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Preface

This is a textbook on shape analysis for biologists, covering both its basic theory and
its practice. We think that a textbook is needed because the field has changed tremen-
dously in recent years, primarily due to rapid developments in the mathematical theory of
shape. Most of the work done during the past decade has focused on the mathematical
foundations of methods, or on extensions of theory to ever more mathematically complex
situations, and so most treatments of the subject have been written by and for mathe-
maticians. Biologists reading those treatments may find the subject abstract, even obscure
and mysterious, when the reality is that conducting a biological shape analysis requires
no more background in mathematics and statistics than most biologists acquire in their
undergraduate training. The discouragement caused by reading the often highly technical
works in the field is unfortunate, because the tools of shape analysis have great utility
in biology. Furthermore, a major achievement of geometric morphometrics is the ability
to draw pictures of morphological transformations; we can literally see one morphology
transforming into another, which should make geometric morphometrics intuitively acces-
sible to morphologists. Accordingly, we have written this primer emphasizing applications
to biological questions and illustration of results, and we have written it presuming that
the reader’s background consists only of a basic course in statistics and some familiarity
with elementary geometry and algebra.
We wrote this for largely selfish reasons: we teach morphometrics to advanced under-

graduate and graduate students, and we needed a textbook. Like many biologists, our
students ask sophisticated biological questions and require methods that can answer those
questions, but have little (if any) experience with matrix algebra, non-Euclidean geome-
try or multivariate statistics. Also, like many others who are learning new methods, our
students want to apply them (often immediately on learning them), not just to learn their
rationales. Accordingly, we have emphasized the biological questions answered by various
methods and provided examples of applications to both simple and complex biological
questions. We also make software available electronically to conduct all the analyses
explained in the book, and incorporate the manuals within each chapter. This combi-
nation of explanation of methods, examples, illustration of results, software and manuals
will allow students to begin applying the methods as they are learning them.
We strongly encourage all students (and faculty) to begin collecting data as soon as

possible – ideally while reading Chapter 2. Although some datasets are contained within
the software packages so that you can practice analyzing them, it is best to practice on your
own data. They are more familiar and far more interesting to you than any we can provide.
Consequently, you will learn the material most quickly and thoroughly by applying it to
your own organisms, in context of your own biological questions.
We are very grateful to our students, both those in our regular courses at the University

of Michigan and the State University of New York, Buffalo and Canisius College, and
those who participated in our workshops at the University of California, Berkeley and
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the University of Massachusetts, Amherst. They all improved the text considerably. We
are also grateful to others who read earlier versions of this text and pointed out errors and
ambiguities, and also asked probing questions that sometimes required us to rethink as well
as rewrite. We especially thank Barbara L. Lundrigan, Ian Dworkin, and Rebecca German
and her laboratory group. We also thank Jason Mezey and Markus Bastir, who provided
prepublication versions of the methods for comparing subspaces (Chapter 12) and for
evaluating competing hypothesis of morphological integration (Chapter 11), respectively.
Finally, we are especially grateful to Dr Charles R. Crumly of Academic Press, whoworked
with us patiently, but not too patiently.

M.L.Z., D.L.S., H.D.S., W.L.F.
April 2004
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Abbreviations

The following abbreviations or symbols are used regularly throughout this book, or are
used commonly in statistics or morphometrics. Definitions are in the Glossary.

BC Bookstein coordinates
BTR Bookstein two-point registration, or Bookstein coordinates
CS Centroid size
CVA Canonical variates analysis
DF Full Procrustes distance
df, d.f., or dF Degrees of freedom
df1, df2 Degrees of freedom for the within- and between-group factors in

an F-test
Dp Partial Procrustes distance
GLS Generalized least squares
K Number of landmarks used in a study
LCS Logarithm (to base(e) or base(10)) of centroid size
MD Morphological disparity
m (1) The number of dimensions of a landmark (either two or three), or

(2) slope of regression line, as in Y=mX+b
P Procrustes distance
PCA Principal components analysis
RFTRA Resistant-fit theta-rho analysis
SBR Sliding baseline registration
SVD Singular value decomposition
V–C, V/C matrix Variance–covariance matrix
Var–Covar Variance–covariance, as in variance–covariance matrix
X A component along the Cartesian X-axis
Y A component along the Cartesian Y-axis
Z Typically represents a complex number, but can also be a component

along the Cartesian Z-axis in analyses of three-dimensional data
δ Delta, used to indicate a small change
� The variance–covariance matrix∑n

i=1 The summation from 1 to n
� Lambda, usually, Wilk’s Lambda
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1
Introduction

Shape analysis plays an important role in many kinds of biological studies. A variety of
biological processes produce differences in shape between individuals or their parts, such as
disease or injury, ontogenetic development, adaptation to local geographic factors, or long-
term evolutionary diversification. Differences in shape may signal different functional roles
played by the same parts, different responses to the same selective pressures (or differences
in the selective pressures themselves), as well as differences in processes of growth and
morphogenesis. Shape analysis is one approach to understanding those diverse causes of
variation and morphological transformation.
Frequently, differences in shape are adequately summarized by comparing the observed

shapes to more familiar objects such as circles, kidneys or letters of the alphabet (or even,
in the case of the Lower Peninsula of Michigan, a right-handed mitten). Organisms, or
their parts, are then characterized as being more or less circular, reniform or C-shaped
(or mitten-like). Such comparisons can be extremely valuable because they help us to
visualize unfamiliar organisms, or focus attention on biologically meaningful components
of shape. However, they can also be vague, inaccurate or even misleading, especially
when the shapes are complex and do not closely resemble familiar icons. Even under the
best of circumstances, we still cannot say precisely how much more circular, reniform, or
C-shaped (or mitten-like) one shape is than another. When we need that precision, we turn
to measurement.
Morphometrics is simply a quantitative way of addressing the shape comparisons that

have always interested biologists. This may not seem to be the case because conventional
morphological approaches typical of the qualitative literature and traditional morpho-
metric studies appear to produce quite different kinds of results. The qualitative studies
produce pictures or detailed descriptions (in which analogies figure prominently), and the
morphometric studies usually produce tables with disembodied lists of numbers. Those
numbers seem so highly abstract that we cannot readily visualize them as descriptors of
shape differences, and the language of morphometrics is also highly abstract and math-
ematical. As a result, morphometrics has seemed closer to statistics or algebra than to
morphology. In one sense that perception is entirely accurate: morphometrics is a branch
of mathematical shape analysis. The ways we extract information from morphometric

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
ISBN 0–12–77846–08 All rights of reproduction in any form reserved
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data involve mathematical operations rather than concepts rooted in biological intuition
or classical morphology. Indeed, the pioneering work in modern geometric morphometrics
(the focus of this book) had nothing at all to do with organismal morphology; the goal was
to answer a question about the alignment of megalithic “standing stones” like Stonehenge
(Kendall, 1977; Kendall and Kendall, 1980). Nevertheless, morphometrics can be a branch
of morphology as much as it is a branch of statistics.
This is the case when the tools of shape analysis are turned to organismal shapes, and

when those tools allow us to illustrate and explain shape differences that have been math-
ematically analyzed. The tools of geometric shape analysis have a tremendous advantage
when it comes to these purposes: not only does this method offer precise and accurate
description, but also it serves the equally important purposes of visualization, interpre-
tation and communication of results. Geometric morphometrics allows us to visualize
differences among complex shapes with nearly the same facility as we can visualize
differences among circles, kidneys and letters of the alphabet (and mittens).
In emphasizing the biological component of morphometrics, we do not discount the

significance of its mathematical component. Mathematics provides the models used to
analyze data, including the general linear models exploited in statistical analyses, and the
models underlying exploratory methods (such as principal components analysis). Addi-
tionally, mathematics provides a theory of measurement that we use to obtain data in the
first place. It may not be obvious that a theory governs measurement, because very little
(if any) theory underlay traditional measurement approaches. Asked the question “What
are you measuring?”, we could give many answers based on our biological motivation
for measurement – such as (1) “Functionally important characters;” (2) “Systematically
important characters;” (3) “Developmentally important characters;” or, more generally,
(4) “Size and shape.” However, if asked “What do you mean by ‘character’ and how
is that related, mathematically or conceptually, to what you are measuring?”, or even if
just asked “What do you mean by ‘size and shape’?”, we could not provide theoretically
coherent answers. A great deal of experience and tacit knowledge went into devising mea-
surement schemes, but they had very little to do with a general theory of measurement.
It was almost as if each study devised its own approach to measurement according to the
particular biological questions at hand. There was no general theory of shape, nor were
there specialized analytic methods adapted to the characteristics of shape data.
The remarkable progress in morphometrics over the past decade resulted largely from

precisely defining “shape,” then pursuing the mathematical implications of that defini-
tion. The most fundamental change has been in measurement theory. Below we offer a
critical overview of the recent history of measurement theory, presenting it first in terms
of exemplary data sets and then in more theoretical terms, emphasizing the core of the
theory underlying geometric morphometrics – the definition of shape. We conclude the
conceptual part of this Introduction with a brief discussion of methods of data analysis.
The rest of the Introduction is concerned with the organization of this book, and available
software and other resources for carrying out morphometric analyses.

A critical overview of measurement theory

Traditionally, morphometric data have been measurements of length, depth and width,
such as those shown in Figure 1.1, which is based on a scheme presented in a classic
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Figure 1.1 Traditional morphometric measurements of external body form of a teleost, adapted
from the scheme in Lagler et al., 1962.

ichthyology text (Lagler et al., 1962). Such a data set contains relatively little information
about shape, and some of that information is fairly ambiguous. These kinds of data sets
contain less information than they appear to hold because many of the measurements over-
lap or run in similar directions. Several of the measurements radiate from a single point, so
their values cannot be completely independent (which also means that any error in locating
that point affects all of these measurements). Such a data set also contains less information
than could have been collected with the same effort, because some directions are measured
redundantly, and many of these measurements overlap. For example, there are multiple
measurements of length along the anteroposterior body axis and most of them cross some
part of the head, whereas there are only twomeasurements along the dorsoventral axis, and
only two others that are measurements of post-cranial dimensions. In addition, the overlap
of the measurements complicates the problem of describing localized shape differences like
changes in the position of the dorsal fin relative to the back of the head. Also missing from
this type of measurement scheme is information about the spatial relationships among
measurements. That information might be given in the descriptions of the measured line
segment, but it is not captured in the list of observed values of those lengths, which are the
data that are actually available for analysis. Finally, the measurements in this scheme may
not sample homologous features of the organism. Body depth can be measured by a line
extending between two well-defined points (e.g. the anterior base of the dorsal fin to the
anterior base of the anal fin), but it can also be measured wherever the body is deepest,
yielding a measurement of “greatest body depth” wherever that occurs. This measurement
of depth might not be comparable anatomically from species to species, or even from spec-
imen to specimen, so it provides almost no useful information. When all of the limitations
of the traditional measurement scheme are considered, it is apparent that the number of
measurements greatly overestimates the amount of shape information that is collected.
The classical measurement scheme can be greatly improved, without altering its basic

mathematical framework, by the box truss (Figure 1.2) – a scheme developed by Bookstein
and colleagues (Strauss and Bookstein, 1982; Bookstein et al., 1985). This set of



chap-01 4/6/2004 17: 20 page 4

4 GEOMETRIC MORPHOMETRICS FOR BIOLOGISTS

9

14

19

24

27

25

23

18

13
8

4

2
12

10

16

17

29
11

30

6

22

15

21 26

20

3

1

5

28
7

1

2

3
4

5

6

7

8

9
10

1112

13

14
15

16

(A)

(B)

Figure 1.2 Trussmeasurement scheme of external body formof a teleost: (A)well-defined endpoints
of measurements; (B) a selection of 30 lengths, arranged in a truss.

measurements samples more directions of the organism and the measurements are more
evenly spaced; the set also contains many short measurements. Additionally, the endpoints
of all of the measurements are biologically homologous anatomical loci – landmarks.
Although these features make the truss a clear improvement over the classical measure-
ment scheme, this approach still produces a list of numbers (values of segment lengths),
with all the attendant problems of visualization and communication.
One problem shared by the two measurement schemes is that neither collects all of

the information that could be collected. The truss scheme shown in Figure 1.2 contains
30 measurements, but this is only a fraction of the 120 that could be taken among the
same 16 landmarks (Figure 1.3). Of course, many of the 120 are redundant, and several
of them span large regions of the organism. We would also need extraordinarily large
samples before we could perform the necessarily mathematical manipulations or perform
valid tests of hypothesis. In addition, the results would be incredibly difficult to interpret
because there would be 120 pieces of information (e.g. regression coefficients, principal
component loadings) for each specimen, for each trend or difference. We might be tempted
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Figure 1.3 All 120 measurements between endpoints defined by the 16 landmarks of Figure 1.2.

to cull the 120 measurements to those that seem most likely to be informative, but until we
have done the analysis we cannot know which to cull without altering the results. Clearly,
we need another way to get the same shape information as the 120 measurements, but
without the excessive redundancy.
Another problem that the truss shares with more traditional schemes is that it measures

size rather than shape – each length is the magnitude of a dimension, a measure of size.
This does not mean that the data include no information about shape – they do – but that
information is contained in the ratios among the lengths, and it can be surprisingly difficult
to separate information about shape from size. Some studies have analyzed ratios directly,
but ratios pose serious statistical problems (debated by Atchley et al., 1976; Corruccini,
1977; Albrecht, 1978; Atchley and Anderson, 1978; Hills, 1978; Dodson, 1978). The
more usual approach is to construct shape variables from linear combinations of length
measurements, such as Principal Component (PC) loadings. Here, one component, usually
the first (PC1), is interpreted as a measure of size, and all the others are interpreted as
measures of shape. However, PC1 includes information about both shape and size, as do
all the other PCs. The raw measurements include information about both shape and size,
and so do their linear combinations.
Not only are the methods of separating size from shape problematic; the idea of size

and shape has been one of the most controversial subjects in traditional morphometrics.
One reason for this controversy is the multiplicity of definitions of size (and also of shape),
several of which are articulated by Bookstein (1989). Virtually any approach to effecting
this separation can be disputed on the grounds that the notion of “size” that is separated
from “shape” is not really “size.” Another reason for the controversy is that some workers
argue that no such separation is biologically reasonable (see, for example, the discussion
of studies of heterochrony based on growth models in Klingenberg, 1998). However, even
if we accept the argument that size and shape are intimately linked by biological processes,
we still want to know more about their relationship than the mere fact of its existence.
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Extracting the relationship between size and shape from a set of measurements can be
especially difficult when the organisms span a broad size range. When some organisms are
20mm long and others are 250mm, allmeasurements will differ in length. Even if shape is
not much influenced by a ten-fold change in size, all measurements will still be correlated
with size; quantifying this fact is merely restating the obvious. In fact, we should expect
size to be the dominant explanation for the variance in traditional morphometrics because
these measurements are measurements of size. Instead, we should be concerned about the
possibility that the variance in shape is not fully explained by the variance in size, but is
simply overwhelmed by it. For instance, in analyses of ontogenetic series of two species
of piranha (one being the running example throughout this chapter), we find that 99.4%
of the variance is explained by the PC1 in both species. This suggests that there is nothing
else to explain in either species, because it is hard to imagine that the remaining 0.6% is
anything but noise. And yet, we do not actually know what proportion of shape variation
is explained by size; nor do we know whether different proportions or patterns of shape
change are explained by size in these species.
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Figure 1.4 The 16 landmarks, stripped of the line segments connecting them.
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One other serious limitation of traditional morphometrics is that the measurements
convey no information about their geometric structure. If we strip off the line segments
connecting the landmarks in Figure 1.3 and just look at the position of the landmarks on
the page (Figure 1.4), we can see that some are close to each other (e.g. 12 and 13) and
others are far apart (e.g. 1 and 7); some are dorsal (3 and 5), others are more posterior
(6–8). That information about relative positions, which is so important tomorphologists, is
contained in the coordinates of the landmarks but not in the list of distances among them –
not even in the comprehensive list of 120 measurements. In fact, the list of 32 coordinates
contains all of this positional information in addition to all of the information contained
in the 120 distances (the distances can be reconstructed from the coordinates if the units
of the coordinate system are known). More importantly, simple algebraic manipulations
allow us to partition the information captured by the coordinates into components of size
and shape (and to strip off irrelevant information like the position and orientation of the
specimen). Afterward, we have slightly fewer than 32 shape variables (because information
about size, position and orientation has been separated from information about shape),
but we still have the information about the geometric structure of our landmarks that was
captured when we digitized the specimens, and we have the information that is present in
the full list of 120 measurements without the redundancy. Consequently, we do not need
to cull the data in advance of the analysis, and so we do not lose any information we might
have had prior to that culling. In addition, partitioning the morphological variation into
components of size and shape means that variance in size does not overwhelm variance in
shape even when the variance in size is relatively large. In the two species mentioned above
(in which PC1 accounts for 99.4% of the variance), size explains 71% of the variance in
shape in one species, but only 21.7% in the other.
An important advantage of analyzing landmark coordinates is that it is relatively easy

to draw informative pictures to illustrate results. In Figure 1.5, the shape changes that
occur during the ontogeny of one species of piranha are shown as vectors of relative
landmark displacement and as a deformed grid interpolating among those vectors. In
both representations, it is quite clear that the middle of the body becomes relatively deeper
while the postanal region becomes relatively short, especially the caudal peduncle (between
landmarks 6 and 7). Both pictures also show that the posterodorsal region of the head
(above and behind the eye) becomes relatively longer and deeper while other regions of
the head become relatively shorter. (We emphasize that these are relative changes, because
the piranha becomes absolutely larger in every dimension and region mentioned.)
It is possible to present traditional morphometric results in graphic form by placing

the numbers on the organisms, as in Figure 1.6. This, like Figure 1.5, shows that the
middle of the body grows faster and becomes deeper than the rest of the animal. The
limitation of this representation (and of the analysis) is exemplified by the difficulty of
interpreting the large coefficient (1.23) of the posterior, dorsal head length – it is not
clear whether the head is just elongating rapidly, or if it is mainly deepening, or if it is both
elongating and deepening. We also cannot tell if the pre- and postorbital head size increases
at the same rate, because the measurement scheme does not include distances from the eye
to other landmarks. None of these ambiguities arose from the geometric analysis of the
landmark coordinates; the figure illustrating that result showed the information needed
to understand the ontogenetic changes in these specific regions. This ability to extract
and communicate information about the spatial localization of morphological variation
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Figure 1.5 Ontogenetic shape change depicted in two visual styles. (A) Landmarks of all specimens;
(B) vectors of relative landmark displacement; (C) deformed grid.

(its magnitude, position and spatial extent on the organism) is among the more important
benefits of geometric morphometrics.
Geometric morphometrics does not solve all of the problems confronting traditional

methods, and one remaining problem becomes evident whenwe try to examine the changes
in head profile over the piranha’s ontogeny (Figure 1.7). We can see that the average slope
on either side of landmark 2 must get steeper, but we cannot tell whether the profile
becomes more S-shaped, C-shaped or any other shape. This uncertainty arises because
the three landmarks provide no better a sample of the curve’s shape than do the line
segments connecting them. Clearly, any solution of this problem will require analysis of
points on the curve that are not landmarks (Figure 1.8). Methods for analyzing curves are
being developed and used (we discuss them in Chapter 15), so this limitation of geometric
morphometrics will likely prove transitory.
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Figure 1.7 Ontogenetic change in head profile as implied by changes in the orientation of straight
lines drawn between landmarks of the head.
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Figure 1.8 Additional points on the head profile, which are not landmarks.

Geometric morphometrics may also appear to have a limitation that does not confront
traditional methods: the restriction to two-dimensional data. The reality is that mathemati-
cal theory poses no obstacles to analysis of three-dimensional shapes. Instead, the obstacles
lie in other constraints restricting biologists to two-dimensional data, notably (1) the cost of
the equipment for obtaining three-dimensional coordinates (which is also time-consuming
to use) and (2) the difficulty of depicting the results on static, two-dimensional media like
the pages of a journal. Traditional morphometric studies need not face these obstacles
because, if the equipment required for three-dimensional digitizing is exorbitant (in time
or money), specimens can always be measured with calipers. However, in using calipers
we do not collect three-dimensional coordinates, so this approach sidesteps rather than
solves the problem. The difficulty of depicting results on a two-dimensional page does not
arise when results are tables of numbers, which is another case of sidestepping rather than
solving the problem.
Geometric analyses of landmark coordinates do solve many of the problems confronting

traditional methods of measurement. Those that remain involve analyses of curves with
few or no landmarks, and the illustration of three-dimensional results. Without denying
that these are real issues, we can still obtain a great deal of information about shape and
size from geometric studies.

Shape and size

The rapid progress in geometric morphometrics has resulted largely from having a coher-
ent mathematical theory of shape, which requires articulating a precise definition of the
concept. Like the definition of any word, that of “shape” is entirely a matter of semantics.
However, semantics is not trivial. We cannot have a coherent mathematical theory of an
undefined concept; the definition of shape is the foundation for a mathematical theory
of shape. Whether that theory applies to our biological questions depends on whether it
captures what we mean by shape. Thus it is important to understand the concept of shape
underlying geometric morphometrics, and also, because the concept of size is so closely
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related to that of shape, we cannot fully understand one without understanding the other
and also how they are related to each other.

Shape

In geometric morphometrics, shape is defined as “all the geometric information that
remains when location, scale and rotational effects are filtered out from an object”
(Kendall, 1977). The earliest work that depends on this definition of shape began
the analysis with the coordinates of points; consequently, the “objects” are sets of those
coordinates – i.e. configurations of landmarks, such as that shown in Figure 1.4. An
important implication of Kendall’s definition is that removing the differences between con-
figurations that are attributable to differences in location, scale and orientation leaves only
differences in shape. These operations and their consequences are illustrated in Figure 1.9.
In Figure 1.9A there are two configurations, side by side. This difference in location has
no bearing on their shape difference, so in Figure 1.9B both have been translated to the
same location. The two configurations still differ in scale, which also has no bearing on
their shape difference, so in Figure 1.9C they are converted to the same scale. The two con-
figurations still differ in orientation (their long axes are about 45◦ apart), which also has
no bearing on their shape differences, so in Figure 1.9D they are rotated to an alignment
that leaves only the shape differences. After removing all the differences that are not shape
differences, and provided that this is done in a way that does not alter shape, we are left
with only the shape differences. We can now use the coordinates of the final configurations
(Figure 1.9D) to analyze these shape differences.
Representing an organism solely by a configuration of landmarks leaves out some

aspects of what we might normally mean by shape, such as curvature. Curvature is a
feature of an object that remains after filtering out location, scale and rotational effects,
but it is not necessarily captured effectively by the coordinates of a set of landmarks.
Because curvature fits the broad definition of shape, we can anticipate eventually having
a theory of shape analysis that applies to the shapes of curves and is consistent with the
theory that applies to configurations of landmarks.

Size

Kendall’s definition of shape mentions scale as one of the effects to be removed to extract
differences in shape between two configurations. The implication of this statement is
that scale provides a definition of size that is independent of the definition of shape.
The concept underlying geometric scale is quite simple, and may be intuitively obvious
by visual inspection – in Figure 1.9A the landmarks are generally further apart in one
configuration than in the other, which is what we would expect when a configuration is
larger. Before computing geometric scale, we need to determine the location of the center of
the form (its “centroid”) and calculate the distance between each landmark and the cen-
troid. Figure 1.10 shows the location of the centroid and the segments connecting the
landmarks to the centroid for one of the piranhas we have been discussing. Now we
compute geometric scale by calculating the square of each of those distances, summing all
the squared distances, and then taking the square root of that sum. This quantity is called
“centroid size.”
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(A)

(B)

(C)

(D)

Figure 1.9 Removing variation due to differences in position, scale and orientation. (A) Two origi-
nal configurations; (B) after removing differences in location; (C) after removing differences in scale;
(D) after removing differences in orientation, leaving only differences in shape.
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Figure 1.10 A visual representation of centroid size as computed for 16 landmarks on a piranha.
The open circle is the centroid; the segments connecting the centroid to the landmarks represent the
distances used to compute centroid size.

