (2003) has used a version of the TKF model which
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he calls the fragment insertion and deletion (FID) model. It takes the insertion and
deletion rates to be equal. It is not clear that equality is tenable, as the resulting
model of sequence-length variation then has no equilibrium distribution, and re­
versibility of the process is not guaranteed.

TreeHMMs
Another approach to gaps uses the tree HMMs of Mitchison (1999; see also Mitchi­
son and Durbin, 1995). These are arrays of pointers that specify which bases in a
sequence will be deleted. Figure 29.4 shows one of these arrays. At each site, it has
two states, "match" (M) and "delete" (D). For each state there is a pointer that indi­
cates whether its successor state is a D or an M. At the start of the sequence there is
also such a pointer. At the M states, there are bases (or amino acids, if this is a pro­
tein). These change according to one of the usual substitution models. The point­
ers also change direction according to simple Markov process models with two
states (along and across) as one moves through time. The sequence at any given
time is determined by the pointers and by the bases that are associated with the M
states. In the figure, the sequence shown is (start)MMDDM(end). This might cor­
respond to the sequence GA - -T. In evolution, the bases and the pointers change
according to Markov processes. If the second M were to have its pointer change,
the states would then be MMMMM and the sequence might then be GACTT.

This model has the advantage that it can have deletions that are more than one
base long. Even so, it suffers from some lack of realism, because when a group
of adjacent bases is deleted, the bases retain information (in the M states) about
the base sequence, and if they are inserted again, there will be some memory of
the original base sequence. Thus when two adjacent As are deleted, if bases are
reinserted there soon after, they are quite likely to turn out to be As. Holmes
and Bruno (2001) point out that it is also possible that when a series of bases is
reinserted there may be "memory" of an internal gap that was once there and that
now returns with them.

Tree HMMs do not have the convenient mathematical properties that enable
the TKF 1991 single-base insertion and deletion model to be used in a dynamic
programming algorithm. This is needed to sum the likelihood over all alignments.
Y1itchison (1999) uses a Bayesian MCMC method to sum over all alignments in­
stead. If TKF models could be extended to multibase insertions and deletions,
they would have the advantage. Otherwise, MCMC methods would be needed
and tree HMMs would then be strong competition.

Trees
\.1ultiple-sequence alignments cannot be properly inferred without taking into ac­
.::ount the phylogeny of the sequences. Thorne and Kishino (1992) have used the
:nodel of deletion and insertion of segments for all pairs of sequences, computing
3. maximum likelihood estimate of divergence time t for each pair of species. The
,Jther parameters are estimated for each pair. The median of the estimates of each
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Figure 29.4: Mitchison's tree-HMM, which has two states, "match" (M)
and "delete" (D), at each site. Each state has a pointer that designates
its successor, and each of these pointers is reoriented by having its own
simple two-state stochastic process as one moves along the tree. The
effect is to introduce and remove deletions that may be more than one
base long.

parameter is calculated and these are used in a reanalysis of the pairwise values of
t. These can be treated as distances in a distance matrix method. They use boot­
strap sampling of the resulting distances, but as they are perturbing each distance
independently, they cannot take the covariances of distances into account. They
thus describe their bootstrap values as being quite conservative, as those correla­
tions would cause less disruption to the tree if taken into account.

Another approximate approach, discussed in some detail by McGuire, Den­
ham, and Balding (2001) is to simplify the insertion/deletion models by treating
the"gap" symbol as a fifth base in the sequence. This allows the insertion/deletion
processes to run separately at each site, and it greatly simplifies likelihood compu­
tations. However, this approach has some unrealistic properties. If three neighbor­
ing bases are deleted (by each changing to the gap state), there is then a "memory"
of the original size of the sequence in this region. Insertion in the region cannot
then put in more than three bases.

Some efforts have been made to compute likelihoods for trees under the TKF
model with single-base insertion and deletion. Steel and Hein (2001) worked out
algorithms for computing the likelihood on a completely unresolved "star" phy­
logeny. Subsequently, Miklos (2002) gave an improvement that speeds up this
calculation. Hein (2001) gave algorithms for a bifurcating tree that would be use­
ful for up to about seven or eight species. Holmes and Bruno (2001) have used
methods related to those of Hein et al. (2000) to reconstruct alignments on a given
binary tree, including reconstruction of the sequences at interior nodes and their
alignment to the observed sequences. They also allowed sampling from the dish"i­
bution of interior node sequences (and hence of alignments) proportional to their
contribution to the likelihood. They describe this as Bayesian inference, though
as their parameters are not given a prior, there is some question as to whether it
should be thought of this way.

These are important steps in the development of a reasonably realistic likeli­
hood-based multiple sequence alignment method. They still lack a good way of
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taking multibase insertions and deletions, including overlapping ones, into ac­
count. This is one major task for the immediate future (another is allowing for
regions of the sequence to be more or less conserved). If the proper transition
probabilities cannot be calculated, it will be necessary to use MCMC methods that
avoid them, by having the individual events all represented in the tree and sam­
pled. Such an approach can make use of complicated, and even bizarre models,
but it may be difficult to make them "mix" adequately, requiring long runs to ex­
plore the space of possible combinations of events.

The statistical alignment literature is currently quite active. If these problems
can be solved, the use of probability models of evolution in multiple sequence
alignment will rapidly move from its present genteel obscurity and become central
to all alignment inferences.

Inferring the alignment
The reader may have been under the impression that I was discussing how to infer
the alignment. However, all of the probabilistic methods mentioned have summed
over all alignments. The likelihoods are maximized with respect to the unknown
parameters and the divergence times, and the alignment disappears from the in­
ference by being summed out, because it is not a parameter of the model. The
probabilistic methods have thus eliminated the alignment from consideration. Af­
ter the maximum for the parameters is found, we may want to know which align­
ment makes the largest contribution to the likelihood. However, it must be kept
in mind that even when an alignment maximizes this contribution, it may account
for a very small fraction of the likelihood (or, in the case of Bayesian inference,
a very small fraction of the posterior probability). Both the TKF 1991 model and
tree HMMs can be made to find the alignment that makes the maximum contribu­
tion. I have mentioned above papers by Allison and Wallace (1994), Thorne and
Churchill (1995), Metzler et al. (2001), and Holmes and Bruno (2001), which sam­
ple from the distribution of possible alignments. Seeing some of this variation may
be an effective antidote to overreliance on the single best-fitting alignment.

In the case of likelihood, it is somewhat unclear whether we ought to refer to
the inference of the alignment as maximum likelihood estimation, since the align­
ment is not, strictly speaking, a parameter.

Gene families
Whole loci can duplicate or be lost as well as individual bases or amino acids.
Consideration of the history of gene duplication involves inferences about gene
families. The analysis of families of genes goes back to some of the earliest work
on molecular evolution. Among the first protein sequences available were globins,
and multiple globin genes were sequenced in humans. Zuckerkandl and Pauling
(1962) considered differences between globins. As some of the comparisons they
made were between members of a gene family within a species, these invoh"ed
gene trees rather than phylogenies.
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Figure 29.5: A species tree (upper left), a gene tree (upper right), and
the two trees reconciled (bottom, species tree in dashed lines). Gene
duplications are shown as filled boxes, losses as open boxes. There are
two duplications and three losses.

Reconciled trees
Goodman et al. (1979) were first to investigate algorithms for reconciling gene trees
with species phylogenies. They proposed finding that combination of species tree
and gene tree that minimized the total of the numbers of substitutions, gene du­
plications, and gene losses. The issue is illustrated here in Figure 29.5. Page and
Charleston (1997) have discussed reconciled trees, assuming that the gene tree
and the species tree are both known. They use a tree-mapping algorithm of Page
(1994b) to count the number of duplications and losses necessary to reconcile the
trees. Like Goodman et al., they envisage searching for the species tree that re-
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Figure 29.6: The same gene and species trees as in Figure 29.5, with
the construction of sets at the interior nodes of the gene tree shown.
Each is the set of species descended from the latest common ancestor
in the species tree of the union of the two sets above that node. A gene
duplication is inferred if a node has a set equal to the sets in either of
its two immediate descendants. (These cases are boldfaced.)

quires the fewest total duplications and losses to account for a set of gene trees
observed on these same species. Mirkin, Muchnik, and Smith (1995) gave a dif­
ferent algorithm to compute the same quantity. Zhang (1997) and Eulenstein and
Vingron (1998) have proven that the two algorithms give the same result. Guigo,
Muchnik, and Smith (1996) have discussed methods for attributing duplications
at individual loci to a few duplications of the entire genome.

An advantage of the original approach of Goodman et al. is that it allowed for
uncertainty in the gene tree, by adding to the criterion the number of changes in
the sequences and then optimizing over the shapes of both species trees and gene
trees. What we have called losses, they referred to as gene expression events, as
they saw them as being either deletions or losses of detectable gene expression.

Reconstructing duplications
The reconciled-tree approach requires us to be able to count the number of dupli­
cations and losses (or just the number of duplications) for a given rooted gene tree
and a given rooted species tree. The algorithm for bifurcating rooted gene and
species trees is relatively simple in its conception. Figure 29.6 shows the process
for the case of Figure 29.5. We start by replacing the tip labels on the gene tree by a
set containing the species that the gene copy appears in. Then we work down the
gene tree (a postorder tree traversal). At each node we construct a set that is the
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union of the sets in the two nodes above it. Thus the upper-leftmost set has {AC},
as {A} and {C} are above it.

These sets are then augmented by reference to the species tree. The latest com­
mon ancestor of all of the species in the set is found, and the list of species de­
scended from that ancestor. For {AC} we do find a node on the species tree that
is the latest common ancestor of A and C. It has only these two species descended
from it. So the set is not augmented by adding any additional species. But for the
set immediately below it, we initially have {ABC}. The latest common ancestor
of these species also has D descended from it. The set thus becomes {ABCD}. We
continue down in this way until we fill in sets on all interior nodes of the gene tree.

Gene duplications are then inferred for any node that has a set that is the same
as one or both of the sets in its immediate ancestors. In this example, there are
two such cases. At the bottommost node, {ABCDE} is identical to the set in it
immediate right descendant. Further up, an interior node has set {D}, and so do
both of its immediate descendants. We infer that these two forks in the gene tree
are duplications, as we can see in Figure 29.5.

The algorithmics involved in doing this efficiently have led to a number of
papers. Page (1994b) gave an algorithm whose time would be of order n 3 , where
n is the number of genes in the gene tree. Zhang (1997) and Chen, Durand, and
Farach-Colton (2000) improved this to be proportional to n. Zmasek and Eddy
(2001) presented a much simpler algorithm that can be slower in the worst case,
but is usually faster than these methods. Hallett and Lagergren (2000) showed
that the search for the most parsimonious species tree based on duplications or
duplications and losses requires only polynomial timet if the maximum number
of duplications needed is bounded by some number k.

Reconstructing the number of losses is also straightforward, given the sets at
the interior nodes (d. Ma, Li, and Zhang, 2000). It is interesting that the reconstruc­
tion of the number of duplications is the same whether we are trying to minimize
the number of duplications or the number of duplications plus losses.

Rooting unrooted trees
The algorithms for reconstructing the numbers of duplications and losses use
rooted gene trees and rooted species trees. Unless a molecular clock is used to
root them, gene trees will typically be unrooted. To find the best rooted species
tree, one can root the gene tree in all possible places and, for each such rooting,
evaluate possible species trees. If there are many gene trees in the same analysis,
the number of possible combinations of their rootings will be too large to make
this method practical. Chen, Durand, and Farach-Colton (2000) discuss the algo­
rithmics involved.

Duplications have been used to root trees that have no useable outgroups. The
most notable of these is the Universal Tree of life, for which a rooting between the
Bacteria and the {Archaea, Eukarya} clade has been proposed by Gogarten et al.
(1989) and by Iwabe et al. (1989). Figure 29.7 shows three rooted trees for the three
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Figure 29.7: Two rooted trees for the domains Bacteria (Ba), Archaea
(Ar), and Eukarya (Eu), showing Iwabe et al.'s (1989) gene tree for the
EF-TV /la and EF-G2 family of proteins reconciled with each. Shaded
boxes represent duplications, open boxes represent losses.

domains, with the tree for the gene family of EF-TV /la and EF-G2 reconciled with
each. The first tree requires one duplication. The second requires three duplica­
tions and six losses. This speaks strongly in favor of the first tree. The tree that
unites Bacteria and Eukarya has the same reconstruction as the tree on the right,
but with the Ar and Eu labels exchanged. The rootedness of the trees inferred from
duplications comes from the assumed irreversible nature of a duplication event.
Genes can be lost, but we do not allow events that truly reverse the duplication, by
merging two genes. Thus "the outgroup is rocks"l because we assume that the an­
cestral state is the absence of a duplication. This is equivalent to outgroup-rooting
with the state of the outgroup-rocks-taken to be the absence of the duplication.

To make the search for the species tree easier, Simmons, Bailey, and Nixon
(2000) have introduced a coding method uninode coding, for use in the presence
of gene duplications. They start with a gene tree and infer the locations on it of
[he duplication events. Then they take each pair of duplicate genes as separate
loci, which they do not align to each other or to the original copy. They infer the
::equence of the locus at the moment of duplication. This sequence is assigned
:0 the original locus after the duplication and is also assigned to the duplicated
:oci before the duplication. Adding one more character, a 0/1 character indicat­
:ng the presence of the duplication, they use parsimony to reconstruct the species
::-hylogeny. A difficulty with this method is the need to reconstruct a single un-

1A phrase I uttered in a discussion at the Molecular Evolution course at the Marine Biological Labo­
-~rory in Woods Hole, Massachusetts, in the mid-1990s. It was meant seriously but is usually assumed
-, _e a joke.
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ambiguous sequence at the moment of duplication. It is not obvious that this
reconstruction can always be done.

The difficulty in doing such an analysis is illustrated by the ambiguities con­
nected with the words "paralogy" and "orthology." When a gene duplicates, the
two copies are paralogs and should not be aligned. But each is orthologous to the
original copy, and if it is present, both should be aligned to it. The obvious impos­
sibility of following these dictates underlines the need for methods that involve
reconciliation of the gene and species trees.

A likelihood analysis
Lindsey Dubb (in prep.) has made a likelihood analysis of a model with base sub­
stitution, gene duplication, and loss. The gene tree exists within the lineages of
the species tree, as in Figure 29.5. The tips and forks of the species tree have
times, and a birth-death process is assumed, to account for the duplication and
loss events. This has the usual rate parameters A and J-L. The individual members
of the gene family are duplicated or lost at constant rates, independently of one an­
other. This birth-death process model of gene duplication has been proposed by
Nei and Hughes (1992). It has the limitation that it has no surveillance by natural
selection to ensure that some functional locus in the family remains in the genome,
or to ensure that too many functional loci are not produced. But its mathematical
tractability will ensure it a continuing central role in models of gene duplication
and loss.

In addition, the sequences are assumed to change by a standard 0 A model.
Dubb computes the likelihood of the species tree by integrating over all possible
gene trees:

L = Prob (Data IA·li) = fc Prob (Data IG) Prob (G IA: Ii) dG (29.2)

where G is the gene tree. The two terms inside the integral are easily worked out:
The first is the usual likelihood for DNA sequences on a tree, and the other is the
probability computed by the birth-death process for this particular gene tree. It is
more complex, involving a calculation summing over all possible number of loci
that could have existed at each interior node of the tree. That includes loci all of
whose descendants were subsequently lost.

The integration requires use of Markov chain Monte Carlo methods, in this
case the Metropolis-Hastings method, which we saw in Chapter 27. The result is
a likelihood surface for the parameters A and J-L. Although the method considers
many gene trees, it does not deliver a single estimate of the gene tree. At first
glance, this may seem unsatisfactory, but it is A and J-L that are the parameters
of the model, not the gene tree. Estimation of these rates, which are the rates of
duplication and loss, can be very noisy unless they can be assumed to hold for
multiple gene families and information accumulated over them. It will also be
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possible to test whether these rates are different between different categories of
genes.

If one uses statistical methods like Dubb's that integrate over our uncertainty
about the gene tree and estimate birth and death parameters, it will be possible
to do more complete analyses of duplication and loss rates. Current methods (d.
Lynch and Conery, 2000) examine only duplicates within species; they cannot take
into account the nonindependence of comparisons in different species when the
duplication has occurred in their ancestor.

The greatest strength of these statistical methods is that they can adequately
take into account the uncertainty of the gene tree, which parsimony-based recon­
ciled tree methods will not. Of tree-based approaches to gene family evolution,
parsimony-based approaches are better-known at this point, but as with many
other topics in this book, it is the probabilistic statistical methods such as likeli­
hood that hold the promise for future work. In the interim, one could at least use
resampling methods such as the bootstrap, and analyze the cloud of resulting es­
timates of the gene tree. Even this is not done at present. Users of reconciled tree
methods may have to break themselves of the habit of first inferring the gene tree
and then treating this inference as if it were data. This is closely similar to the
unfortunate way single-tree methods treat coalescent trees.

Comparative genomics
The models of gene duplication and loss have one major limitation. They implic­
itly assume that each gene family's duplications and losses happen independently.
As the loci examined become denser in the genetic map, deletions and duplica­
tions will be seen to involve more than one gene locus at a time. Models that allow
each locus to be duplicated or lost separately will be increasingly inadequate as
the number of gene families considered increases.

So far there is no model or method that involves duplications and deletions
in a map as well as change in the DNA sequences. There is a literature involv­
ing rearrangement of genetic maps, and even efforts to use these models to infer
phylogenies. Most of the work has come from the laboratory of David 5ankoff.

Tandemly repeated genes
One step in the direction of genomic analysis has been taken in the literature on
tandemly repeated genes. Fitch (1977) was the first to notice that duplication by
unequal crossing-over in a tandem gene family would constrain the topology of
the resulting gene tree. He derived rules allowing a tree to be checked to see
whether it was consistent with the unequal crossing-over mechanism. The prob­
lem was independently rediscovered by Elemento, Gascuel, and Lefranc (2002; see
also Benson and Dong, 1999, and Tang, Waterman, and Yooseph, 2002). Gascuel et
al. (2003) counted the number of possible trees consistent with the mechanism.
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As interesting as these papers are, they analyze only the duplicates within a
single species. They are just barely concerned with genomics, since they analyze
only a small piece of the genome.

Inversions
One of the first models of evolution of a genomic map was rearrangement of a
linear or circular genetic map using only inversions. Watterson et a1. (1982) were
the first to pose the problem of how many inversions it takes to get from one map
to another (they considered the case of a circular map). Kececioglu and Sankoff
(1995) developed some approximation algorithms and conjectured that the prob­
lem was NP-hard. Caprara (1999) proved that it is. However, a slight change in
the problem makes it much more tractable. The inversions ("reversals") problem
assumes that we characterize each map by the list of its markers, in order. If we as­
sume that we also have the orientation of each marker (for example, that we know,
for each, which end is the start of the protein) then we have the problem of signed
reversals. As complete sequencing of genomes is done, it yields precisely this kind
of evidence. Hannenhalli and Pevzner (1995, 1999) found a polynomial-time algo­
rithm to compute the minimum number of inversions (reversals) needed. Berman
and Hannenhalli (1996) and Kaplan, Shamir, and Tarjan (1997) have given algo­
rithms for computing the minimum number of inversions in time linear in the
number of markers (see also Bader, Moret, and Yan, 2001).