Centroid size is the one measure of size that is mathematically independent of shape.
Empirically, centroid size may often be correlated with shape because larger organisms
are usually shaped differently than smaller ones. The fact that we have measured shape
and size separately does not mean that we lose any information about the relationship
between them, any more than measuring shape and age separately bars us from analyzing
their relationship. We can easily evaluate the empirical relationship between shape and size
using those conventional statistical methods that can be applied to both size and shape data.

Methods of data analysis

Replacing the distances of traditional morphometrics with landmark coordinates does not
force us to sacrifice conventional statistical analyses of shape. We can ask all the questions
we have ever asked. Such questions often comprise two parts, the first of which Bookstein
(1991) termed the “existential question”: is there an effect on shape? We answer that by
determining the probability that the association between variables is no greater than could
have arisen by chance. The second question, “what is the effect?”, calls for a description.
In the ontogenetic series of piranhas discussed earlier, we can analyze the relationship
between shape and size by computing the centroid size of each configuration of landmarks,
and then computing the configurations of landmarks from which differences in position,
scale and rotational effects have all been removed. These new configurations, shown in
Figure 1.11A, represent the shapes of all the specimens. To answer the first question about
the existence of an effect, we regress shape on centroid size using multivariate regression
in which “shape” is the dependent variable and “centroid size” (or its logarithm) is the
independent variable. For this example, we can conclusively reject the null hypothesis of no
effect at p<1×10−5 (we can also determine that 71% of the shape variation is explained
by size). To answer the second question about the description of the effect, we present
the pictures showing relative landmark displacement (Figure 1.11B) or the deformed grid
computed by interpolation (Figure 1.11C).
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Figure 1.11 Analyzing the impact of size on shape by multivariate regression. (A) Configurations
of landmarks from which differences in position, scale and orientation have been removed; (B) the
covariance between size and shape depicted by vectors of relative landmark displacements; (C) the
covariance between size and shape depicted by a deformed grid.

Replacing distances with coordinates also does not require us to abandon familiar ordi-
nation methods, such as principal components analysis and canonical variates analysis.
These are methods that are used frequently to explore patterns in the data; their results
include scatter plots of specimens that describe patterns of variation among individuals or
differentiation among groups. These patterns often provide hints about the causes of varia-
tion or differentiation; hints that are reinforced by the accompanying graphics of the dimen-
sions along which specimens most vary (Figure 1.12) or groups most differ (Figure 1.13).
The one important distinction between analyses of geometric shape data and those

of conventional morphometric data is that all analyses of landmark configurations are
necessarily multivariate. By definition, shape is a feature of the whole configuration of
landmarks. Even the simplest shape, a triangle, cannot be analyzed univariately; more
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Figure 1.12 Principal components analysis of piranha body shape.
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than one variable is needed to describe differences among triangles completely. We cannot
simplify analyses (or interpretations) by partitioning the configurations of landmarks into
subsets; subsets of landmarks are different shapes, not traits dissected from the whole.
We cannot regress the coordinates of only one of the 16 piranha landmarks on size and
consider the resulting coefficients to be a valid result about a part of the configuration of
16 landmarks. We cannot even regress the coordinates of 12 of the 16 landmarks on size,
and consider the resulting 24 coefficients, taken together, to be a valid result about a part
of the configuration. Because we have defined shape in terms of the whole configuration
of landmarks, our analyses must be of that whole. However, this does not prevent us from
subdividing an organism to analyze relationships between parts. For example, we could
divide the piranha into the cranial and postcranial regions, and analyze the landmarks
from each region as a separate configuration; we could then ask how the shapes of these
two regions covary by analyzing the relationship between configurations. The requirement
that configurations be analyzed multivariately and therefore as wholes does not force us
to treat organisms as unitary wholes (although we may find out that they are).

Biological and statistical hypotheses

Few of the hypotheses of interest to biologists are as simple as the allometric hypothesis
examined earlier. Only rarely can the more complex hypotheses be wrestled into the form
of a statistical null hypothesis and its alternatives. The first difficulty is that the statistical
null merely states that the factor of interest has no effect; this is the hypothesis we hope
to reject in favor of the alternative hypothesis that the factor does have an effect. In
this situation we have two hypotheses that are diametrically opposed, mutually exclusive.
In contrast, many biological hypotheses are more complex, stating multiple alternative
theories of causation, and these alternatives may not be mutually exclusive. Thus the real
goal of many studies is to discriminate between expected effects, not to reject a hypothesis
of no effect. Perhaps we are interested in the evolution of claw shape in crabs. We probably
already know that claw shape has evolved; the more interesting (and difficult) question
is whether the derived claw shape arose to enhance the ability to burrow into a muddy
substrate or was intrinsically constrained by development (or both).
Another difficulty posed by realistic biological studies is that there may be other alter-

native hypotheses beyond the few we have chosen to test. For example, other explanations
for the derived claw shape of the crabs might be an enhanced ability to block a burrow
entrance or even to attract mates. We also might have several alternative theories about
how development could constrain the evolution of claw shape.
Yet another obstacle to translating a biological hypothesis into a statistical one is that

the complexity of the biological hypotheses rarely allows for adequate testing by any single
method. To test whether the evolution of crab claw shape was intrinsically constrained
by development, we must first determine whether development demonstrates any signs
of constraint and then show that constraint could explain the evolution of claw shape.
We should also show that the various adaptive hypotheses predict different evolutionary
transformations than those specified by the developmental constraint hypothesis, so that
we can rule out these biological alternative hypotheses.
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In emphasizing the complexity of biological hypotheses we do not mean to say that
they cannot be tested rigorously – they can be. However, doing so requires far more effort
and creativity than testing the simple hypothesis that size affects shape. It also requires
understanding what various analytic methods do, what their limits are, and how they are
mathematically related. Far too often biologists use a limited array of techniques to analyze
multivariate data, regardless of their questions. Throughout this book we emphasize the
biological questions prompting a morphometric analysis, and underscore the applications
of each method as we discuss them in turn. However, only after a variety of methods have
been introduced (and mastered) can we begin to address questions of realistic biological
complexity.

Organization of the book

We begin this book with a series of chapters covering the basics of shape data – what land-
marks are and how to select them (Chapter 2), and how their coordinates are transformed
into the shape variables that will be used in subsequent analyses (Chapters 3–6). The next
section covers analytic methods: exploratory tools (Chapters 7 and 8) and more formal
methods of hypothesis testing (Chapters 9–11). We then demonstrate the application of
these methods to complex biological questions, whichmay require usingmultiple methods,
both exploratory and hypothesis-testing (Chapters 12–13). The final two chapters cover
issues that require continued development: Chapter 14 discusses the use of morphometric
analysis in phylogenetic studies, and Chapter 15 covers some methodological topics on
which there is still not complete consensus regarding either technical or graphical issues,
but which are likely to yield promising new methods in the near future.
In presenting the basics of shape data, we follow the discussion of landmarks (Chapter 2)

with a simple method of producing shape variables (Chapter 3) – namely the two-point
registration that yields Bookstein’s shape coordinates (Bookstein, 1986, 1991). These vari-
ables are easily understood, easily calculated by hand, and do not require an understanding
of the general theory of shape. Presenting them first allows us to discuss a number of general
issues (including the interpretation of results) before presenting the more abstract theory
of shape analysis in Chapter 4. That theory provides the framework for generating (as well
as analyzing) shape variables. After reviewing the basic theory, we return to the subject of
shape variables in Chapter 5. Chapter 6 discusses the thin-plate spline, an interpolation
function useful for depicting results by means of a deformed grid (as in Figures 1.11–1.13),
and also for obtaining a set of shape variables that can be used in conventional multivariate
analyses.
The second section of the book concerns methods for analyzing shape variables. In a

sense, all these methods are used to produce the biologically interesting variables – the
ones that covary with the biological factors of interest. Unlike the variables produced by
the methods of the previous section, the variables produced by these analytic methods
have a biological meaning. They answer such fundamental questions as “What impact
does size have on shape?”, or “By how much, and in what way, do these species differ in
their ontogenies?”, or “Do these populations vary along a single latitudinal gradient?”, or
even “What shape has the highest fitness in this population?” Each of these questions is
answered in terms of a shape variable – the shape covariates of size or age, of latitude or
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fitness, or of any other factor of interest. When we do not have any such factors in mind
in advance of a study, we can explore the data algebraically, using the methods of matrix
algebra to determine if any interesting patterns emerge (principal components analysis,
PCA, is an example of this kind of algebraic exploration).
Because many biologists begin a study by exploring patterns in the data, the section on

analytic methods begins with an overview of ordination methods (Chapter 7). These are
useful for extracting simple patterns from complex multidimensional data because they
provide a space of relatively low dimensionality, capturing most of the variation among
specimens (PCA), or most of the differences among groups (canonical variates analysis,
CVA). We explain the algebra underlying these methods, compare them, and discuss when
each is appropriate in light of particular biological questions.
The next three chapters cover methods of statistical analysis. We begin with an overview

of computer-based statistical methods, i.e. computer-intensive methods for constructing
confidence intervals and/or hypothesis testing, such as bootstrapping andMonteCarlo sim-
ulations (Chapter 8). The next two chapters discuss the twobroad classes of hypotheses that
are conventionally tested statistically. Chapter 9 addresses hypotheses about the effects of
an independent categorical variable – Hotelling’s T2-test, analysis of variance (ANOVA),
andmultivariate analysis of variance (MANOVA); Chapter 10 addresses hypotheses about
the effect of a continuous variable on shape (regression). The final chapter in this sec-
tion, Chapter 11, covers a method new to morphometric studies, one that analyzes the
covariance between two blocks of variables, partial least squares analysis.
The third section covers applications of morphometric methods to realistically complex

biological hypotheses, addressing more than just existential questions and requiring more
of the answers than just descriptions. We begin with hypotheses that are often stated only
in words, discuss framing them in the terms of more precise formal models, and then
reframe these models into terms suited to statistical analysis. Once a hypothesis has been
framed in the last set of terms, data analysis can proceed in a quite straightforward fashion,
combining an array of techniques. As examples of complex biological questions we include
those posed by studies of disparity and variance (Chapter 12), the analysis of relationships
between ontogeny and phylogeny (Chapter 13), and also systematics (Chapter 14). The
latter chapter represents a bridge between complex but tractable questions and subjects in
need of additional tools.
The final chapter of this book (Chapter 15) briefly discusses two important areas in

which a full set of tools have not been developed yet: (1) methods for analyzing three-
dimensional coordinate data, and (2) methods for analyzing shapes of curves where no
discrete anatomical loci can be found (by locating and analyzing points called “semi-
landmarks”). Neither of these subjects is properly part of a primer that focuses on
well-developed, uncontroversial methods, but both are important for biologists, and both
are subjects of intensive ongoing work. In presenting these subjects we concentrate on the
major points of departure (both conceptual and practical) from the primary subject of this
book, the analysis of two-dimensional configurations of landmarks.
The terminology of statistical shape analysis can be daunting – there aremany unfamiliar

words and many terms differ by only a single letter or subscript. Thus we conclude this
book with a glossary of terms, including general statistical terms (e.g. population, sample)
and more specialized terms of shape analysis (e.g. Procrustes distance, partial warps).
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Software and other resources

Geometric morphometrics studies require fairly specialized software, not so much to ana-
lyze the data as to depict the results graphically. Fortunately, the necessary software is
readily and freely available. As Mac users will soon realize, virtually all the compiled
software runs under Microsoft Windows.
At present, one major source of software is located at the SUNY Stony Brook website:

http://life.bio.sunysb.edu/morph. Follow the link to Software (the rest of the links go to
other valuable resources, including information about meetings, courses, and a directory
of many people interested in morphometrics, with links to their webpages). We recom-
mend that anyone planning a morphometric study downloads the videodigitizing program,
TPSDig. Not only is this a well-designed and extremely useful program, but also many
writers of morphometric software assume that is the one used for data collection, so the
format in which it outputs the data (TPS format) has become the standard input format
for several programs. There are other useful programs in the TPS series, but we generally
do not provide detailed instructions for using them because we can neither anticipate nor
control any changes in them.
Another major source of morphometric software is located at the website:

http://www.canisius.edu/∼sheets/morphsoft.html. This software, called the Integrated
Morphometrics Programs (IMP), is written by one of us (HDS) and every method of
analysis discussed in this book can be implemented by software in this series. There are
three categories of software: (1) General Release; (2) Undocumented Software (which lacks
manuals but the programs run and have been extensively used in research), and (3) Beta-
Software (which has not been used in any serious research project, somay need considerable
reworking before it is fully useful). There are some additional programs available that
have been used in published research and so are made available; these can be found at the
end of the “Update Information.” At the end of most chapters of this book, we provide
instructions for using the relevant software. These instructions are based on versions of the
programs that have been frozen, so that you can run all the programs using these instruc-
tions. We do, however, anticipate upgrading the software; these upgrades will be available
on the website and will (eventually) be documented. Major changes will be detailed in the
“Update Information” on the bottom of the morphsoft webpage.
Running the IMP programs, which are written in Matlab (Mathworks, 2000) and com-

piled to run underMicrosoftWindows, requires first installing a large package of software,
mglinstaller (detailed instructions for installing it, and for installing other programs in the
IMP series, are given below). Different versions of Matlab are often incompatible with
each other (both upwardly and downwardly), so programs written in the future, using a
newer version of Matlab, will require installation of a new version of mglinstaller (in a
different directory).
Another important resource is the listserver Morphmet. It is useful to subscribe to this

list, if only to be informed of new software and notified of any mathematical mistakes
or bugs in the programs. Additionally the list is sometimes quite active, discussing top-
ics of general interest, including conceptual issues like the meanings of size and shape,
and practical issues like dealing with preservational artifacts. Some recent posts have
also provided extensive bibliographies of morphometric studies of mollusks and fishes.
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To subscribe to this list, send an email to majordomo@wfubmc.edu and include the
following single line in the body of the message: subscribe morphmet.

Downloading and installing mglinstaller

Before you use any program in the IMP series, you need to download and run the self-
expanding mglinstaller (megalo-installer). This will create the directories (folders) where
the other IMP programs must be installed. To download mglinstaller, go to the IMP web-
site (http://www2.canisius.edu/∼sheets/morphsoft.html or www.biocollections.org), find
mglinstaller and click on it. This is a very large file, so it may take a while to download.
After the download is complete, you need to create the directory (folder) where you want
mglinstaller to be expanded. We recommend you call this folderMatlab6 so you can keep
track of the version of Matlab used to write the software. Now expandmglinstaller in that
directory. It will create a folder in Matlab6 called bin, and a folder in bin called win32;
it will also unpack a series of files needed to run the other IMP programs. The other pro-
grams are also packaged as self-expanding files. After you download them, they must be
expanded into the folder win32. If they are not installed in win32, they will not run.
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2
Landmarks

Landmarks are discrete anatomical loci that can be recognized as the same loci in all speci-
mens in the study. Because landmarks play a fundamental role in geometricmorphometrics,
it is important to understand their function in a shape analysis. It is equally important
to understand which functions they do not serve, as that understanding also influences
the selection of landmarks. Criteria for selecting landmarks differ from those applied to
choosing traditional morphometric variables, so some rethinking may be required. This
chapter begins with a summary of some of the basic differences between conventional
and landmark-based studies that bear on landmark selection and on how we may need
to change the way we think about selecting variables. Next is a review of the criteria for
choosing landmarks in light of both biological and mathematical considerations, focus-
ing on general criteria and principles. This is followed by three concrete examples, each
explaining why particular landmarks were chosen. The chapter concludes with a practical
guide to collecting landmark data.

Changing the way we think about selecting variables

Onemajor difference between conventional and landmark-based techniques is most impor-
tant for thinking about the selection of variables: conventional morphometric variables
are selected a priori, meaning that we choose variables before we conduct the analysis;
in landmark-based studies, that is not the case. In studies of traditional measurements
only the variables chosen in advance of the analysis are available for analysis (unless we go
back and remeasure the specimens), and for that reason much emphasis has been placed on
choosing “meaningful” variables. If we do not select the meaningful ones we will not have
them to aid our interpretations, and if we include many that have no particular biological
significance, they could complicate our interpretations of those that do. There are many
considerations that might enter into the decision regarding which variables are meaning-
ful, including relevance to understanding (1) biomechanics, (2) developmental processes,
(3) systematics, and (4) evolutionary processes. For example, in a study designed to analyze
the biomechanics of chewing we would conscientiously select variables for their relevance
to chewing, which might not be the same variables as those that capture the information

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
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relevant for understanding jaw development or relationships among taxa or evolutionary
processes. Consequently we might need as many as four different measurement schemes,
each one designed in light of the substantive biological questions addressed by the study.

In landmark-based studies, variables are not selected a priori (although landmarks are);
themeaningful variables are discovered by the analysis. All the variables that we could have
measured between any pair of landmarks are included in the analysis, so we do not need
to decide among them before we begin. As mentioned in Chapter 1, given 16 landmarks
we would have to measure 120 variables (i.e. all the lengths, depths and widths that could
be measured by distances between pairs of landmarks) to capture as much information
as we have in the coordinates of the 16 landmarks. Having all that information available
to us does not complicate the interpretation of the results, because the variables do not
enter into the interpretation unless they are found to be relevant. For example, if we are
interested in feeding performance and measure 16 landmarks on jaw bones and teeth,
we will discover which are relevant to feeding performance by analyzing the covariance
between the landmarks and measures of performance. We do not need to know which
variables covary with performance when we begin the analysis – the objective is to discover
that at the end.

Landmarks should provide a sufficiently comprehensive sampling of morphology that
the features of biological significance can be discovered. This emphasis on discovery does
not mean that you should avoid thinking about variables that might be important for your
biological questions. The landmarks you select do determine what you may discover. If
you are interested in the biomechanics of lever arms, you should locate landmarks on
those lever arms or else you will not have the data required to analyze them. However,
you will not lose or dilute information about biomechanics of lever arms by including
other landmarks of unknown relevance – if they are not relevant, they will not covary with
measures of performance. If your only question is “What is the mechanical advantage of
this jaw compared to that one?”, then there is no reason to do a shape analysis – the
question you are asking is about mechanical advantage, not shape. As Bookstein (1996)
pointed out, geometric methods might be “overkill” in such purely biomechanical studies.
However, if you want to place those lever arms in a broader morphological context,
geometric morphometrics helps to provide one.

As a general rule, landmarks should be chosen so you can quantify any differences that
you can see. A quantitative study should capture at least as much information as does an
informal, qualitative inspection of specimens. However, the morphologies should also be
sampled more broadly so that you can discover more than is evident by visual inspection,
and, if you want to pin down where the changes occur, you will need even and fairly dense
coverage of the form. Below we discuss the general criteria for selecting landmarks in more
depth, and then we provide examples of three data sets, explaining what the landmarks
are and why they were chosen.

Criteria for choosing landmarks

Ideally, landmarks are (1) homologous anatomical loci that (2) do not alter their topologi-
cal positions relative to other landmarks, (3) provide adequate coverage of themorphology,
(4) can be found repeatedly and reliably, and (5) lie within the same plane.
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Homology

The concept of homology plays a crucial role in landmark-based morphometrics. Although
many traditional morphometric studies have been concerned with homology, homology
was not a fundamental concern when selecting measurements. If it had been, some stan-
dard variables (such as “greatest skull breadth” or “least interorbital width”) would not
have been measured. Such variables are not necessarily homologous because they may
be measured at very different points on the skull in different organisms, depending on
where the skull is widest or the interorbital region is narrowest. Consequently, we cannot
say how broadening of the skull or narrowing of interorbital width has been affected by
alterations in skull shape. We cannot trace the changes in skull breadth to the changes in
shape of the skull because we are not measuring the same things on all skulls. In contrast,
homology has been stressed above all criteria for selecting landmarks in geometric morpho-
metrics, and it is undeniably themost important one. For bothmathematical and biological
reasons, homology is the paramount consideration when it comes to the selection of
landmarks.

Understanding the role that homology plays both mathematically and biologically
requires an intuitive feel for the mathematics as well as for the biological issues. Sometimes
there are reasons for including landmarks in a study, even though their homology is some-
what dubious (in the last chapter of this book we discuss “semi-landmarks,” points that
aid in studies of regions that lack homologous landmarks). However, it is important to
recognize the compromises resulting from using landmarks of doubtful homology. Most
systematists will presume that homology is a central concern regardless of any mathemat-
ical arguments, but functional morphologists and developmental biologists may be less
convinced that homology is actually necessary. However, there are mathematical argu-
ments that reinforce the biological ones, as discussed in depth in Chapter 4. Because you
will select your landmarks before you read that chapter, and you need an intuitive feel
for the primary mathematical issue before choosing them, the basic mathematical ideas
bear mentioning here. The primary mathematical issue is the interpretation of biologi-
cal change as a deformation: a (smooth) mapping of one set of points to corresponding
points in another form. The mapping only makes sense if the points are truly “correspond-
ing,” and that correspondence requires more than that landmarks have the same name.
It requires a careful consideration of what “correspondence” means.

Correspondence need not imply biological homology – we might think of correspon-
dence in functional (or developmental) terms. For example, we might view points as
corresponding to each other because they are located at the end of an input lever arm
in two different organisms, even if those lever arms are in different locations. In a purely
functional sense those points might indeed correspond, but if our aim is to describe the
transformation from one form to another, and we are using a mathematical model of a
deformation, we need a more restrictive view of “correspondence.” The landmark is not
just serving a corresponding function; it must also be the same anatomical locus.

The importance of biological homology to morphometric analysis has been obscured
somewhat by the definition of homology that sometimes appears in the morphometric
literature. The semantic discrepancy between the notion of homology used by some mor-
phometricians and the one favored by biologists is partly historical (workers in the two
fields have traditionally used the term differently), but there is an important conceptual
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distinction as well because of the conceptual gap between the subject matter of homology
assessments in biological and mathematical contexts.

Biologists usually think about homology in terms of organismal parts or characters,
whereas mathematicians think about homology in terms of the individual loci (i.e. points)
on those parts. As biologists, our objective in choosing landmarks is to permit making
inferences about the regions between them – we are not interested in the landmarks per se,
but in the shapes of the morphological structures on which those landmarks lie. The role of
the landmarks is to pin down those structures at discrete points that we can recognize as the
same on all organisms. However, thismeans that our data are the landmarks, the individual
loci, and so we also need to think about the homology of those points. Fortunately, this is
not a wild conceptual leap. We recognize structures are homologous as structures because
they are discrete (distinct from other structures) and recognizable in all specimens. We can
apply the same criteria to intersections of structures (as at sutures), or to their centers, or
to their tips (ends). If discrete and recognizable structures are homologous as structures,
then discrete and recognizable locations on them are arguably homologous as points.

The mathematical framework for thinking about homology is the idea of a deformation,
which extends the correspondence of sampled points to unsampled points lying between.
Using a model of a deformation, such as the thin-plate spline (Chapter 6), we can draw a
picture of a change in shape that extends that change over the whole form, even though
we only sampled it at selected points. In that sense, the deformation imputes homology
to intervening points. For that reason, the mathematical models for deformations have
sometimes been termed “homology functions” (see, for example, Bookstein et al., 1985).
To understand this idea more fully, consider a sample of landmarks on a skull (Figure 2.1);
when looking at the results, we can see changes in the relative positions of landmarks that
imply changes in the proportions of structures sampled by them. We can visualize the
impact of those changes for the shape of the skull using the deformed grid that stretches
where regions are relatively enlarged and contracts where regions are relatively reduced.
A highly literal interpretation of that picture could make us uncomfortable because we do
not know where every single point on one skull is located on the other – we cannot read
the intersections of the grid, for example, as if they are at homologous anatomical loci.
However, we are not trying to impute homology to all those points; rather, we are inferring
changes in shape that are implied by the homologous landmarks. If we are willing to
consider that the structures, such as premaxilla andmaxilla (and the sutures between them),
are homologous, and that the presphenoid, sphenoid and basisphenoid (and the sutures
between them) are also homologous, and that foramina are also homologous, we are
specifying correspondences among points. Themathematical analysis uses that information
to infer the changes in shape between the landmarks. If our sample of landmarks is sparse,
we have good reason to worry about inferring changes between them – interpolating from
sparse data is always a cause for concern. However, homology of points between the
landmarks we sample is not imputed or determined by the deformation; homology is
established in advance, by biological arguments. For a deformation to make mathematical
sense, the points in one form must correspond to the points in another.