Inversions in trees
With the problem of counting changes between two ends of a branch proven NP­
complete, it is even more difficult to infer the states of common ancestors and to
count the number of changes needed on a given phylogeny. Hannenhalli et a1.
(1995) and Sankoff, Sundaram, and Kececioglu (1996) gave some algorithms for
finding gene orders at interior nodes in a small tree. Algorithms like these can
form the basis of a heuristic parsimony algorithm. Bourque and Pevzner (2002)
have applied the reversal distances to searching for a most parsimonious set of
reversals explaining a multispecies data set.

Inversions, transpositions, and translocations
Sankoff (1992) investigated the broader question of how many inversions, trans­
positions, and translocations are needed to transform one genome into another.
Transpositions delete a block from one chromosome and insert it elsewhere, while
translocations exchange the terminal sections of two chromosomes. Hannen­
halli (1995) showed for the case of signed genomes that the minimum number of
translocations necessary could be computed in polynomial time. Blanchette, Ku­
nisawa, and Sankoff (1996) presented a branch-and-bound algorithm to compare
two genomes by minimizing a weighted combination of the numbers of inver­
sions, transpositions, and translocations. Bourque and Pevzner (2002) described
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a faster algorithm that proposes inversions, transpositions, fissions, and fusions
that bring neighboring genomes in a tree closer to one another. These are used to
update interior node genomes in the tree, as part of a broader search among tree
topologies. Wu and Gu (2003) described another heuristic parsimony method.

Sankoff (1999) has discussed the difficulties of taking gene duplication into
account in models of rearrangement of genomes. If events that cause duplications
are not taken into account, families of duplicated genes can be represented by a
single exemplar locus. He discusses the algorithmics of choosing which copy is
the best exemplar.

Breakpoint and neighbor-coding approximations
As the full parsimony problem is computationally difficult, approximations are
needed. Blanchette, Bourque, and Sankoff (1997) suggested the use of a count
of the number of breakpoints in transforming genomes along branches of a tree.
A breakpoint is a pair of adjacent markers in one genome that are not adjacent
in another. Figure 29.8 shows a set of four genomes of 10 loci, generated on a
phylogeny by four inversions, together with the table of presence and absence of
breakpoints. The loci are numbered 1-10, based on their order in genome A, as we
might number them if we knew only the genomes A-D. Note that a breakpoint
such as 1 :2 is considered to be the same as -2 :-1.

Solving for the tree with the fewest breakpoints is not the same as optimizing
a weighted combination of rearrangements, but it preserves some of that informa­
tion and is faster. The number of breakpoints between two genomes can be rapidly
computed for a pair of genomes, but the problem is not as simple for a phylogeny.
Blanchette, Bourque, and Sankoff introduced a heuristic method involving solv­
ing multiple traveling salesman problems to infer breakpoint patterns at interior
nodes of the tree, until there is no change in the number of breakpoint changes
in the tree. The number is then used to choose among phylogenies in an exhaus­
tive search of trees. Cosner et a1. (2000; Moret et a1., 2001) have used the binary
presence/absence coding for breakpoints. They then used standard parsimony
heuristics to search for the best tree. Gallut, Barriel, and Vignes (2000, Gallut and
Barriel, 2002) have used a modified breakpoint coding with states that represent a
marker with its two neighbors, assuming unordered parsimony change between
:hese states. In inferring hypothetical ancestors within the tree, they retain only
:hose combinations of states that would yield a full genome.

5ynteny
_-\.nother, even rougher, approximation is to score only whether or not genes are
-:>resent on the same chromosome, without regard to where they actually are
.:>n it. Nadeau and Sankoff (1998) review work on synteny. Ferretti, Nadeau,
3. d Sankoff (1996) developed a method for estimating the minimum number of
cO\-ents-reciprocal translocations and Robertsonian fissions or fusions-needed
:,) change one synteny pattern into another. DasGupta et a1. (1997) showed that
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B 1 1 0 0 0 0 1 0 0 0 1 1
C 1 0 1 0 0 1 0 0 1 1 0 0
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Figure 29.8: Four 10-locus genomes generated from a common ancestor
by inversions (which are shown) and the table of breakpoints that cor­
responds to the observed genomes (the ones with darker borders and
names A-D). The breakpoints table shows for each pair of markers in
which genomes they will be found to be adjacent. Pairs that are always
adjacent are omitted. Numbering of markers is relative to genome A.

this problem is NP-hard. In general, synteny alone is less and less used, as more
detailed maps showing locations of loci become ever more widely available.

Probabilistic models
However, all the methods above are parsimony methods. They are subject to the
usual worries about statistical good behavior. Sankoff and Goldstein (1989) were
the first to make a parametric model of rearrangement of a map (using only in­
versions and not allowing deletion or duplication). Sankoff and Blanchette (1999)
have made a start on statistical analysis of these models by using only the break­
points information and computing phylogenetic invariants for a model of break­
points independently arising and disappearing in a model of unsigned inversions
("reversals").

It seems likely that to make enough progress on semi-realistic models of
genome rearrangement, statistical inference can be carried on only by using
Markov chain Monte Carlo methods. These could incorporate moderately real­
istic (and therefore moderately ugly) models. Larget, Simon, and Kadane (2002)
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have made the first MCMC model of genomic change, for mitochondrial gene or­
der that is assumed to change by inversions. Their Bayesian MCMC reconsidered
both gene orders and phylogenies.

It is probable that parsimony methods will do better in the case of gene or­
ders than they do for aligned molecular sequences, because the chance of parallel
change or reversion is much lower in the gene order case. The extra computa­
tional difficulties in doing parsimony on gene order come from the large size of
the space of possible states. That in turn makes parallelism and reversal less prob­
able than in molecular sequences. Parsimony may behave better on gene orders
than on nucleotide sequences, so that there is less need to do a full probabilistic
treatment.

Genome signature methods
One cannot leave the topic of comparative genomics without treating genome signa­
ture methods, though it is hard to know where they fit in. In fact, this uncertainty is
an indication of their importance. These methods originated in the work of Gibbs
et al. (1971) on alignment-free methods for detecting similarity between protein se­
quences. They tabulated, for each protein, the frequency of pairs of adjacent pairs
of amino acids. Thus if Serine (S) is followed by Tryptophane (W) twice in one
protein, they placed a 2 in the 20x20 table of amino acid pairs. They then used a
clustering method to make trees of protein sequences.

This did not involve any alignment step. If one protein had two SW pairs,
and so did another, but these did not occur at corresponding positions, these two
proteins would nevertheless appear similar. There is thus some necessary loss of
information, as we must forego the information provided by the alignment.

Blaisdell (1986) used adjacent pair and triple frequencies to construct a phy­
logeny, his measure of difference of sequences being derived from the significance
of a chi-square test of homogeneity when the sequences were combined. From a
simulation, he inferred a relationship (Blaisdell, 1989a) between his measure and
alignment mismatch scores, and he tested the effectiveness of these alignment-free
methods compared to methods that used alignments (Blaisdell, 1989b).

Karlin and Ladunga (1994) used dinucleotide relative abundances

PXY = fxy/Uxlv) (29.3)

:omputed from the base frequencies Ix and the dinucleotide frequencies fxY,
\\'hich correct for differences in base composition between genomes. They also
.:ieveloped a distance between arrays of dinucleotide relative abundances. Karlin,
Ladunga, and Blaisdell (1994) also developed an analogous relative abundance for
:rinucleotides.

In ordinary models of random change of nucleotides, we would expect the
:iinucleotide relative abundances to fluctuate randomly, and we would expect re­
ated species to share some of those fluctuations. There would be phylogenetic
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signal, but there would also be a large loss of power owing to not using alignment
information. It is when the model of evolution is not one of the standard ones
that these genome signature methods could prove valuable. They may indicate
departures from conventional models, involving genomically significant events
such as spread of transposons. Thus the genome signature methods could serve
as a valuable exploratory tool where conventional models would fail. The uncer­
tainty about where they fit in this chapter comes from their lack of reliance on
the processes that we normally assume to be present. It is precisely because they
do not rely on detailed assumptions about base substitution processes or genome
rearrangement processes that they are of interest.
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Consensus trees and distances
between trees

The development of phylogenetic inference led quickly to situations in which a
researcher had two or more trees for the same group, often from different types
of data. The issue then arose as to how to put those together to get one overall
estimate of the tree. Alternatively, how can one describe the extent of difference
between the trees? These tasks are, respectively, the computation of consensus
trees and of distances between trees. We consider them in turn and then return
to the issue of whether one ought to use these methods. The article by Swofford
(1991) contains an excellent introduction to this subject; Bryant (2003) has a good
survey of consensus tree methods from a more mathematical viewpoint.

We have already introduced the majority-rule consensus tree in Chapter 20, but
we will introduce it again here, in a somewhat more generalized treatment.

Consensus trees
Consensus trees are trees that summarize, as nearly as possible, the information
contained in a set of trees whose tips are all the same species. Figure 30.1 shows a
set of trees whose consensus we want to compute.

Note the differences between the trees. The first tree differs from the second
and third trees. Those two trees are identical to each other. The differences be­
tween the first tree and the others is entirely in the group BDEF.

For any consensus tree method or tree distance it is important to remember
whether the trees are to be regarded as rooted or uillooted. With an unrooted
-onsensus tree method and two trees that differ only in the placement of their root.
,he two trees are considered to be identical. When the consensus tree method is
:ooted, they are considered to be in conflict.

521
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G A C BED F G A C F BED G A C F BED

Figure 30.1: A set of trees over the same species, which will be used as
the example for consensus methods and tree distances in this chapter.

5trict consensus
The strict consensus method (Rohlf, 1982) is the simplest. It constructs the tree
that contains all groups that occur on all trees. "Groups" means monophyletic
groups if the trees are regarded as rooted. If they are regarded as unrooted, each
branch is regarded as creating a partition of the species, and instead of mono­
phyletic groups we consider the presence or absence of the partitions. The first
tree in Figure 30.1 has a branch that separates group BEDF from the rest of the
tree; if this were an unrooted tree, this branch would be considered to define the
partition {ACe I BDEF}.

In the example of Figure 30.1, the trees can be considered to be rooted. (They
might have been rooted by using G as an outgroup.) Figure 30.2 shows their strict
consensus tree. Three of the groups are present in the strict consensus tree.

However, the strict consensus is too strict for most purposes. Consider, for ex­
ample, the two trees in Figure 30.3. They are nearly identical, differing only in
species A being moved. Yet there is no monophyletic group (or, considered as

G A C F BED

Figure 30.2: Strict consensus of the trees in Figure 30.1.
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ABC D E F G BCD E F G A

Figure 30.3: Example of the limitations of strict consensus trees. These
two trees differ only in the placement of species A and are otherwise
quite similar. Yet their strict consensus tree is completely unresolved,
because none of the sets of species that have B, C, or D on the right tree
have species A and all of the sets of species on the right tree that have
E, F, or G also have species A in them.

unrooted trees, partition of the species) that is present on both trees-the strict
consensus is a totally unresolved tree. There has therefore been an effort to find
methods that retain some of the information about common structure without be­
ing as rigid as the strict consensus method.

Majority-rule consensus
We have already been introduced to the majority-rule consensus tree in Chapter
20. You will recall that it is the tree consisting of those groups that are present
in a majority of the trees whose consensus is being taken. Figure 30.4 shows the
majority-rule consensus tree for the example of Figure 30.1. In fact, there is an
entire family of consensus tree methods that includes the majority-rule consensus
and the strict consensus. These are the NIe consensus trees defined by Margush
and McMorris (1981). The parameter g is a percentage that ranges from 50% to
100%. The corresponding consensus tree method constructs a tree that contains all
those groups that occur more than that percentage of the time. (If the percentage
is 100, we take those that occur 100% of the time.) It will be clear that 1\1150 is the
majority-rule consensus tree, and ]\1100 the strict consensus tree. 1\1180 , for example,
is the tree containing all groups that occur more than 80% of the time. All of these
methods avoid putting two groups that might conflict on the tree, because they all
ensure that among the input trees there is at least one that contains both groups,
so that the two groups cannot conflict.

In the example in Chapter 20, the majority-rule consensus tree was fully re­
solved, but was not the same as any of the five fully resolved trees for which it
~\'as their consensus. It contained three groups, but none of the input trees had
,,11 of those three groups. In the present example, there are five groups, and the
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G A C F B E D

Figure 30.4: The majority-rule consensus tree for the example of Figure 30.1.

rightmost two trees of Figure 30.1 are trees that contain all of them. In Figure
30.4, I have put numbers next to each of the branches, indicating which fraction of
the time each branch is present among the input trees. The ones that have 67 are
present two-thirds of the time. We can immediately see what the Me family will
look like: When f! ::; 66 the Me consensus tree will be identical to the majority-rule
consensus tree. For f!. above 66, the lUeconsensus tree will be identical to the strict
consensus tree. It will always be the case that the members of the 1\1e family for
higher values of f! can be constructed by collapsing branches.

Adams consensus tree
The Adams consensus tree (Adams, 1972, 1986) is less strict than the strict consensus,
while not relying as majority-rule consensus does on "taking a vote." If we add
an extra copy of one of our trees, the majority-rule consensus result may change,
while the Adams consensus will not. This makes Adams consensus of great in­
terest, though, as we shall see, it has one major limitation. The basic idea of the
Adams consensus tree is to find in all of the trees all three-taxon statements. As
was mentioned in Chapter 12, three-taxon statements are triples of three species
that show two of the species to be more closely related than is the third. The
Adams consensus tree is formed by finding all those three-taxon statements that
are not contradicted by any of the trees, and then forming a tree from them. For
example, in our example of three trees in Figure 30.1, the triple of species ((D,E),B)
appears in that order in all three trees. In other words, if we were to eliminate all
species except those three, all three trees would have the same three-species tree
for these three species. The Adams consensus tree will contain the group (D,E),
showing that those two species are nested relative to species B. However, the triple
of species BEF does not have any nested topology that is shared by all three trees.
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G A C F BED

Figure 30.5: The Adams consensus tree for the example of Figure 30.1.

In the first tree, the three-taxon statement for these species would be (B,(E,F)) and
in the remaining two trees it would be (F,(B,E)). Thus F, B, and E are represented
in the Adams consensus tree as being a trifurcation. If one of the input trees had
a trifurcation for these three species, this would be counted as not conflicting with
any three-taxon statement.

Figure 30.5 shows the Adams consensus tree for this case. The group DE shows
up in the Adams consensus tree, but does not appear in the strict consensus tree, as
in the first tree it is not present as a monophyletic group. The group BED shows up
in the majority-rule consensus tree, as it is present in two-thirds of the trees. It does
not show up in the Adams consensus tree, as neither the three-taxon statement
(F,(B,D)) nor the three-taxon statement (F,(B,E)) is present in all of the trees whose
consensus is being taken.

You may have detected the limitation of the Adams consensus tree already.
Three-taxon statements have no meaning unless we have a rooted tree. The Adams
consensus tree is defined only for rooted trees, and there is no counterpart for un­
rooted trees. One might think that we could define an unrooted Adams consensus
tree method by rooting the tree at a particular species (say, species #1), construct­
ing the Adams consensus tree of the resulting rooted trees, and then considering
the resulting consensus tree as an unrooted tree. This does not work because the
result turns out to depend on which species is taken as the root! We may obtain
different umooted consensus trees when using species #1 as the root than we do
\\'hen using species #2 as the root.

A dismaying result
\Ve might wonder whether there is some way to define a consensus method par­
allel to the Adams consensus method, but for unrooted trees. Instead of requiring
chat we make a consensus of all of the three-taxon statements, we would want to
:11ake a consensus of quartet statements. Thus if all of the trees have the quartet
(I,J)(K,L)) in them, this quartet should also appear in the consensus tree. Steel,
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Dress, and Bocker (2000) have proven that there cannot be such a method. They
make three requirements for any reasonable consensus tree method. One is that
relabeling of the species at the tip of the tree should yield the same result, with the
species appropriately labeled. The second is that the result should not depend on
the order in which the trees are input. The third is the requirement that a quartet
that appears in all trees also appear in the consensus tree.

They are then able to show a simple example in which the third requirement
cannot be satisfied if the first two are assumed to hold! It is the two uillooted trees
((a,b),(c,d),(e,f)) and ((b,c),(d,e),(f,a)). There therefore cannot exist a satisfactory
analogue to the Adams consensus tree method for unrooted trees. There does not
seem to be much that we can do about it except grumble.

Consensus using branch lengths
There has been less attention to formulating consensus tree methods that use the
branch lengths of the tree as well as the topology. One generalization of majority­
rule consensus trees would be to take the mean or the median of all the lengths of
a particular branch. But what to do when the branch is not present? I suggest that
we count each branch as being of length 0 when it is not present, and otherwise use
its length. The length assigned to this branch could then be the median of these
quantities. If the branch is always present, that means that the length assigned it
in the consensus tree will simply be its median length. If it is absent some of the
time, those trees count as having 0 for this branch length. Thus if there are 11 trees,
four of which do not have the branch, and the others have it present with lengths
0.1,0.2,0.2,0.3,0.34,0.4, and 0.5, we need to take the median of the 11 quantities
0, 0, 0, 0, 0.1, 0.2, 0.2, 0.3, 0.34, 0.4, and 0.5. This is 0.2. The branch will then be
listed as present in the consensus tree, with length 0.2.

If there are an even number of trees, exactly half of which have the branch
present, we must be careful. In order to avoid making a "tree" with contradictory
branches in it, we must count the branch as absent. Following the rule that any
branch whose median length is 0 is absent, we would then have to redefine the
median as the smallest value that has half the branch lengths less than or equal to
it. To be consistent with this, if we have (say) four branches of length 0.1, 0.2, 0.3,
and 0.4, the median will be taken to be, not 0.25, but 0.2.

This consensus tree method could be called the median branch length (MBL)
consensus method. If we consider only the resulting tree topology, it will always
be the same as the majority-rule consensus tree. ote that this method tends to
shorten branches when they are absent some of the time in the input trees. It is not
self-evident whether this is a good thing to do. If not, we could take the average
branch length only over all those that have the group present.

Other consensus tree methods
There are other consensus tree methods. Some are listed here; for more informa­
tion about them see also the excellent survey by Bryant (2003).
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• The combinable component consensus method (Bremer, 1990). This is similar to
the strict consensus. It includes all groups that occur on at least one tree and
are not contradicted on any of the trees. Thus it can allow some groups that
would be rejected by the strict consensus. Two groups contradict each other
when they overlap, but neither is included in the other. If all trees are fully
resolved, combinable component consensus is the same as strict consensus.
The presence of an unresolved region in a tree does not contradict structure
within it. Thus the unresolved group ABC on one tree is not contradictory
to the group AB on another tree. In that case, the combinable component
consensus method can retain the group AB, if it is not contradicted in any
other tree. But a strict consensus would reject AB because it was not present
in all trees. The combinable component consensus is also sometimes called
the loose consensus or the semi-strict consensus.