Sometimes it may seem that points cannot be homologous, as in ontogenetic studies,
because bony tissue is added during growth. Thus the cells located at the suture between
bones at one developmental stage are not the ones found at that suture at another develop-
mental stage.Histologically, the points are not homologous, but it is nonetheless important
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Figure 2.1 Landmarks sampled on the skull to show the interpolation of changes between
landmarks based on the analysis of displacements of landmarks (relative to other landmarks).

that the anatomical parts be so, especially if we hope to compare growth from age to age or
from species to species. We want to compare rates of growth of comparable parts. That the
landmarks are located in different cell populations does not matter, but the comparability
of the parts does.

Consistency of relative position

Morphometric methods cannot be applied properly when shapes are too different. For
example, if bones are so radically altered in their topology that points on one have moved
past other points (e.g. a foramen that was anterior to a tooth is now posterior to that
tooth), the shapes may be too different to analyze geometrically. Also, in some cases
landmarks may disappear altogether – as when a foramen is present in one taxon (or
age) but not in another. Such changes, while undeniably interesting, are not suitable for a
morphometric analysis. They are not matters of changes in shape so much as of changes in
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topology. Shape analysis is about shape, which makes the techniques fairly limited in their
application, and the constraint can be serious. To some extent the constraint is implied by
the idea of “shape analysis” (which is obviously an analysis of shape). It is also partly due
to the mathematics of geometric methods, which rely on linear approximations. When
shapes differ by too much, linear approximations are problematic. We obviously need
methods to decide whether the changes are “too large” (an issue we discuss in more detail
later, Chapter 4). However, if the changes are in topology, rather than shape, then the
landmarks recording those topological changes are not suitable for a shape analysis.

Adequate coverage of the form

A third important criterion is adequate coverage of the form, or, as Roth (1993) put it, com-
prehensive coverage. That we need comprehensive coverage should be self-evident because
we cannot detect changes without data, and the landmarks are the data. Additionally, we
cannot find changes within particular regions unless we have landmarks within them. One
way to decide if you have met this criterion is to draw a picture of the landmarks without
tracing the rest of the organism. Given only that sample of landmarks, can you see the
form of your organism? For example, Figure 2.2 shows two sets of landmarks for the same
morphology (a squirrel scapula, one of the examples discussed later in this chapter). In
Figure 2.2A the form of the scapula is present, even if the outline of the structure is erased;
in Figure 2.2B it is virtually impossible even to tell that the structure is a scapula. Given the
landmarks shown in Figure 2.2B, we cannot tell what is happening between the peripheral
points (meaning those on the outline). Therefore, if there are any interesting and localized
changes in scapula shape, we will not find them.

Sometimes we simply cannot find any landmarks in a particular region, and there is
no choice but to accept sparse coverage; at other times sparse coverage is not acceptable,
and so we may need to compromise and relax the criterion of homology. However, this
relaxation must be done with great caution. For example, in studies of piranhas we need
information on the changes in position and size of the eye within the head, even though
there are no discrete points that can serve as landmarks just anterior and posterior to the
eye. If we strictly enforce the criterion of homology, we could place a landmark in the
middle of the eye; we could then detect changes in the location of the eye within the head.
However, we would not have any information about the diameter of the eye, although
changes in proportions of the eye are one of the most visually obvious ontogenetic changes
in shape. We do not want to sacrifice that information. Thus, we place points that mark
the anterior and posterior boundaries of the structure. Their homology is an untenable
hypothesis even though the eye is a homologous feature of piranhas, but to provide the
needed information we relaxed the criterion of homology and put landmarks at the same
geometric location in every specimen.

It is dangerous to relax the criterion of homology too far. Some landmarks would be
rejected by the criterion of homology, and cannot be justified by the criterion of comprehen-
sive coverage. For example, traditional morphometric studies of mammals often include
the measurement “least interorbital breadth.” That measurement is taken as a transect
across the frontal bone; where it is chosen is a function of where the distance between
orbits is smallest – and where that distance is found might be arbitrary with respect to
homology. Unlike the landmarks at the anterior and posterior of the eye in piranhas,
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Figure 2.2 Landmarks on a squirrel scapula to showvarying degrees of coverage: (A) comprehensive
coverage; (B) limited coverage.

which are approximately constant in location, the endpoints of least interorbital breadth
are not. They may be on entirely different parts of the frontal bone in different specimens.
That is not a debatable case of homology – from the definition of the measurement it is
obvious that it has no connection to homology.

Sometimes the homology of landmarks is debatable. For example, the anterior point of
the dorsal fin base may be located on different structural elements in different species, but
the point could be considered homologous as the anterior of the dorsal fin base. When
debatable points are chosen, they need considerable justification.
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Repeatability

The fourth criterion for selecting landmarks is that they can be located and relocated
without error. Sometimes the amount of error is surprising. Some points that seem as
though they ought to be difficult to find repeatedly, such as the anterior and posterior
points on the eye (which are not discrete, clearly demarcated points), actually might be
less prone to error than other points that appear more discrete and well-defined. Also,
points that seem very fuzzy (such as blurs on x-rays) can sometimes be more reliable than
youmight imagine. It is probably best to avoid prejudging the landmarks (unless you simply
cannot find them on several specimens) and instead check their repeatability empirically
(methods for doing so are discussed in the next chapter).

Some landmarks are prone to error in only one dimension – for example, it might be easy
to find its position along the anteroposterior axis but harder to determine its location along
the dorsoventral axis. This can be a real problem for points that might otherwise be well
defined, such as points on a suture. Sutures that generally follow a body axis sometimes
wander, taking a complex path. It may be easy to pin down the anteroposterior location
of a point along the suture, but more difficult to decide its mediolateral position. When a
landmark is difficult to find in only one direction, the error will be concentrated in that
direction; it will be biased, not random. Biased error is a more serious problem than a large
random error because biased error will look like something that merits an explanation.
However, the difficulty that you perceive in the course of digitizing may not be reflected
in the actual variability of the point. At the outset of the analysis, before deciding that a
point is unrepeatable in one or both directions, digitize it and then check its error. You
can always delete it if you find that the error is biased.

Coplanarity of landmarks

The fifth criterion for selecting landmarks is related to the problem of analyzing three-
dimensional organisms in two dimensions. It is not strictly necessary to reduce three-
dimensional organisms into two dimensions because you can always examine more than
one plane, and there are techniques for obtaining and analyzing three-dimensional land-
marks (these are still relatively undeveloped and beyond the scope of this book, but we
discuss them briefly and provide sources of further information about them in Chapter 15).
Still, many readers will use two-dimensional approaches if only because the technology
for three-dimensional data collection is expensive, so the possibility of distortion due to
projecting a three-dimensional organism into a two-dimensional plane must be considered.
To avoid this distortion, specimensmust be consistently oriented under the camera, and one
particular plane must be chosen for that orientation. Points not in that plane may be incon-
sistently oriented or difficult to interpret. The two-dimensional analysis will suggest that
the points have moved within the plane of photography, but it is possible that they actually
havemoved toward or away from that plane. What youwill see is the projection of a change
in that third dimension onto the plane of the photograph. This can be a serious problem,
and it turned out to be an issue in the analysis of cotton rat (Sigmodon fulviventer) skull
ontogeny (Zelditch et al., 1992). One of the characteristic features of mammalian skull
ontogeny is the change in orientation of the skull base. As a result, points initially on the
posterior end of the ventral surface move dorsally, out of the picture plane with increasing
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age. Thus some points could not be included in the data set because they could not be seen at
all ages in consistently oriented photographs. Even more problematically, other points that
appear to be on the lateral boundary of the skull in a two-dimensional view are on the lat-
eral surface of the skull. It was not possible to tell if they moved in the anteroposterior and
mediolateral directions (the plane of photography) or if they insteadmoved dorsoventrally.
In hindsight, those lateral points should have been excluded as too ambiguous.

Bookstein’s typology of landmarks

Bookstein (1991) classified landmarks into three categories: Type 1, Type 2 and Type 3
(see Roth, 1993, for another discussion of these types). Type 1 landmarks are optimal,
Type 2 are more problematic and Type 3 might not even be considered landmarks at all.
The classification is based on two interrelated considerations: one is that landmarks ought
to be locally defined, and the degree to which they are locally defined determines their
classification; the other is the type of “epigenetic” explanation in which they can enter.
The first consideration is relatively easy to summarize while the second is more difficult.

Landmarks are locally defined when they are located by particular structures close to
the point. For example, the intersection between three bony sutures is locally defined.
Bookstein refers to these as points at discrete juxtapositions of tissues, although they need
not be juxtapositions of different tissue types – by his usage, the juxtaposition of three bones
is a juxtaposition of tissue types. For these Type 1 landmarks you do not need to mention
any structures far away from that point. In contrast, “the point furthest away from the tip
of the snout along the dorsoventral axis” is not defined by any structures surrounding or
near that point; instead, it is defined solely by being at an extreme distance from another
point. This kind of landmark represents the other extreme, the Type 3 landmarks. The
intermediate class, the Type 2 landmarks, includes such points as the tip of a tooth or end
of a bony process; these are located at local minima and maxima of curvature, such as a
bulge or tip of a structure. Like Type 1 landmarks they are defined in terms of specific local
features, but like Type 3 landmarks they are defined as extremes of curvature or points
furthest along (or away from) some structure.

Bookstein distinguishes these as different in kind partly because they enter into different
kinds of explanations. Type 1 landmarks allow you to identify directions of forces that
impinge on a structure, or to recognize the effects of processes moving the landmarks (e.g.
bone deposition). This is because Type 1 landmarks are surrounded (in all directions).
In contrast, Type 2 landmarks lack information from surrounding tissues in at least one
direction such that you cannot distinguish between several possible directions in which
forces might be applied. For example, one possibility is that forces are applied laterally
to a structure, along its boundary, but another possibility is that some combination of
forces is applied perpendicular to the boundary, some outward and some inward. From
Type 2 landmarks you cannot decide between these alternatives. The lateral landmarks
on the Sigmodon skull exemplify this case. Bookstein’s Type 3 category might seem to
include such “almost locally defined extrema”, like the endpoints of eye, but these are
probably Type 2, being extreme with respect to a very small, local structure. Points that
are truly Type 3 are like those at the endpoints of our measurement of least interorbital
breadth.
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Examples: applying ideals to actual cases

Having discussed some general principles and theory, we now turn to specific and concrete
examples of data. These examples are all taken from our own work, both because we can
explain our own reasoning and because these cases will be used to demonstrate methods
of analysis throughout this book.

Landmarks on the lateral surface of the squirrel scapula

Figure 2.3 shows the major anatomical features of a tree squirrel scapula. Also shown are
12 landmarks that were digitized in a study of changes in scapula shape associated with
the evolution of burrowing in chipmunks and ground squirrels (Swiderski, 1993). Studies
of scapulae of other mammals have found important changes in the blade, acromion and
metacromion associated with functional shifts (Oxnard, 1968; Taylor, 1974; Stein, 1981).
These same studies found little or no change in the coracoid process and the bell-shaped
structure that articulates with the humerus (hidden behind the metacromion in Figure 2.3).
A preliminary survey of squirrel scapulae indicated that theymay have a similar anatomical
distribution of changes. This pattern dictated that the squirrel scapulae should be digitized
from the lateral view, because this is the only view in which the blade, acromion and
metacromion could be seen in all taxa. Fortunately, the one feature of the bell that was
considered potentially relevant to a functional analysis was also visible in the lateral view.
That feature, the “neck” between the blade and the bell, is expected to change in thickness
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Figure 2.3 Landmarks on a squirrel scapula.
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to reflect the magnitude of the forces transmitted to the scapula from the humerus. Thus,
before any decisions were made about inclusion of specific landmarks, functional consid-
erations were used to decide which general aspects of scapula shape would be analyzed.

The anticipated importance of changes in the acromion and metacromion meant that
concerns about the distortion of three-dimensional aspects of shape could not be ignored,
and also that landmarks could not be deleted if the distortion was expected to be large.
Instead, concerns about distortion were addressed by standardizing the protocol used to
capture the images that were digitized. As is usual for morphometric analyses based on
photographs or video images, the scapula was placed in a standard orientation so that
differences in orientation would not be interpreted as differences in shape. In addition,
the distance of the camera lens from the scapula was adjusted for each specimen so that
the blade always occupied the same proportion of the field. Then, if the height of the spine
and sizes of the acromion and metacromion were proportional to the size of the blade, the
acromion and metacromion would also occupy a constant proportion of the field. More
importantly, the pattern of landmark displacement that would occur if these proportions
changed could be predicted and tests for these patterns could be performed. No evidence
of such patterns was found in the data.

After deciding which view to digitize, a major concern was coverage: finding enough
landmarks to represent adequately the shape of the scapula. Structurally the scapula is
rather simple, which means there are few points that can be uniquely defined. This is
especially true of the main portion of the scapula, the semi-circular or triangular “blade”;
the blade is nearly flat and has only two ridges crossing it – the large scapular spine on
the lateral surface, and the smaller subscapular ridge on the medial surface. The margin
of the blade is also rather featureless, having few corners and no spines, only more ridges
or thickenings.

Despite the shortage of potential landmarks, it was still considered important to define
them so that they could reasonably be considered homologous. For example, the ends of
ridges may seem to be good landmarks, but quite often these are gently tapered, making
it difficult to define precisely where they end. Usually, when a ridge ends abruptly, it ends
at an intersection with some other structure. On the scapula blade, landmarks 8, 9 and
10 are points where two ridges intersect. Landmark 6, on the metacromion, is another
intersection, marking the attachment of the metacromion to the spine. Landmarks 7 and
11 are points on the margin of the blade where the end of a marginal ridge is associated
with a corner. Landmark 5, on the metacromion, is another corner associated with the
end of a marginal ridge. Landmark 1 is one of the few places on the blade where a ridge
(the scapular spine) ends abruptly without intersecting another structure.

Concern for homology extended to the corners as well as the ends of the ridges. Land-
marks 2, 3 and 4 are at the only corners that are not associated with the ends of ridges.
Other anatomical information was used to infer their homology. Landmarks 2 and 3 are
corners where the acromion terminates in a flat surface that articulates with the clavicle.
The corner labeled as landmark 4 appears to mark the boundary between the acromion
and metacromion. This interpretation is reinforced by the point’s proximity to the line of
the scapular spine, which separates anterior and posterior components of both the scapula
and the attached muscles.

The grounds for inferring homology are weakest for landmark 12. This is the only
point on the articulating structure, the “bell,” that could be seen in lateral view in all
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taxa. If more points on this structure were visible, landmark 12 might not have been used.
This point is identified only as the cranial edge of the neck, which is the narrowest region
between the blade and the bell of the articulating structure. This criterion for recognizing
a landmark is harder to apply than the criteria for recognizing the other 11 landmarks
because the boundary between bell and blade is not marked by a corner or other distinctive
feature. In this regard the neck of the scapula may seem similar to the least interorbital
width of the skull, as being poorly defined and of doubtful homology. However, unlike
least interorbital width, the neck of the scapula marks the boundary of two functionally
distinct components of the scapula. In addition, analysis of digitizing error indicated that
this point was not substantially harder to locate than other landmarks. Therefore, doubts
about the homology of this point were set aside in favor of having at least one landmark
on this structure.

Landmarks on the external body of piranhas

Figure 2.4 illustrates the landmarks used in several studies of shape change in piranhas.
These points were originally intended for analyses of shape by trusses (see Strauss and
Bookstein, 1982), so they were chosen to allow for constructing a series of boxes and
diagonals over the form. In addition, because the truss analysis was to be compared to
more traditional measurement schemes in ichthyology, some landmarks were chosen to
allow duplication of those measures. Traditional measurements between these landmarks
were used in a systematic study of Pygocentrus (Fink, 1993), and in several geometric
morphometric studies of the evolution of piranha ontogeny and the diversification of their
body forms (e.g. Zelditch et al., 2000, 2003a).

Selecting landmarks on the lateral body of piranhas is relatively straightforward because
specimens are essentially two-dimensional. Most of the shape variation can be seen in that
view, and little distortion is caused by viewing the animal in a plane. Specimen bending
can occur at fixation or during preservation, and such bent specimens were not included
in analyses unless they could be manually straightened with no resulting distortion in the

10
9

1

2

3
4

5

6

7

8

1112

13

14
15

16

Figure 2.4 Landmarks on the external body of a piranha.
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lateral body shape. Data acquisition consisted of placing the specimen in a standard view,
using a specially designed container that kept the animal’s midline in the plane defined by
the top edges of the container. A piece of metric graph paper was placed on the container’s
edge in the same plane for calculating size. In some cases, insect pins of various sizes
were used to make landmarks more visible. The camera was placed so that each specimen
occupied approximately the same area in the viewing field, in order to minimize distortion.

There are few landmarks on the postcranial lateral body of piranhas, and almost all
landmarks chosen are fromaround the perimeter of the body. Had the data been taken from
radiographs, some internal osteological landmarks could have been used. However, it was
decided that data would be taken from entire specimens, partly to facilitate application
to identification keys. Most of the landmarks chosen are at boundaries or extremes of
structures, or are skeletal features accessible without x-rays.

Landmark 1 represents the anterior point of the head, and is taken where the two
premaxillary bones articulate at the midline. Because this point is directly on a vertical
from the plane of the specimen, no special marking is required. The landmark involves
soft tissues, and thus could be affected by desiccation of the specimen.

Landmarks 2, 3, 7 and 12–16 all represent skeletal features, representing extremal
points, intersections of structures, or borders of bones. Landmark 2 is the anterior border
of the epiphyseal bar – a small extension of bone that spans a large fossa in the dor-
sal neurocranium – and was chosen to provide information on the shape of the head.
The landmark is found by inserting a pin through the skin of the midline dorsal to the
orbital region, where the pin just penetrates past the bar into the brain cavity. Although
this landmark is constantly available in piranhas, some related fishes show ontogenetic
change in the width of the bar, such that the bone grows anteriorly as the fish grows,
independent of head shape changes. Landmark 3 lies at the posterior tip of the supraoc-
cipital bone of the neurocranium. It lies just under the skin at the dorsal midline, and
is found by moving a fingernail along the midline until the junction between bone and
muscle is found. A pin is inserted at that point for purposes of digitizing. Landmark 7
represents the posterior termination of the hypural bones of the caudal skeleton, tradi-
tionally a point used in the calculation of standard length (tip of snout to base of caudal
fin). In piranhas there is a concavity in the hypural bones at the lateral midline such that
the bone lies anterior to the rest of the posterior border of the caudal skeleton, so the
actual point measured is where the bone would be in other teleosts. This is less prob-
lematic than it might seem, since the actual measurement is done at the area where the
caudal fin base can be bent laterally. Until some experience in finding this landmark is
gained, it may be difficult to be consistent in reproducing this point. An inexperienced
person usually has error in the anteroposterior axis. This is a landmark for which some
argument regarding homology must be made. This is because the internal skeleton may
not be consistent with the point used externally. However, consistently measured as the
posterior termination of the body at the lateral midline, the point may be considered
homologous.

Landmark 12 represents the ventral side of the articulation between the quadrate bone
and the mandible. It thus lies lateral to the midline, although it usually lies on a vertical
from the ventral midline. This point is located by placing a fingernail in the joint between
the two bones, and then a pin is inserted in the joint. Landmark 13 lies at the intersec-
tion of the maxillary bone and the infraorbital bone that defines the “cheek” area of the
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face. The point lies well lateral to the midline, but marks an important area of the skull,
approximating the length of the upper jaw. This point is marked by slipping the pin under
the infraorbital bone adjacent to the posterior border of the maxillary. This landmark is
composed of an extreme point (the posterior maxillary border) as well as an intersection
of two structures. The homology of this landmark may be questioned. Landmarks 14 and
15 capture the width of the bony orbit. Each point lies at the extreme of the orbit along
the anteroposterior body axis. Both of these landmarks are of questionable homology,
but are taken because the eye has been shown to be highly allometric and has been used
in traditional measurement schemes. With practice, these landmarks can be taken with
little error.

Landmark 16 is perhaps the most difficult to justify in this analysis. It occupies the
most posterior point of the bony opercle, the bone that forms the bulk of the gill cover,
and its original purpose was to duplicate the landmark used in traditional ichthyology
measurements of head length. This landmark was expected to be an articulation point
between the opercle and subopercle bones. However, comparisons among several species
showed that the position of the articulation varied excessively, and inaccurately represented
the posterior of the head. The landmark now taken is simply the extreme along the bone
border as measured from the tip of the snout. No reasonable homology argument can
be made for this landmark; it may be that it is partially redundant with landmark 11.
However, our analyses have shown that this landmark can be consistently digitized and is
often informative about alterations in head shape.

Landmarks 4–6 and 8–11 represent points where the fins insert on the body, at the
anterior or posterior of the fin base. Inmost cases these points aremeasuredwhere the bony
fin ray intersects the body. Together these landmarks provide a great deal of information
on postcranial body shape. Landmarks 4 and 5 lie at the anterior and posterior of the
dorsal fin base, respectively. Ontogenetic variation in anterior fin ray morphology can
reduce the repeatability of landmark 4, as discussed in Fink (1993).

Landmarks 8 and 9 represent the posterior and anterior of the anal fin base. Often the fin
is collapsed, and a pinmust the inserted tomake landmark 8 visible. In some piranhas there
are accessory spines at the anterior of the fin base, and they are not included. Landmarks
10 and 11 represent the insertion onto the underlying skeletal girdles of the pelvic and
pectoral fins, respectively. Both lie dorsolateral to the ventral midline. Landmark 10 is
easily visible in larger specimens, but in some smaller specimens the transparency of the
fin makes it difficult to find; in this case it can be located by raising the fin laterally and
placing a pin at the anterior fin-ray’s base.

Landmark 6 lies at the posterior base of the fleshy adipose fin, where the fin meets the
skin of the dorsal midline. This point may be difficult to locate unambiguously because
it may be obscured by the fin overlapping the skin of the peduncle, so a pin is inserted
to mark its location for digitizing. In some of our studies we have attempted to use the
anterior insertion of the adipose fin, but its broadly curving profile in many species renders
it too difficult to repeat.

Note that landmarks 9–12 represent the ventral area of the body form, but they do
not capture the actual convex belly shape of these fishes. A great deal of effort was spent
in attempting to find appropriate landmark locations along the ventral profile, but no
repeatable and consistent landmarks were found that could be located on all piranha
species.



chap-02 4/6/2004 17: 21 page 37

LANDMARKS 37

Landmarks on the skull of Sigmodon fulviventer and
Mus musculus domesticus

The landmarks on the skull of cotton rats, Sigmodon fulviventer (Figure 2.5), were selected
to cover the skull as evenly as possible for the purpose of determining whether ontoge-
netic changes in skull form are spatially integrated or localized (Zelditch et al., 1992) and
to study developmental constraints on variability in that species (Zelditch et al., 1993).
Because the studies were designed to analyze the ontogeny of skull shape and its varia-
tion, the only landmarks that could be included in the analysis are those that are visible in
(approximately) the same plane at all ontogenetic stages. Because mammalian skulls are
highly three-dimensional structures, and the cranial base rotates during ontogeny, land-
marks that are parallel to the camera at one stage may rotate out of that plane later. This
produces what appears to be a change in shape (within the plane). However, omitting
all landmarks that might be affected by such a rotation would mean losing vital infor-
mation about cranial length and width, because the landmarks most strongly affected by
extension of the cranial base are the ones marking the juncture between the anterior and
posterior cranial base, and those located on the posterolateral braincase. Consequently,
landmarks were placed on those locations even though that complicates distinguishing
between changes in shape caused by differential growth and apparent changes in shape
due to the rotation of bones in the third dimension.