• Nelson consensus (Nelson, 1979) finds the largest clique of groups that are
all compatible with each other. Two groups are compatible if, in the above
sense, they do not contradict each other. Page (1989) has distinguished be­
tween Nelson consensus and strict consensus, with which it has sometimes
been confused. He has also (Page, 1990) modified Nelson's algorithm to re­
move some difficulties. We can follow Bryant (2003) in calling the resulting
method Nelson-Page consensus. Nelson-Page consensus will come close to
being majority-rule consensus. When a fully resolved majority-rule consen­
sus tree exists, this will also be the Nelson-Page consensus tree. Swofford
(1991) gives a careful discussion of the literature on Nelson-Page consensus.
Another consensus method closely related to Nelson-Page consensus is the
"asymmetric median tree" of Phillips and Warnow (1996).

• Consensus trees based on rooted trees with branch lengths. A number of
methods have been developed that use rooted trees and remove groups
whose branches do not rise far enough from the root (Neumann, 1983; Stine­
brickner, 1984, 1986).

• Consensus trees based on path distances. Lapointe and Cucumel (1997) have
introduced the average consensus method. It takes unrooted trees with branch
lengths, constructs a set of predicted distances from each, and then finds a
tree that fits these best by least squares, where the sum of squares is com­
puted separately for each set of predicted distances and then added up. I
have already mentioned this in Chapter 12 as it is a consensus supertree
method as well. Buneman (1971) suggested another distance-based consen­
sus tree method, based on averaging the path-length distances over all trees,
then fitting a tree to these averages.

• The MRP consensus. The representation of trees by binary characters used by
Baum (1992) and Ragan (1992b) can be used to find the tree that is most par­
simonious using these as a data set. This too has been mentioned in Chapter
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Figure 30.6: Three trees (top) and a consensus subtree (bottom).

12 as a consensus supertree method. The method of deriving binary charac­
ters from trees was first introduced by Kluge and Farris (1969) for character
state trees and by Farris (1973a) for phylogenies.

References to a number of other consensus methods will be found in the review
by Bryant (2003).

Consensus subtrees
A counterpart to supertrees is to take a set of trees, all of which have the same
species on them, and to drop some, hopefully a small number, until we get a set of
subtrees that are all the same. Figure 30.6 shows this process done for a set of three
trees. Gordon (1980) suggested deleting the smallest number of objects that would
result in all trees being the same. Steel and Warnow (1993) gave an algorithm for
two trees whose speed was quadratic in the size of the trees. Faster algorithms
to find strict consensus subtrees were given by Amir and Keselman (1997) and
Henzinger, King, and Warnow (1999).

Swofford (1991) gives an example suggesting that a strict consensus may not be
the most meaningful objective. Wilkinson (1994) has suggested methods of com­
puting subtrees corresponding to Adams consensus trees, and he has also (Wilkin­
son, 1996) suggested obtaining majority-rule reduced consensus trees.

Distances between trees
In addition to knowing what common structure is implied by a set of trees, we
may alternatively be interested in measuring how different they are. A number of
methods for measuring difference between trees have been proposed.
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Figure 30.7: Two trees whose symmetric difference is computed. The
branches that differ between the tree are highlighted with darker lines.
The tables of partitions for each tree are shown, and the partitions that
differ between the trees are also highlighted in bold. As there are three
of these, the symmetric difference is 3.

The symmetric difference
Bourque (1978; see also Robinson and Foulds, 1981) defined a distance between a
pair of trees based on the number of branches that differ between the trees. This
has become known as the symmetric difference or the partition metric. If we have two
unrooted trees and ignore their branch lengths, each can be considered as a set of
branches, and each branch divides the species into a partition with two sets, one
connected to each end of the branch. For each tree, make a list of the partitions it
implies. The symmetric difference is simply a count of how many partitions there
are, among these lists, that are not shared with the other tree. An example is shown
in Figure 30.7. The two trees shown there have some branches that are not shared
between them. These are shown by darker lines in the figure. The symmetric
difference is easy to compute, but it is highly sensitive to all differences between
trees. Penny, Foulds, and Hendy (1982) sampled randomly generated trees for 11
species. They found that 81% of pairs between them had the maximum possible
distance when the symmetric difference was used. Some of the pairs that achieved
the maximum distance may have had partial similarities, but this was not enough
to reduce their difference. An example is the pair of trees in Figure 30.3. In spite of
having much structure in common, the trees will share no partitions and thus ''''ill
achieve the maximum possible value of the symmetric difference.
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Although I have described the symmetric difference as computed for unrooted
trees, it can also be defined for rooted trees. In that case, each branch defines a set
of species, those connected to its upper end. The symmetric difference is then the
number of sets that differ between the two trees.

The quartets distance
A distance measure that is more sensitive to partial similarities of structure be­
tween trees is the quartets distance of Estabrook, McMorris, and Meacham (1985).
They actually defined four different dissimilarity measures, based on looking at all
possible quartets of species. If we use as our example Figure 30.3, which showed
the limitations of strict consensus, we will find that the two trees there each have
35 possible quartets of species (7 x 6 x 5 x 4/1 x 2 x 3 x 4). Of these, all the 15
quartets that do not involve species A are resolved identically in the two trees. For
example, the quartet BDEF has unrooted tree topology ((B,D),(E,F)) in both trees.
However all 20 quartets that involve species A differ in topology. One of these is
the quartet ABCG, which has unrooted tree topology ((A,B),(C,G)) in the first tree
and ((A,G),(B,C)) in the second.

In their paper Estabrook, McMorris, and Meacham defined different dissim­
ilarity measures depending on how unresolved quartets were handled in trees
that were not entirely bifurcating. In the fully resolved case considered here, they
would not differ: All of the measures would be 20/35 = 0.5714. It would be possi­
ble to define a distance that was simply the number of quartets differing in topol­
ogy, which would be 20 in this example, but it seems more meaningful to scale
it by the total number of quartets. Note that this distance does have some sensi­
tivity to the similarity of the two trees: They are not 100% different but only 57%
different.

Estabrook (1992) further developed these measures to indicate for particular
species to what extent their placement on the two trees differed. Critchlow, Pearl,
and Qian (1996) developed a similar distance for rooted trees, which used triples
(three-taxon statements) rather than quartets. The quartets distance at first looks
difficult to compute, since the number of quartets in a tree is proportional to the
fourth power of the number of species. However, Brodal, Fagerberg, and Pedersen
(2001) have discovered how to compute it in a time proportional to n(ln n)2, which
is almost linear in the number of species.

The nearest-neighbor interchange distance
Waterman and Smith (1978) suggested another measure of distance between trees.
They proposed that we use the number of nearest-neighbor interchange (NNI) re­
arrangements that are needed to go from one tree to the other. We discussed these
rearrangements in Chapter 4. As the rearrangements can be precisely reversed
to go the other way, it would not matter which of the two trees we chose as the
starting point. For the trees in Figure 30.3, we can get from one to the other in only
four NNI rearrangements, each time moving species A. The NNI distance between
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these trees is then 4. This distance has the advantage of not seeing those two trees
as greatly different, so that it does not have the same problem as the symmetric
difference.

The difficulty with the NNI distance is that, for large trees that are very differ­
ent, it is impossibly hard to compute. Li and Zhang (1999) have shown that com­
puting it for unrooted bifurcating trees is NP-complete. Interestingly, the problem
seems related to one in quantum theory (Fack, Lievens, and Van der Jeugt, 1999).

Allen and Steel (2001) have investigated extensions of the NNI approach to
SPR and TBR rearrangements (recall that these were defined in Chapter 4). They
have shown that a distance based on TBR rearrangements is actually much easier
to compute than one based on NNIs.

The path-length-difference metric
Penny, Watson, and Steel (1993) suggest a distance that measures, for each pair
of species, the number of branches that separate them on the tree. (This will be 1
greater than the number of nodes that separate them.) The table of branch num­
bers is computed for each tree. The distance between trees is the square root of the
sum of squares of the differences between these numbers. This distance is related
to earlier suggestions by Farris (l969b), Williams and Clifford (1971), and Phipps
(1971).

Distances using branch lengths
All of these distances use the tree topologies but not the branch lengths. Two dis­
tances have been defined that use the branch lengths. They are both related to the
symmetric difference. Robinson and Foulds (1979) defined one, and Mary Kuhner
and I (Kuhner and Felsenstein, 1994) defined the other. Ours was a squared dis­
tance called the branch score. Both start with a list of all possible partitions of the
species. To each partition assign a number that is 0 if the partition is absent in the
tree, or is the branch length if the branch is present. The Robinson-Foulds distance
is the sum of absolute values of the differences between these two lists of num­
bers. The branch score is the sum of squares of differences between these numbers
for two trees. If the same branch is present in both trees, it will contribute the
absolute value of the difference, or the square of the difference, between the two
branch lengths. If the branch is absent from one tree, it will contribute its length
in the other tree (or the square of its length). If absent from both, it will contribute
zero, so that we actually need only consider those partitions that are present in
one tree or the other. Note that we include all partitions present on either tree, not
just the ones corresponding to internal branches.

Figure 30.8 shows the calculation for the two trees previously used in Figure
30.7. It shows a table of all partitions and the branch lengths corresponding to
each one. Partitions for external branches of the tree are included. Where a par­
tition corresponds to a branch that is not present on the tree, the branch length is
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Figure 30.8: Two trees (with the same topology as in Figure 30.7) with
branch lengths, showing the list of branch lengths needed in the com­
putation of the branch score or the Robinson-Foulds distance.

indicated by "none." The Robinson-Foulds distance is the sum of the absolute val­
ues of the differences between the two columns in that figure. The branch score
is the sum of the squares of the differences between the two columns of branch
lengths in the figure. In both cases we count "none" as zero. The result for the
Robinson-Foulds distance is (ignoring all pairs of branch lengths that are identical
in the two lists)

10 - 0.21 + 10.4 - 0.31 + 10.2 - 0.31 + 10.3 - 0 I
+ 10.1 - 0 I + 10.05 - 0.21 + 10.2 - 0.11 = 1.05

(30.1)

and for the branch score it is

(0 - 0.2)2 + (0.4 - 0.3)2 + (0.2 - 0.3)2 + (0.3 - O?

+ (0.1 - 0)2 + (0.05 - 0.2)2 + (0.2 - 0.1)2 = 0.1925
(30.2)
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The relationship of the branch score to the symmetric difference should be ap­
parent from the figure. The symmetric difference is the sum of the number of
rows in the table that have "none" in one of their columns (here it would be 3).
In fact, if all branch lengths of both trees are 1.0, the symmetric difference is equal
to both the Robinson-Foulds distance and the branch score. There is no such sim­
ple relationship to the path length difference metric of Penny, Watson, and Steel.
Differences in interior branches, through which more paths between species pass,
affect the path-Iength-difference metric more than do differences between termi­
nal branches. The Robinson-Foulds distance and the branch score treat both kinds
of branches equally.

Since we want to compute a distance, it seems natural to take the square root
of the branch score and call that the distance. Let us call that the branch-length
distance (BLD). It will equal the ordinary Euclidean distance in the space defined
by the branch lengths if the tree topologies do not differ. The Robinson-Foulds
distance does not need square-rooting.

Are these distances truly distances?
One might stop to ask whether the "distances" we have been defining satisfy the
mathematical requirements of being called a distance. Those are the three condi­
tions for being a metric: that the distance from an object to itself is zero, that the
distance from A to B is the same as the distance from B to A, and that the Trian­
gle Inequality holds true. It requires that the distance directly from A to B is never
greater than the distance from A to C plus the distance from C to B. In other words,
the direct route is never longer than an indirect route.

The first two requirements are satisfied by all the distances we have mentioned.
The only issue is satisfying the Triangle Inequality. All of the distances we have
mentioned can be computed from a list of numbers for each tree. For the sym­
metric difference, this is a list that has all possible partitions of the species, with
the entries in it being either 1 or 0, depending on whether that partition is or is
not present in the tree. If we have such a list for each tree, the symmetric differ­
ence is the sum of the sum of absolute values of the differences between the lists.
Any such formula can easily be shown to satisfy the Triangle Inequality. So the
symmetric difference is a metric, and a mathematician will not object to calling it
a "distance."

We can do a similar proof for the quartets distance, since each tree can be char­
acterized by a list of numbers, three for each possible quartet. For each quartet we
have three possible ways that it can be resolved. ACDF can be either ((A,C),(D,F))
or ((A,D),(C,F)) or ((A,F),(C,D)). We make a list that has three quantities for each
possible quartet, and have it contain a 1 when that quartet is resolved in that way
in the tree, and aotherwise. Then we find that the quartets distance is the sum of
absolute values of differences between the lists for the two trees. As in the case
of the symmetric difference, this establishes that the quartets distance satisfies the
Triangle Inequality.
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For the nearest-neighbor distance, we can simply note that we can imagine the
graph of all possible trees, with connections whenever one tree can be obtained
from another by a nearest-neighbor interchange. The NNI distance is the distance
in this graph. It is easy to show that it must then satisfy all the requirements or
being a metric, including the Triangle Inequality.

The branch score is a bit more problematic. It is defined as the sum of squares
of differences between two lists of numbers, one for each tree. The branch-length
distance derived from it is easily shown to be a metric. (It is also not hard to
show that the branch score itself is a metric, but we prefer to have the BLD be
the quantity that is called a distance, since for trees of the same topology it is the
ordinary Euclidean distance in a space whose coordinates are the branch lengths.)
One can also show that the sum of absolute values of differences of branch lengths
is a metric. Maybe this should be called the branch length absolute difference
(BLAD).

Consensus trees and distances
Consensus trees and distances between trees seem to be somehow related. In cer­
tain cases this relationship can be made explicit. We could imagine finding a tree
that lay in the center of a cloud of trees, in the sense that its total distance to all of
them was as small as possible. This is called a median tree. We could think of do­
ing this for any of these distances. In the case of the symmetric difference, we can
identify the median tree. It turns out to be essentially the majority-rule consensus
tree. We have to say "essentially," because there is one important qualification.
Barthelemy and McMorris (1986) show that if the number of trees is odd, the me­
dian tree is simply the majority-rule consensus tree. If the number of trees is even,
it is possible for there to be two median trees, each having some groups that occur
in exactly 50% of the trees. These would not, strictly speaking, be majority-rule
consensus trees, as 50% is not quite a majority.

This relationship between median trees and majority-rule consensus trees may
seem subtle, but it is easily derived. One need only consider that for each partition
in any tree in the tree space, the contribution that partition makes to the distance
to all other trees is equal to the number of trees in which it does not occur. I leave
the rest of the proof to you as an exercise.

Trees significantly the same? different?
It is common for biologists to ask whether two trees can be shown to be signifi­
cantly similar, or significantly different. When this is done directly from the trees
without recourse to data, it is problematic. It is possible to ask whether two trees
show more similarity than would two trees drawn at random. There is the issue
of what random distribution of trees is relevant. Random distributions can arise
in a number of ways, such as by random branching of a lineage, or by random
choice from the list of all possible trees. Steel and Penny (1993) show results for
the means and variances of the symmetric difference, the quartets distance, and



Consensus trees and distances between trees 535

the path-length differences for trees drawn randomly from a number of such dis­
tributions. They find that the asymptotic distributions are Poisson distributions,
and they also investigate them by simulation.

One can use such results to test whether two trees are closer than two random
trees would be. But this may not be what you really want to know. If your data
set contains even a single pair of sibling species that are always adjacent in the
tree, this may be enough to cause the trees to be significantly closer than random.
There is no guarantee that the signal comes diffusely from the whole tree-it may
instead be responding to a feature that is in common but is of little interest to the
biologist. Thus these tests will usually be of limited interest.

The question whether two trees are different is even less exciting-because it
is usually vacuous. If I ask you whether hvo friends of yours are different, the an­
swer is always that they are. They differ in some respect, however small. Likewise,
two trees that are not identical are different-and that is all that means. Whether
they are significantly different is more complex, and requires a statistical model
for the variation of the features of the tree. This statistical model is lacking if we
ask only about the trees and do not consider the data that generated them. So, yes,
those trees are different, and no, it isn't a very good question to ask.

What do consensus trees and tree distances tell us?
Before using consensus trees or tree distances, it is worth asking what they do and
do not tell us. They treat each tree equally, and they treat each feature of each
tree equally. This mayor may not be appropriate. They do not necessarily tell
us whether a feature of a tree is well-supported by the data, nor do they tell us
whether we care about the feature. Suppose that we have studied 10 different loci
in the great apes, and nine of them give strong support to a clade consisting of
humans and chimpanzees. One of the loci gives weak support to an alternative
clade (say, chimps and gorillas), but comes close to supporting the human-chimp
clade. Nevertheless, that locus has as its best estimate a tree with the chimp-gorilla
clade. If we were making a strict consensus tree of the trees inferred from the 10
loci, we would get no resolution of the human-chimp-gorilla trichotomy.

This shows us both of the difficulties. The consensus tree does not take into
account the strength of the evidence supporting the groups in each tree. It sim­
ply counts them as present or absent, without asking how present or how absent
they are. The consensus tree also fails to take into account our great interest in the
human-chimp-gorilla trichotomy, preferring to babble on and on about what is
happening among the gibbons. One might object that requiring a strict consensus
is too strong, but the same problems occur with less stringent consensus methods.
If, of our 10 loci, four supported a human-chimp clade very strongly, and six sup­
ported chimp-gorilla, but only slightly, then using a majority-rule consensus tree
would give a misleading result. It would simply take the vote (6 to 4) without
considering how strongly held the opinions were. The six loci might be short and
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evolving at a high rate, with lots of contradictory phylogenetic signal. The four
might be large loci with lower rates of evolution that gave clear results.

Tree distances have similar problems. They can show large differences between
trees that agree in a crucial area. We can have trees that all show the human-chimp
clade, but they might have large distances from each other as a result of differences
in the placement of gibbons.

One application of consensus trees that escapes these problems is their use in
summarizing the results of bootstraps or jackknifes. (Somehow it seems wrong
to call these "jackknives," so I have not done so.) The frequency with which a
partition (or clade) appears among the bootstrap replicates or the jackknife repli­
cates is then a direct reflection of the strength of data supporting the grouping, and
consensus trees are then entirely appropriate. This suggests that if each data set
were represented by a cloud of bootstrap or jackknife tree estimates, there might
be interesting consensus tree methods that summarized the different studies with
a common tree. If a partition of the species was strongly supported by bootstrap
or jackknife estimates for one or more data sets and only weakly contradicted by
other data sets, we would want the consensus method to include it. A consensus
method that simply combined all trees would be inappropriate here, as it would
lose the information about how strongly supported a grouping was in anyone
study.

Sets of trees that simply reflect analysis of different data sets, or use of different
phylogeny methods, or trees tied for best under a single method do not have the
same meaning, and their consensus may be more problematic.

The total evidence debate
The validity of using consensus trees is at the heart of a vigorous debate in sys­
tematics. Opponents of using them advocate instead the total evidence approach.
With a multiple-locus data set, instead of inferring separate trees for each locus
and then making a consensus tree, they would put all loci into a common data set,
in effect concatenating their sequences end to end. They then analyze these using
parsimony, to find the most parsimonious tree or trees.

This has the great advantage of taking into account the different amounts of
sequence in different loci and of combining the evidence in a single tree that does
not depend on an arbitrary choice of consensus tree method. As advocates of to­
tal evidence use parsimony methods, they also can incorporate discretely coded
morphological characters, including fossil data. The total evidence approach orig­
inated in the molecules-versus-morphology literature of the 1980s. It has been
most forcefully advocated by Kluge (1989; Eemisse and Kluge, 1993; Kluge, 1998).