A subsequent study was undertaken to compare skull shape ontogeny of S. fulviventer
to that of another rodent, the house mouseMusmusculus domesticus. A major objective of
that study was to examine the relationship between life-history strategy and timing of skull
morphogenesis (Zelditch et al., 2003b). Ideally wewould have sampled both skulls densely,
selecting homologous landmarks that provide a richly detailed description of the ontogeny
of both species. However, some landmarks could be seen in only one species or another.
For example, in S. fulviventer we can locate a landmark on the posterior of the glenoid
fossa, but the curve of the glenoid is so smooth inM. m. domesticus that we cannot find a
distinct point anywhere comparable to the glenoid landmark of S. fulviventer. To capture
information about skull width in the region of the zygomatic arch of M. m. domesticus,
a different point had to be chosen, complicating the comparative analysis. Several other
points that are readily visible in S. fulviventer also cannot be found in M. m. domesti-
cus. However, the problem posed by the inability to find landmarks in M. m. domesticus
that are homologous with those already measured in S. fulviventer is partly mitigated
because there are landmarks in S. fulviventer that had not been previously sampled, but
which can be recognized in both species. Thus, in the comparative study, additional land-
marks were sampled on S. fulviventer. Even so, the set of landmarks common to both
species comprises a rather sparse sample of each skull. Therefore, analyses were done sep-
arately for each species, using the landmarks providing the densest coverage possible for
each species, and the comparative analyses exploited the subset of landmarks common
to both.

The landmarks selected for the original analysis of S. fulviventer (Zelditch et al., 1992,
1993; Figure 2.5A) include:

1. the lateral margin of the incisive alveolus where it intersects the outline of the skull
in the photographic plane (IN)

2. the anteriormost point on the zygomatic spine (ZS)
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Figure 2.5 Sixteen landmarks on the ventral view of the skull of the cotton rat (Sigmodon
fulviventer). (A) Landmarks selected for the analysis of ontogenetic change in this species; (B) the
landmarks shown in Figure 2.5A supplemented by those that would allow for comparisons to Mus
musculus domesticus; (C) landmarks sampled on skulls of M. m. domesticus. Comparisons between
the two species used the landmarks shown in Figure 2.5C except for ZA.
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3. the premaxilla–maxilla suture where it intersects the outline of the skull in the
photographic plane (PML)

4. the premaxilla–maxilla suture lateral to the incisive foramen (PML)
5. the posteriormost point of the incisive foramen (IF)
6. the median mure of the first molar (M1)
7. the posterolateral palatine pit (PP)
8. the junction between squamosal, alisphenoid and frontal on the squamosal–

alisphenoid side of the suture (AS)
9. the midpoint along the posterior margin of the glenoid fossa (GL)

10. the anteriormost point of the foramen ovale (FO)
11. the most lateral point on the presphenoid–basisphenoid suture where it intersects the

sphenopalatine vacuity in the photographic plane (SB)
12. the most lateral point on the basisphenoid–basioccipital suture (BO)
13. the hypoglossal foramen (HG)
14. the juncture between the paraoccipital process and mastoid portion of the temporal

bone (OC).

Several landmarks were added to these in the later study, designed to compare
S. fulviventer toM. m. domesticus. These additional landmarks (Figure 2.5B) are:

1. the juncture between the incisors on the premaxillary bone (IJ)
2. the midpoint of the basisphenoid–basioccipital suture along the sagittal axis (BOM)
3. the midpoint of foramen magnum (FM)
4. the juncture of mastoid, squamosal and bullae (MB)
5. the juncture between the mastoid and the medial end of the auditory tube (AM).

The landmarks sampled on the skulls ofM.m. domesticus include a subset of the original
Sigmodon landmarks, plus the newly added ones, and a point at the interior corner formed
by the intersection of the zygomatic arch with the braincase (ZA) (Figure 2.5C).

Image acquisition and manipulation

In this section, we discuss the basics of creating the image files you will be digitizing.
Included below are the rudiments of taking a picture (what makes the image and how can
you manipulate the camera and the lighting to get a better image), important differences
between a photograph and a digital image file, image file formats, and a few things you
can do to make the captured image even better. Because of the wide range of hardware
and software available for acquiring and editing images and the rapid advancement of
the technology behind those tools, most of the following discussion is quite general. You
will need to familiarize yourself with the characteristics of your particular system (but
then, you will need to do that anyway to get the best possible results). Our goal is that
this section provides you with an orientation that gets you through the first stages of that
familiarization with a minimum of unnecessary pain.

Inside the camera

The aperture
Arguably the most important part of a camera is the aperture – the small hole that lets
light into the box to form the image. The aperture is critical, because light reflecting off the
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Figure 2.6 Image formation in an idealized pinhole camera. Light rays travel in a straight line from
a point on the object (the squirrel jaw) through the aperture to a point on the back wall of the
box. The geometric arrangement of the starting locations of light rays is reproduced by their arrival
locations.

object is leaving it in many different directions and the aperture functions as a filter that
selects light rays based on their direction of travel. The only rays admitted into the camera
are those traveling on a path that takes them through the aperture. In theory, if the aperture
is small enough (and nothing else intervenes), it insures that the geometric arrangement
of the rays’ starting locations is exactly reproduced by the geometric arrangement of the
rays’ arrival locations (Figure 2.6). This is why a child’s pinhole shoebox camera works.
It is also why the image is inverted.

Because the image is formed from a cone of light leaving a three-dimensional object and
arriving on a two-dimensional surface, there are certain artifacts or distortions introduced
in the image (Figure 2.7). As discussed below, a good lens system can reduce these effects,
but it cannot eliminate them completely. One distortion in photographic images of three-
dimensional objects is that an object that is closer to the camera will appear to be magnified
relative to an object that is farther from the camera (Figure 2.7A). This occurs because
the light rays traveling toward the lens from opposite corners of the object form a larger
angle when the object is closer to the aperture, which means they will form a larger image
inside the camera. For this same reason, the closer feature will hide more distant features.
Another distortion is that a smaller object in the field may appear to be behind a taller
object when the smaller object is actually next to the taller one (Figure 2.7B). The reality is
that the smaller object is farther from the aperture, but not in the expected direction. In a
related phenomenon, surfaces of an object that face toward the center of the field of view
will be visible in the image, and surfaces that face away from the center will not be visible
(Figure 2.7C). This is the reason buildings appear to lean away from the camera in aerial
photographs. In the case of a sphere, this means that the visible edge (horizon) will not be
the equator, but will be closer to the camera than the equator. If the sphere is not centered
in the image, the horizon will also be tilted toward the center of the image (this effect
can be a serious obstacle to digitizing landmarks on the sagittal plane of a skull). These
phenomena are more pronounced near the edges of the image, so one way to reduce their
influence on your results is to be consistent in positioning your specimens in the center of
the field of view. Towards the end of the next section we discuss other steps you can take
to minimize these distortions and the effects they would have on your morphometric data.

What the lens does
The lens does two things: it magnifies the image, and it makes it possible to use a larger
aperture than a pinhole. Both are important advantages, but they come at a cost.
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Figure 2.7 Distortions resulting from light leaving a three-dimensional surface and arriving on a
two-dimensional plane: (A) the two rectangles have the samewidth, but the upper (“taller”) rectangle
produces a larger image (appears to be magnified) because its end is closer to the camera; (B) an
object that is farther from the center appears to be behind an object that is closer to the center of the
image, especially if the more central object is “taller”; (C) the sides of an object that face the center
of the field are visible, and the surfaces that face away from the center are hidden. In the special
case of a spherical object, less than half of the surface will be visible; if the object is not centered in
the field, the apparent horizon will be tilted away from the expected reference plane (the equator)
toward the aperture.

The size of the image in a pinhole camera is a function of the ratio of two distances:
(1) the distance from the object to the aperture, and (2) the distance from the aperture
to the back of the box. If the object is far from the pinhole, light rays converging on the
aperture from different ends of the object will form a small angle. The light rays will leave
the pinhole at the same small angle, so the image will be smaller than the object unless
the box is very large. One way to enlarge the image is to enlarge the box; another is to
shorten the distance between the camera and the object, so that light rays converging on
the aperture from different ends of the object will form a very large angle covering the back
surface (Figure 2.8A). A lens magnifies the image by changing the paths of the light rays
arriving at the lens, so that the angle between themwhen they depart the lens is greater than
the angle between them when they arrived. Consequently the image is larger than it would
be without a lens, making the object appear to be closer to the lens than it is (Figure 2.8B).
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Figure 2.8 Twomethods of image magnification: (A) moving the camera and object closer together;
(B) using a lens to change the paths that the light travels from the object to the image, thereby changing
the apparent distance of the object from the aperture.

The amount of magnification produced by a lens depends on several factors. Light
striking the surface of the lens at 90◦ does not change direction, but as the angle of incidence
becomes more acute the change in direction increases. Exactly how much the path of the
light is bent depends on the properties of the material of which the lens is made and
on the wavelength of the light. The light changes direction again when it exits the lens.
As well as the advantage of having a larger image, which enhances resolution, there is
the additional advantage that the distortions that occur in images of three-dimensional
objects are reduced. Because the object is farther away than it would be for a pinhole
image of the same magnification, the same small aperture is now selecting a narrower
cone of rays leaving the object. This is particularly true for features near the center of the
image. Features near the edges of the image are subject to other distortions (see below).

The image in a pinhole camera is faint because the pinhole must be small to be an effec-
tive filter of the light rays’ directions of travel. A larger aperture would admit more of the
light leaving the object, but it would produce a fuzzier image because a larger cone of light
leaving each point on the object would reach the back of the box (Figure 2.9A). Conse-
quently, features in the image would have wide diffuse edges, and the edges of adjacent
features would overlap, making it impossible to discriminate between those features. The
lens corrects this problem by bending the light so that the cone converges again at some
point on the other side of the lens (Figure 2.9B). This allows you to increase the size of
the aperture, allowing more light from the object to reach the back of the box. The image
that results is generally brighter and has more contrast between light and dark areas.

The principal cost of using a lens is that it imposes a particular relationship on the
distances from the lens to the object and the image. This relationship is expressed by the
following equation:

1
f
= 1
do
+ 1
di

(2.1)

where do and di are the distances to the object and image, respectively. The value of f is
determined by the shape and material properties of the lens, and is called the focal length.
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Figure 2.9 The role of the lens in enhancing image resolution: (A) a large aperture admits many
rays leaving the object in divergent directions, which produces a fuzzy image because each point on
the object produces a relatively large circle of light at the back of the box; (B) the lens bends the light
so the diverging rays from a point on the object converge on a point at the back of the box.

For the cone of light from a particular point on the object to converge again at the back
of the camera, that point on the object must be a specific distance from the lens. At this
distance, that point is “in focus.” If a part of the object is not at this optimal distance,
light leaving that part does not converge at the right distance behind the lens, and that
part of the image is blurred. The thickness of the zone in which this effect is negligible is
the depth of field. Greater depth of field means that a thicker section of the specimen will
be perceived as in focus. Depth of field decreases with magnification – at higher magnifi-
cation the light is bent more as it passes through the lens, so the difference in focal points
is magnified as much as the areas of the features. Consequently, a thinner section of the
specimen is in focus. To further complicate matters, in simple (single-lens) optical systems
the slice that is in focus is curved, not flat. Similarly, the surface on which the image is in
focus is also curved. The complex lens systems of higher quality optical equipment flatten
these surfaces considerably, but you may still find that only the center of a flat object (or
a ring around the center) is in focus. The best solution for this problem is to use a lower
magnification, increasing the depth of field. There are things you can do to edit the “cap-
tured” image, but, as discussed in a later section, these are limited by the initial quality of
the image.

Near the edge of the image, additional distortions produced by the lens may become
apparent. These distortions arise because the amount that the path of light is bent is not
just a function of the properties of the lens; the deflection is also a function of the angle of
incidence and the wavelength of the light. Two rays arriving at the center of the lens from
locations near the center of the field of view are bent by relatively small amounts because
they strike the surface at nearly 90◦, but two rays arriving at the lens from locations near
the edge of the field of view are not only bent by larger amounts; the difference in how
much they are bent is also greater. Consequently, a straight line passing through the field
will be curved in the image unless it passes through the center of the field. Closer to the
edge of the field, differences in how much different wavelengths of light are bent by the
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lens may also become apparent as rainbow fringes on the edges of features in the image.
This effect is most evident under high magnification or very bright light.

Checking your system

The complex lens systems of higher quality optical equipment greatly reduce all of the
distortions discussed above, but none of these distortions can be eliminated completely.
Fortunately, there are a few simple things you can do to insure that the effects on your
data are negligible. The first is to put a piece of graph paper in the field and note where the
rainbow effect, if any, becomes apparent. Next, digitize several points at regular intervals
along a line through the center and compute the distances between the points. As you
approach the edge of the image, the interval will gradually change. Take note of where
this effect begins to be appreciable; you will want to keep the image of your specimen
inside of this region. In other words, if the object is large, place the camera at a greater
distance so that the image does not extend into the distorted region of the field. Next,
get a box or other object with a flat bottom and vertical sides and mark one side of the
box at a height corresponding to the thickness of your specimens. Put the box in the field
of view, with the marked side at the center of the field. Slowly slide the box toward one
edge of the field until you can see the inner surface of the side between the mark and the
bottom. Again, you will want to keep your specimens inside this region. Outside of this
region, features at the height of the mark will appear to be displaced away from the center
of the image. Finally, check your depth of field by putting a sloped object marked with the
thickness of your specimen (or one of your larger specimens) in the field. If all the critical
features are not in focus at the same time, you should use a lower magnification to avoid
guessing where in the fuzz is the feature you want to digitize.

What happens in the back of a camera

Now that you have a minimally distorted image at the back of your camera, you need
to “capture” the image with a light-sensitive device (either the detector array in a digital
camera, or the film in a conventional camera). These devices contain a large number of
light detectors used to record the image (silver crystals in film; pixels in digital cameras).
A black-and-white (gray-scale) detector is a single light-sensitive device that reports total
light intensity (number of photons per time unit), whereas a color detector is a bundle of
three light-sensitive devices recording intensities in three narrow color ranges. The higher
the number of detectors, the higher the resolution of the recorded image will be. Detector
number can be increased either by reducing the size of the detectors, so more can be packed
into the same area, or by increasing the size of the image to span more detectors (as in
large format films). Typically, detector number is higher for black-and-white equipment
than for color equipment. Because the three-color bundle occupies more area, color devices
tend to produce less resolved images than black-and-white devices (although a new color
device may be an improvement over an old black-and-white device). Most software for
processing color images can convert them to gray scale.

The image captured by your camera is not the image you digitize. If you are using a
digital camera and projecting an image to the screen, youmay never see the captured image;
what you see on the screen is a second image produced from the information collected by
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the detectors. If the camera image is mapped to the screen one-to-one, pixel for pixel, the
two images will have the same resolution. You can enlarge or reduce the size of this image,
but you cannot increase the resolution. When the screen image is reduced, information
from multiple camera pixels is averaged for display by a single screen pixel. This may
produce an image that looks sharper, but that is the result of losing the small-scale, almost
imperceptible details that created the original “fuzz.” The reduced picture may be easier
to interpret, but there is the risk that the features you want to digitize have been merged.
When the screen image is enlarged, information from a single camera pixel is displayed by
multiple screen pixels, which produces the blocky, stair-step effect. The result seems less
resolved because the edges are not smooth, but features that were separated before still
are separated. The drawback is that excessive enlargement may make the image difficult
to interpret and increase the mental strain of digitizing. If you are using a conventional
camera and making a print from the negative, the same principles apply. In addition, the
quality of the print will depend on the quality of the lenses in the enlarger and the size of
the grains in the paper.

Saving image files

Once you have an image “captured”, you must choose the format in which to save it (we
assume you want to save the image before editing it). Most image file formats are raster
formats (also called bitmap formats), where the image is represented as a set of values
assigned to a grid. This format reflects the structure of your screen and the detector array
in your digital camera. BMP, TIFF and JPEG are all raster formats; so is the format used in
the Windows clipboard. The principal alternative to the raster format is the vector format,
in which the image is represented by a series of mathematical formulae that specify a
set of geometric shapes. This format has some advantages over the raster format, but
it does not work well with photographic images of biological specimens because their
complexity requires a large number of geometric shapes to be mapped onto the specimen.
Meta formats, such as that used in Windows metafiles (*.WMF), allow data in multiple
formats in the same file, permitting the user to build up complex compositions (e.g. a
picture, plus a graph, plus text).

The quality of an image reproduced from a raster file depends on the number of bits
used to save the information at each cell (pixel) in the grid. The number of bits determines
the number of colors or gray tones in the image – a 16-bit image can contain up to 64 000
colors, an 8-bit image can contain only 256 colors. Each pixel displays only a single color,
so the advantage of the 16-bit image is that it can have much smaller changes in color from
one pixel to the next and thus can more accurately reflect graded changes in color across
the object. In practice, the 8-bit image may not be noticeably poorer unless the image size
is changed, and has the advantage of requiring much less disk space and less time to load. If
space is important and color is not, saving the image in gray scale will considerably reduce
disk space and loading time without reducing resolution. If color is important, the most
economical format is JPEG (Joint Photographic Experts Group, *.JPG). This is a com-
pressed format analogous to the *.ZIP format. An image that requires 900K of disk space
as a 16-bit BMP or TIFF file might require less than 100K as aminimally compressed JPEG.
More importantly, the 100K JPEG will look just as good on the screen because there is
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very little information lost in the compression. In contrast, a 4-bit BMP file requiring about
the same disk space will have lost much more information and look considerably worse.

If you are really pressed for disk space but need to preserve as much color information
as you can, explore the options in your software. Normal color reduction replaces each
pixel with the nearest color in the reduced color set (e.g. emerald, jade and lime will all
be replaced with green). This creates large blocks of uniform color that obliterate many
details. Various optimizations and diffusion algorithms produce “speckled” images that
blend into more natural colors when viewed at a distance, or when reduced. These also do
a better job of preserving edges.

Improving the image

Before you capture it

What you see in the image depends on how much light you shine on the object, and how
much of the light reflected from the object you allow to reach the detector. There are
several options for manipulating light; the trick is to find the right balance so that you can
see the features you want to digitize. It is important to understand that the best image for
digitizing may not be the most esthetically pleasing image.

When you shine a light from a single source on a three-dimensional object, some parts
are likely to be in shadow. Shadows can be advantageous in that they allow you to see
the relief, but you want to avoid a shadow so dark that you cannot see anything in the
shadow. Backlighting allows you to see features in the shadow without obliterating the
shadows. This is achieved by using a weaker light, or some kind of reflector (e.g. a piece
of white paper) to illuminate the “back” of the object.

The size of the aperture and the amount of time it is open determine the amount of
light that strikes the detector. A larger aperture admits more light, but, as discussed above,
the image is less sharply resolved. However, minimizing the aperture does not necessarily
produce the most useful picture. A small aperture allows very little light to reach the
detector from any area, and the resulting image is generally dark. You can compensate
for this by decreasing the shutter speed (or its digital analog); this allows light through
the aperture to register on the detector for a longer period of time. As the shutter stays
open longer, the brighter parts of the specimens become brighter in the image and the
dark parts of the image stay dark. In other words, the contrast is increased. Unfortunately,
minimizing shutter speed does not necessarily produce the best picture either. The longer
the time that light is collected, the longer the fuzzy fringes register on the detector. If
you leave the aperture open too long, eventually thin dark features will be obliterated
completely and small bright areas will appear larger than they really are. You can also
compensate for small aperture size by using brighter lights to illuminate the object. This
has much the same effect as increasing the time the aperture is open. More light registers
because there is more light from the specimen per unit time.

In summary, getting a decent picture may require a delicate and sometimes annoying
balancing act. We strongly recommend that you try many different settings to see what
works best, and keep a log of the conditions in which each picture was taken. In your
log, you should also take note of the brightness and shininess of the specimen. A dull gray
specimen may require a different set-up than a shiny white specimen. You should also take
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note of what other room lights are on, and if the roomwhere you are working has windows
the time of day can be an important factor as well. Have patience. Although there is a lot
you can do to edit an image, you can only highlight information that is already there; you
can’t recover information that was lost by the original.

After you capture it

A quick tour through almost any photo-editing software will reveal a bewildering array of
functions you could use to modify your image. Here, we discuss a few tools that are widely
available and likely to be useful to a large number of biologists. All of these manipulations
reduce the accuracy of the image as a reproduction of the original image. Again, it is
important to realize that an esthetically pleasing or artistically interesting image may not
be the best one to digitize for a morphometric analysis.

Probably the two most generally useful tools are the ones that adjust brightness and
contrast. These functions can be most easily understood if your image editor displays a
histogram of pixel luminance (the intensity of light emitted). Increasing brightness makes
the whole image lighter, adding the same increment of luminance to every cell, up to the
maximum value. Detail is lost at the bright end because pixels near that end converge
on the maximum value, and details at the dark end may emerge as they are brought into
a range where the differences between adjacent cells become perceptible. Except for the
pixels near the bright end, the actual difference in brightness between adjacent cells does
not change (the peaks in the histogrammove toward the bright end, but they do not change
shape). Decreasing brightness has the opposite effect. Increasing contrast makes the dark
areas darker and the bright areas brighter, shifting the peaks away from the middle and
towards the ends. Decreasing contrast makes everything a homogeneous gray, shifting the
peaks toward the middle. The peaks also change shape as they move, becoming narrower
and taller with decreasing contrast, and wider and flatter with increasing contrast. Again,
differences between adjacent cells are lost as their values converge on the ends or the
middle. Adjustments of either brightness or contrast can be used to make features near the
middle of the brightness range easier to distinguish; the difference is whether the features
that are made harder to distinguish are at one end (brightness) or both ends (contrast) of
the range.

As noted above, computer images have jagged edges due to their raster formats. When
the image is scaled up, it is also apparent that sharp edges in the original are represented
as a transition zone with large steps in brightness and/or color. This creates the problem of
deciding exactly where in the zone is the edge you want to digitize. Adjusting brightness is
unlikely to solve this problem, because the number of steps and the difference between them
stays the same. Increasing contrast can help more, because it makes the steps bigger, but
this comes at the expense of making the jaggedness more apparent. Even so, narrowing the
zone of transition may be worth the increased jaggedness. Some alternatives to increasing
contrast may include sharpening and edge enhancement. These tools use more complex
operations that both shift and change the shapes of the luminance peaks, but they also
can produce images with thinner edges. In general terms, the effect is similar to increasing
contrast, but the computations are performed on a more local scale. Which tool works
best to highlight the features you want to digitize will depend on the composition of your
picture. Consequently, what works for one image may not work for another.
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Digitizing

This discussion of digitizing explains how to use one particular program, tpsDig. We
recommend using this because all programs for shape analysis can read data in the format
output by this program.

1. Getting ready to digitize your first image

Start the program. Go to the File menu. Select Input source, then File. Find the folder
containing your pictures and select the correct type of files. Select the file you want to
open, or type the file name and extension, and click the Open button. The image should
appear in the main window. In the toolbar above the image are two buttons (+ and−) that
you can use to zoom in or out, and a number that shows the magnification of the image.

Go to the Modes menu, and select Digitize landmarks (if not already checked).
Go to the Options menu, and select Label landmarks (this will put numbers next to the

digitized points). Return to the Options menu, and select Specimen info… In the window
that opens, type a unique specimen identifier in the ID: box. Ignore the other boxes for
now. Click OK. Again, go to the Options menu, and this time select Image tools. In the
window that opens, select theCursors tab, and choose the digitizing cursor that you prefer.
(You can try out the cursor by moving it over the image. Do not click on the image; if
you do, a landmark will be recorded and the image tools window will close.) Now select
the Colors tab. Here, you can choose the color and size of the circle that will be used to
indicate a landmark’s position, whether the circle will be closed or open, and the color
and size of the number used to label the landmark. You can change these options at any
time. Close this window, and you are now ready to digitize.