The case against the total evidence approach is made by Bull et al. (1993), by De
Queiroz, Donoghue, and Kim (1995), and by Miyamoto and Fitch (1995). If differ­
ent loci have substantially different rates of change, combining them into one data
set obscures evidence that indicates that one locus should be treated differently
from another. In the limiting case in which all loci have low (though possibly un-
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equal) rates of evolution, parsimony does a reasonable job of combining evidence.
In Chapter 9, we saw that in this limit parsimony and likelihood infer the same
tree, and the optimal weights for changes become equal in sites that change at dif­
ferent rates. However, when we are not in this limiting case, parsimony will do
less well. When two trees differ in parsimony score by a single step, this may con­
flict much less with the evidence for a locus that has a high rate of change than it
does for a locus that has a low rate of change. In that situation, the overall parsi­
mony score exaggerates the evidence coming from the loci with high evolutionary
rates. The use of consensus trees is a response to this problem.

The consensus approach may involve predefined subsets of data, or may in­
volve testing whether data sets should be divided into partitions whose trees need
to be analyzed separately. This type of test has been advocated by Bull et al. (1993),
Rodrigo et al. (1993), and De Queiroz (1993). It frequently involves use of the ILD
test, which was described in Chapter 20. There is a large and complex literature on
this, which is reviewed by De Queiroz, Donoghue, and Kim (1995); Huelsenbeck,
Bull; and Cunningham (1996), and Page (1996).

The last word has not been said in this controversy, so readers should also look
for more recent papers that cite these studies.

A modest proposal
In certain cases it may be possible to have the best of both approaches and to cir­
cumvent the issue of testing combinability of data. Suppose that the issue is varia­
tion in rate of evolution from locus to locus. For variation of rate of evolution from
site to site, we have seen in Chapter 9 that, in a parsimony method, this argues for
unequal weighting of changes. More changes in a site lead us to consider it a site
with a high rate of change, and this in turn will lead us to weight it less heavily. In
Chapter 7 we saw successive and nonsuccessive weighting methods that give less
weight to changes in a site the more of them there are.

The same will hold for loci. If we have evolutionary rates that vary not only
from site to site, but also from locus to locus, we should use the number of changes
at a locus to help decide what the overall rate of change at that locus is. The more
changes there are per site at a locus, the lower the weight of each individual change
should be. We could construct a weighting method that gave changes at site j of lo­
cus i a weight w(nij, N i ) that depended on both the number of changes nij at that
site and the number of changes N i at that whole locus. Without going into details,
I will simply say that this function can be chosen to reflect the degree of variability
of rates among loci and among sites within loci. The upshot is a weighted par­
simony method that will automatically de-emphasize information from loci that
have large numbers of changes. This will be a total evidence approach, but in ef­
fect it will also come close to what a consensus method would do. It counts not
simply changes in individual sites but also evidence from whole loci.

One need not confine this method to using parsimony. Likelihood methods
can use hidden Markov models (HMMs) to take variation of evolutionary rates
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from site to site into account (as we have seen in Chapter 16). Why not do the
same for loci? We could have rates of evolution varying among loci and assun
a distribution of these per-locus rates. The overall likelihood at a locus wouk
then be an integral over the per-locus rates, weighted by the probability densi :'
f(r) of these rates, where the rates were treated as multipliers affecting the branc:
lengths:

L(i) = j"X) f(r) Prob (D(i) IT, T) dT
.0

I have recently (Felsenstein, 2001b) discussed variation of evolutionary rates ow~
loci, using a population-genetic model to relate different strengths of selection a:
different loci to their evolutionary rates.

If such a model were used, it could be described as a total evidence approach
(likelihood). Perhaps this should be abbreviated TEAL. It would not have the for­
mation of consensus trees as part of the method, but if the per-locus evolutionary
rates varied greatly, it would combine the evidence in ways that came close to us
of a consensus method, while still taking the total evidence into account.

In the above discussion, we have been assuming that the source of heterogene­
ity among results from different loci is high evolutionary rates at some loci. An­
other possible source of difficulty is discrepancy between species trees and coale ­
cent "gene trees." This was dealt with in Chapter 29. It requires somewhat differ­
ent methods. Similarly, horizontal gene transfer and paralogy in gene families ca
cause discrepancies and again require different methods for analysis.



Chapter 31

Biogeography, hosts, and
parasites

Two different bodies of work have arisen that examine the correspondence be­
tween two trees, one in biogeography and the other in parasitology. They are
closely related, so I will treat them together here. In biogeography, the book by
Nelson and Platnick (1981) attempted a quantitative treatment of vicariance bio­
geography. In parasitology, the paper by Brooks (1981) placed the problem of cor­
respondence of host and parasite phylogenies (Fahrenholz's Rule) in a parsimony
context.

The similarity of the two problems is not accidental. Vicariance biogeogra­
phy explains the distribution of organisms by assuming that an ancestral area has
successively been subdivided by geological, climatological, or vegetation changes,
and that these divisions have brought about allopatric speciation of the organisms.
We may be fitting a phylogeny of the organisms to a particular "area cladogram"
that reflects this subdivision, or we may be searching among possible area clado­
grams to find the one that fits best. In parasitology, the hosts are the "geography"
on which the parasites are distributed, and the speciation of the hosts brings about
allopatric speciation of their parasites. In both cases, exceptions to an exact simi­
larity of the two trees can result from extinctions, undiscovered species, speciation
of the parasite (or group) without host speciation (or without vicariance), and by
migration across geographic barriers or invasion of one host from another. One
difference between the two problems is that in parasitological studies there is usu­
ally independent evidence about the host's phylogeny, and we do not need to use
the parasite phylogeny to infer the host phylogeny.
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Host Parasite
A

B

C

0

E

f

G

Area cladogram Phylogeny

Figure 31.1: Two trees as an example for the biogeography and
host/parasite cases. The left tree is either the area cladogram, which
reflects the successive subdivision of a geographic region, leftmost fork
first, or it is the phylogeny of the hosts. The right tree is the species phy­
logeny in the biogeography case (below), or the parasite phylogeny in
the host/parasite case (above).

Component compatibility
Nelson and Platnick (1981) suggested inferring area cladograms in vicariance bio­
geography by looking for repeated groups of areas in cladograms of different
groups, where each individual species had been replaced by the name of the area
or areas in which it is found to occur. Consider the trees in Figure 31.1. In the bio­
geography case, we interpret the left-hand tree as the area cladogram, reflecting

BCD E E F G

Figure 31.2: The tree of species from our example, with the names of
the regions in which each species occurs placed at the tips instead of
the species names.



13

r-------112

Biogeography, hosts, and parasites 541

vicariance events that successively sudivide the region (the deepest fork being the
first subdivision). If we label the tips on the area cladogram A through G and then
take the right tree and place the area in which each species occurs at the tip in­
stead of the species name, we get the tree in Figure 31.2. The tree is the estimate
we would make of the area cladogram (except that E would be assumed to be
undivided). It is not entirely correct. It leaves out A, and puts E in the wrong sub­
divisions of the area. We might imagine having more than one group for which we
have a phylogeny, distributed in the regions A-G. How can we compromise the
information from these phylogenies to infer the area cladogram? Nelson and Plat­
nick (1981) stress the finding of repeated components in the phylogenies. Their
method is closely related to the consensus method advocated by Nelson (1979; see
further comments by Page, 1988). As I have mentioned in Chapter 30, this method
has been discussed by Page (1989), who argues that it is a consensus method some­
what similar to majority-rule consensus.

Methods analogous to this are used less often in parasitology, where one does
not often use the distribution of parasites to infer the host phylogeny.

Brooks parsimony
Brooks (1981) introduced the first parsimony algorithm in parasitology, which has
become known as Brooks parsimony (developed further in Brooks, 1990; see also
Brooks, van Yeller, and McLennan, 2001). He suggests taking the parasite tree,

1 2 3 4 5 6 7 8 9 10 1112

.---------1 1 a a a a a a a a a a 1
2 a 1 a a a a a 1 a a 1 1

8
3 a a 1 a a a a 1 a a 1 1

'------111

4 a a a 1 a a a a 1 a 1 1
9

5 a a a a 1 a a a 1 all
.-----------6 a a a a a 1 a a a 1 a a

'-----i10
~---------7 a a a a a a 1 a a 1 a a

Figure 31.3: The parasite tree in the example, and a set of binary charac­
ters that are derived from treating it as a character state tree and using
the recoding method of Kluge and Farris (1969). Numbering of nodes
and tips corresponds to the number of the binary character.
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A B C D E F G
1 3 4 6 7
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Figure 31.4: Reconstruction of the parasite binary characters from Fig­
ure 31.3 on the host phylogeny. The loss of character 12 is implied by
the absence of a parasite from host A. For character 10, two different
placements of the changes are shown, one with filled events and one
with empty events.

treating it as a character state tree, and making up a set of nonadditive binary
characters for it. This recoding has been discussed above in Chapter 7. The char­
acters for the parasite tree are then reconstructed on the host tree. It is assumed
that the ancestral state of each of these binary characters is 0, which is reasonable
since sufficiently far back in time there was only a single ancestral parasite lineage.
Figure 31.3 shows the binary characters corresponding to the parasite tree.

Figure 31.4 shows the reconstruction of the parasite characters on the host phy­
logeny. I have added a loss of character 12 on the lineage leading to A. For charac­
ter 10 there are two possible placements of the changes, one with two gains (solid
bars) and one with a gain and a loss (the empty box and the empty cross). In
addition to this, the reconstruction shows states 11 and 12 arising twice. The par­
asite species ancestral to species 4 and 5 was one of the species arising when state
11 arose. If we imagine that it invaded the lineage to host E, which then lost the
parasite species it had, this would account for the reconstructed states.

The Brooks parsimony reconstruction does not specify exactly what happened
when there is a parallelism like this. If the lineages on which state 11 arises are in
existence simultaneously, a host switch could account for the parallelism. How­
ever, the trees used in the analysis do not have branch lengths or times. At a min­
imum, a labeled history (as described in Chapter 3) would be required in order to
know whether a host shift could have happened. Otherwise, some more complex
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Figure 31.5: Reconstructed history of our example parasite tree (dashed
lines) on the host tree, using cospeciation, extinction, host switching,
and speciation events.

set of events would be required involving early presence of the parasite and later
multiple losses. The events counted in Brooks parsimony analysis are not exactly
independent, and their numbers are not always easily interpretable.

Brooks parsimony analysis can also be done in biogeography. Coding trees of
individual groups of organisms, all of whom live in the same geographical areas,
one can infer an area cladogram that takes the phylogenies of all these organisms
into account. In the host/parasite problem, Brooks parsimony has led directly
to more precise parsimony approaches. Dowling (2002) has tested Brooks par­
simony against Page's (1994b) parsimony method in a simulation test. Neither
reconstructed events perfectly, but Brooks's method performed better.

Event-based parsimony methods
A number of papers by Roderic Page, Fredrik Ronquist, and Michael Charleston
(Ronquist and Nylin, 1990; Page 1994a; Page and Charleston, 1997; Ronquist, 1994,
1996a, 1997, 1998b; Charleston, 1998) have constructed parsimony methods that
represent actual biological events. For a detailed review and comparison of the
methods, the review by Ronquist (2002) will be helpful.

Figure 31.5 shows a series of events needed to reconcile the parasite tree with
the host tree in our example. Figure 31.6 shows a similar series of events needed
when our example is instead interpreted as vicariance biogeography.

The events that are involved are listed below, with the names that might be
used for them in the host/parasite and vicariance biogeography cases:
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o Vicariance
x Extinction
D Speciation
t> Dispersal

Figure 31.6: Reconstructed history of our example organism tree in the
case of vicariance biogeography, using vicariant speciation, extinction,
dispersal, and speciation events. The shaded bars show the vicariance
events implied by the area cladogram.

• Cospeciation or vicariant speciation, in which a host speciation or the subdivi­
sion of a geographic region is accompanied by allopatric speciation.

• Extinction of a parasite species or a species in one geographic region.

• Speciation of a parasite on one host, or of a species within one geographic
region.

• Partial host switching or dispersal in which the parasite colonizes a new host
or a species invades a different geographic region.

Ronquist (2002) argues that two other kinds of events are unnecessary, though
they have sometimes been invoked. These are complete host switching, in which
a parasite invades a new host while simultaneously becoming extinct in the old
host, and sorting, in which a host speciation or a vicariance event leads to the
species surviving in only one of the resulting hosts or resulting regions. It should
be noted that both of these patterns are biologically unlikely. In the rare event that
one is seen to happen, it would be proper to consider it as the result of two events.
In the case of sorting, the events would be a partial host switch followed by an
extinction, or a dispersal followed by an extinction. In the case of complete host
switching, the events would be invasion of a different host followed by extinction
in the old host.

These methods all assume that once a host speciates, or a region is subdivided,
that the populations that inhabit them must become different species. This "one
host per parasite" assumption is widely used. The corresponding"one parasite
per host" assumption is not usually made, because it would allow a partial host
switch only when the host's parasite had already gone extinct, or when the in-
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vading parasite forced an extinction of the previous parasite. The counterparts to
these scenarios in biogeography seem equally artificial.

We have seen in Chapter 9 that a statistical framework would suggest that
changes be weighted more heavily in a parsimony method the rarer the event is
expected to be. Of the four types of events given above, one, cospeciation, is ex­
pected to be frequent. Charleston (1998) assigns cospeciation a negative cost. Ron­
quist (2002) disagrees with this assignment because it seems to carry the method
outside of the framework of parsimony; he assigns cospeciation zero cost. In the
limit, when the rates of the other events are very small, the weights of those events
should be equal.

There is not space here to go into the algorithms employed to count changes
in these parsimony methods. Ronquist (1996a) and Charleston (1998) give algo­
rithms, both quite complicated. They are not identical-Ronquist (2002) argues
that Charleston's "jungles" algorithm does not handle some situations correctly.
A glance at either will show why I have not tried to explain them here.

Relation to tree reconciliation
In either the biogeography or the host/parasite case, we are trying to reconstruct
events so as to reconcile one tree with another. We have seen in the discussion
of gene families in Chapter 29 that Page (1994b) and Mirkin, Muchnik, and Smith
(1995) put forward tree reconciliation methods that count gene duplications and
gene losses, and try to reconcile the trees so that the total number of these are
minimized. Figure 29.5 shows that gene duplications create the same pattern as
speciation on one host or in one geographic region, and gene losses have the same
result as extinctions. Thus tree reconciliation by parsimony methods is a special
case of the parsimony methods used in biogeography or parasitology. The gene
family methods have no event corresponding to a host switch or a dispersal. If
they did, it would in effect model horizontal gene transfer.

Randomization tests
Legendre, Desdevises, and Bazin (2002) have described a randomization test that
uses matrices representing the host and the parasite trees, and one that indicates
which host each parasite is on. Some least-squares statistics are computed that
would be correct if the trees and host/parasite connections could be thought of as
random variables. They are not, but the actual test is done by a randomization pro­
cedure. Legendre, Desdevises, and Bazin describe two tests. One sees whether the
fit of host to parasite tree is better than random, where the null hypothesis is that
the parasites are assigned to their hosts at random. The second test is whether the
hange in fit between parasite and host trees is significantly better when a partic­

ular parasite/host connection is removed. The fit is judged against a distribution
of the same statistic computed from random associations of host and parasite.

The first test is of the hypothesis of no nonrandom association of parasite phy­
logeny with host phylogeny. The second test is more focused, but it is less ob,-ious
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that the distribution with which it is compared is relevant, as there is no associa­
tion of host and parasite phylogeny in that null hypothesis.

Johnson, Drown, and Clayton (2001) took a rather different approach. They
used the ILD (or partition homogeneity) congruence test (Farris et al., 1994b; Swof­
ford, 1995; see Chapter 20) to see whether there is evidence that the host and
parasite trees differ. They removed troublesome species until the two trees were
not significantly different. Those common subtrees were then held constant while
adding the offending hosts and parasites back into their respective trees at most
parsimonious locations. This, they argue, avoids postulating unnecessary events
for which evidence is weak. It is not completely clear to me what their method is
for reconstructing the events after the species are added back.

Statistical inference
Model-based statistical methods have also begun to be introduced. For the
host/parasite problem, Huelsenbeck, Rannala, and Yang (1997) used a model in
which there is a host-switching rate, but no speciation events within hosts. They
assumed that there could be only one parasite per host, and that when a para­
site switched to a new host, the parasite previously present on that host would
be made extinct. They used the symmetric difference metric described in Chapter
30 and asked by simulation what rate of host switching led to the observed sym­
metric difference between host and parasite phylogenies. They also developed a
likelihood ratio test for the hypothesis that identical host and parasite phylogenies
had identical divergence times, and a parametric bootstrap likelihood ratio test for
whether the host and parasite phylogenies do or do not have identical topologies.

A fuller statistical analysis was made by Huelsenbeck, Rannala, and Larget
(2000). They used Bayesian inference by Markov chain Monte Carlo with the
model used by Huelsenbeck, Rannala, and Yang (1997) in which there are no speci­
ation events or independent extinctions of parasites. They could obtain a posterior
distribution of rates of partial host switching, which allowed tests on this rate. As
in the previous analysis, they could allow for uncertainty about both the host and
the parasite phylogenies. Posterior plots of the placements of speciation events,
the number of partial host switches, and the pairs of lineages involved in the host
switches gave a particularly clear picture of the range of possibilities. They also
extended their model to have the probability of a partial host switch depend in­
versely on the distance along the host tree between the two hosts.

As noted by Huelsenbeck, Rannala, and Larget, their model is not as rich as the
parsimony models described above. They do not allow independent extinction of
a parasite on a host or speciation of a parasite in the absence of host speciation.
Both of these are needed to treat cases in which there is not a perfect one-to-one
correspondence between hosts and parasites.

They also suggest that their method would be useful in biogeography. The
model seems on less sure ground there, as it would not allow for effects due to the
different sizes of regions, or their geographic adjacency. We are still a bit short of
satisfactory probabilistic models in the host/parasite and biogeographic cases.
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Phylogenies and paleontology

Fossils have had a special place in reconstructions of evolutionary history. The is­
sue that arises with numerical and statistical methods is whether, or how, to give
them a special status. It might be thought obvious that they give us a snapshot
of the ancestors of present-day species. That is not necessarily so, as can be seen
in Figure 32.1. It shows the true phylogeny of a small group (indicated by the
cylindrical species lineages and the oval specimens present at each of five geolog­
ical strata. If we observe only the specimens shaded black (moderate numbers at
the present but only two per geological stratum), then the true phylogeny of the
observed species is shown on the right side of the figure. Note that of the eight
fossils, only three of them are actually from species ancestral to the present-day
species (these are numbers 2, 3, and 6). The others are relatives of the ancestors,
but are not themselves ancestors.

As the fraction of past species in a group that have been observed in the fos­
sil record declines, the fraction of them that will be ancestors of the present-day
species will also decline. It is this picture, together with knowing that the fraction
of species available to us in the fossil record is very small, that motivates phylo­
genetic systematists, who insist that we cannot infer ancestor-descendant relation­
ships. In other words, it is dangerous to interpret fossils as ancestors.

The converse is also true: If the fossil record of a group has been searched
thoroughly enough, then we should not only be allowed to interpret fossils as an­
cestors, we should be encouraged to do so. Anthropologists have searched long
and hard to find any species 2 million years ago that could be ancestral to mod­
2m humans. Since Homo erectus fits the bill morphologically, it can be assumed to
~e our ancestor, since if there were another candidate we would presumably have
: und it by now. This is not allowed in the strict interpretation of phylogenetic
o\-stematics, which, insisting that one cannot infer ancestor-descendant relation­
~hips, places Homo erectus on its own branch, a lineage parallel to ourselves [ef.
3ritish Museum (Natural History), 1980].
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Figure 32.1: How the place of fossils in the phylogeny can be affected
by how complete the fossil record is thought to be: An example.

There have been a number of numerical and statistical approaches to rna
ing these inferences, including stratophenetics, stratocladistics, and "stratolikeE­
hood." I will describe these briefly here, with emphasis on the criteria they use
rather than the detailed algorithmics. The field is a quite active one-I must skir­
over numerous numerical methods for assessing geological species ranges anc.
fossilization rates, concentrating only on the methods that use or involve a ph\­
logeny.

Stratigraphic indices
One approach to taking the fit of a phylogeny to stratigraphic information is to
compute an index that describes how well the phylogeny fits the stratigraph\.
There are a number of proposed indices, including the Spearman rank correla­
tion measure (Norell and Novacek, 1992), the relative completeness index of Benton
(1994), the stratigraphic consistency index (Huelsenbeck, 1994), the retention inde·.
for the stratigraphic character of Clyde and Fisher (1997), the Manhattan stratigraphic'
measure (Siddall, 1998a; Pol and Norell, 2001), the gap excess ratio (Wills, 1999
and the character-based measure of Angielczyk (2002). There has been a certain
amount of controversy over which of these measures is best (d. Benton, Hitchin
and Wills, 1999; Finarelli and Clyde, 2002).

I will not describe these measures or the tests of which are best, preferring
to concentrate on methods that have some explicit means of compromising the
phylogeny and the stratigraphy.



Phylogenies and paleontology 549

abc d e

3

7. 8

Figure 32.2: An example of stratophenetic linking, using specimens
from Figure 32.1. The horizontal axis, which was arbitrary in that fig­
ure/ plays the role of a phenotypic axis here.

Stratophenetics
Gingerich, (1979a, b, 1992) put forward the method of stratophenetics. In spite of
its name, it is intended to infer phylogenies. (The "phenetics" is there because it
uses a clustering step.) It assumes, as do all these methods, that we have observed
specimens in a series of geological strata (one sometimes being the present). Gin­
gerich proposes that the specimens within each stratum be clustered into groups
hat are postulated to be species. After the species clusters are found and the strata

arranged in temporal order, "then a species in a chosen level can be linked to
ther species in adjacent levels based on overall similarity" (Gingerich, 1979a).

Elsewhere Gingerich describes this (1979b) as "phenetic linking of closely similar
::pecies samples in each horizon with those in adjacent horizons to form a minimal
::panning tree of evolutionary lineages."

Care would be needed. One does not want to allow two different species at one
::tratigraphic level to be inferred to have the same descendant, but one does want
:0 sometimes allow one species to have two different descendants. In addition,
:10 criterion is stated allowing a species to be linked with a descendant species
:::lOre than one stratum away. Thus it is unclear whether the method would ever
:-Lfer that an ancestral species had been missed (though the examples given by
Gingerich do seem to have some such events). The lineages are not in fact inferred
~ rrectly in this example (though perhaps only because I connected the dots in
:igure 32.2 by eyeball rather than by an algorithm). Gingerich (1979b) does say
:~at "the approach requires a relatively dense and continuous fossil record." It
=-;'us seems to have an implicit assumption that the fossil record in each stratum is
:-,early complete.

Stratophenetics cannot cope with all data sets, simply because it is not \'en­
-·.-ell-defined, with no well-specified procedures for dealing with difficulties. 1:
:-as mostly been implemented by "eyeball." Nevertheless, it has stimulated fur:"",:­
-·.-ork on well-defined numerical methods for phylogenies with fossil data
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Table 32.1: The simple data set with 0/1 characters, extended by
adding four fossil species and a number showing which stratum each
species is in (1 is earliest, 5 latest).

Characters
Species 1 2 3 4 5 6 Stratum
Alpha 1 0 0 1 1 0 5
Beta 0 0 1 0 0 0 5
Gamma 1 1 0 0 0 0 5
Delta 1 1 0 1 1 1 5
Epsilon 0 0 1 1 1 0 5
f1 1 1 0 1 0 0 4
f2 0 0 1 0 0 0 3
f3 1 0 0 0 0 0 2
f4 0 0 0 0 0 0 1

Stratocladistics
Stratocladistics is a relatively well-defined approach that tries to use the strati­
graphical information in a parsimony method. Fisher (1991, 1992) suggested that,
in addition to the count of the number of changes of state that the characters re­
quire, we compute a "stratigraphic parsimony debt." This counts the number of
times that a lineage crosses a stratum without a fossil being observed. This is to be
added to the number of changes to compute the overall score of a phylogeny. Ta­
ble 32.1 shows our example data set from Table 1.1, extended by adding four fossil
taxa. The extra column on the right side of the table shows which stratum each
species is from. This can be thought of as a character with unidirectional change
among its states: 1 ----> 2 ----> 3 ----> 4 ----> 5 with no reversals permitted.

Figure 32.3 shows two trees evaluated by Fisher's criterion. The left-hand tree
has 10 changes of character state for the ordinary characters, but it requires four
instances in which a lineage crosses a stratum without leaving a fossil. These are
indicated by dashed lines. The total score of the tree is thus 14. The right tree
has 11 changes of the ordinary characters, but requires only two instances of a
lineage crossing a stratum without a corresponding fossil being found. Thus i:
has an overall score of 13; it would be one of the trees tied for best according to
stratocladistics.

Stratocladistics can be implemented using some existing parsimony methods
In our example each stratum-crossing by a lineage creates one extra change of the
stratum character. With five states present, we would expect at least four change~

of state in the stratum numbers. For the left-hand tree in Figure 32.3 one can opti­
mize the stratum numbers on the tree; we find that they require eight changes 0:
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Figure 32.3: Two phylogenies evaluated for their fit using stratocladis­
tics. Each fossil species is shown either as an ancestor or as a tip. The
tree on the right shows more change in the characters, but this is more
than offset by having fewer cases where lineages cross strata without a
fossil species having been found (dashed lines).

state. We thus have four extra changes of state. In programs that allow mixtures of
different kinds of parsimony in different characters, stratocladistic analysis is eas­
ily implemented - one need only specify that the stratum character has a linear,
unidirectional character state tree with known ancestral state. The tree that will
be favored will be the one preferred by stratocladistics, and by subtracting from
the score of that tree 1 less than the number of strata, one can compute the score
according to stra tocladistics.

Stratocladistics is less likely than stratophenetics to assume that a fossil must
be an ancestor. If a fossil species contains a derived state that does not appear
in a later species, then it might be reconstructed as being an offshoot of the main
lineage. Figure 32.4 shows two interpretations of the fossil when there is a two­
state character in which the fossil has state 1 while preceding and later species all
have state O.

We have already seen in Chapter 9 that there is a statistical justification for par­
simony when changes are expected to be rare, and that when they are sufficiently
rare, weighted parsimony methods should approach equal weighting of changes.
5tratocladistics weights changes and stratum-crossings equally. It thus implicitly
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±1-0
fO-1 -~-1

Figure 32.4: Two interpretations of the fossil species (circle) that con­
tains one derived state (1) not present later. In the left interpretation,
there are two changes of state (black bars). In the right interpreta­
tion, there is only one change of state, but one extra instance of a
lineage crossing a stratum without there being a corresponding fossil
species (dashed line). Stratocladistics would consider these possibili­
ties equally well-supported.

assumes that it is a rare event for a lineage to cross a stratum without leaving .~

fossil species. Like stratophenetics, it thus assumes a relatively complete fossi:
record, as it considers examples of incompleteness as rare surprises.

Fisher (1992) acknowledged one arbitrary aspect of stratocladistics, whicr
Huelsenbeck and Rannala (1997) also pointed out. This is the issue of how fineh­
we subdivide the strata. If we divide the fossil record into more strata, this car
result in increasing the weight given to the stratum characters. If the situation in
Figure 32.4 were considered to have one stratum, the two scenarios are considerec:'
to be equally good. But if the fossil-bearing stratum were divided into two, witl-:
the fossil species present in both, then the right scenario has one character change
plus two stratum crossings, and the interpretation of the fossil as an ancestor i~

preferred. As there is an implicit assumption of a relatively complete fossil record
the method then tries harder to reduce the number of missing fossils.

Controversies
The assumption, common to stratophenetics and stratocladistics, that failure
to observe a fossil is a rare event, has generated a certain amount of contro­
versy. The less adequate the fossil record of a group, the less well-justified
this assumption will be. The cladistic parsimony school has tended to argue
that one should use the character data and not the stratigraphic data in infer­
ring the phylogeny. The argument may appear to be about the /I adequacy"
of the fossil record-in reality it is about whether lack of fossilization can be
considered to be rare. This can be seen in the online debate from 1998 at
http://www.nature.com/nature/debates/fossil/ .
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A not-quite-likelihood method
Wagner (1998) has proposed a "likelihood approach" to compromise fit of the tree
to the data with fit of the tree to the stratigraphy. It is not a full likelihood method,
but assumes that parsimony is the relevant statistic summarizing the fit of the
data to the tree. For a given proposed tree, he computes a probability of the strati­
graphic information implied, using a model of sampling of fossils. This is to be
multiplied by the probability of the data given the tree. However, for the latter,
he computes by a computer simulation the probability that the tree will result in a
parsimony value equal to that observed. This is not equivalent to computing the
probability of obtaining the observed data given the tree, which would be needed
by a true likelihood method. Wagner's method does achieve a compromise be­
tween stratigraphic "debt" and parsimony score, and thus can be regarded as a
statistically inspired variant of stratocladistics.

Stratolikelihood
If the rate of fossilization is relevant, why not develop a method that can cope with
a variety of different rates? Huelsenbeck and Rannala (1997; see also Huelsenbeck
and Rannala, 2000) have provided a maximum likelihood method for inferring
phylogenies using a statistical model of the availability of fossils. They use a sim­
ple model of fossilization in which there is a constant rate Aof occurrence of fossils
per lineage. If one of the lineages in a phylogeny starts at time t j and continues to
time tl, the expected number of fossils observed will be A(tl - t j ). The number of
fossils observed will come from a Poisson distribution with this mean, so that the
probability that the lineage has n fossils observed is

(32.1)

However, note that we have three parameters, A, t j, and tl. The observed times of
the fossils Xl, X2, ... ,Xn are informative about the t's. The Xi come to us ordered,
so the joint probability of the x's given the t's is n!1 (tl - tf)n. Multiplying these to
get the joint probability of the observations, we get

Prob (n I A, tj, tl) = e-A(tl-tt) An

The logarithm of this probability is

In Prob(n I A,tj,tl) = -A(tl-tf) + nIn(A)

(32.2)

(32.3)

The events of fossilization and discovery of the fossils are independent between
different lineages. Thus the overall probability, given that each lineage i has ni

fossils and stretches from time t~) to tii
), is

(32.4)
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where T is the total length of the tree. If N is the sum of the numbers of fossils,

InProb(nIA,t) = -AT+Nln(A) (3~.~

If we have different proposed phylogenies that have different numbers n. c:

fossils on their branches, and different times tji) and tii) for the beginnings an':'
ends of their lineages, we can use equation 32.5 as the effect of the fossil par:
of the data on the overall likelihood of these trees. This assumes we knov.'
Alternatively, we can infer A for each tree. Taking equation 32.5 and differentiatin~

it with respect to A, equating the result to zero, and solving for A, we get

).; = NIT (32.6

where N is the total number of observations of fossil species, and T is the tota:
length of the proposed tree. Substituting this into equation 32.4, we get

In Prob(n I ).;,t) = -N + N InN - N In(T) (32./

If we consider different phylogenies, each with assignments of fossils to branche"
and times for beginning and end of each branch, this term will penalize phyloge­
nies that are long.

This derivation is not the one given by Huelsenbeck and Rannala. They obtain
a slightly different result by considering the first and last times of and 0z that fossils
are observed in each ancestral lineage. They do not include a term for the densit\·
of the other x's given Of and Oz. This would have made their result identical to the
present result.

Making afull likelihood method
The terms above are only those dealing with occurrence of fossils. A complete
treatment would also include probabilities (or probability densities) for the evo­
lution of the characters in the present-day and the fossil species. We have seen in
Chapter 24 the difficulties that must be faced in coming up with such a model. A
full likelihood treatment of fossil and neontological data is in the future. Huelsen­
beck and Rannala consider the terms they derive as components of such a model;
they do not pretend to have a complete method at this stage. The part of the
model that treats character change cannot be omitted: If it is, there is no way to
know whether a given fossil is or is not a candidate to lie on a particular lineage.

More realistic fossilization models
Huelsenbeck and Rannala (1997) acknowledge that this simple Poisson process
model of fossilization is naive. There are many more complications to take into
account, including different rates of fossilization in different strata. They regard
their model as a starting point, and suggest that it could be extended and that
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likelihood ratio tests of different fossil preservation models could be done using
it.

It is not hard to alter the model to allow for discrete strata, in each of which
a lineage has a probability p of being observed from one or more fossils (Foote
and Raup, 1996). The results are similar to the above ones, including the possibil­
ity of inferring p by maximum likelihood for each tree. Greater realism could be
achieved by allowing for it to be easier to find fossils in some strata than others,
and having some strata exist in larger areas than others. One could estimate fos­
silization probabilities separately for each stratum, though there is the interesting
issue of whether this is too many parameters and whether it would not be bet­
ter to have a hidden Markov model assign fossilization probabilities to strata. We
could also think of using data on how many individuals of each lineage in each
stratum are seen. The present model simply counts the lineage as represented or
not, without regard to how many times it is represented.

Fossils within species: Sequential sampling
Molecular data are often collected from present-day and fossil samples. You might
think that this is limited by the poor survivability of fossil DNA, but, if so, you are
not thinking of the right cases. In some viral cases molecular evolution is so rapid
that substantial amounts of change occur in a few years. The most famous of these
is of course HIV evolution, where rates of evolution are about a million times
faster than in more normal organisms. Samples taken from the same patient a few
months apart must then be treated by taking their sampling time into account. For
these RNA viruses, the issue of sampling time becomes particularly important.

For a population of viruses evolving within a host, there is also a prior dis­
tribution of trees. In fact, it is the coalescent, which we have discussed above in
Chapters 26 and 27. We are within a single species and should keep that in mind.
Figure 32.5 shows a series of samples of virus taken at different times in the course
of an imaginary infection. The coalescent assumes that there are a great many in­
dividuals in the population, as is certainly appropriate for virus particles in an
infection. It is tempting to assume that the samples from 90 days ago are ancestral
o the samples today, but this temptation must be resisted. The lineages reach­

ing back to 90 days ago are found in genomes different from the ones that were
-ampled. Going back 90 days, we simply find that the genomes sampled then add
ew lineages to the coalescent. The resulting lineages then gradually coalesce with

each other as we go further back.
A similar issue arises when we sample ancient DNA within the human species.

It is not wise to assume that a gene from a modem Egyptian is the direct descen­
dant of one from a mummy. The modem lineage almost certainly existed in some­
one else at that time. If the population then were even as small as 10,000 indi\"id­
"-lals, it would take about 800,000 years for the two lineages to coalesce!

Sequential sampling can be incorporated into likelihood analysis of coalesce ~s

Felsenstein et al., 1999; Rodrigo and Felsenstein, 1999). It is necessary to kee" the
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Today

90 days ago

180 days ago

270 days ago

Figure 32.5: Hypothetical coalescent of virus genomes within a patient,
showing samples of virus taken at a series of times. The black circles
are the sampled genomes.

time scale and the branch-length scales separate. Suppose that we have k: lineag "0

an effective population size of N u a mutation rate of ~L per generation, and a ge:-­

eration time T. The number of generations back to the most recent coalescenc ~"O

exponentially distributed with expectation .J.Ne/[k:(k - 1)]. In time units it is eXFL'­
nentially distributed with expectation 4NeT/[k:(k - l)J. The density of time Ul ::.

coalescence is

. [k(k-1)] [k(k-1)]
j(Uk I N e · T) = exp - Uk

4NeT 4N"T
(3:?.~

which depends on 4NeT. The probability of the sequences given the genealog::
depends on the tree topology and on the branch lengths: These are the ratio c\=
mutation rate per generation and time per generation, which is ~/T.

The overall likelihood is, as in equation 27.1,

L = L g(G INeT) Prob (D IG. ~L/T)
G

(32.9

where g is the density function of the coalescent with serial sampling. This is like
the usual coalescent, with one wrinkle. In each successive interval, we multiph'
by the probability that nothing happens for Uk generations, times the probability
of whatever happens at the bottom of the interval. If the interval has a coalescen:
at its bottom, the density is as given in equation 32.8 above. But the interval couk
have a sampling time at its bottom. At that time, there is no coalescence event
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Figure 32.6: Stages in the calculation of the probability density of a
coalescent, taking sequential sampling into account. The top term is
the probability of noncoalescence of six lineages until they reach the
next time of sampling. The term below it is the probability density of
the time until two of the resulting lineages coalesce.

but the addition of nt new lineages to the coalescence, as the sample size of the
samples at time tis nt. The probability of this event is 1, since we are given the
schedule of samples. Thus the probability for that interval is

[
k(k-l) ]

Prob (Uk I NeT) = exp - T Uk
4JV e T

The function 9 is a product of intervals above a coalescence, and intervals above a
sampling. The first have probability densities, the second probabilities, and their
product is g. Figure 32.6 shows two of the terms that need to be calculated, one
for non-coalescence until a sampling time is reached, the other for the time to
coalescence. All of the terms are of one or the other type.

The likelihood depends upon the two parameters 4NeT and p)T. Using
\1arkov chain Monte Carlo methods, we can infer them separately. Their prod­
uct is 4Ne f-L. If we know the generation length T, it can be used to make estimates
of N e and of f-L. If we know f-L, it can be used to infer 4Ne and T. Similarly, if we
know N e , it can be used to infer T and f-L. But we cannot infer all three quanti­
ties together. Stilt with knowledge of one of the three quantities, we can infer the
other two. The existence of dated samples with known times gives us the ability
to estimate one more parameter.

Between species
.-\t present there is considerable uncertainty whether molecular sequences can be
reliably sampled from more than 100,000 years ago. If they can, we will find our­
selves facing many of the same issues as in sequential sampling in coalescents.
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If we are working with samples from multiple species, the coalescent machinery
does not apply, but we do continue to face the issue of branch length versus time.
The amount of branch length that accumulates in an interval t is /-LI T per unit time.
We may know the time at which each sample was taken, but unless we know the
mutation rate per generation, /-L, and the generation length, T, we cannot turn time
into branch length. Maximum likelihood estimation will then depend on estimat­
ing the compound parameter /-LIT that converts time to branch length. Similar
issues arise with quantitative characters, where there will be a parameter for th
rate of Brownian motion per unit time.
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Tests based on tree shape

As the numbers of species in studies of phylogenies has grown, so has the interest
in using the shapes of these trees to test hypothesis about evolution. For example,
if a few lineages give rise to most of the descendant species because they have
acquired an important adaptation, this should be visible in the asymmetry of the
resulting tree. If rates of speciation and extinction vary through time, this may be
visible in the lengths of branches in the tree. If speciation or extinction is correIated
with some particular phenotype, then its distribution on the phylogeny may be
correlated with species richness of the clades.