Notice that one of the buttons on the toolbar looks like a digitizing cursor. This button
should be depressed, indicating you are in digitizing mode. Also, the cursor will look like
the digitizing cross-hairs, and not your standard mouse pointer. Position the cursor over
the landmark and click the left mouse button. A circle and number should appear. The
# (pound) button on the toolbar is a toggle to hide or reveal the landmark numbers.

2. Editing digitized landmarks

Click the arrow button on the toolbar to enter edit mode, or click the right mouse button.
The cursor will change from the cross-hairs to the arrow. Tomove a landmark, place the tip
of the arrow on the circle, press and hold the left mouse button, and “drag” the landmark
to the new location. (Note that its number does not change.) To delete a landmark, place
the tip of the arrow on the circle and click the right mouse button. In the pop-up menu,
click on Delete landmark (or select one of the other options if you change your mind).
Note that every landmark with a higher number will be renumbered.

If you click Insert landmark instead of Delete landmark, a point will be inserted to the
left of the selected landmark. The new point will have the number originally assigned to
the selected landmark – the selected landmark and all landmarks with higher numbers will
be renumbered accordingly. Thus, you can use Insert landmark to add skipped landmarks
without redigitizing the entire set. Select the landmark that should be after the skipped land-
mark, right click, choose Insert landmark, and drag the new point to the correct location.
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3. Saving data

After digitizing the specimen, go to the File menu and select Save data. A pop-up window
will open with a space for you to enter a file name. Notice that the default is to save the file
in the same folder as the pictures. Do not change this. Enter the file namewith no extension.
It will be saved with a .TPS extension. There is no option here, despite appearances.

You are now ready to digitize a second specimen, but before continuing you should
take a look at the file you have just created. Minimize the tpsDig window, go to Windows
Explorer, find the folder containing your pictures, and open the *.TPS file you just created
(it will probably open in Notepad or Word).

Notice the format of your file (this is the TPS format). The first line is “LM=” followed
by the number of landmarks. The next several lines are X, Y coordinates, in numbers of
pixels. After the coordinates, the next line is “IMAGE=” followed by the name of the
image file. The last line is “ID=” followed by the ID you entered (or a default number that
is a counter). The IMAGE= line does not include the path to the file, only the name. To
see why this is important, close the file and return to tpsDig. Select File, then Input source,
then File. In the pop-up window, select the file you just created and open it. (If you do not
see a list of TPS files, go to the file type box and select TPS files.) tpsDig finds and opens
the image file and displays the landmarks on the image. If you had saved the data file to
a different directory, tpsDig would not be able to find the image file and would refuse to
open the data file.

4. Adding more specimens to the file

To digitize a second image and add the data to the existing data file, open the file containing
the second image and digitize the landmarks, as above. When you are ready to save, go
to the File menu and select Save data. This time, when the pop-up window appears, select
the existing file to which you want to add the new data, and then select Save. In the new
window, select Append. The new data will be added to the end of the selected file.

5. Editing data in a TPS file

Open the TPS file in tpsDig. Use the arrow buttons on the toolbar to scroll through the
images, and edit the digitized landmarks as described above. To save the changes, go to
the File menu and select Save data. This time, when the pop-up window appears, select
the existing file to which you want to add the new data, and then select Save. In the new
window, select Overwrite. This will replace the original data with the modified data, and
landmarks and specimens that were not edited will not be changed. (If you select Append,
you will create a file that has both the original data and the edited data.)
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3
Simple size and shape variables: Bookstein

shape coordinates

This chapter presents a method for obtaining shape variables that is both simple and
visually informative. Called “the two-point registration,” this method produces a set of
shape coordinates, sometimes called “Bookstein shape coordinates,” that can be used
both for graphical displays and formal statistical tests. Bookstein shape coordinates (BC)
provide a useful introduction to shape analysis because they are intuitively accessible, their
formula is relatively straightforward, and understanding them does not require a general
understanding of morphometric theory. We present that theory in Chapter 4, after which
we can introduce alternatives to BC (Chapter 5).

To introduce the two-point registration, we first review the meaning of shape (the
first of several reviews) because this meaning is crucial to the formula. We then focus
on the simplest possible application of the method, the analysis of shapes with only three
landmarks (triangles). We also discuss how information about size can be restored (because
it is removed in the course of the two-point registration). Once we have shape coordinates
and a measure of size, we can then test the hypothesis that two samples of shapes differ
statistically or that shape change is correlated with size change. These statistical tests are
done directly on the coordinates of landmarks – should a statistically significant difference
(or covariance) be found, we can then depict it and describe the variable that differs or
changes. In this chapter we also discuss the description of shape variables and the biological
interpretation of them, because, to a large extent, it is the descriptive power of geometric
morphometrics that makes these methods so useful.

Shape and size revisited

In Chapter 1 we discussed the meanings of shape and size, as they are defined in geometric
morphometrics. We defined shape in terms of operations that do not alter shape – specifi-
cally, translation, rotation and rescaling. These operations can be applied to a simple form,
a triangle, allowing us to obtain a coordinate system. For the triangle shown in Figure 3.1,
we can translate it so that one landmark is at the origin (0, 0) (Figure 3.1A). We can then

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
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Figure 3.1 Three operations that do not alter shape, applied to a triangle: (A) translation;
(B) rotation; (C) rescaling.

rotate it so that the side AB is along the X-axis (Figure 3.1B), and finally we can scale it so
that the coordinate of landmark B is at point (1, 0) (Figure 3.1C). We can then calculate
the coordinate of the third landmark, C, in the coordinate system we have just defined. All
of these operations can be applied without worrying about the consequences for shape,
because we have defined shape such that none of the operations alter it.

Only those three operations are involved in calculating the coordinates of point C, which
is done according to the following formula, in which Ax, Ay, Bx, By, Cx, and Cy are the
original digitized coordinates, and SCx, and SCy are the coordinates of landmark C in the
new coordinate system:

SCx = (Bx − Ax)(Cx − Ax)+ (By − Ay)(Cy − Ay)
(Bx − Ax)2 + (By − Ay)2

(3.1)

SCy = (Bx − Ax)(Cy − Ay)− (By − Ay)(Cx − Ax)
(Bx − Ax)2 + (By − Ay)2

(The numerators for the two equations really do differ in sign, as well as subscripts; that
is not a misprint.)

SCx and SCy are the “shape coordinates” of landmark C (which from now on we
will simply call Cxy). This relatively simple set of operations will be important when we
compare the shapes of two triangles.
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Figure 3.2 Two triangles whose shape difference is the subject of investigation: (A) the two triangles
as initially recorded; (B) the same two triangles after being translated, rotated and rescaled by the
two-point registration; (C) the same two triangles, superimposed.

Comparing the shapes of two triangles

Our objective in this section is to answer the question: “do the two triangles of Figure 3.2A
differ in shape?” To do this, we apply the operations outlined above to both triangles and
calculate the shape coordinates of landmark C. That is, we assign the coordinates (0, 0)
to landmark A in both triangles, and we assign the coordinates (1, 0) to landmark B in
both triangles (Figure 3.2B). As a result, the difference between the two triangles is entirely
represented by the difference in the location of the third vertex, landmark C. We can now
draw both triangles on the same coordinate system (Figure 3.2C).

While there are programs to do these calculations, they are easily done in any spreadsheet
or statistical program that manipulates formulae. As an exercise, take the following three
pairs of coordinates for points of a triangle (in the format produced by a common digitizing
program), compute the shape coordinates, and draw the triangle. For the moment, pick
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any two points as the endpoints of the baseline (A and B); we will discuss how to choose
them later.

1. 54.00000 306.00000
2. 223.00000 447.00000
3. 632.00000 300.00000

Now take the next three coordinate pairs, and draw that triangle:

1. 11 342
2. 251 520
3. 769 318

Now draw both triangles using the same baseline (with point A and B superimposed),
and draw the vector extending between the one free (Cxy) landmark on both of the triangles.
That vector is the shape variable describing the difference between the triangles.

Comparing many triangles

Of course, we rarely (if ever) compare only two specimens (or triangles). We now con-
sider how to compare many individual triangles (below we discuss comparing forms more
complex than triangles). The same procedure (and formulae) still apply, no matter how
many triangles or individuals are examined. For example, given a collection of triangles
(Figure 3.3A), we assign points A and B the coordinates (0, 0) and (1, 0), and then compare
all these triangles (Figure 3.3B) either as whole triangles, or as scatter plots of the one free
point (Figure 3.3C).

The scatter-plot is useful for checking the repeatability of your landmarks, as well as
for studying the variability of shape or differences in shape. For all these purposes, it is
important that the axes of the scatter-plot be sized so that a square shape is shown as a
square – that is, the length of the interval from 0 to 1 on the X-axis should be the same as
the length of the interval from 0 to 1 on the Y-axis. Many programs do not do this scaling
of axes automatically, so you may have to scale the axes yourself. Often this can be done
by first calculating the maximum and minimum values for the X- and Y-coordinates; the
difference between those values, i.e. the range of values should be set equal for both coordi-
nates. For example, if the X-coordinate ranges from 0.030 to 0.060 and the Y-coordinate
ranges from 0.020 to 0.060, both axes should be 0.040 units long (the Y-coordinate has
the slightly larger range). In this case, the minimum on the X-axis could be set to 0.025
and the maximum on the X-axis to 0.065. This distributes the extra length equally above
and below the observed values, and should enforce a 1 : 1 aspect ratio for the graph.

When the axes are on the same scale, an approximately circular scatter of points indi-
cates that there is an equal amount of variation in all directions. Random digitizing error
should be circular; systematic errors, in contrast, will look elliptical. If you have already
digitized landmarks, now would be a good time to compute shape coordinates, scale the
axes appropriately, and check that your digitizing error is circular. Should you find points
that depart substantially from circularity, you should either delete that landmark from
your analysis, or take its biased error into account in subsequent analyses.
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0, 0 1, 00, 0 1, 0(B) (C)

(A)

Figure 3.3 Comparing shapes of triangles: (A) the collection of triangles whose shape differences
are the subject of investigation; (B) the same collection of triangles, put in a common coordinate
system by the two-point registration; (C) scatter-plot depicting the location of the free landmark.

Size

We lost no information about shape when we represented all the triangles by the shape
coordinates of point C, but we did remove information about size. Specifically, we removed
it by rescaling the baseline to a length of one. We can restore the information about size
by using a measure that captures the notion of scale. By scale, we mean the property that
changes when an image is enlarged or reduced. There are several possible meanings of
size, including a simple measure of the length of an organism along one body axis (e.g.
snout–vent length), area, volume, weight or even a linear combination of all measured
quantities that captures the positive correlations among them all (as in the case of the first
principal component). In geometric morphometrics we use a specific concept of size, one
related to geometric scale. One feature of this notion of size is that it is independent of
shape. This is not the case for the other possible size variables mentioned above, which
may be independent of shape but are not necessarily so in all cases. To see this idea of
independence, consider what happens in the case of isometric growth: every dimension
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L1

L2

L3

Figure 3.4 A geometric depiction of the calculation of centroid size, which equals the square root
of the summed squared lengths of line segments L1, L2, L3.

is enlarged by the same proportion; each coordinate is moved away from the center in
proportion to its original distance from the center. The size variable that captures this
radial notion of scale is centroid size, graphically illustrated in Figure 3.4.

To compute centroid size, first compute the centroid (center) of the form, which is
located at the mean position of all coordinates. This mean is found by simply averag-
ing the X-coordinates and the Y-coordinates. For example, the three landmarks of the
triangle might be at (0, 0), (1, 0) and (0.3, 0.8). The average X-coordinate is thus the arith-
metic mean of the three X-coordinates (0, 0.3, and 1), which is 0.433, and the average
Y-coordinate is 0.267. Then the squared distance of each of the three landmarks from the
center is calculated using the standard formula for a squared distance between two points
(X2−X1)2+ (Y2−Y1)2. This sum gives a measure of size related to area; taking the square
root of the sum gives a linearized measure of size. The square root of the summed squared
distances of each landmark from the center of the form is centroid size.

Size is thus measured separately from shape, and it is statistically uncorrelated with
shape so long as shape changes isometrically (which, by definition, means that shape
does not change with size). This is a useful attribute of a size measure, because we do
not want size to be intrinsically correlated with shape simply by virtue of its formula.
Rather, we want a measure of size that is correlated with shape only when size and shape
change together. Of course real data will often show this correlation between shape and
scale, because allometry is a common phenomenon. However, allometry is an empirical
finding, not an effect of the formula for size. Centroid size is the only size variable that
is uncorrelated with shape in the absence of allometry (others that are also uncorrelated
with shape are variants on centroid size). This independence from shape is one of the main
reasons why centroid size is used as a size variable. The other reason is that centroid size
has a crucial role in defining the metric for a distance between two shapes (Chapter 4).

Choosing the baseline

When we calculated shape coordinates, we chose one side of the triangle to serve as a
baseline. An obvious question is whether our results might depend on that choice. As
Bookstein (1991) has proven, the scatters for different sets of shape coordinates of the
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same triangle to different baselines differ mainly by translation, rotation and rescaling.
In effect, all the statistical results are (approximately) the same regardless of the choice of
baseline. However, this does notmean the baseline should be chosen arbitrarily. First, some
landmarks are difficult to digitize andmay be especially difficult to locate – these should not
serve as an endpoint of the baseline. This is because the method, in effect, transfers all the
variance in the baseline points to all the other landmarks, so if the endpoints of the baseline
are highly variable then all the points will be noisy. More problematically, the variance
is not evenly distributed across all landmarks; the transfer of variance might therefore
introduce a bias into the data. Another consideration that enters into choosing a baseline
is its orientation. If the baseline rotates relative to a body axis it does not compromise
the statistical analyses, but it can make interpretations based on graphics difficult – it
might seem that all the landmarks are moving away from the baseline in the posterodorsal
direction, for example, when the baseline rotates in the anteroventral direction. Also, in
choosing the endpoints of the baseline, we do not want points that are too close to each
other because any highly localized variation in shape may be common to both those points.
Just as the noise of the baseline landmarks is transferred to all the others, the variance local
to the baseline landmarks is transferred to all the other landmarks. Ideally, therefore, we
want endpoints of the baseline to be along the longest diameter of the form that passes
through the centroid of the form, so long as those points are not especially unreliable and
the longest diameter does not rotate.

It is easiest to interpret results when the baseline lies along an organismal body axis.
Even though results can be interpreted in a baseline-invariant way, the interpretations still
refer to sides of the triangle. It is most convenient when at least one side is a conventional
and familiar reference. Bookstein has put a great deal of emphasis on baseline-invariant
interpretations out of a concern for reports free from arbitrary, abiological decisions.
However, organismal body axes are neither arbitrary nor abiological – indeed, we often
want to make explicit references to organismal body axes in our interpretations. Thus,
even though we can interpret shape changes without reference to organismal body axes,
we might still wish to orient our findings with respect to them. This motivates choosing a
baseline along one of those axes.

Statistics of shape coordinates

Oncewe have shape coordinates, we can answer the basic “existential” questions as defined
in Chapter 1, such as “do these samples differ in shape?” These questions have “yes” and
“no” answers supplied by statistical tests. All conventional statistical methods and tests
can be applied to shape coordinates and centroid size. For example, an average value
for the shape coordinate at point C is computed by averaging the X-coordinates for that
point across all individuals within a sample, then dividing that sum by the total number
of individuals in that sample; the same procedure is then applied to the Y-coordinates.
Variances and standard deviations are also calculated by standard formulae. Because the
two endpoints of the baseline are fixed, they have no variance and should not be included
in statistical analyses. If you use conventional statistical packages to analyze these coordi-
nates, remember to exclude them from the analysis because many programs will not run
if the variables do not vary.
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Because every landmark has two dimensions (its X-, and Y-coordinates), statistical
analyses are necessarilymultivariate. Even ifwe are askingwhether two samples of triangles
differ in average shape, we must use a multivariate test. In particular, we would use the
multivariate form of the familiar Student’s t-test, Hotelling’s T2 test (see, for example,
Morrison, 1990). When comparing two samples of triangles, the test is applied to the two
coordinates of landmark C. When we are comparing more than two samples, we can use
Wilks’ � (Rao, 1973) or one of the related statistics obtained by a multivariate analysis of
variance (MANOVA). In studies of allometry, we use multivariate regression.

To apply any of these statistical tests to the data, it is first necessary to decide the
appropriate null hypothesis. In many cases, the null hypothesis is that the differences in
shape between two or more samples are due solely to chance (the vagaries of sampling).
To test this hypothesis, the shape coordinates (for free landmarks only, not for baseline
points) are compared by Hotelling’s T2 test (in the two-group case) or by MANOVA (in
the multigroup case). This can be done in any statistical package. If, for example, the
two samples being compared are two sexes, “sex” is the categorical variable, the factor
whose effect is being tested. If the difference is statistically significant, that is evidence of
sexual dimorphism. Dimorphism in size can also be tested, which involves a univariate
test because size is a one-dimensional variable. To test the hypothesis that males and
females differ in shape because they differ in size, and solely for that reason, MANCOVA
(multivariate analysis of covariance) is used.

Studies of allometry are equally straightforward. The null hypothesis is that there is no
covariance between size and shape beyond that due to sampling effects, and rejection of the
null hypothesis means there is a correlation between size and shape – allometry. Again, this
test can be done using any conventional statistical package; the shape coordinates of the
free landmark(s) comprise the dependent variable (we will refer to it in the singular, as the
dependent “variable”, even though it has multiple components). Size is the independent
variable, and the effect to be tested is that of size on shape.

Describing shape differences

Having documented that shapes do differ, or do covary with a measured factor, the next
step is to describe that difference or covariance. A description comes before any interpreta-
tion, because interpretations offer an explanation and we need to know what the effect is
before we can explain it. For example, if we want to interpret the impact of size on shape,
we first need to know how size affects shape. We can then interpret that effect in light
of growth processes or biomechanics. If we detect allometry statistically, and describe the
shape variable that covaries with size effectively, we can then seek explanations in terms
of growth and biomechanics.

Given a comparison between two triangles, we first find the vector linking landmarks
C to C′; that vector has two components, itsX- and Y-coordinates. In Figure 3.5A, the tri-
angle is drawn between the tip of the snout (landmark A), the posterior end of the hypural
bones (landmark B) and the free landmark (C) at the anterior dorsal fin base. The differ-
ence between the two shapes is entirely along the Y-direction of landmark C – the little
vector extending between C and C′ points directly upwards (Figure 3.5B). We can describe
it as a vertical (dorsad) displacement of the anterior dorsal fin base relative to the baseline.
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Figure 3.5 (A) A triangle with the baseline along the anteroposterior body axis and the free point
at the anterior dorsal fin base; (B) the difference between two shapes depicted by a vector extending
between C and C′.

However, framed in those terms, we have not described a change in shape of a triangle –
we have not described a change in proportions or angles. Even though a ratio is implicit
in our description of a dorsad displacement of the landmark, we need to go further and
actually translate the displacement of a landmark (relative to the baseline) into a shape
variable.

Figure 3.6 shows three shape changes that we will use to describe such a translation.
In Figure 3.6A, the change in location of point C is depicted by a vector in the vertical
direction; in Figure 3.6B, the change in location of point C is depicted by a vector in the
horizontal direction; and in Figure 3.6C the change in location of point C is depicted by
a vector that lies along one of the sides, AC. Our objective is to relate these changes to
changes in familiar ratios or angles of a triangle. For Figure 3.6A, the change is in the
height of the triangle relative to the length of its baseline, and thus, we can name the shape
variable as change in the ratio height : base. We can term that a change in the “aspect ratio
of the triangle.” We can describe the change implied by the vector in Figure 3.6B in terms
of a ratio of two segments of the baseline: the original position of C is projected onto the
baseline at point X, and the shape change is an increase in length of the line from A to X
(AX) relative to the length from A to B (AB). In Figure 3.6C, the shape variable implied
by the vector is a modification in the ratio AC :AB.

For each of these changes we can also describe what does not change – we can describe
the invariant as well as the covariant variables. In the first two cases, the changes are
along the axes of the shape coordinates; the change is entirely in one direction, implying
no change in the other. That is, a change oriented entirely along the vertical direction
(height or aspect ratio) implies no change in the horizontal direction (i.e. no change in
AX : AB). When the change is entirely directed along side AC, the unchanged feature is
the angle at A. It is important to recognize that every change implies an invariant; it is
therefore inappropriate to invoke constraints merely because something does not change.
Every change has an invariant aspect because we can always draw a vector at right angles
to one depicting the direction of change.

The shape variables we have just named all depend on the baseline and on the particular
points we digitized. Hadwe chosen a different baseline, we would have obtained a different
vector and a different descriptor. While the scatters and statistics are unaffected by that
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Figure 3.6 Three changes in the shape
of a triangle: (A) increasing the ratio
of the height to the base; (B) increas-
ing the length of Ax relative to AB;
(C) increasing the length of AC relative
to AB.
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Figure 3.7 The circle construction. (A) The perpen-
dicular bisector of the line segment extending from C
to C′ is determined and extended to the baseline (the
point of intersection between them is F). (B) A circle is
drawn through points C and C′, with its center on F;
the circle intersects the baseline (or extensions from it)
at two points 1 and 2. (C) Lines C1 and C2 can now
be drawn on the triangle ABC. The ratio of 1C/1C′
gives the principal strain in that direction, while the
ratio 2C/2C′ gives the strain in the other.

choice, the vectors and verbal interpretations depend on it. We now present a method that
yields descriptors that are invariant under changes in baseline, which is especially useful
when the baseline is biologically arbitrary. Even when the baseline is not biologically
arbitrary, we might still want a description of change in general terms – ones that do not
presuppose a fixed side. To that end, we introduce the construction of principal axes,
an algorithm for finding a pair of directions (at right angles to each other) – one is the
direction of greatest change and the other is the direction of least change.
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Principal axes

Principal axes describe change by symmetric tensors, in more specific terms, by relative
metric or strain tensors. Vectors like the ones we drew between points C and C′ above,
have directions that rotate with the coordinate system. In contrast, the principal axes are
invariant under changes in the coordinate system; these axes are perpendicular both before
and after transformations (they have also been called biorthogonal directions). In addition
to these axes, we will also compute the principal strains, measures of the change in length
of each principal axis. Then we can describe the difference between forms by the ratio of
the two strains, a metric called anisotropy. We will show how to construct the principal
axes by hand, and give the formulae for calculating the strains and anisotropy. Finally, we
will discuss naming the shape variables implied by the principal axes.

The circle construction for the principal axes

By assumption, each little piece of the triangle (small portions within the regions between
the landmarks) corresponds from triangle to triangle. Also by assumption, the change
from one triangle to another is entirely uniform. We can then find principal axes by the
following algorithm, called the circle construction. The construction involves four pairs
of shape coordinates, those of points A and B (which are the same for both forms) and
those of points C and C′ (corresponding to the two locations of C). We first determine the
perpendicular bisector of the line segment extending from C to C′, and extend that line to
the baseline (Figure 3.7A). To do this, draw the line segment between C and C′ (L), find
its midpoint, and draw a line perpendicular to L that extends from that midpoint to the
baseline. That point of intersection is called F. Next, draw a circle through points C and C′,
with its center on F (Figure 3.7B). The circle intersects the baseline (or extensions from
it) at two additional points labeled 1 and 2. These points, like A and B, are unmoved by
the shape transformation because we are operating under the assumption that the change
is entirely uniform. The angles 1C2 and 1C′2 are both right angles, and hence we have
identified the biorthogonal directions – those that are perpendicular both before and after
the transformation.

The lines C1 and C2 can now be drawn on the triangle ABC (Figure 3.7C). In some
cases, the line segments C1 and C2 lie outside the triangle. These can be placed within it
by drawing lines parallel to C1 and C2 that pass through a vertex of the triangle. In one
case, the circle cannot be drawn at all: when C′ is displaced purely in the vertical direction
(in that case the perpendicular bisector of the line segment CC′ is parallel to the baseline,
thus it does not intersect it). For that case, one principal axis is in the direction of the
vector connecting C to C′, and the other axis parallels the baseline. When the change in
shape is slight – so slight that it is difficult to find a midpoint along the line from C to C′ –
the midpoint can be approximated by point C and the perpendicular bisector of line CC′
can be approximated by the perpendicular to the line CC′ at point C (Figure 3.8). The
intersection of this line with the baseline estimates point F, the center of the circle. After F
has been located, the construction can be completed as described above.