Although stochastic processes were used to model phylogenies almost 80 years
ago (Yule, 1924), most of the interest in using them to make inferences about pro­
cesses of speciation and extinction has been during the last 15 years. Some of the
questions that have been asked are:

• How can we estimate the speciation and extinction rates from a phylogeny?
• Have these rates changed through time?
• Have they changed in certain clades?
• Can we test whether they are correlated with particular characters?

Most methods have examined the shape of the phylogeny, without regard to
the branch lengths or times, or they have examined the times of branching without
regard to which lineages are doing the branching. Let us start with a basic result
about tree topologies and then proceed to results about the time of branching.

Using the topology only
.'v1uch of the theoretical work has concentrated on the case in which branch lenat "
are not used. As a null hypothesis, the case of a randomly branching tree is i ­
portant. Much of the work on this case has been motivated by the obserya,;o
that phylogenies inferred by many methods tend to be more asymmetric tha_ e,­
pected under this model. For a review of the extensive empirical literature Or' :his

559
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and the rather unsatisfactory explanations offered so far, you can consult the e ­
cellent reviews by Mooers and Heard (1997) and by Aldous (2001).

Random processes generating trees by random splitting were introduced :.­
Yule (1924) as a model for almost the same problem: the sizes of genera. The
Yule process is the simplest pure-birth process, in which particles reproduce with "­
constant probability of giving birth per particle per unit time.

Harding (1971) examined the shapes of trees arising out of the Yule process. I:
turns out (Thompson, 1975) that his results are also valid for trees arising from 2.

more general process in which there are random births and also random death<::
Harding's results for unlabeled rooted bifurcating shapes can most easily be e:\­
plained using a result for the sizes of the clades separated by the root. Let us firs:
look into that.

Imbalance at the root
If we have a rooted bifurcating tree with n unlabeled tips, and we look at the t,,"C

clades that arise from the bottom fork, these divide the species into two subset:::"
Their sizes could be any ofthe possibilities 1 : n-1, 2 : n-2, 3: n-3, ... , n-1 : L
If we generate trees by random branching, there is a remarkable fact about the
probabilities of these sizes. They all have equal probability. There are n - 1 o~

them, so each has probability 1/(n - 1).
This was published in the biological literature by Farris (1976) and Slowins ;

and Guyer (1989). It is a consequence of the probability distribution of a well­
known process, the Polya urn model (see, for example Feller, 1971, section VU2).
The Polya urn model is of an urn that contains two colors of balls, say, red and
green. We start with T red and 9 green balls. At each step we draw one ball a
random and look at its color. If it is (say) red, we toss it back and add also another
red ball. If it is green, we toss it back and add one green ball. There are many
good reasons to be interested in this process, but we will be concerned with it only
as a model of speciating lineages. Drawing a ball may be considered as selectina
a lineage to speciate. Returning it with another copy of itself models speciation.
Polya showed what the distribution of numbers of red and green balls would be
after s steps, starting from an urn with one red and one green ball. It is the fla
rectangular distribution just mentioned.

I will not try to derive this result from scratch, but will show that it is the
distribution by an argument using induction. We will show that it is true for n = 2,
and then show that if it is true for n - 1, it is also true for n. This allows us to
establish that the result is generally true for all n by induction. For n = 2, we have
only one possibility, a 1 : 1 split, which has probability 1, which is of course equal
to 1/(n - 1). That is the starting point for the induction. Suppose that it is true
for an urn that ends up with n - 1 balls, for which each possibility has probability
1/(n - 2). At the the next step, we could get numbers k : n - k of red and green
balls in either of two ways:
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1. We could draw a red ball from an urn that already has k - 1 red balls C'-: ­

'II - 1 balls. This has probability (k - 1)/('11. - 1). The probability that an
of 'II - 1 balls has k - 1 red balls is, as we have seen, 1/('11 - 2).

2. We could draw a green ball from an urn that already has k red and (n - 1
green balls. This has probability ('11-1- k)/(n - 1). The probability that the
urn has k red balls is, as we have seen, 1/('11 - 2).

Putting these probabilities together, the total probability that an urn of n ball
has k red balls is

(33.1)
11 k-l 1 (n-l)-k

----+
'11-2'11-1 n-2 '11-1 n-l

This establishes the general result by induction. Starting with two lineages, when
we reach a total of 'II species, we will have a probability 1/(71, - 1) that there are
k of them descended from the left-hand lineage. As this probability does not de­
pend on k, the distribution of numbers of descendants of the left-hand lineage is
uniform across all possible values. Thus, for example, if there are a total of eight
species, the numbers descended from the left-hand lineage at the root are equally
likely to have the values I, 2, 3, 4, 5, 6, and 7.

We will use this result by ordering the lineages according to their numbers of
descendants. If we see numbers of descendants 5 : 2, we will instead call this 2: 5.
Thus the probability of k : 'II - k will be not 1/(71, - 1) but 2/('11 -I), as we will also
be including the possibility '11- k : k. The exception to this is when k = 71, - k, in
which case the two possibilities are the same, and their probability is 1/(71, - 1).

Harding's probabilities of tree shapes
Harding (1971) has used this result to compute probabilities of tree shapes. Sup­
pose that we have a tree T of 'II species. At its base is a fork that leads to two
subtrees, T l and T2, of nl and '112 species, respectively. Harding notes that the
probability of the shape of tree T is simply the probability of an 'Ill : n2 split at
the base of the tree, times the probabilities of the shapes of the two subtrees. Once
it has been decided that the bottommost fork separates 71,1 from '112 lineages, this
is independent of what particular shape occurs within each of these subtrees. The
bottommost fork gives rise to two lineages. We know only that they will ultimately
give rise to 'Ill and '112 lineages, respectively. Given that knowledge, the shapes of
the two subtrees are computed using the same rules as for the overall tree.

The effect of this independence is that we can calculate the probability of a
bifurcating, rooted tree shape by simply computing the product of the probabil­
ities of the splits at each fork. Figure 33.1 shows the calculation for a tree of 10
species. The overall probability of getting this tree shape from a process of ran­
domly branching lineages is

2 2 2 1 8
-x-x-xlxlxlx-xlxl
9 5 3 3 405
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1:1 1 1:1 1 1:1 1

2 1
3" 2:2 3"

2:4

Figure 33.1: Computing the probability of the tree shape of a bifurcat­
ing rooted tree with 10 species. For each fork the numbers of lineages
arising from the two lineages is shown (to the left of the fork), along
with the probability of this pair of numbers (to its right). The overall
probability of the tree shape is the product of the probabilities.

Stone and Repka (1998) derive a closed-form formula for this probability, arguing
that this will be easier to compute. I have my doubts that their formula will be
easier than this method of computation in practice.

A less obvious consequence of Harding's probabilities is that each labeled his­
tory of the species is equally likely. This is true because if we follow the n lineages
back in time, the dual process of random branching is random coalescence. Brown
(1994b) (see also Steel and McKenzie, 2001) derives a related expression for the
number of labeled histories that correspond to a given tree topology.

Tests from shapes
Even though Harding's method allows us to compute probabilities of tree shapes
quickly, it is not obvious how to derive a test from that. We would like to take all
the rooted, bifurcating tree shapes, and place them in a natural order according
to how asymmetrical they are. Having done that, we could ask whether an ob­
served tree shape is significantly asymmetrical, say in the most extreme 5% of the
ordering.

The difficulty lies in knowing what tradeoff to make between the number of
lineages and the asymmetry. Is a 2: 8 split more extreme than a 1: 5 split, or less7

That issue in turn can only be settled by consideration of what the alternative to
random branching is. If at each split one lineage is more likely to further speciate
than is the other, this will tend to generate asymmetrical trees. But unless we
have specified more precisely what this alternative process is, we can't know hOI'"
strong the difference is expected to be.
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Measures ofoverall asymmetry
A number of people have suggested measures of overall asymmetry of rooted
bifurcating trees:

• Sackin (1972) suggested using either (J~J' the variance of N i across tips in the
tree, or lV its mean, where N i is the number of nodes in the tree below tip
i. For the tree in Figure 33.1 the variance is 0.65. Kirkpatrick and Slatkin
(1993) gave an expression for the expectation of lV, and Rogers (1996) gave
recursive expressions for its higher moments.

• Colless (1982) defined a measure C. If at an internal node in the tree the
numbers of descendants of the two lineages are 7'i and 8i, where we order
them so that 7'i ?:: 8i, C is the sum over all internal nodes of 2(Ti - 8i),
divided by the maximum possible value of this sum, (n - l)(n - 2). For the
tree in Figure 33.1 this is 14/72. Heard (1992) and Rogers (1994) presented
methods for computing the mean, variance, and the distribution of C.

• Shao and Sokal (1990) suggest the measure E l , which takes each interior
node in the tree (other than the root), and sums the reciprocals of the
numbers of nodes below it in the tree. Thus the tree in Figure 33.1 has
B l = 2 x 1 + 4 x (1/2) + 1/3 + 1/4 = 4.58333. Shao and Sokal (1990) also
suggested that the numbers N i for the n tips be used to compute another
measure:

n

E 2 = L Ni/2Ni

i=l

For the tree in Figure 33.1 this is 3.1875.

• Kirkpatrick and Slatkin (1993) suggest measuring the average number of
nodes between the tips of a tree and its base (counting all nontip nodes below
each tip). They show that this measure, lV has an expectation of 2 =:'=2 l/i.
The same result had earlier been obtained by computer scientists (Lynch,
1965; Mahmoud, 1992, p. 72). For the tree in Figure 33.1 this is 3.5.

• Hey (1992) suggested a statistic that asks for each interval between specia­
tions whether the second speciation is in one of the lineages descended from
the first. He computed the probability of the observed sequence of succes­
sive and nonsuccessive speciations, and compared it to a the probabilities
of a large sample of these probabilities from simulated randomly branching
trees.

• Kirkpatrick and Slatkin (1993) use the "left-light root ranking" of Furnas
(1984) to make another measure. Furnas ordered trees from least symmet­
rical to most symmetrical, using a recursive numbering scheme that will not
be explained here. For the tree in Figure 33.1, R = 88 out of a possible total
of98.
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All of these measures are to some extent arbitrary. For almost none of them
are their distributions under random branching of lineages known, though for
some (N and C) their expectations can be calculated, and for C the variance and
distribution can be calculated numerically.

Choosing a powerful test
Kirkpatrick and Slatkin (1993) set out to investigate six of these seven measures to
find which might be the most powerful one to use to detect inequalities of rates
of speciation and extinction that would make the trees asymmetrical. Their null
hypothesis was random branching of lineages. To investigate the statistical behav­
ior of these measures one must specify the alternative hypothesis. There are many
ways one can do this (for example, one could imagine a quantitative character that
evolved according to a Brownian motion process, and have the speciation and ex­
tinction rates depend on it). Kirkpatrick and Slatkin imagined a process in which
at each split of the lineage, the rates of speciation of its daughter lineages were
multiplied by 2:E/(X + 1) and 2/(x + 1), respectively. This leaves the expected rate
of speciation unchanged for the whole clade, with the two daughter lineages hav­
ing a ratio of speciation rates of x : 1. This was done at each speciation event in
the tree. Thus if x = 3 and the rate of speciation of the ancestral lineage is 1, af­
ter the first speciation the rates are 3/2 and 1/2. If the left-hand lineage speciates
next, its descendant lineages will have rates of speciation 9/4 and 3/4, and so on.

Kirkpatrick and Slatkin used computer simulation to find the distributions of
the six statistics under random branching of lineages for different numbers of
species. They found the two-sided 95% confidence intervals for each of the mea­
sures. They then investigated, for their asymmetric speciation process, the prob­
ability of exceeding the 95% limit in the direction of asymmetry. Four of the six
measures (all except Rand B 2 ) did reasonably well, with B 1 performing best, and
with Colless's measure C a close second.

As there are many other possible alternative hypotheses, this study does not
exhaust the issue. It might even be possible to make a likelihood ratio test be­
tween well-specified null and alternative processes, once these could be decided
upon. Losos and Adler (1995) have suggested that if speciation is not an instan­
taneous process, this might reduce the occurrence of successive speciations in a
lineage, making the resulting tree more rather than less symmetrical (see also the
reconsideration of this by Chan and Moore, 1999).

Tests using times
There has been considerable interest in recent years in using the timing of branch­
ing in phylogenies to make inferences about speciation and extinction. Although
there has been some interest (see Hey, 1992) in using the lengths of branches, most
work has been concentrated on the times of branching, which is more accessible
to mathematical treatment.
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Nee, May, and Harvey (1994) have introduced inference about the birth an .
death rates of lineages from plots of the number of lineages through time, \\"ithou­
using the asymmetry of the tree. The objective is to evaluate the speciation and
extinction rates, and hypotheses about their change through time, rather than to
ask whether different lineages have different rates of speciation. If this is the ques­
tion, Sanderson and Bharathan (1994) agree with Thompson (1975) that in simple
models with random speciation and extinction, and with contemporary species,
the details of the tree topology (more properly, of the labeled history) are irrele­
vant to testing of hypotheses about temporal variation of the rates of these events.
The converse is not true: Testing whether lineages differ in their speciation and
extinction rates is best done using information about both labeled history and spe­
ciation times. I will use a model quite similar to that of Nee, May, and Harvey,
with some differences, to explain how likelihoods can be calculated for a simple
model of speciation and extinction.

A standard stochastic process is the birth and death process or birth-death process,
which I have mentioned earlier in this chapter. It imagines lineages that have a
constant rate .\ at which they each give rise to new lineages, and a constant rate p,
at which they each die. The events are stochastic with these rates. If there are n
lineages, in a very small interval of length in time dt, the probability that there is a
lineage that gives birth (speciates) is n.\ dt. The probability that there is a lineage
that dies (goes extinct) in that time is 17 p, dt.

The transition probabilities for this stochastic process are well-known (derived
by Kendall, 1948). The probability that a single lineage has at least one descendant
after time t is

(.\ _ p,)(p-I-')t
s(t) = Prob(n > 0 I t) = (A ")t

.\ e -I-' - P,

To use this result to determine the expected distribution of times between suc­
cessive branchings in a tree, we must realize that when we use a phylogeny of
present-day organisms to look at the rate of speciation events, we see only those
speciations that have led to both lineages having descendants in the present. This
picture is the one that ee, May, and Harvey (1994) call the reconstructed evolution­
ary process. Figure 33.2 shows the distinction between the full tree of lineages and
the one we can see looking backward to the ancestors of the surviving species.

Lineage plots
Nee, May, and Harvey (1994; Harvey, May, and Nee, 1994) make a plot of the
logarithm of the number of lineages against time, for both the reconstructed lin­
eages and all lineages. Using a birth-death process, they obtain the curve showing
the expected numbers of lineages through time, counting all lineages, and also the
curve counting only reconstructed lineages. A birth-death process that starts with
a single lineage has the expected number of descendants rise (or fall) exponen­
tially: It is exp[(.\ - p,)t]. If we consider an interval of time from 0 to T, and look
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Figure 33.2: Results of a birth-death process generating phylogenies.
Upper: The full process including lines that become extinct before the
end of the period of time. Lower: The reconstructed process that shows
only the lines that lead to surviving species.

at the number of lineages at time t, the fraction of these that have surviving de­
scendants at time T is s(T - t), using the function in equation 33.2. These are the
lineages that would be seen in a reconstruction from species sampled at time T.

Nee, May, and Harvey argue that we must realize that we will have sampled
only from cases in which at least one species survived to T. This is a fraction s(T
of all cases. All others have no survivors. If we average the number of lineages at
time t over only those cases where the number of survivors at T is positive, it is
easy to show that the expected number of lineages is exp[(.A - fJ)t]/ s(T). Of these
a fraction s(T - t) are expected to reach time T. Thus the expected number of
lineages we reconstruct, given that we look only at cases where some lineages sur­
vive to the present, and given that we see only those lineages that have survived,
is

e(A-/-L)t s(T - t)
E[NR(t, T)] = s(T) (33.3)
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Figure 33.3: Plot of the logarithm of the number of lineages expected
to exist (top curve) and of the number expected to be reconstructed
(bottom curve) when A = 1.0 and p. = 0.8, over an interval of 15 units
of time, starting with one lineage.

They also compute the expected number of actual lineages, counting the ones that
will and will not be reconstructed, but restricting attention to the cases in which at
least one lineage survives to the end. This they give as

IE[N(t. T)] = e(A-/J.)t _ s(t) - s(T)
. 8(T) s(t)s(T - t)

(33.4)

(see also the calculations by Kubo and Iwasa, 1995). I have made a numerical
calculation to check this equation, and it seems to be correct.

Figure 33.3 shows an example of these two curves, plotted on a logarithmic
scale. Their basic point is clear-that even if we were able to see only lineages
that had at least one surviving descendant in the present, the rates of increase
of numbers of lineages in different periods would give us enough information to
estimate both speciation and extinction rates.

Likelihood formulas
Nee, May, and Harvey (1994) give a likelihood function for parameters A and {I,

presuming that we have observed the times of the forks in the tree of reconstructed
lineages. Their expression is derived from one given by Thompson (1975, pp. 3-l­
58), differing only in that theirs is conditioned on knowing the time of the earliest
fork.
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Both the lineage plots of ee, May, and Harvey (1994) and the likelihood func­
tions they give are conditional on having a tree whose first split is a time T aao.
We may be interested in what the density function of trees would be, conditione'::
only on having n descendants alive in the present. The important result for com­
puting this was obtained by Thompson (1975). Her derivation is a rather comple\.
tour de force-I will give only a simplified rationalization here, one similar to the
argument of Nee, May, and Harvey. I will compute a somewhat different quanti.­
than either of these. A derivation similar to this one was given by Rannala (1997 .

Suppose that we have a birth and death process with birth rate A and death
rate f-L. We want to compute the probability density of obtaining a tree with
tip species and particular times of splitting. We measure time backward from the
present. We want to know the probability density of obtaining an n-species tree
with splitting times t1, t2.",. t n - 1, where T > t1 > t2 > .,. > t n - 1. If \,'e
know the function P1 (t), which is the probability that a lineage has exactly one
descendant after t units of time, the probability if we have n = 1 will simph
be P1 (T). This probability includes the possibilities that there have been some
lineages branching off from this lineage, but that all those went extinct.

If we now alter the problem and ask for the probability (density) that we end
up with two species, with the split between them at time t1, this will be that same
probability, but with the alteration that in the small interval (t1 + dt, h) there is
an event with probability Adt P1 (h), the probability of a birth in this interval 0­

a lineage that has exactly one descendant t1 units of time later. Now if we alter
it again to have a second split, on one or the other of the two lineages, at time t'],

this multiplies the probability density by Adt 2Pl (t2)' Continuing in this way, Ke
get the probability density of a tree that has n species at the end, and has the ith
species at time t(

Prob (n, t 1· t2,···, t n - 1 I A. f-L, T)

n-1

P1(T) An
-

1 (n - I)! IT P1(ti )
i=l

(33,3

Note that these probabilities take into account all possible ways in which other
speciation events could be arranged that do not lead to any further survivors in
the present.

We would like to compute the probability density of the speciation times t
conditional on ending up with n species. For this we need to divide the probability
by its integral over all t 1 ~ t2 ~ .. , ~ t n - 1. Fortunately, this is not as hard to
compute as might seem. The quantity being integrated is a product of the P1 (t; ,
and it follows that the integral is the same no matter what order we constrain the
ti to be in. As there are (n - I)! orders, the integral for anyone of them will be
Ij(n - I)! of the integral over all possible orders, so that the resulting probability
density is

n-1 [ ]P1 (t i ) dti
Prob(h,t2, ... ,tn ln.A,f-L,T) = IT T

i=l fo pI(u) du
(33,6
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In this equation we have the usual birth-death process result (Kendall, 1948)

().. - pleP.,-j1)t
PI (t) =

[)..e(,\-j1)t - f-J] 2

The expression on the right side of equation 33.6 can be used as the likelihood,
to estimate).. and p, much as Nee, May, and Harvey did. One advantage that it
has over their approach is that we can consider its limit as T ---7 00. Nee, May,
and Harvey, and also Thompson, took as the starting point the age of the first
split. We have taken it before that. As Nee, May, and Harvey conditioned only
on survival of the birth-death process, if ).. exceeds 11, when we start from far in
the past we expect a huge number of lineages. In the present case, we condition
on getting n lineages, and this allows the probability density to converge as T
increases, whether or not).. > Ii.

Other likelihood approaches
For the special case of the Yule process, which has speciation but no extinction,
Hey (1992) and Sanderson and Bharathan (1993) have given expressions for the
likelihood. These are completely consistent with the equations given here. Sander­
son and Donoghue (1994) use these likelihood expressions to test whether different
clades in a phylogeny have different rates of speciation.

Hey has also considered a model in which there are N lineages, and when one
of them speciates, another goes extinct at the same moment. This maintains a
constant number of species. It is equivalent to the "Moran model" of theoretical
population genetics in which one individual dies and one is born in each event.
One nice property of Hey's model is that a smaller sample of species n « N has
its reconstructed genealogy drawn from the distribution of a coalescent. Thus
analysis of a sample of species rather than all extant species is possible. This is
not possible in the birth and death process in general. Yang and Rannala (1997)
have modeled sampling by having each lineage have an extra last-minute high
probability of extinction. It is less than obvious to me that this is the correct way to
model sampling, unless the systematist draws their samples in this way. It is not
equivalent to drawing a fixed number n out of a larger number of B of species.

Other statistical approaches
The likelihood formula obtained above can replace some other statistical ap­
proaches. Wollenberg, Arnold, and Avise (1996) assumed a birth-death process
and compared empirical distributions of speciation times to ones generated by
simulation. Their method implicitly assumed that the birth rate equaled the death
rate (Paradis, 1998b). Paradis (1997, 1998a, b) has developed likelihood methods
using equations from survival analysis. Going backward in time, lineages decrease
in number in a close parallel to deaths of patients under treatment (except that
the patients die, they do not merge into each other). However, there is no event
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in survival analysis that is analogous to extinction. Given the reversal of time,
that would be like the sudden appearance of a patient. Paradis's approximations
amount to assuming that there is a pure birth process, extinction being unimpor­
tant by comparison (Pybus and Harvey, 2000). Kubo and Iwasa (1995) have used
nonlinear curve fitting to infer parameters in a birth-death process. Their method
can cope with both speciation and extinction, although it does not use the covari­
ances that are expected between different points on the curve.

A time transformation
The result for n tips is not the same as the one Nee, May, and Harvey use. They
note that the model of Hey (1992) that has a strict density-dependent limit on the
number of lineages does lead to the coalescent, and they suggest using the coales­
cent to model the distribution of phylogenies. The present model does not result in
the coalescent, though it comes very close if A = fl.. It does lead to one interesting
transformation that simplifies Rannala's (1997) suggested procedure for randomly
sampling trees. We can take an imaginary time scale T that satisfies

T ==

Integrating this using equation 33.7, we get

e(>-,-p,)t - 1

AeC>-'-P,)t - fl.

(33.8)

(33.9)

(This also provides the integrals for the denominators in equation 33.6.)
It is straightforward to show using equation 33.6 that this fictional time will be

uniformly distributed between 0 and the value that is obtained for t = T. When
T --+ 00, it is uniformly distributed between 0 and 1/A if A > fl., and between 0 and
1/fl. if fl. > A. When we have a n-species tree sampled from the probability density
33.6, its speciation times will be the order statistics of a sample of n -1 points from
the appropriate uniform distribution. If we want to see whether a tree could be
the reconstructed tree from the birth-death process with particular values A and
fl., we can compute the values of T and see whether they appear to be uniformly
distributed on the appropriate interval.

Alternatively, if we want to sample a reconstructed tree of n species, we can
sample n - 1 points from the appropriate uniform distribution, order them, and
then use the back-transformation

1 (1- fl.T)t = -- In ---
A - fl. 1- AT

(33.10)

The labeled history can then be obtained by working backwards down the tree,
choosing pairs of lineages randomly to coalesce at these times.
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This result is equivalent to one suggested by Rannala (1997). It is somewhat
different from the coalescent distribution suggested by Nee et al. (1995). They do
not present a derivation from the birth-death process of their coalescent result but
argue that it will prove useful in practice. Pybus and Harvey (2000) approach
this problem differently. They use a statistic that would be exactly normally dis­
tributed if there were a pure birth process, and for cases in which there is death as
well, they obtain its distribution by simulation.

The present result allows for both birth and death of lineages. It is not a coales­
cent and, unfortunately, does not share with it the property that it can predict the
form of the tree reconstructed from a random sample of the species.

Characters and key innovations
A major question of interest has been whether clades that have acquired a par­
ticular phenotype-a putative "key innovation"-have thereby been enabled to
spread more rapidly. Slowinski and Guyer (1993) have discussed testing of two
sister clades, one of which has a putative key innovation. They use the uniform
distribution of clade sizes under random branching to compute P values, and they
suggest combining these across pairs of clades using Fisher's method of combin­
ing significance tests.

A likelihood-based test for this problem is presented by Sanderson and
Donoghue (1994). They allow up to four different rates of speciation in a tree that
has two clades, their ancestral lineage, and an outgroup. They compute a likeli­
hood for each combination of rates by integrating over times of divergence of the
two clades. Their model does not allow for extinction, and they do not have any
penalty for a higher number of parameters in the model.

Work remaining
Lineage plots use branch-length information to infer the rates of speciation and
extinction, and to test hypotheses about their changes through time. Tests using
asymmetry of tree topology test whether some lineages have greater chance of
speciating than others. What is still lacking is a testing and estimation framework
that allows topologies and branch lengths to be used to answer both of these ques­
tions. For example, if a lineage has a greater rate of speciation than another, this
should be reflected not only in its having more descendants but in shorter branch
lengths between speciation events. At present we are lacking the following:

• Any method that uses both of these kinds of information (topologies and
branch lengths)

• Any framework that takes into account the uncertainty of branch lengths
and topologies

• Any method that makes use of a model of evolution of phenotypes of the
species, to help see which traits might have contributed to the success of a
clade



372 Chapter 33

• Any method that uses a quantitative model of the evolution of the rate of
speciation and/or the rate of extinction.

Clearly this literature is in its early days.
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Drawing trees

I am frequently asked for advice on how to "draw a tree" for some group from
some data. Almost always, by "draw" the biologist means to infer the tree, and
the issue of how to draw a picture of it is not really being raised. But drawing trees
is worthy of discussion. There has been almost no literature on the subject, aside
from descriptions of options in computer programs.

It might be thought not to be topic in science, but rather a matter of aesthetics.
But how to draw diagrams of trees that convey the information most effectively
is a legitimate concern of science. There is no scientific research on this topic, so
this chapter will be mostly concerned with describing some possibilities, giving
examples, and speculating as to how well they convey the information. Of course,
trees can be drawn by hand, and programs such as TreeTool have been written
enabling the user to move nodes manually. But my concern here will be how to
draw a tree automatically, using an algorithm.

I will use a single tree as my example throughout this chapter. It will be de­
scribed in the Newick tree format, which we have already used in this book. I will
describe this format more in the next chapter. The tree I will use is

(((((((A:4,B:4):6,C:5):8,D:6) :3,E:21):10,((F:4,G:12):14,H:8):13):13,
((I:5,J:2):30,(K:11,L:11):2):17):4,M:56);

There are two distinguishable cases, drawing a rooted tree, and drawing an
unrooted tree. In both cases I will leave the left-right order of tips unchanged. It
is worth noting that by reordering tips, you can change the viewer's impression
of the closeness of relationships. For example, in drawings of the above tree, tip
E looks close to F, simply because they are adjacent in the left-right order of tips.
But we could equally well flip the order of branches in the tree so that A \,'as
immediately before L, and E and F were far apart. And yet these are really the

573
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same tree! A little judicious flipping may create a Great Chain of Being marching
nicely along the sequence of names, even though the tree supports no such thing.

Issues in drawing rooted trees
In the examples shown here, the trees will "grow" from left to right. They might
equally well grow from bottom to top, or from top to bottom. Growing from right
to left is rarer, confined mostly to diagrams in which two trees abut head to head,
in order to compare them. When we describe the coordinates of the interior nodes,
x will be the horizontal distance and y the vertical distance. The horizontal (x)
distances will be proportional to the branch lengths. (As we will see, this is not the
only possible way of conveying branch lengths.)

Placement of interior nodes
Figure 34.1 shows the tree drawn with four different methods of placement of the
interior nodes.

The horizontal axes are, as just mentioned, proportional to the branch lengths.
The vertical coordinates of the tips are established by making a pass through the
tree, from left to right and from top to bottom. (In the next chapter I will describe
this more precisely as a postorder tree traversal.) As each tip is encountered, it is
assigned a value of y, these being equally spaced. There are other possibilities, but
these have their own difficulties.

The four methods shown of assigning the y coordinate of the interior nodes
make use of the x and y coordinates of the descendants of the node, plus the branch
lengths of the branches leading to the immediate descendants. I will assume here
that the scale of the x axis is in branch-length units. The methods are, in order on
Figure 34.1:

Intermediate: The y coordinate is halfway between the y coordinates of the first
immediate descendant and the last immediate descendant. If there are only
two immediate descendants, it is halfway between these. Thus if there are k
immediate descendants,

(34.1)

Centered: The y coordinate is centered between the values of all descendant tips.
Thus if there are K tips descended from the node, and these happen to be
numbered 1, 2, ... , K in order,

(34.2)

Weighted: The y coordinate is the weighted average of the y coordinates of the
first and last immediate descendants. The weighting is inversely propor­
tional to the branch length leading from the node to each of these: If there
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Figure 34.1: Four drawings of the same tree, using different methods
of placement of the interior nodes. These are, respectively, (a) interme­
diate, (b) centered, (c) weighted, and (d) inner.

are k immediate descendants whose y coordinates are Yl through Ykt and the
first and last of these have branch lengths VI and Vk leading to them, then

(34.3)

We could equally well define a version of the weighted method that weights
all immediate descendants, rather than just the first and last ones.

Inner: The y coordinates of all tips descended from the node are considered. If
these happen to be tips 1 through K, the one whose y value is the median of
their y values is taken. If there are an even number of such tips, two will be
tied to be the median. The one closer to the median of the tips on the whole
tree is taken. The inner method ensures that each horizontal line on the tree
has a tip at its right end.
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You will immediately see that the effect of these systems is noticeably different.
There must be many more methods; these are the ones that occurred to me when
writing my program for drawing rooted trees. One other method, v-shaped, is not
shown here, as it was designed to be used with a different method of drawing the
lines. It will be described below.

Shapes of lineages
In these drawings, the lineages are each a vertical line followed by a horizontal
line, so that the lineage has a right-angled turn in it. This works well with many
of these node placement methods to keep lines from crossing. It also conveys the
branch lengths very accurately, provided the viewer can concentrate on the x axis.

Figure 34.2 shows five other ways of drawing the lineages. The methods used
to draw lineages are (in order, left to right and top to bottom):

Straight lines, with the node positions weighted. Note the crossed lines, an un­
fortunate effect that cannot always be avoided.

Straight lines, with the node positions determined so that the tree is v-shaped.
Again, some lines are crossed. V-shaped trees are achieved by setting each
node's y coordinate to be on a straight line between the node ancestral to it
and one of its descendants. If the node is above its ancestor, its uppermost
descendant is used. If it is below its ancestor, the lowermost ancestor is used.
This is done iteratively until y coordinates of nodes cease changing.

Quarter ellipses. The lineage is one-quarter of an ellipse, going first vertically and
finally horizontally.

Recurved quarter ellipses. The lineage is two quarter ellipses, the first beginning
horizontally and becoming vertical, and the second going first vertically and
then horizontally. The first ellipse (the one closer to the root of the tree) is
half as large as the second one.

European. This imitates a style of cladogram popular among European re­
searchers in the 1980s. The lineages are straight lines going diagonally for
one-third of their horizontal extent, then going horizontally thereafter.

Circular tree. Here the tree is drawn with polar coordinates around the center of
the page. What were formerly vertical lines become arcs of a circle. What
were formerly horizontal lines now radiate outwards from the center of the
circle. This system was devised by David Swofford and David Maddison.

Note that with many of these methods, one cannot always avoid having lines
cross. I have deliberately used an example tree that shows this. The only way
of avoiding crossing is to have the tips not be evenly spaced along the y axis.

With the straight and curved branches, the branch lengths may be misleading
to many viewers. The lengths of the branches are proportional to the horizontal
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Figure 34.2: Methods of drawing lineages. These are, left to right and
top to bottom, (a) diagonal line, (b) diagonal line with v-shaped node
placement, (c) quarter ellipse, (d) recurved quarter ellipses, (e) Euro-
pean, and (f) circular.

extent of the branch. But our eyes are naturally attracted to the length of the line
(or curve). For example, in the European tree the lineage ancestral to KL appears
much longer than the lineage ancestral to J. Both are equal lengths on the original
tree, but the lineage that leads to the common ancestor of K and L moves much
farther vertically. In the case of recurved quarter ellipses, it is also hard to see
where the lineages start diverging.
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Unrooted trees
Unrooted trees pose even more challenges. Assuming that we want to preserve
branch-length information, we can think of the tree as a collection of rods of given
lengths, tied together at their ends. They cannot be stretched or compressed, but
they can be rotated. Drawing the tree reduces essentially to the problem of de­
termining the angles at all the connections between rods. Three classes of method
will be described here. The problem is a special case (for trees) of the general prob­
lem of drawing graphs. An annotated bibliography of graph drawing algorithms
(Di Battista et al., 1994) will serve as an introduction to the general problem.

The equal-angle algorithm
This method was invented by Christopher Meacham when he wrote a tree plotting
program for my package. One starts from any internal node on the tree. The total
number of species on the tree is cOlmted, and the circle (total angle 27f radians or
360°) is divided into equal angles, one for each species. In our 13-species example,
this will allocate 0.48332 radians (27.69°) per species. At the starting node, there
will be three or more subtrees attached. Each is assigned a total angle equal to the
share of the number of species that it contains. In our example tree, there is a node
to which subtrees of size 8, 4, and 1 species are attached (these are species A-H, I­
L, and M). These three subtrees would then be assigned angles 3.8666, 1.9333, and
0.48332 radians. We set up sectors of angles of these sizes around the node, and
draw a line for that branch out into the middle of each sector, of length appropriate
to the branch length.

As we reach each node we take the angle and divide it into parts, one for each
subtree that is attached to the end of that branch (ignoring the parts of the tree
attached to the node from which we came). Thus the eight-species subtree has a
branch of length 13, and the node there connects to two subtrees, one with five
species and one with three. We set up the sector for the eight-species subtree, now
centering it at the end of the branch of length 13, in such a way that that branch
points to the bisector of the angle. Then we divide the angle into parts proportional
to the numbers of species in each subtree.

Thus the eight-species subtree starts with an angle of 3.8666 radians, moves out
a distance 13 up the middle of that sector. It has a node there, which connects to
two subtrees, with five and three species, respectively. The 3.8666 radian sector is
set up at the node, with the branch of length 13 pointing at its bisector. This angle
is then subdivided into two sectors, one of 2.4166 and the other of 1.4500 radians.
Into each a branch is drawn, bisecting the angle, and of the appropriate length (in
this example these would be of lengths 10 and 13).

The process continues, setting up an angle, dividing it into sectors for each
subtree connected further on to that node, and drawing branches out into each
sector, bisecting it.
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Figure 34.3: The equal-angle algorithm on a tree of 10 species. Angles
are shown in degrees. The starting point is the midpoint of the branch
that separates species EFGH from the others.

Figure 34.3 shows one such tree of 10 species, the angles (in degrees) allocated
to each branch. An interesting, and not immediately obvious, fact about the algo­
rithm is that it does not matter where you start on the tree. You can start at any
node (even a tip) or even at any point on any branch. The resulting tree will dif­
fer at most by a simple rigid rotation and translation of the whole drawing, as a
result of a different starting point. I will not prove this but leave it to you as an ex­
ercise. It is also easy to prove that the algorithm will never cause branches of the
tree to cross. I am assuming that any branches of negative length will be drawn as
if of positive length.

Figure 34.4 shows our 13-species example plotted by the equal-angle algo­
rithm. This points up one of the limitations of this algorithm. The tree shows
tips rather crowded together (A and B, F and G, for example), while at the same
time there are large empty areas. These come from the fact that angles are allo­
cated without regard to how far out the subtree is as a result of the length of the
branch leading to it. In the example tree, subtree IJ sits on the end of a long branch,
but is not allocated any extra angle that would allow I to swing further a,\-ay hom
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Figure 34.4: The example tree drawn by the equal-angle algorithm.

J, even though there is plenty of space to do so. To allow for this, we would need
to know more about how long the branches within the subtree were.

n-Bodyalgorithms
In an attempt to allow branches to swing away from each other and out into empty
space! I have tried modeling the tree as a system of particles held together by rigid,
but rotatable, rods. At each node, both at tips and interior nodes, a particle with
an electric charge could be imagined to exist. If all the charges were of equal size
and sign, they would repel each other, causing the tree to settle into some final
configuration. This seemed like a good algorithm. But in testing it, a problem
came to light. If the charges were at the ends of the branches, when there were
long branches in different parts of the tree, one branch could actually pass through
another! This can happen if one end of a branch approaches the middle of another.
The end does not repel the middle of the other branch, and if the ends of that
branch are far enough away it can be pushed (by forces from other parts of the
tree) through the branch.
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Figure 34.5: The example drawn by an n-body algorithm.

To avoid this, it has proven necessary to spread the electrostatic charge out
along branches, so that the end of a branch will be repelled if it approaches the
middle of another branch. At each moment, it is necessary to calculate the forces
exerted by each branch on each other, and the rotations that would result per unit
time. The branches are then moved a small distance, and then the forces must be
recalculated.