Not only are principal axes directions that are perpendicular before and after the shape
change, they are also directions that undergo the most extreme changes in length during
that shape change. Although it is common to think of one direction as elongating and the
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Figure 3.8 Changing shape by such a slight degree that it is difficult to find a midpoint along the
line from C to C′.

other as shortening, it actually may be the case that that one is the direction of fastest
growth and the other is the direction of slowest growth (or even no growth). In physics,
changes in length are called strains, so the changes in length along the principal axes are
the principal strains. To calculate the principal strains we need the lengths of the line
segments C1, C2, C′1 and C′2. We also need the difference in absolute length of the side
AB for the two triangles, i.e. the length of that side before rescaling. The ratio of 1C : 1C′
gives the principal strain in that direction (its relative elongation), while the ratio 2C : 2C′
gives the strain in the other. Because the two baselines might differ in absolute length,
those ratios must be adjusted to the proper scale by multiplying each ratio (1C : 1C′) and
(2C : 2C′) by the ratio of the unscaled lengths of the two baselines.

The ratio between the two principal strains is called the anisotropy of the shape change.
This is a measure of the degree to which the transformation is unequal along the two axes.
For the case of a slight change in shape – the case for which we approximated the principal
axes (above) – we can approximate the anisotropy as 1+ (d/h), where d is the length of
the vector from C to C′ and h is the height of C above the baseline (the height of the
point above the baseline is the Y-shape coordinate of the landmark). In addition to being
directions that undergo the most extreme change relative to their original lengths, principal
axes also are the directions that undergo the greatest change relative to each other. In other
directions, the strain is intermediate between the principal strains. At 45◦ to the principal
axes (bisecting the angle between them) are two directions that undergo identical strains;
these are directions of isotropic change – that is, no relative elongation or shortening.

Naming the variables implied by the principal axes

Earlier we discussed naming shape variables based on vectors that represent a change in
the location of shape coordinates. We now turn to naming shape variables based on the
orientation of the principal axes. When principal axes are alignedwith a side of the triangle,
or with one of its angles, the shape change can be described as simple changes of a ratio
or angle. At the same time, the feature of the triangle that is invariant can be described
just as easily. Also, when the bisectors of the principal axes (the directions of no relative
change) are aligned with a side of the triangle or with the bisector of one of the angles, the
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Figure 3.9 Naming shape variables for principal axes relative to sides and angle bisectors of a
triangle.

shape changes and the invariant features can be described just as easily. Because there are
three sides and three angles in a triangle, and two ways to align the axes to a side or angle,
there are twelve possible shape changes that can be expressed in familiar terms. In some
special cases (e.g. a right triangle) there are fewer possibilities because some alignments are
identical (e.g. 1 and 4when the angle is the right angle and the side is adjacent to that angle).

When a principal axis is aligned with a side of the triangle, the variable expressing what
changes most is the ratio of the length of that side relative to the distance of the third point
from that side. For example, in Figure 3.9A we show a case in which one axis is aligned
with the baseline AB and the other axis parallels XC, the line through C perpendicular to
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AB. (For each triangle there is one pair of these axes, which can be positioned anywhere
in the triangle; that pair of axes describes the change of the entire triangle, so we would
find the same pair of principal axes anywhere we look in that triangle.) The shape variable
implied by this pair of axes can be described as a change in the height of the triangle (at C)
relative to the length of side AB, which is equivalent to saying that C is moved toward or
away from line AB. The line having arrowheads at both ends indicates the displacement
of point C in the vertical direction. The invariant feature is the position of XC relative to
AB – in other words, the relative lengths of segments AX and XB. There are several ways
we might describe this change, but the choice of description should make biological sense.
Sometimes it may be more appropriate to speak of a structure displaced along a line, at
other times it may make more sense to speak of a change in the distance between a point
and a line relative to the length of a line, and sometimes it might make most sense to speak
of a change in aspect ratio of a triangle. It is important here that in talking about principal
axes we are not really talking about a change at point C, rather, we are concerned with
the location of C relative to AB.

When a principal axis is at 45◦ to a side (i.e. when a bisector of the principal axes is
aligned with a side), we can say that the shape change is displacement of the third point
parallel to that side. In Figure 3.9B, point C is displaced horizontally, parallel to side AB
(rather than vertically as in Figure 3.9A). We again show the direction of displacement
by the line with the arrowheads at both ends. Equivalently, we could describe this as a
change in the ratio of AX to XB, or as a shearing of the triangle. As may be obvious from
the contrast between this shape variable and the one described in the previous paragraph,
the feature that changes most in this one is the feature that did not change in the previous
one (the ratio of lengths AX and XB).

When one of the principal axes is aligned with the bisector of an angle of the triangle,
the feature that changes most is that angle. The invariant feature of the triangle is the ratio
of the lengths of the sides adjacent to that angle. In Figure 3.9C, the angle being changed
is at point C (shown by the arc with the double arrowhead), which is either opening or
closing; the invariant feature is the ratio of lengths of AC and BC. We can describe this
shape change in terms of the altered angle at C, or as the displacement of point C along
the axis of greatest strain (from X to C) if that axis corresponds to an anatomically or
functionally meaningful direction. In the special case when the lengths of AC and BC are
equal (Figure 3.9D), the bisector of the angle makes a right angle to side AB so the direction
of greatest change is in the direction of the height XC and the direction of least strain is
parallel to side AB (as in Figure 3.9A).

Finally, the principal axes can be oriented at 45◦ to the bisector of an angle of the
triangle (Figure 3.9E). If so, the feature which most changes is the ratio of AC to BC, and
the invariant feature is the angle C. We can speak of this shape change in terms of the
contrasting displacements of landmarks A and B relative to C (i.e. A moves towards C
while B moves away, or A moves away from C while B moves towards it). We can also
speak of line AB rotating relative to AC and BC. In the special case of a 90◦ angle at C
(Figure 3.9F), the bisector of that angle is at 45◦ to sides AC and BC, so orienting the
principle axes at 45◦ to the bisector orients the axes parallel to sides AC and BC. This can
be interpreted as the displacement of B perpendicular to AC (similar to the first case in
Figure 3.9A, but with AC as the baseline and BC as the height of the triangle at B). The
invariant feature is the position of B parallel to AC.
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The descriptions above can usually be applied when the orientation of the principal
axes is close to one of the specified alignments; an exact match is not required. However,
sometimes the alignment is not particularly close to one of these convenient special cases
and it is difficult to determine which exemplar most closely matches the empirical results.
It may then be difficult to select familiar words that convey the results most accurately.
Fortunately, the graphics convey the information. Words are useful to summarize the
information and to communicate with readers unfamiliar with the graphics. Words are
particularly useful when several competing hypotheses predict different directions of shape
change and the hypotheses are phrased solely in words. Then, the verbal description of
shape change provides a bridge between the hypotheses and the graphical displays of
expected results (and the appropriate statistical tests).

Multiple triangles

So far we have concentrated on the simplest possible case: comparisons of a triangle. This
is because most of the principles introduced by that simple case extend directly to more
complex cases (although some do not). Before introducing the complexities introduced by
analyses ofmore than three landmarks, we first discuss the general principles that do extend
unproblematically to the more complex case. We then detail those that do not, setting the
stage for the analyticmethods that will be introduced later (particularly those in Chapter 6).

Multiple landmarks can all be transformed into shape coordinates using the formulae
introduced for computing the shape coordinates of a single moveable point, C. We just
apply that same formula to all the additional points. It is not necessary to use the same
baseline for all points, but it does ease the task of reporting the changes. Not only is the
same formula applicable to the more complex case, but the same basic statistical machinery
also applies, with one caveat: the statistical test of a shape difference or covariance cannot
be applied to all landmarks simultaneously unless the sample size is minimally twice the
number of free landmarks. When sample sizes are smaller than this, the number of variables
exceeds the number of observations. This is obviously not enough observations, and in fact
wemay need four times asmany observations as landmarks for an adequate analysis. When
sample sizes are (too) small, it may still be possible to test the null hypothesis statistically
by applying Hotelling’s T2 or MANOVA to individual landmarks (i.e. to both X- and
Y-coordinates of each landmark), then adjusting the p-values according to the number
of tests (using whatever approach is preferred for post hoc tests). The hypothesis we are
testing is that the configuration of landmarks differs; the null hypothesis that we wish
to reject at some level of significance, e.g. 0.05, should be tested at that level. If we test
landmarks separately, we risk rejecting a true null hypothesis 5% of the time and each test
counts as one time – so with multiple landmarks the risk of rejecting a true null hypothesis
is actually far more than 5%. One approach to ensuring a table-wide error rate of 0.05
is the Bonferroni approach to multiple comparisons; using it, we divide 0.05 (the α level)
by the number of tests, e.g. 10, and reject the null hypothesis at a table-wide level of
α=0.005, which is 0.05/10. So long as one variable allows us to reject the null hypothesis
at the table-wide level of 0.05, we can reject the null hypothesis for shape.

Another procedure extends unproblematically from one to many triangles – the depic-
tion of shape differences by vectors at the free landmarks (Figure 3.10). As in the case of
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Figure 3.10 Ontogenetic changes in the shape of a piranha, Serrasalmus gouldingi, represented
by vectors depicting the change in location of Bookstein shape coordinates from their position in a
young juvenile.

a single triangle, that depiction depends on the baseline. If this baseline dependence is not
seen as a serious problem, the description can proceed in terms of the displacements of
landmarks relative to each other, relative to the baseline. For example, in describing the
ontogenetic change in shape depicted in Figure 3.10, we would need to take the relative
lengths of all the vectors into account. The most anterior free point on the dorsal mar-
gin (landmark 2, at the epiphyseal bar) is displaced anteriorly, indicating that the region
between it and the baseline point at the tip of the snout is shortened relative to the length
of the baseline. The point immediately posterior to landmark 2 (landmark 3, at the tip of
the supraoccipital process) is also displaced anteriorly, although most of its displacement
is along the dorsoventral body axis. Because the anteroposterior component of this vector
is short relative to that of the more anterior point, the region between the epiphyseal bar
and supraoccipital process is relatively elongated (relative both to the length of baseline
and to the more anterior region just described). Such descriptions can be useful, even if
they depend on the baseline. We can also describe and depict two ontogenies relative to
the same baseline, either by a comparison between vectors at each point (Figure 3.11A) or
by highlighting the implied changes in body profile (Figure 3.11B).

Although all these procedures extend to multiple triangles, we need to consider the
special case in which those triangles describe two sides of a bilaterally symmetric organism.
If we are interested specifically in their asymmetry, both sides contain relevant information
(or, more exactly, the information lies in the difference between the sides). Otherwise, the
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Figure 3.11 A comparison between the ontogeny of S. gouldingi and Serrasalmus elongatus:
(A) depicted by vectors at each landmark, those representing the ontogenetic change in the relative
locations of landmarks of S. gouldingi are shown as solid lines; those of S. elongatus are shown as
dashed lines; (B) the implied changes in body profile; the dark shaded regions represent the areas
that increase in S. gouldingi relative to those same regions in S. elongatus.

two sides are redundant; we would not wish to treat them as independent of each other.
In effect, unless asymmetry is the topic of interest, we have measured the same shape
twice. Doing so creates serious problems for statistical analyses because our degrees of
freedom will be inflated (and we will also need far larger sample sizes to analyze the
data, as well as many more intact specimens). So, the standard approach to bilaterally
symmetric forms is to reflect one side across the midline, averaging the coordinates of the
two sides. That approach provides the correct degrees of freedom for statistical analysis,
reduces the number of specimens required for testing statistical hypotheses, and allows
us to use partially fragmentary specimens with landmarks present on only one side or
the other.

Having obtained useful descriptions, both verbal and graphical, we are still left with one
serious and unsolved problem; that of describing changes in regions between landmarks.
This is the topic of later chapters (particularly Chapter 6), but we emphasize it here because
it has major implications for descriptions based on shape coordinates. For example, in
Figure 3.10we can see that the point at the anterior dorsal fin base (landmark 4) is displaced
vertically, indicating a deepening of the body relative to its length. The same deepening
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Figure 3.12 Ontogenetic changes in two overlapping triangles. For both triangles the endpoints of
the baseline are the tip of the snout and the posterior termination of the hypural bones; the moveable
landmarks are the anterior and posterior dorsal fin bases. Owing to their overlap, their changes are
unlikely to be independent.

is suggested by the vertical displacement at the posterior dorsal fin base. In this case the
“body” being deepened is contained within two overlapping triangles (Figure 3.12), so it
would not make sense to describe the changes in these two triangles separately, such as
by calculating the principal axes of each. Nor can we fully integrate these two triangles
into one single descriptor until we can determine whether the same descriptor applies to
both triangles. In effect, we can easily talk about changes at individual landmarks, but we
cannot easily talk about regions between the points.

We accomplished the description of changes within regions for individual triangles using
principal axes. However, the principal axes are particular to specific triangles andmay vary
from one triangle to another, even if the triangles are adjacent or partially overlapping. We
may get different principal axes if we divide up the shape into different arrangements of
triangles, which means that our results can depend on an arbitrary choice – which triangles
we draw for a given set of landmarks. The fundamental problem here is that we cannot
treat each triangle separately; instead we need to think about all the displacements of all
the landmarks relative to all other landmarks, and the analysis must take into account
the spatial distributions of these points (i.e. which ones are adjacent, which are far apart,
which are anterior to or ventral to each other, etc.). In sum, we need a method that
analyzes relative displacements of landmarks in context of their geometry, when we have
no a priori reason to divide an organism into biologically independent triangles. One such
method (and the only one known to us) is introduced in Chapter 6.

Before we go on to talk about baseline-invariant descriptions of change between land-
marks, we need to consider other shape coordinates. Bookstein’s shape coordinates are
especially simple and transparent, and are well suited to conventional statistical analyses.
However, they have some serious problems in context of the general statistical theory
of shape. Before those reasons can be understood fully, we need to present the general
theory (Chapter 4), and then we can discuss alternative methods for obtaining landmark
coordinates (Chapter 5).
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Software

The program for calculating shape coordinates isCoordGen (for “CoordinateGenerator”).
It produces a variety of shape coordinates, including Bookstein’s shape coordinates (BC),
and others discussed inChapter 5. The programalso displays the data graphically (although
others produce higher quality graphics with a greater variety of displays because they are
designed to depict results of morphometric studies, not just the input data files). In addition
to calculating shape coordinates for individual specimens, CoordGen also calculates the
mean for each sample, as well as means for a specified number of the largest or smallest
specimens, which can be saved to a file. A second program is available for bilaterally
symmetric specimens – this program, BigFix, reflects one side over themidline and averages
the coordinates found on both sides. This program accommodates missing data, so long as
the data are missing for only one side. A third program, TwoGroup, conducts a Hotelling’s
T2-test using Bookstein’s shape coordinates.

Running CoordGen

To use CoordGen it is necessary to understand the various file formats that the program
can read. Before loading the file you must first specify that format. One format read
by CoordGen is that produced by the digitizer program tpsDig. A second is the format
produced by the NIH digitizer (and probably many others). A third is the format produced
by CoordGen itself, so you can read in files produced by CoordGen to transform one type
of coordinates into another (e.g. the coordinates obtained by the two-point registration
can be transformed into those obtained by a Procrustes superimposition – introduced in
Chapter 5). As well as reading multiple formats, CoordGen can read files that include a
ruler, a scaling factor, or neither.

Data files in TPS format are produced by tpsDig, and are used by Rohlf ’s software (as
well as by other software written to be consistent with his). TPS format was described in
the last chapter; CoordGen can read TPS files that include a ruler and those that do not
include either a ruler or scaling factor. If the file lacks both a ruler and scaling factor, the
images must be scaled properly while digitizing if centroid size is to be estimated correctly
(this scaling must be done by the digitizer program itself). When selecting one of the two
TPS options, the critical factor is that the first line begins with “LM=K” (where K is
the number of landmarks, including the two for the ruler if the ruler is in the file). Any
information on this line after the number of landmarks is ignored. If you use a digitizing
program that outputs two columns of coordinates for each specimen, but does not put
“LM=K” in the first line, you will need to enter that keyword and number of landmarks
manually.

If you use the NIH digitizer, or another program that produces data for each specimen
in a single row, select one of the next two options: X1Y1, with or without a ruler. The final
option is the IMP format, X1Y1…CS. The difference between the IMP format and other
X1Y1 formats is that the final column of the IMP format is centroid size (CS), whereas it
is the Y-coordinate of the last digitized point in the other formats.

After selecting the appropriate format, enter the file name that you wish to analyze.
If you selected a format that includes a ruler, the next thing you need to do is give
CoordGen the endpoints of the ruler and the length of the ruler. The default endpoints
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are the last two points in your file; if those are not your ruler points, type in the correct
numbers – for example, if your ruler endpoints are the first two landmarks in your file,
type in the “1” and “2”. CoordGen also assumes that the ruler length is 10 (which could
be 10mm, 10 cm, 10 inches, etc.); again, you can change the default by typing in the
correct number in the box. If, for instance, your ruler is 20mm long, type “20” in the box
for ruler length. When the ruler endpoints and length are correctly specified, you can
Carry Out Rescaling (by clicking on that box). If you do not have a ruler or scaling factor
in your file, the data are assumed to be properly scaled already.

When you click Carry Out Rescaling, or when you load a file that has no ruler, Coord-
Gen will calculate Bookstein coordinates using the first two landmarks in the data file. (If
the ruler is the first two points in the file, CoordGen will use the next two points as the
baseline.) To calculate Bookstein coordinates to a different baseline, enter the numbers of
those landmarks in the boxes under Baseline. The first landmark (left box) will be assigned
coordinates (0, 0); the second will be assigned coordinates (1, 0). The display is not auto-
matically updated to show the new baseline, so now go to the Display buttons and click
on Show BC.

The image that appears in the box can be saved, with or without the axes, by click-
ing on Copy Image to Clipboard or Save Image to an EPS File (encapsulated postscript
file). You can also print the image to the default Windows printer, which gives a quick
method for obtaining a hardcopy of the image. The default is to include the axes as well
as the coordinates in the image, so if you want to remove the axes, click on Clear Axis.
The Numbers on Landmarks option displays the number of each landmark on the image
near the mean location of that landmark in the data set (the red triangle). The Figure
Options pull-down menu has several other options for controlling the image, includ-
ing changing the size of the symbols and filling them. We will not explain the option
Spiffy Fish – try it.

The program saves the coordinates in two file formats, listed underOutput File Format
(above the blue Save Coordinates). The default is X1Y1…CS, but you can change this
to TPS format by clicking on that button. The TPS format is required by the software in
the TPS series, so it is a good idea to save data in both formats as this will allow you to
run programs in both the IMP and TPS series. After choosing the format, go to the blue
Save Coordinates box and select the type of coordinates you wish to save (which, for the
moment, are Bookstein coordinates, BC).

In addition to calculating the shape coordinates for all the specimens in the file, you can
also calculate a reference form for analyses based on the thin-plate spline (introduced in
Chapter 6). You do not actually need to calculate one because all programs that require
it calculate it from the input data; however, you might want to control the choice of
reference, or just to display the mean, and you can calculate it here. The default is the
mean of the specimens in the file, but you can also calculate the mean of the N smallest
(if you want to save or display the average of the juveniles, for example) or the mean of
the N largest (if you want to save or display the average of the largest adults). Set the N
value by using the N=window. The default N is 5. You do not need to make your choice
now – you can simply reload the file at some later point and calculate the reference when
you know what you want.

To load a new data file, use Clear and Reset to remove a data set from the program,
then go back up to Load Data to load a new one.
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Running BigFix

BigFix takes bilaterally symmetric raw data from the digitizer program tpsDig (the program
cannot read files from any other digitizer), reflects landmarks of bilateral points, replaces
missing landmarks with the coordinate of the bilateral homologue, and produces files of
Bookstein shape coordinates. To use this program, the baseline points must be along the
midline (they determine the axis of reflection).

Unlike all other programs in the IMP series, it can accept missing data so long as those
landmarks are coded as missing (by “999”). If you cannot enter a 999 where a landmark
is missing, keep notes and replace the digitized coordinate by 999 manually. As you might
guess, BigFix can only handle missing data for paired landmarks (it uses the coordinates
for the side that is present). If the landmark is available on the side being reflected, the sign
of the Y-coordinate will be reversed (so the coordinate produced by BigFix will be on the
same side as the others). If it turns out that you are missing a midline point, BigFix will
give you an error message, stating which specimen lacks which landmark.

To proceed, BigFix needs to be told which landmarks are paired and which lie along the
midline; it also needs all the information required by CoordGen (if you haven’t read the
manual for CoordGen, do so before using BigFix). The information about the pairing of
landmarks must be in a separate file called the Pair Configuration File. This file consists of
two columns of numbers (separated by a space or a tab). For bilaterally paired landmarks,
the line contains the numbers of those landmarks; for midline landmarks, the line contains
the number of that point and a 0 (meaning it has no pair). For example, given this Pair
Configuration File

1 4
2 3
5 0
6 0

BigFixwould interpret landmarks 1 and 4 as bilaterally homologous, 2 and 3 as bilaterally
homologous, and 5 and 6 as midline points. It would then calculate coordinates of four
landmarks: the average of 1 and the reflection of 4, the average of 2 and the reflection of
3, and the coordinates of 5 and 6 (which would have to be the two baseline points because
they are the only two points on the midline).

BigFix has an option to show the new numbering of the points – a convenience if you
have many paired landmarks that were digitized out of sequence (making it difficult to
figure out which is which after they are reflected).

Running BigFix is otherwise like running CoordGen, so see the instructions for that
program.

Running TwoGroup

TwoGroup tests the hypothesis that the two groups differ bymore than expected by chance,
using a Hotelling’s T2-test applied to Bookstein shape coordinates. It also conducts other
tests, but the only one suited to Bookstein shape coordinates is Hotelling’s T2-test. To
run the program, load the two groups, first clicking on Load Data Set 1 and entering the
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file name, then clicking on Load Data Set 2 and entering that file name. You will then
need to enter the Baseline Endpoints for your files (the defaults are landmarks 1 and 7 –
the endpoints of the baseline used in the piranha analyses). Then go to Analytic Tests, and
click on Hotelling’s Tˆ2 (BC) – the parenthetical BC means Bookstein coordinates. The
statistical result will appear in the results window beneath.

Your two data sets will appear in the visualization window. You can also display the
mean for each data set by clicking on Show Means (to return to the display of both
samples, click on Show Data). The program offers several options aside from Bookstein
shape coordinates, but for now use the option BC. You can alter the color of the symbols at
the landmarks, their size, and whether they are hollow or filled, by selecting options on the
Symbol Controls menu on the toolbar at the top of the program. These pictures can also
be saved by clicking on Copy Image to Clipboard or Copy Image to EPS File. Addition-
ally, you can display the difference between the means as vectors of relative landmark
displacements by clicking on Plot Difference in Means. There is a long list of options for
these displays (controlled by the pull-down Difference Plot Options menu), including line
weight, line color, symbol type, arrowheads, filled or hollow symbols, and symbol size.
There are other options as well, but they are for methods that will not be introduced until
later in this book. Like the other images, these can be copied to the clipboard or to an
EPS file.
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4
Theory of shape

This chapter covers the basic theory of shape, beginning with the definition of shape
and proceeding through the characterization of several theoretical spaces. Some of the
mathematics may look a bit difficult, but it is important to grasp the basic ideas, which
we present verbally as well as mathematically. These ideas will reappear in the next two
chapters, because they form the core of geometric morphometrics. Interestingly, many
of the techniques used in geometric morphometrics were developed independently of this
theory even though they are justified by it. As the theory matured, it became possible
to synthesize a large body of techniques that had been developed independently of each
other and to explicate their interrelationships. Perhaps most importantly, this theory also
allows us to judge whether or not methods are valid. The theory provides the underlying
justifications for all our techniques, thereby allowing us to make inferences about shape
without worrying that those inferences are somehow based on arbitrary or mathematically
faulty choices that we happened to make in the course of our analyses. Freed of such
concerns, we can concentrate on the biological meaning of the results.

It would be possible to learn techniques without understanding any of this theory – but
don’t. Without the theory it is impossible to say why some methods are right and others
are not. In effect, you would have to memorize a list of “dos” and “don’ts” by rote without
understanding why the “dos” are “dos” and the “don’ts” are “don’ts.” Learned in that
way, it might seem that there are lots of picky rules and dogma, but these rules are not
picky and they are not a matter of dogma. Rather, they all logically (and mathematically)
follow from the mathematical theory of shape. In fact, they follow from the definition of
shape. Because this definition is central to geometric morphometric theory, we begin there,
developing it further than in previous chapters.

The definition of shape

David Kendall’s (1977) definition of shape is the basis of all that will follow in this chapter,
and indeed of any consideration of the meaning of shape:

Shape is all the geometrical information that remains when location, scale and rotational effects
are filtered out from an object.

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
ISBN 0–12–77846–08 All rights of reproduction in any form reserved
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(A)

(C)

(B)

Figure 4.1 The operations that do not alter shape: (A) translation; (B) rotation; (C) scaling.

This statement is both intuitively reasonable and mathematically useful. It suits our
intuitions because we can all agree that moving an object from one place to another does
not change its shape; that operation, called translation, obviously does not alter shape. For
example, Figure 4.1A shows the translation of a shape along an axis, and this motion has
no consequences for shape. Likewise, rotating the object does not change shape (Figure
4.1B), and neither does enlarging or reducing an image (a manipulation called rescaling;
Figure 4.1C). Although it may be obvious that translation, rotation and rescaling do not
alter shape, it may not be obvious that this fact provides a mathematically useful definition
of shape.

To a non-mathematician this definition may seem a bit odd, because it defines shape
by what does not alter it rather than in terms of what shape is or by the operations
that do alter it. However, the definition is useful because it means that any operation
not on that list does affect shape. Also, the list of operations that do not alter shape is
useful because we know that we are free to use those operations when we compare shapes
mathematically.

The entire theory of geometric morphometrics follows from the definition of shape, so
we need to develop it further. First, we need a more precise definition of a landmark. When
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we discussed the criteria for choosing them in Chapter 2, we emphasized that the crite-
rion of homology has mathematical as well as biological implications. The mathematical
implication follows from the formal definition of a landmark (Dryden and Mardia, 1998):

A landmark is a point of correspondence on each object that matches between and within
populations.

The concept of matching encoded in that passage is not necessarily one of biological
homology, but the idea of correspondence is essential to the mathematical theory of shape.
If the landmarks do not correspond, we cannot compare shapes.

Another crucial idea is that of a configuration of landmarks; the full set of land-
marks recorded for each specimen. All comparisons of shapes are between matching
configurations of landmarks, not between individual landmarks (analyzed separately).
An individual landmark is not an object of comparison because it does not satisfy the
definition of shape. The objects of comparison are entire configurations comprised of K
landmarks (where K refers to the number of landmarks), each of which hasM coordinates
(i.e. M=2 for planar shapes). For example, in the case of the piranhas introduced in the
second chapter, K=16 and M=2. Whatever the number of landmarks and coordinates,
our analyses and conclusions are based on the entire set. Thus if we have 16 landmarks
with two coordinates apiece, we have one shape – not 32 variables. No one landmark
(and no one coordinate) is a shape variable in its own right. Instead, we view each shape
as the entire configuration and we analyze samples of entire configurations.

This is a very different view of measurement (and variables) from that commonly
encountered in traditional morphometrics, where a single measurement might be viewed
as a variable, meriting analysis in its own right. It is common to analyze measurements
separately and to draw biological conclusions from them individually. Sometimes the con-
clusions based on one measurement conflict with conclusions based on another, and the
inference often drawn in such situations is that the processes are trait-specific. In geo-
metric morphometrics, individual measurements are not traits or even variables. Rather,
a shape variable is the entire vector of coefficients representing the complete difference
in landmark configurations between samples, or, alternatively, the entire vector of coef-
ficients measuring the covariance between the landmark configurations and some other
variable (e.g. size).

This view of shape as a configuration of landmarks is central to the theory of geometric
morphometrics. Recognizing that, and conforming to the requirements it imposes on ana-
lytic methods, is crucial. It may seem biologically unreasonable to treat an entire shape as
a single entity, but the pay-off for doing so is the guarantee that our results do not depend
on arbitrary choices we happened to make in the course of an analysis. The reward for
following what might seem like a rigid set of rules is the rigor and power of these methods,
as well as the visual appeal of the graphics.

Morphometric spaces

Given the definition of shape, we can now develop the mathematical idea of morphometric
spaces. We begin by defining some additional terms.
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The configuration matrix

A configuration matrix represents an entire configuration of landmarks. It is a K×M
matrix of Cartesian coordinates that describes a particular set of K landmarks inM dimen-
sions (Dryden and Mardia, 1998). When we talk about a K×M matrix, we mean that the
matrix has K rows andM columns; each of the K rows represents a specific landmark on a
specimen, with M Cartesian coordinates. For example, the simplest shape we might want
to study is a triangle with landmarks located at the three vertices of the triangle. Calling
the coordinates of the first vertex X1 and Y1, and those of the second vertex X2 and Y2,
and those of the third vertex X3 and Y3, the configuration matrix of triangle X is:

X =

X1 Y1
X2 Y2
X3 Y3


 (4.1)

It is often useful to represent this same landmark configuration as a row vector, in which
the landmark coordinates are listed along a single row in K×M columns:

X = [X1 Y1 X2 Y2 X3 Y3] (4.2)

This contains exactly the same information, represented slightly differently. Given a set
of landmark coordinates in row vector form, you can easily convert it to a configuration
matrix (the representation you might prefer at any given time depends on the particular
task or software at hand).

For example, the configuration matrix of the triangle shown in Figure 4.2 is:

X =

−1 −1

1 −1
0 1


 (4.3)

The row vector representing the same triangle would be:

X = [−1 −1 1 −1 0 1
]

(4.4)

0, 1

�1, �1 1, �1

Figure 4.2 Example of a triangle.
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Configuration space
The configuration space is a set of all possibleK ×Mmatrices describing all possible sets of
landmark configurations for that given K and M. For example, a 16×2 dimensional con-
figuration space is the space of all configurations having 16 two-dimensional landmarks.
That space encompasses all possible configurations for those 16 landmarks with two coor-
dinates. Should we record the locations of 16 landmarks on a two-dimensional image of a
piranha, and 16 landmarks on a two-dimensional image of a rat skull, both configuration
matrices are in the same configuration space. Clearly, any group of biologically similar
organisms (with matched landmarks) will occupy a relatively small part of configuration
space because the locations of their corresponding landmarks will be fairly similar. For
example, in the 16×2 configuration space, piranhas will occupy a very small part of a
space – that space also contains the 16×2 two-dimensional coordinates of rat skulls.

The configuration space of K landmarks with M coordinates per landmark has K×M
dimensions. To specify the location of any shape in that space, we must specify K×M
components of a vector (or elements in a matrix).

Position or location of a configuration matrix
The position of a configuration matrix is the location of the centroid of that matrix. This
centroid is theM-dimensional vector (two in the case of the two-dimensional landmarks of
piranhas) whose components are the averages of theX and Y coordinates of the landmarks
(in the two-dimensional case), so the centroid position is given by:

XC = 1
K

K∑
j=1

Xj

(4.5)
YC = 1

K

K∑
j=1

Yj

For example, Figure 4.3 shows the centroid position of the triangle seen earlier, which
is located at (0,−0.333).

A configuration matrix is said to be centered if the average of all the coordinates is zero.
Centering is useful because it often simplifies the mathematics; it is done by translating
the configuration along the X- and Y-axes. That translation is done by adding a constant
(positive or negative) to the X- and Y-coordinates. To do this we first calculate the X and
Y centroid coordinates of the configuration matrix X as in Equation 4.5, then subtract the
centroid positions from each coordinate to form the centered configuration matrix XC:

XC =



(X1 −XC) (Y1 − YC)
(X2 −XC) (Y2 − YC)

...
...

(XK −XC) (YK − YC)


 (4.6)

Two configuration matrices that differ only in the position of the centroid are not differ-
ent shapes (they differ only by translation, one of the operations that does not alter shape).
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1, �1

0, 1

�1, �1

Centroid

(0.0, �0.333)

Figure 4.3 The centroid of the triangle in Figure 4.2. The coordinates of the centroid are the
averaged coordinates of the three vertices.

Size of a configuration matrix
Before we can coherently talk about scale, we need to define what we mean (mathemati-
cally) by the term size. For configuration matrices, a number of different, non-equivalent
size measures have been used. It is not possible to say that one size measure is “correct” or
“preferable,” but it is important to explain the consequences of making a particular choice.
The most commonly used size measure in geometric morphometrics is called centroid size,
which is favored because it does not induce a correlation between size and shape, hence
we restrict our discussion of size to that particular measure.

The centroid size (CS) of a configuration (X) is:

CS(X) =

√√√√√ K∑
i=1

M∑
j=1

(Xij − Cj)2 (4.7)

where the sum is over the rows i and columns j of the matrix X. Xij is a standard notation
from linear algebra specifying the value located on the ith row and jth column of the matrix
X, and in this case Cj stands for the location of the jth component of the centroid. C1 is
the X-coordinate of the centroid and C2 is its Y-coordinate.

Centroid size is thus the square root of the sum of the squared distances of the landmarks
from the centroid. The distances from the centroid to each landmark of the triangle are
shown in Figure 4.4; the centroid size of this triangle is simply the square root of the sum
of the squared lengths of these lines. Centroid size is not altered by changing the position
of the configuration, because this leads to all landmarks (and the centroid) changing by a
common amount. Similarly, multiplying the configuration matrix X by a constant factor
increases centroid size by the same factor. Two configurations of landmarks that differ
only in centroid size do not differ in shape (they differ only in scale).



chap-04 4/6/2004 17: 22 page 79

THEORY OF SHAPE 79

1, �1

0, 1

�1, �1

L1
L2

L3

Figure 4.4 Centroid size of the triangle in Figure 4.2, calculated as the sum: (L12+L22+
L32)1/2=2.16.

Pre-shape space

As we stated above, every configuration of K landmarks having M coordinates can be
thought of as a point in a space with K×M dimensions. (To avoid confusion, we should
make it clear that by “point” in this context we mean an individual shape, an entire
configuration of landmarks, not one landmark.) Some of the configurations in this space
differ only in centroid size; others differ only in location (coordinates of the centroid). We
can define a subset of configurations that do not differ in location or size by placing two
restrictions on each configuration matrix: (1) that it be centered, and (2) that centroid
size be one. These restrictions define a space called pre-shape space (Dryden and Mardia,
1998). In practice, we translate and scale each of the original configurations in our data so
that the new configurations meet the restrictions of pre-shape space. In doing this, we are
using two of the three operations that do not alter shape. Each of the new configurations
is a centered pre-shape.

The shape of pre-shape space
The two requirements imposed on this space mean that the summed squared landmark
positions add up to one. The consequences of that property can be understood by consid-
ering the set of points satisfying the restriction in an ordinary two-dimensional space: the
set of points is centered on the origin (0, 0), and each point in the set has coordinates satis-
fying the equation X2+Y2=1. The set of points is a circle of radius one, centered on the
origin. This circle is a one-dimensional subspace (a curve) inhabiting a two-dimensional
space (a plane). Knowing that all points are equidistant from the center means that we need
specify only the direction of a point from the center to define it uniquely; thus, the location
of any point on the circle can be described sufficiently by a single dimension (direction).
Extending this to a three-dimensional space, we now have the set of all points (X,Y,Z)
centered on the origin (0, 0, 0) such that X2+Y2+Z2=1. This is the surface of a sphere
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of radius one, centered on the origin, and it is a two-dimensional subspace within a three-
dimensional space. Again, the constraint that all points are on the surface allows us to
describe the location of a point by giving a direction from the center; the only difference
from the circle is that we now need two components to describe that direction (e.g. latitude
and longitude). So in talking about a pre-shape space we are talking about the surface of
a hypersphere centered on the origin, which is the generalization of an ordinary sphere in
K×M dimensions. In that general case, we have:

K∑
i=1

M∑
j=1

(Xij)2 = 1 (4.8)

which states that the sum of all squared landmark coordinates is one. That hypersphere is
simply the equivalent of a sphere in more than three dimensions.

We can determine the number of dimensions in pre-shape space by considering the num-
ber of dimensions that were lost in the transition from configuration space. One dimension
is lost in fixing centroid size to one, eliminating the size dimension of the configuration
space. Another, M dimensions are lost in centering the configurations; eliminating the M
dimensions needed to describe location (the coordinates of the centroid). Thus in moving
from configuration space to pre-shape space, we moved to a space that has M+1 fewer
dimensions, which is:

KM− (M+1)=KM−M−1 (4.9)

For two-dimensional configurations of landmarks, pre-shape spaces have 2K−3 dimen-
sions; so the pre-shape space for triangles has three dimensions. For three-dimensional
configurations of landmarks, pre-shape spaces have 3K−4 dimensions.

Returning to the three-dimensional sphere (because most of us have trouble imagining
spaces having more than three dimensions), you should be imagining pre-shape space to be
a hollow ball of radius one, centered at the origin (0, 0, 0). Arrayed on the two-dimensional
surface of this ball are points representing individual configurations of landmarks. The two
restrictions we have imposed on our configuration matrices mean that the configurations
in this set do not differ in scale or location; we have used the operations of translation and
scaling to remove the effects of (differences in) location and scale. We have not yet rotated
the shapes to remove the effects of rotation (that comes later, as we move from pre-shape
space to shape space). Thus, configurations of landmarks that differ only by a rotation
are located at different points in pre-shape space, as are configurations that differ only in
shape. This underscores an important point (which some may find counterintuitive): as we
said earlier, configurations that differ only by a rotation (such as those shown in Figure
4.1B) do not differ in shape. Because we have not yet removed all three effects mentioned
in Kendall’s definition of shape (location, scale and rotation) we have not yet reached
shapes. At present we are concerned with pre-shapes, i.e. configurations that may differ
by a rotation, by a shape change or by some combination of the two. In pre-shape space,
configurations that differ only by rotation are different points, as are configurations that
differ only in shape.
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Fibers in pre-shape space
To visualize the locations in pre-shape space of configurations that differ only in rotation,
we introduce the term fiber. A fiber (in the context of our particular discussion of pre-
shape space) consists of the set of all the points in pre-shape space that can be obtained by
rotating a particular centered pre-shape. The fiber is a circular arc that comprises the set
of all points in pre-shape space that can be “reached” by rotating the pre-shape matrix.
Figure 4.5 depicts the concept of fibers as an arc on the surface of a sphere (ignoring the
higher dimensionality of a pre-shape hypersphere). Two fibers are shown: arcs 1 and 2.
Arc 1 is the set of all possible rotations of the pre-shape Z1, and arc 2 is the set of all
possible rotations of the pre-shape Z2. For a less abstract visualization of the concept
of fibers, we have drawn a cartoon (Figure 4.6) representing four fibers (in columns); the
triangles within a column differ solely by a rotation, whereas those in different columns also
differ in shape. (This visualization is somewhat limited, because a row does not accurately
represent the number of dimensions needed to describe shapes of triangles, as explained
in the next section.)

With the concept of fiber in hand, it is now possible to talk about the separation of
shapes and the distance between them. Figure 4.7 shows the same two fibers on the curved
surface of the pre-shape space hypersphere as in Figure 4.5. In addition, Figure 4.7 shows
an arc (ρ) crossing the surface from one fiber to the other, and the chord (Dp) that passes
through the interior of the hypersphere between the same two surface points. We can draw
many such arcs connecting a rotation of the pre-shape Z1 with a rotation of the pre-shape
Z2. The arc we want is the shortest one – that is, the one connecting fibers at their “point
of closest approach.” Finding the shortest possible distance between points is a common
tactic for defining distances between objects in spaces. When we find that distance, we
will find the rotation that is optimal in the sense of being the minimum distance between

1 2

Z1
Z2

Figure 4.5 Fibers in pre-shape space. The points Z1 and Z2 are the locations of pre-shapes on the
hypersphere (centered and scaled matrices computed from two original matrices X1 and X2, which
are not shown). Curve 1 passing through Z1 is a fiber, the set of all centered and scaled pre-shapes
differing fromZ1 only by rotation. Curve 2 is a fiber of pre-shapes differing fromZ2 only by rotation.
(The dotted curve is the “equator” of the hypersphere, and does not represent a fiber.)
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Figure 4.6 An alternative visualization of the concept of a fiber. Each column shows rotations of
a single shape; triangles in different columns differ in shape. Each column represents a single fiber.

1
2

Z1
Z2

r

Dp

Figure 4.7 Determining the distance between the fibers of pre-shapes. The arc ρ is the shortest
distance across the surface of the hypersphere from fiber 1 to fiber 2. The length of the arc is the
Procrustes distance. The length of the chord (Dp) is the partial Procrustes distance.
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Dp

r

r

Fiber 1 Fiber 2

Figure 4.8 A slice through pre-shape space showing the Procrustes distance (ρ) and the partial
Procrustes distance (Dp).

shapes. The length of this arc is known as the Procrustes distance, and it is quantified by
determining the angle between the radii that connect the center of the hypersphere to the
point at which the fibers most closely approach each other. Figure 4.8 shows the cross-
section through the pre-shape space in the plane defined by those two radii. The angle
subtended by the arc is ρ; the chord length is Dp. The length of the arc is equal to ρ (in
radians) times the length of the radius. Because we have constrained the radius to a length
of one, the length of the arc is the value of the angle. This value ranges from zero to π;
at π, the two shapes are on opposite sides of pre-shape space.

Shape spaces

In the previous section, we used the points of closest approach on the pre-shape fibers to
define the distance between two shapes. Now, we use the same criterion to construct a
shape space. This shape space contains one configuration from each fiber, one rotation of a
centered pre-shape. Conventionally, we select a convenient orientation of one pre-shape to
serve as the reference configuration; every other target (or subject) configuration is selected
as the rotation corresponding to the point of closest approach of its pre-shape fiber to the
reference. That is, the orientation is chosen to minimize the Procrustes distance between
the target and reference. The points on those fibers that are farther from the reference differ
from it in both shape and rotational effects. By selecting the point of closest approach, we
reduce each fiber of pre-shapes to a single point (a shape); consequently, configurations in
this set differ only in shape.

The shape space we just described has fewer dimensions than the pre-shape space from
which it was derived. The number of dimensions lost in the transition are given by:

M(M−1)
2

(4.10)
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where M is the number of landmark coordinates. For two-dimensional landmarks, Equa-
tion 4.10 simplifies to one, which reflects the fact that a planar shape can only be rotated
about its centroid on one axis (the axis perpendicular to the plane of the shape) and still
stay in the same plane. Consequently, shape spaces of two-dimensional configurations of
K landmarks have 2K−4 dimensions. The four lost dimensions are those describing differ-
ences in size (−1), translation (−2) and rotation (−1). For three-dimensional landmarks,
Equation 4.10 simplifies to three, which reflects the fact that a three-dimensional shape can
be rotated about its centroid on three distinct orthogonal axes in the three-dimensional
coordinate space. Subtracting three from the 3K−4 dimensions of the pre-shape space
(fromEquation 4.9) yields 3K−7 dimensions for shape spaces of three-dimensional shapes,
which simplifies to five dimensions for the shape space of tetrahedra. The seven lost
dimensions are those describing differences in size (−1), translation (−3) and rotation (−3).

In the special case of triangles, the shape spaces defined above are the familiar two-
dimensional surfaces of three-dimensional spheres. Because this is a reasonably simple
geometry to visualize and illustrate, we will focus on triangles before returning to the
general case. In Figure 4.9 we show half of a space determined by using the equilateral
triangle as the reference. Because we retain the constraints that each triangle is centered
and scaled to centroid size of one, the sphere has a radius of one. For convenience, the
space is oriented so that the point representing the equilateral triangle configuration is
located at the pole. At the equator are triangles with zero height; in other words, various
arrangements of three collinear landmarks. The other half of the space would be an exact

Figure 4.9 Half of the space of triangles that have been centered, scaled to unit centroid size and
aligned with a centered, scaled equilateral triangle. The equilateral triangle is at the pole. Lines of
“latitude” represent shapes equidistant from the equilateral triangle. The “equator” corresponds to
the set of triangles with zero height (three collinear landmarks).
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reflection of the one shown. Each shape would be a simple reflection of the shape that is
at a corresponding location in the other hemisphere. In the case of triangles, a reflection is
equivalent to a rotation of 180o (albeit on a different axis from the one considered earlier),
so we can discard the bottom half because it contains the same shapes as the top.

Although the shape space just described is a useful construction, it does not satisfy
the mathematician’s urge to find the smallest distances between configurations with those
shapes. To illustrate this point, we consider a slice through the polar axis of the hemisphere
of triangles just described (Figure 4.10). As in pre-shape space, the distance of a shape (A)
from the reference is ρ. The angle and the arc length are unchanged because the dimension
eliminated in the transition from pre-shape space to this shape space did not contribute
to the measurement of the shape difference. It should be apparent in Figure 4.10 that the
arc across the surface is not the shortest possible distance between the two shapes. The
chord passing through the interior of the hemisphere would be shorter, but it is still not
the shortest possible distance between configurations with those shapes. We obtain that
shortest possible distance, and the relevant configurations, by changing the constraint on
the centroid sizes of the two configurations. Conventionally, we keep the centroid size
of the reference at one, and allow the centroid size of the target to adopt the value that
minimizes its distance from the reference. This is equivalent to allowing the target to travel
along its radius while the reference stays on the surface. The point along the radius where
the second shape is closest to the target is some distance below the surface of the shape
space, reflecting a reduction of the centroid size of the target. This point (B) is defined
by the line that is perpendicular to the target’s radius and passes through the reference’s
position on the surface. The corresponding centroid size of the target is cos(ρ); the distance
between configurations is sin(ρ) and is called the full Procrustes distance (DF).

Because cos(ρ) decreases as ρ increases, scaling each configuration in the shape space to
cos(ρ) (where ρ is its distance from the reference) produces a new shape space sphere with a

(0, 1) r

r

DF

Dp

(0, 0) (1, 0)(�1, 0)

cos(r)

B

A

Figure 4.10 A slice through part of the space of aligned triangles at unit centroid size, showing the
relationships among the distances between the reference shape (at 0, 1) and A. The semicircle is a
cross-section of the space, which is a hemisphere of radius one. The length of the arc is the Procrustes
distance (ρ), the length of the chord is the partial Procrustes distance (Dp), and the shortest possible
distance (obtained by relaxing the constraint on centroid size, producing the configuration B) is the
full Procrustes distance (DF).



chap-04 4/6/2004 17: 22 page 86

86 GEOMETRIC MORPHOMETRICS FOR BIOLOGISTS

(0, 1)

r

(0, 0) (1, 0)(�1, 0)

A

B

Figure 4.11 The relationship of Kendall’s shape space to the space of aligned triangles scaled to
unit centroid size. The outer semicircle is the cross-section of the space of aligned triangles scaled
to unit centroid size, as in Figure 4.10. The inner circle is a cross-section through Kendall’s shape
space, which is the sphere of aligned triangles scaled to cos(ρ). Kendall’s shape space has a radius of
one-half. Points A and B represent the same shape at CS=1 and CS= cos(ρ), respectively.

radius of 1/2, tangent to the previous shape space at the reference shape (Figure 4.11). This
new space is Kendall’s shape space for triangles; it is the set of centered shapes in which
each is at the size and orientation that minimizes its distance from the reference. It may
appear that Kendall’s shape space is dramatically different from the previous shape space,
but certain key properties remain the same. One of these properties is the distance of the
target shape from the reference shape across the surfaces of the shape spaces. In the first
shape space, the distance of the target from the reference was ρ, the angle subtended by the
arc. In Kendall’s shape space, the angle subtended by the arc is now 2ρ, but the radius is 1/2,
so the arc length is 2ρ/2. Although distances between the reference and the targets are not
altered, distances between targets are (Slice, 2001). Another key property that remains the
same is the number of dimensions. In the transition between shape spaces, the constraint
on centroid size was changed; in Kendall’s shape space the constraint is cos(ρ) instead of
one. This still specifies a single value for each shape; configurations that differ only in size
are represented by a single point in Kendall’s shape space. Thus, Kendall’s shape space for
triangles is also the two-dimensional surface of a three-dimensional sphere.