The n-body problem in celestial mechanics is well-known to be a very difficult
one. Taking too large a step size can cause accumulation of errors in the positions
of the particles. Fortunately, it's not rocket science in our case. We don't care
about the exact trajectories, just about the final locations of the particles. Figure
3-1.5 shows the result of applying an n-body algorithm to our example. The tree is
quite a reasonable one. The branches leading to D and E get a bit too close to others
for comfort, but the rest do a good job of using the previously empty space. On
examples with much larger numbers of species, I did see cases where the n-bod\'
algorithm swung one subtree around behind another, which sometimes makes for
less visual separation than one wants.

The main problem with the n-body algorithm is the high computational bur·
'- en. Updating positions of subtrees and forces continually is computationalh' di '.
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Figure 34.6: The angles of "daylight" between subtrees, calculated
from one node of a tree.

ficult. I have therefore not given you many details of how my particular versions
of n-body algorithms work. It turns out that there is a better, and quicker, method.

The equal-daylight algorithm
To avoid the heavy computation involved in the n-body algorithms, I reluctantly
decided to try to find some rougher approach that would at least swing some
subtrees out into the empty zones that haunt the equal-angle algorithm. A simple
method suggested itself, one which equalizes the sizes of angular gaps between
subtrees. When this was implemented, to my astonishment the trees were not just
better than the equal-angle algorithm, they were outstanding.

The equal-daylight algorithm uses a starting tree (for which the equal angle
algorithm tree is fine). For each internal node in the tree, we look at all subtrees
connected to it (there will be three or more of these). We imagine lines from that
node to each member of each subtree. For each subtree we find the rightmost and
the leftmost such line. From these we can work out the angle between each subtree
and the next. These angles tell us how much"daylight" there is between subtrees.
We then change the angles with which each subtree connects to the node, so as to
equalize the angles between the subtrees.
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Figure 34.7: The equal-daylight algorithm applied to the example tree.

Thus if we find three subtrees, one shading the angles from 10° to 40°, one from
90° to 150°, and the third from 210° to 280°, the angles between them are 50°, 60°,
and 90°. These daylight angles total 200°. If they were made equal, they would
all be 66r. To equalize them, we could rotate the second subtree by 16% more
degrees, and the third by 16% + 6~ more degrees.

We do this for each internal node in turn, and then make further passes through
the tree, until the all of the daylight angles approach equality. It should be imme­
diately apparent that this cannot cause any branches to cross, as long as we start
with positive daylight angles. Figure 34.6 shows the daylight angles viewed from
one internal node of a tree.

There are some problems that can arise in carrying out the equal-daylight al­
gorithm. If the subtree angles sum to more than a full circle, it will be impossible
to find a positive angle between subtrees, and the subtree angles will overlap. For­
unately, this cannot arise if the equal-angle algorithm is used for the starting tree.

Figure 34.7 shows the result of applying the equal-daylight algorithm to the e:\­
ample tree. The results are quite good, showing better visual separation of nearb,'
:i.neages than does the n-body algorithm. In general the equal-daylight algorithm
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runs considerably faster than the n-body algorithm, and shows the structure of the
tree more clearly.

We might expect all parts of the tree to be seen particularly clearly with this al­
gorithm. From each node, looking outwards, we can see a clear path out of the tree
between each subtree, and good visual separation between the subtrees. Likewise,
looking inwards from the outside, there will be straight paths in to each node from
outside the tree. Subtrees will never move behind other subtrees, obscuring their
visibility.

The equal-daylight algorithm is, for now, the best method of drawing unrooted
trees. However, no one has defined general criteria for judging the adequacy of a
tree drawing, so there is no way to prove that this method is optimal.

Challenges
There remains the task of placing tree drawing in a more scientific context by defin­
ing optimality criteria that make psychophysical sense. I have also omitted a num­
ber of problems. How best to orient the labels at the tips? How best to arrange the
tree so that branch lengths and bootstrap percentages appear clearly on interior
branches? This latter problem may have no solution: When a large number of
small interior branches lie near each other, there may simply be no room to show
branch-length values. With large trees containing many small branches, it may be
important to provide views of the tree that have some subtrees collapsed and rep­
resented by triangles, so that only part of the tree is visible at anyone time. One
can collapse and expand these triangles interactively, allowing the user to explore
the tree. A similar approach uses a fish-eye lens transformation to view structure
in one part of the tree (d. Lamping and Rao, 1994). By moving the center of the
view, one can expand some parts of the tree while compressing others.
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Phylogeny software

Throughout this book I have been avoiding many of the details of algorithms and
their computer implementation. This chapter is intended to provide some of this
information. I will explain some details of computer representation of trees, both
within programs and in files, and the process of traversing trees. Finally, I will
provide a list of widely used packages for inferring phylogenies.

Trees, records, and pointers
The implementation of computer programs for handling phylogenies seems diffi­
cult, owing largely to the complicated and tedious bookkeeping involved. Trees
are not as difficult to manipulate as might seem, because modern computer lan­
guages have records and pointers, plus the ability to do recursive function calls.
Using these, we can move rapidly through a tree, updating information or chang­
ing its structure. Records are regions of computer memory containing several vari­
ables, that can be referred to by a single name (in Pascal they are "records," in C
"structures," and in C++ and Java, "classes"). Variables that refer to records are
called pointers.

For example, we could imagine a node of a tree, which we would want to
have pointers to its left and right descendants, one to its ancestor, and a variable
that indicated whether or not the node was a tip. Of course many other pieces
of information might be desirable too, but we are describing only the minimum
necessary to use when moving about the tree. Figure 35.1 diagrams the structure
of part of the tree ((A,B),C). The record is a box, its variables are names within
the box, and their values are shown by drawing an arrow to the other record they
might point to. In this case leftdesc and rightdesc are the pointers that point
to the left and right descendants, and ancestor points to the ancestor. tip shows
by being 1 or 0 whether the record is or is not for a tip. Pointers that do not point to
anything are shown as arrows with empty heads. There is a pointer in the program
data called "root."

585
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leftdesc
rightdesc
ancestor
tip = 1

leftdesc
rightdesc
ancestor
tip = 0

leftdesc
rightdesc
ancestor
tip = 1

leftdesc
rightdesc
ancestor
tip = 1

root

leftdesc
rightdesc4------­
ancestor
tip = 0

Figure 35.1: A record and pointer structure representing a simple
rooted tree of form ((A,B),C). Each branch is represented by a pair of
pointers, one pointing each direction along it.

This scheme is mentioned by Knuth (1973, Section 2.3.3) as a "triply linked
tree."

Declaring records
In writing a program to set up and manipulate trees composed of records and
pointers, we must inform the program, early on, of the structure of these records.
Here is the declaration we might use in C:

typedef struct node {
node *leftdesc, *rightdesc, *ancestor;
int tip;

} ;
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Here it is in C++:

class node
{

public:
node* leftdesc;
node* rightdesc;
node* ancestor;
bool tip;

} ;

and here it is in Java:

class Node
{

Node leftDesc;
Node rightDesc;
Node ancestor;
boolean tip;

}

Each declares what variables will be in the records. In the case of C++ and Java
we have actually declared, not simply records, but classes, which are entities that
can contain functions as well as data.

Once these declarations are available, the program can actually set up instances
of the records. The program would do this as it added lineages to a tree, either
during a process of sequential addition, or while reading a representation of the
tree from a file. I will not attempt to give the actual code that is used to create a
record, make the pointers point to other records, and make the tip variable have
the correct value.

Traversing the tree
The great advantage of this method of representing a tree is the ease of writing
the code that moves about the tree. The main trick is using recursive hmction
calls. Suppose we want to move through the tree, carrying out for each record
p a function f (p). This is known as tree traversal. We start at the bottommost
fork in the tree. Two major types of tree traversal are preorder and postorder tree
traversal. A preorder tree traversal carries out the function f (p) at each node before
it visits its descendants. A postorder tree traversal carries it out at a node only after
it visits its descendants.

A tree traversal is defined in terms of itself. A postorder tree traversal fron
node p does the following:
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1. Traverses p's left descendant (if any).

2. Traverses p's right descendant (if any).

3. Carries out function f (p) at p.

Basically, one is instructing the program to (1) go up the left subtree and do all this
with it, (2) go up the right subtree and do this with it, and then (3) carry out f (p)
here. The effect of all this is that the program passes through the tree, going up the
leftmost route until a tip is reached, then backtracking. On the way back down,
as each node is reached for the last time, function f (p) is executed. So each node
does not have f (p) done until this has been done for all its descendants.

The code for doing all this is startlingly simple. It uses recursive function calls.
Functions are allowed to call themselves. Here is the code in C (and C++):

postorder (node* p) {
if (!p->tip) {

postorder (p->leftdesc);
postorder (p->rightdesc);

}
f (p) ;

} ;

and here it is in Java:

public class PostOrder
{

void Traverse (Node n)
{

if(!n.tip)
{

Traverse(n.leftDesc) ;
Traverse (n.rightDesc) ;

}
F(n) ;

}
}

To get the process started, one calls function traverse or Traverse on the
rootmost fork. It then calls itself on the left descendant of that node, and that
invocation of the function calls itself on the leftmost descendant of that node, and
so on. Sooner or later a tip is reached, where there are no descendants. The test for
the tip variable detects this and does not do further traversal calls. The function
carries out function f (p) or F (p) at that tip. It then automatically goes back to
being in the previous instance of the traversal function. There, it has just finished
calling itself on the left descendant, and it now calls itself on the right descendant.
It is automatically backtracking and exploring all parts of the tree. If you follow
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Figure 35.2: The same tree as in the previous figure, using the unrooted
data structure that has rings of records at nodes. Each record has two
pointers, a next pointer that goes around the ring, and an au t pointer
that points to the record at the opposite end of a branch.

the logic of the recursive calls carefully, you will see that they visit every node, and
they call the function on each before calling it on any of its ancestors.

This is the easy way to implement going down the tree, carrying out a func­
tion on each node. It is not necessarily the fastest way. Back in the FORTRAN
era, I used to represent a tree as a two-dimensional array. Each row represented
one node, which had a number. It had entries in the row for the number of its left
descendant, for the number of its right descendant, and for the number of its an­
cestor. Each of these was 0 if it pointed to nothing. The rows of the array were
kept in order, so that each node's row occurred before that of its ancestor. To go
down the tree carrying out a function, one just went along the array, carrying out
the function at each node. This was quite fast. The trick was that, when one re­
arranged the tree, it was necessary to renumber and reorder some of the interior
nodes. This was painful and error-prone.

Unrooted tree data structures
The system of records and pointers used above is well-adapted to strictly bifur­
cating rooted trees, but becomes cumbersome if there are multifurcations, or if the
tree is to be regarded as unrooted. With multifurcations possible, we would haye
to replace leftdesc and rightdesc by an array of pointers, or by a linked list
of pointers. If we want to reroot the tree, the above scheme makes it tiresome-- \,'e
have to go through the tree swapping values of pointers in an appropriate \,'a\'.
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There is a simple tree representation that solves both of these problems. We
represent each node in the tree by a circular ring of records, each with two point­
ers. One is the next pointer that points along the ring, and the other is the au c
pointer that points outwards along the branch to the nearest record in the next
node. Figure 35.2 shows the same small tree using this data structure. The records
are the small circles. Each has two pointers, respectively, the curved arrow nexc
and the straight arrow out.

The great advantages of this structure are that it accommodates any degree of
multifurcation, and if one wants to reroot the tree, this is done rather easily, with
most of the nodes between the old and new locations of the root not changing at
all. It is the structure used in my own program package PHYLIP, which originated
its use in 1982 in the programs DNAML and CONTML.

Tree file formats
The representation of trees in readable format in files can be done in many ways.
The most widely used is the Newick format. This format was designed by a
committee (consisting of F. James Rohlf, David Swofford, Christopher Meacham,
James Archie, Wayne Maddison, William H. E. Day, and me). It was convened
informally by me at the 1986 meetings of the Society for the Study of Evolution
in Durham, New Hampshire (it was not an activity formally organized by the
Society). The second session of the committee meeting was held at Newick's lob­
ster restaurant in nearby Dover, and the tree format that was produced has been
named in honor of the restaurant, because we enjoyed the meal.

We have seen many examples of this format already, so I will describe it curso­
rily. Each internal node in a rooted tree is represented by a pair of matched paren­
theses. Within it is a list of the nodes immediately descended from this internal
node. Ones that are themselves internal nodes are again in matched parenthe­
ses. Ones that are tips are represented by their names. Any node can be followed
by a colon together with a number that is the branch length of the branch below
that node. (Although we have not used this feature, any internal node can also be
preceded by its name.) A tree ends in a semicolon.

Thus the simple tree in the figures in this chapter can be represented by

((A:O.I02,B:0.23):O.06,C:O.4);

if its tips had names A, B, and C, and these lengths were assigned to the branches.
The Newick format is described further on its web page:

http://evolution.gs.washington.edu/phylip/newicktree.html
It is based on the famous relationship between trees and ways of putting paren­
theses into algebraic expressions noted by Cayley (1857).

The Newick format has been successful in spite of being nonunique for un­
rooted trees, which can be represented only as rooted trees (and there are many
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rooted trees corresponding to each unrooted tree). It also enforces a left-right or­
der on a rooted tree, which may not need to have one.

It is about to be superseded by a wave of XML representations of trees. There
is no standards committee for these-they will be standardized the way player pi­
ano rolls were a century ago, when every piano needed to be able to play the rolls
of the most popular brand.1 My own preference is that the XML representation of
our small example tree be:

<phylogeny>
<clade>

<clade length="O.06">
<clade length="O.102"><name>A</name></clade>
<clade length="O.23"><name>B</name></clade>

</clade>
<clade length="O.4"><name>C</name></clade>

</clade>
</phylogeny>

but the issue is not decided yet.

Widely used phylogeny programs and packages
There are now hundreds of phylogeny programs, and the number continues to
grow. I have been attempting to keep track of them in a set of web pages at:
http://evolution.gs.washington.edu/phylip/software.htm1
I will try to keep these pages available and current as long as I can. If you are read­
ing this years from now and this link is not active, you may be able to find them, or
a descendant of them, by searching for !!Phylogeny Programs!! in a search engine.
Here I will list only a limited number of widely used programs and packages.

PHYLIP My own package, one of the earliest in wide distribution. It has been
maintained since 1980, first as Pascal source code, then after 1993 as C source
code, and with executables for major operating systems. It is available free
from http://evolution.gs.washington.edu/phylip.html. The
package contains programs to infer phylogenies by parsimony, distance ma­
trix, and maximum likelihood methods, as well as programs for consensus
trees, distances between trees, editing of trees, invariants, and compara­
tive methods. There are programs for data types including nucleic acid se­
quences, protein sequences, gene frequencies, restriction sites and restriction
fragments, discrete characters, and continuous characters.

PAUP* This is a comprehensive program with parsimony, likelihood, and dis­
tance matrix methods. It has many more features and methods than PHYUP.

1Thanks to Chris Meacham for the analogy.
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It competes with PHYLIP to be responsible for the most trees published. It is
due to David Swofford and is distributed by Sinauer Associates of Sunder­
land, Massachusetts (also the publishers of this book). They sell executable
versions for Windows, MacOS, and Linux or Unix systems. A PAUP* web
page is at http://paup . csi t . f su. edu, where there are also links to its
web page at Sinauer Associates.

MacClade An interactive MacOS program by Wayne and David Maddison. It
can rearrange trees and watch the changes in the fit of the trees to data
as judged by parsimony. MacClade has a great many features including a
spreadsheet data editor and many descriptive statistics. It is particularly
designed to export and import data to and from PAUP*. MacClade is avail­
able for purchase from Sinauer Associates. It is described in a web page
at http://phylogeny.arizona.edu/macclade/macclade.html,
where there are links to its Sinauer Associates web pages as well.

MEGA A Windows and DOS program by Sudhir Kumar, (written together with
Koichiro Tamura and Masatoshi Nei while Kumar was a student in Nei's
lab). It can carry out parsimony and distance matrix methods for DNA
sequence data. An executable for Windows can be downloaded from
http://www.megasoftware.net

PAML A package of programs by Ziheng Yang to carry out likelihood analysis of
DNA and protein sequence data. PAML is particularly strong in the options
for coping with variability of rates of evolution from site to site, though it is
not designed to search particularly effectively for the best tree. It is available
as C source code and as MacOS and Windows executables from its web site
athttp://abacus.gene.ucl.ac.uk/software/paml.html

TREE-PUZZLE This package by Korbinian Strimmer, Arndt von Haeseler, Mar­
tin Vingron, and Heiko Schmidt can carry out likelihood methods for
DNA and protein data, searching by the strategy of "quartet puzzling,"
which Strimmer and von Haeseler invented. It can also compute distances.
It superimposes trees estimated from many quartets of species. TREE­
PUZZLE is available for Unix, MacOS, or Windows from its web site at
http://www.tree-puzzle.de/

DAMBE A package by Xuhua Xia, it is a general-purpose package for DNA
and protein sequence phylogenies. It can read and convert a num­
ber of file formats, and has many features for descriptive statistics, and
can compute a number of commonly used distance matrix measures
and infer phylogenies by parsimony, distance, or likelihood methods, in­
cluding bootstrapping and jackknifing. There are a number of kinds
of statistical tests of trees available. It can also display phylogenies.
DAMBE includes a copy of the ClustalW alignment program as well;
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DAMBE is distributed free as Windows executables from its web site at
http://aixl.uottawa.ca/~xxia/software/software.htm

NONA A very fast parsimony program by Pablo Goloboff, capable of some
relevant forms of weighted parsimony. It can handle either DNA se­
quence data or discrete characters. It is available as shareware from
http://www.cladistics.com/aboutNona.htm. After a 30-day free
trial, NONA must be purchased separately by sending a check to one of the
addresses given on the web page.

TNT This program by Pablo Goloboff, J. S. Farris, and Kevin Nixon, is for search­
ing large data sets for most parsimonious trees. TNT is described as faster
than other methods, though not faster than NONA for small to medium data
sets. Its distribution status is somewhat uncertain at present (see the web site
http://www.zmuc.dk/public/phylogenyItnt). It seems to be in lim­
ited beta release, but not yet freely available.
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"The book is full ofexpert insights, as one would expect from an author who has

made important original contributions to many of the areas he covers. Felsenstein

provides beautiful and creative accounts ofmany topics. ... It will be a long time

before there will be a comparable book; perhaps the field is now growing too fast

for there to ever be one. The publication of Inferring Phylogenies is a milestone

for evolutionary biology in general and phylogenetics in particular."

Fredrik Ronquist, Science

"The author certainly sets out with an ambitious goal: to survey, in one book, the

field ofphylogenetics since computational methods entered the arena 40 years

ago, and he amply delivers on this promise. ... For researchers new to this area, the

book describes contemporary methodology in a way that is both accessible and

authoritative: the level ofmathematics is instructive without being intimidating,

and the numerous figures are helpful. For 'old hands,' it provides a wealth of
background and commentary."

Mike Steel, TRENDS in Ecology and Evolution

"Occasionally a book is a classic by the time it is published, and this is it. ...

The breadth is very wide with all the main expected topics: numbers of trees,

parsimony algorithms, distance calculations, Markov models for sequence

evolution, likelihood and Bayesian methods, bootstraps, Likelihood Ratio and other

tests, consensus, and coalescents. ... many less common approaches are also

covered, including compatibility, invariants, Hadamard transforms, restriction site

data, quantitative characters, tree shapes, and even ways ofdrawing trees. ... It is

hard to imagine how any lab could function without this book."

David Penny, Systematic Biology
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