For configurations of landmarks that are more complex than triangles, we can apply the
same set of operations tomove from pre-shape space to the two shape spaces. Regardless of
the number of landmarks and the number of coordinates of those landmarks, the transitions
involve: (1) selecting the rotations that are at the minimum distance from the reference in
pre-shape space, and (2) finding the centroid sizes that fully minimize the distance from
the reference. Describing the geometric relationship of these spaces at higher dimensions is
rather demanding (Small, 1996), but near their poles (i.e. near the reference configurations)
these spaces are expected to have similar properties to the spaces for triangles (Slice, 2001).

Kendall’s shape space and all of the spaces described above are curved, non-Euclidean
spaces. This is important because the conventional tools of statistical inference assume
a linear, Euclidean space. Consequently, we cannot use those tools to analyze shapes in
Kendall’s shape space. Much of Kendall’s own work concerns statistical inference within
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the curved space that bears his name, but most biologists do not need to work in that space.
As discussed in a later section of this chapter, it is possible to map locations in Kendall’s
shape space to locations in a Euclidean space tangent to Kendall’s shape space. Like planar
maps of the Earth, the Euclidean “maps” of shape space distort the relative positions of
shapes far from the tangent point. This becomes important when comparing extremely
dissimilar shapes. In most biological studies the range of shapes will be small relative to
the curvature of the space, so the distortion will be mathematically trivial for any well-
considered choice of the tangent point (we discuss criteria for selecting the tangent point
in a later section). If you are comparing such highly dissimilar shapes that you need to
work in Kendall’s shape space, you will need a more detailed understanding of this space
than presented here. The excellent texts by Dryden and Mardia (1998) and Small (1996)
discuss the variables and procedures for carrying out inference in Kendall’s shape space.

Finding the angle of rotation that minimizes the Euclidean distance between
two shapes

To determine the angle of rotation required to place one pre-shape at aminimumProcrustes
distance from a second, it is sufficient to rotate the first shape (the target) to minimize the
summed squared distance between it and the reference. This distance we are minimizing
is the partial Procrustes distance. Because the Procrustes distance is a monotonic function
of the partial Procrustes distance, this minimization of the partial Procrustes distance also
minimizes the Procrustes distance.

An arbitrary rotation of the target form (of two-dimensional landmarks, M=2)
by an angle θ maps the paired landmarks (XTj,YTj) of the target to the coordinates
((XTj cos θ−YTj sin θ), (XTj sin θ+YTj sin θ)). The sum of the squared Euclidean distances
between the K landmarks of this rotated target and the reference is:

D2 =
K∑
j=1

[
(XRj − (XTj cos θ − YTj sin θ))2 + (YRj − (XTj sin θ + YTj cos θ))2

]
(4.11)

where (XRj,YRj) are the coordinates of the landmark in the reference. To minimize this
squared distance as a function of θ, we take the derivative with respect to θ and set it equal
to zero:

−
K∑
j=1

[
2(XRj − (XTj cos θ − YTj sin θ))(−XTj sin θ − YTj cos θ)

+2(YRj − (XTj sin θ + YTj cos θ))(XTj cos θ − YTj sin θ)

]
= 0 (4.12)

and solve for θ:

θ = arctangent

(∑K
j=1 YRjXTj −XRjYTj∑K
j=1XRjXTj + YRjYTj

)
(4.13)

which gives us the angle by which to rotate the target to minimize its distance from the
reference.
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A numerical example for the simplest case

To make the preceding discussion of theory more concrete and accessible, we apply the
ideas to the simplest useful case, the space of triangles (this space has been discussed
extensively in Small, 1996; Dryden and Mardia, 1998; Rohlf, 2000; Slice, 2001). We have
used this example throughout this chapter, but we now pull all the information together.
There are other approaches to constructing the matrices representing shapes in Kendall’s
shape space, but the sequence of steps we follow here is easily illustrated and requires
relatively simple computations.

We begin with two triangles, X and W, drawn on a flat surface (Figure 4.12). X
is the triangle from Figure 4.2, with coordinates (−1,−1), (1,−1) and (0, 1); triangle
W has coordinates (1.07,−1.64), (3.10,−0.72) and (1.55, 0.82). Each triangle has K=3
landmarks with M=2 coordinates; thus the configuration matrix for each has six entries:

X =

−1 −1

1 −1
0 1


 W =


1.07 −1.64
3.10 −0.72
1.55 0.82


 (4.14)

The six landmark coordinates of each triangle contain six pieces of information needed to
determine all the properties of that triangle: size, shape, location, and rotation. Not only
do we need all six coordinates to determine these properties; we cannot infer the value of
any one coordinate from the other five. Because we need all six coordinates to determine
the triangle, we can say there are six degrees of freedom. This also helps to explain why
the configuration space of triangles has six dimensions.

We can infer from the coordinates that the two triangles have different locations, as
suggested in the figure. We confirm this by calculating the coordinates of the centroid

1

3

X

W

2

3

1 2

Figure 4.12 Two triangles, X (from Figure 4.2) andW. The vertices are numbered to indicate their
homologies.
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using Equation 4.5, reproduced here:

XC = 1
K

K∑
j=1

Xj

(4.15)
YC = 1

K

K∑
j=1

Yj

For triangle X, the coordinates of the centroid are XC = (1/3)(−1+1+0)=0, and
YC = (1/3)(−1+−1+1)=−0.333. For triangle W, the coordinates of the centroid are
XC = (1/3)(1.07+3.10+1.55)=1.907 and YC = (1/3)(−1.64+−0.72+0.82)=−0.513.

We use the coordinates of the centroid to form the centered configuration matrixXC by
subtracting the centroid coordinate from the corresponding coordinate of each landmark:

XC =



(X1 −XC) (Y1 − YC)
(X2 −XC) (Y2 − YC)

...
...

(XK −XC) (YK − YC)


 (4.16)

This produces the centered configuration matrices:

Xcentered =

(−1− 0) (−1− (−0.333))

(1− 0) (−1− (−0.333))
(0− 0) (1− (−0.333))


 =


−1 −0.667

1 −0.667
0 1.333


 (4.17)

and

Wcentered =

(1.07 − 1.907) (−1.64− (−0.513))
(3.10− 1.907) (−0.72− (−0.513))
(1.55− 1.907) (0.82− (−0.513))


 =


−0.837 −1.127

1.193 −0.207
−0.357 1.333



(4.18)

The centered triangles are shown in Figure 4.13. One consequence of centering is that
the two triangles are now superimposed; another is the loss of two degrees of freedom.
Knowing that the centroid has coordinates (0, 0), which are the means of the landmark
coordinates, we can use the coordinates of any two landmarks to determine the coordinates
of the third landmark. Accordingly, the space of centered triangles (which we have not
discussed previously) is a four-dimensional space. Another way to think of this is that the
two coordinates of the centroid, specifying the location of the triangle, account for two of
the six dimensions of the configuration space. Also, now that all individuals have the same
value for their centroid coordinates, the variation due to position disappears, collapsing
that dimension of variation to a point at the origin.

The centered triangles are not in pre-shape space. To put them there, we need to rescale
each so that its centroid size is one. The formula for centroid size is:

CS(X) =

√√√√√ K∑
i=1

M∑
j=1

(Xij − Cj)2 (4.19)
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Figure 4.13 Centered triangles computed from X and W. Computation of the centroids of X and
W is given by Equation 4.15; computation of the landmark coordinates after centering is given by
Equations 4.16–4.18. Vertices are numbered to indicate their homology.

which is the square root of the sum of the squared distances of the landmarks from the
centroid. Given that the centroids ofXcentered andWcentered are both at (0, 0), we can simply
sum the squared coordinates:

CS(Xcentered) =
√
(−1.0)2 + (−0.667)2 + (1.0)2 + (−0.667)2 + (0)2 + (1.333)2

= 2.160 (4.20)

CS(Wcentered) =
√
(−0.837)2 + (1.127)2 + (1.193)2 + (−0.207)2 + (−0.357)2 + (1.333)2

= 2.311 (4.21)

Dividing each coordinate of the centered triangle by its centroid size produces the pre-shape
matrices:

Xpre-shape = 1
2.160


−1 −0.667

1 −0.667
0 1.333


 =


−0.463 −0.309

0.463 −0.309
0.000 0.617


 (4.22)

Wpre-shape = 1
2.311


−0.837 −1.127

1.193 −0.207
−0.357 1.333


 =


−0.362 −0.488

0.516 −0.089
−0.154 0.577


 (4.23)

These centered and scaled triangles are shown in Figure 4.14.
Because size differences do not contribute to the differences between Xpre-shape and

Wpre-shape, another degree of freedom has been lost (this is the third degree of freedom
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Figure 4.14 Centered triangles from Figure 4.13, scaled to unit centroid size. Computation of
centroid size is given in Equations 4.19–4.21. Computation of landmark coordinates after scaling is
given by Equations 4.22 and 4.23.

lost). In other words, size is no longer a dimension of possible variation; configurations
that differ only in size are considered equivalent. After subtracting the three degrees of free-
dom representing differences in location and centroid size, we are left with three degrees
of freedom to describe differences among triangle pre-shapes – triangles that are cen-
tered and scaled to unit centroid size. Accordingly, the pre-shape space of triangles is
a three-dimensional space. As explained above, it is the three-dimensional surface of a
four-dimensional hypersphere, so it is not an easy space to visualize or illustrate.

To make the transition from pre-shape space to shape space, we begin by choosing one
shape and placing it in a convenient orientation; this configuration will be the reference.
For this demonstration it is convenient to use X in the orientation shown in the last few
figures. Choosing X as the reference means that W will be the target, so the next step is to
rotateW, in the plane of the page around its centroid through some angle (θ). The rotation
places it in the orientation that minimizes the difference between the two sets of landmark
coordinates (Figure 4.15). After the rotation, the X- and Y-coordinates of each landmark
will be mapped to the new coordinates (X cos θ−Y sin θ), (X sin θ+Y cos θ). Thus, the
rotated form of Wpre-shape will be:

Wpre-shape, rotated =

(−0.362 cos θ)− (−0.488 sin θ) (−0.362 sin θ)+ (−0.488 cos θ)
(0.516 cos θ)− (−0.089 sin θ) (0.516 sin θ)+ (−0.089 cos θ)
(−0.154 cos θ)− (0.577 sin θ) (−0.154 sin θ)+ (0.577 cos θ)




(4.24)

Before we can pick the value of θ that will minimize the difference between the reference
(Xpre-shape) and the rotated target (Wpre-shape, rotated), we need a criterion to define what is
being minimized. The criterion that leads to the shape space discussed earlier is minimiza-
tion of the square root of the sum of the squared distances between the corresponding
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d3
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Figure 4.15 Optimal alignment of W to X will be achieved by rotating W around its centroid
through an unknown angle θ to minimize the square root of the sum of the squares of distances d1,
d2, and d3.

landmarks (the distances d1, d2, and d3 shown in Figure 4.15). This quantity can be com-
puted directly from the squared differences between the corresponding coordinates of the
landmarks:

D =
√
(X11 −X21)2 + (Y11 − Y21)2 + · · · + (X13 −X23)2 + (Y13 − Y23)2 (4.25)

(There are other criteria that lead to other superimpositions of the two triangles; one is
discussed below, others in Chapter 5.)

With this criterion in hand, we can solve for the unique value of θ at which D is
minimized. In our example, that value is θ=−19.2◦. When we insert this value into the
matrix for Wpre-shape, rotated (Equation 4.22), we get:

Wpre-shape, rotated =

−0.502 −0.341

0.458 −0.254
0.044 0.596


 (4.26)

Under the conditions set out above, this is the optimal alignment to the reference form:

Xpre-shape =

−0.463 −0.309

0.463 −0.309
0.000 0.617


 (4.27)

Figure 4.16 shows the two triangles under these conditions.
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Figure 4.16 Triangles X and W after rotation of W to minimize the Procrustes distance. Compu-
tation of the landmark coordinates of W after rotation is given in Equation 4.24; the result is given
in Equation 4.26. Vertices are numbered to indicate their homology.

The distance minimized above is the partial Procrustes distance, so we will label it Dp

from this point forward. The value of Dp in this particular case is:

Dp = [(−0.502− (−0.463))2+ (−0.341− (−0.309))2

+ (0.458−0.463)2+ (−0.254− (−0.309))2

+ (0.044−0)2+ (0.596−0.617)2]½

= 0.089 (4.28)

This is the minimum length of the chord connecting the pre-shape fibers of X and W in
the pre-shape space of triangles. Because W is superimposed to meet the criterion of min-
imizing the partial Procrustes distance, Wpre-shape, rotated is said to be in partial Procrustes
superimposition on the reference form Xpre-shape. We can solve for the Procrustes distance,
the arc length across the surface betweenXpre-shape andWpre-shape, rotated, because the radius
of the hypersphere is constrained to be one. The perpendicular from the chord to the center
of the hypersphere bisects the angle ρ (Figure 4.17), which has the same value (in radians)
as the arc length. Thus, there is a very simple relationship between Dp and ρ; specifically,
ρ=2 arcsin(Dp/2). In our example,Dp and ρ are so small they cannot be distinguishedwith
fewer than 4 decimal places (0.08941 and 0.08943, respectively), which is not surprising
given that ρ represents a very small angle of just 5.1◦.

Because rotational effects do not contribute to the differences between Xpre-shape and
Wpre-shape, rotated, another degree of freedom has been lost (the fourth). Rotation, or ori-
entation, is no longer a dimension of possible variation; configurations that differ only by
rotation are considered equivalent. After subtracting the four degrees of freedom repre-
senting differences in location and centroid size and rotation, we are left with two degrees
of freedom to describe differences among triangles. Accordingly, the shape space of trian-
gles is a two-dimensional space. As explained above, it is the two-dimensional surface of
a three-dimensional sphere, and is a relatively easy space to visualize or illustrate.
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sin (r/2)
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X

Figure 4.17 The relationships among the Procrustes distance, ρ, full Procrustes distance
DF = sin(ρ), and partial Procrustes distance Dp=2 sin(ρ/2). The configuration at point B represents
a triangle in Kendall’s shape space.

Xpre-shape and Wpre-shape, rotated are configurations in a shape space, but they are not yet
in Kendall’s shape space. To make this final transition, we need to solve for the centroid
size that would further reduce the distance between the shapes X and W; we are taking
W to B (Figure 4.17). As indicated in Figure 4.17, that distance (DF, the full Procrustes
distance) is measured along a line segment orthogonal to the radius of Wpre-shape, rotated,
passing through Xpre-shape. In our example, ρ is small (0.0894 radians); its cosine is near
one (0.996) so we need make only a very slight adjustment to convert the coordinates of
Wpre-shape, rotated to Wshape:

Wshape = cos(0.089)


−0.5021 −0.3414

0.4583 −0.2542
0.0439 0.5956


 =


−0.5001 −0.3401

0.4564 −0.2532
0.0437 0.5932


 (4.29)

This is the triangle with the same shape asW, but it is now in Kendall’s shape space with the
reference at triangle Xpre-shape. Because the full Procrustes distance was used to determine
the coordinates of the landmarks in Wshape, we can say that Wshape is in full Procrustes
superimposition on the reference form Xpre-shape.
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Figure 4.18 Tangent space to shape spaces of triangles and projections onto the tangent space. As
in Figure 4.11, the outer hemisphere is a section through the space of centered and aligned shapes
scaled to unit centroid size, and the inner circle is a section through Kendall’s shape space of centered
and aligned shapes scaled to cos(ρ). The plane is tangent to the sphere and the hemisphere at the
point of the reference shape. The configuration at point B represents a triangle in Kendall’s shape
space; A is the same shape scaled to unit centroid size. C is a stereographic projection of B onto the
tangent plane. D is the orthogonal projection of A onto the tangent plane, and E is the orthogonal
projection of B onto the tangent plane.

Tangent spaces

As mentioned earlier in this chapter, the mathematics of statistical inference in Kendall’s
shape space has been developed by Kendall and others. However, the simple fact remains
that the curvature of shape space makes statistical inference more difficult in this space
than it is in Euclidean spaces. In addition, most of the familiar methods of multivariate
statistical analysis assume a Euclidean space. Therefore, in this section we discuss the
replacement of Kendall’s shape space with a Euclidean approximation.

The problem of replacing a curved space with a Euclidean approximation is illustrated
for the special case of triangles in Figure 4.18. As before (see Figure 4.11), the outer
hemisphere is the space constructed by aligning pre-shapes (with centroid size fixed at
one) to minimize the partial Procrustes distance (the square root of the summed squared
distances between corresponding landmarks). The inner sphere is Kendall’s shape space,
constructed by scaling the aligned target shapes to centroid size= cos(ρ). These two spaces
share a common point, the reference shape, because the distance of the reference from
itself is zero, so cos(ρ) is one. Tangent to both of these spaces, at the reference shape,
is a Euclidean plane. We also need to decide how we will construct the projection of
shapes onto the tangent plane, which includes deciding (1) which space will be the source
of the configurations projected onto the tangent plane, and (2) what rule we will use
to determine the direction of the projection. (We also need to decide how to choose an
appropriate reference configuration to serve as the tangent point, which is discussed in the
next section.)

Figure 4.18 illustrates two common approaches to projecting from one space onto
another. One approach is to project to the new space from the centroid of some reference
space. In this case, the reference space is the hemisphere of aligned pre-shapes, so the
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projections are along the radii of this hemisphere to the tangent space. In this stereographic
projection, the shape represented by points B and A (at centroid sizes cos(ρ) and one,
respectively) map to the same location (C) in the tangent space. The distance in the plane
from the reference toC is greater than the arc length from the reference to B (the Procrustes
distance); and the discrepancy between these distances increases as ρ increases and the
distance in the tangent plane approaches infinity. The other approach to projecting from
one space onto another is to project along lines that are orthogonal to the new space. Point
E represents the orthogonal projection of B onto the tangent plane, and this projection
produces distances from the reference in the tangent plane that are less than the Procrustes
distance. As in the stereographic projection, the magnitude of the discrepancy between the
distances increases as ρ increases, but in the orthogonal projections, distances in the tangent
plane asymptotically approach the maximum equal to the radius of the shape space.

In the stereographic projection it does not matter whether the projection to the tan-
gent plane is from the hemisphere of triangles in partial Procrustes superimposition, or
from the sphere of triangles in full Procrustes superimposition. Both target configurations
project to the same point in the tangent space. In the orthogonal projection, it does matter
whether the projection from the tangent plane is from the outer or inner hemisphere. The
projection from the hemisphere produces distances in the tangent plane that depart less
from the Procrustes distance (the arc length) and are closer to the partial Procrustes dis-
tance (the chord length). Projection from the sphere produces distances that depart more
from the Procrustes distance and are closer to the full Procrustes distance. Furthermore,
the projections from the hemisphere of triangles in partial Procrustes superimposition have
a higher maximum distance from the reference (one instead of one-half), and approach it
more slowly.

In the simple example given in the previous section, we demonstrated that the differences
between the Procrustes, partial Procrustes and full Procrustes distances from the reference
become negligible as ρ approaches zero. Similarly, the differences among the stereographic
and orthogonal projects also become negligible as ρ approaches zero.

Selecting the reference configuration

Many of the steps involved in placing target configurations in shape space, or in the
Euclidean space tangent to it, are functions of the reference shape. For example, in the
construction of a shape space, each target configuration is rotated to the orientation that
minimizes its distance from the reference. Also, in the construction of Kendall’s shape
space, the scaling of each target configuration is a function of its distance from the reference.
Moreover, the tangent space is tangent to shape space at the reference. Perhaps most
important, the discrepancies between distances in the tangent space and those in shape
space increase as a function of distance between target and reference. Thus the choice of
reference can have important consequences.

Most interesting biological questions will be concerned with differences among more
than two specimens. The inferences based on analyses of multiple specimens will be based
on all of the distances among specimens, not just their distances from the reference. Accord-
ingly, the choice of a reference must consider the effects of that choice on approximating
distances among target specimens, not just distances of target specimens from the reference.
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Not only will distances from the reference be distorted, so too will the distances among
target specimens, and this distortion will also be a function of their distances from the ref-
erence. If these distortions are large, inferences based on distances in the Euclidean tangent
space will be unreliable.

One possible reference is the average shape of the entire sample (computed using meth-
ods discussed in Chapter 5). This approach has the advantage that it minimizes the average
distance from the reference, which minimizes the average distortions of interspecimen dis-
tances projected to the tangent plane (Bookstein, 1996; Rohlf, 1998). An alternative choice
of reference is a shape inferred to represent the starting point of some biological process
(e.g. a neonate in a study of ontogenetic transformation – cf. Zelditch et al., 1992). This
approach has the advantage that the difference between target and reference can be inter-
preted as a biological transformation as well as a mathematical transformation (Fink and
Zelditch, 1995; Zelditch et al., 1998). However, as Rohlf (1998) points out, this approach
can have the limitation that the reference is at one extreme of the observed distribution
of shapes, thereby increasing the risk of substantial distortions of distances when changes
in shape are large. Conceivably, erroneous inferences could be drawn from the analysis.
However, Marcus et al. (2000) analyzed differences in skull shape among representa-
tives of several mammalian orders and found that most Procrustes distances are closely
approximated by the Euclidean distance in the tangent space. The principal exceptions
were the distances from terrestrial taxa (especially the muskrat) to a dolphin (which is
not surprising, given the extraordinary reorganization of the cetacean head). This result
suggests that most biologists are unlikely to encounter any cases in which the differences
among specimens are large enough to worry about the adequacy of the linear approxima-
tions. It is unlikely that distances in the tangent space (based on any reference) will poorly
approximate distances in shape space. Even so, using the average shape of all specimens in
the data minimizes the risk that such a problem will occur. The use of any other reference
carries with it the responsibility to ensure that Euclidean distances in the tangent space are
accurate approximations of the distances in shape space.

Dimensions and degrees of freedom

The issue of degrees of freedom (or the number of independent measurements in a system)
is important for statistical analyses, but it can be confusing, especially when talking about
shape. To clarify it, we can consider a simple example. Suppose we wish to describe the
location of a notebook in a room. We could give its location in terms of three distances
from a reference point (such as the corner of the door of the room), and this is equivalent to
defining its position by three Cartesian coordinates relative to that reference point. In this
example, there are three degrees of freedom for the location of the notebook because three
variables are required to describe it. Knowing those variables and the reference suffices to
find the notebook. However, if the notebook is on a chair, and all chairs are known to
be the same height, specifying the height conveys no more information than saying that
the notebook is on a chair. Knowing what we do about the chairs, we only need two
additional pieces of information, the X- and Y-coordinates, to specify the location of the
notebook in the room. Thus by specifying the constraint that the notebook is on a chair
of fixed height, we have removed one of the three degrees of freedom.
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We can take this example a step further by specifying that all the chairs are located along
walls of the room, with every chair touching the wall. Now, the X- and Y-coordinates
can be replaced by the distance (L) around the perimeter of the room from the door to the
notebook, and the direction of the measurement (clockwise or counter-clockwise). If we
agree that distances around a perimeter are always measured in the same direction, then the
value of L is sufficient to describe the location of the notebook. The additional constraints
(chairs against the wall, perimeter measured in clockwise direction) have reduced the
degrees of freedom from two (X and Y) to one (L). We have not actually eliminated
either X or Y; rather, we have merely replaced that pair by L. Nor have we lost any
information; given L, and the direction in which L is measured, as well as the height of
the chairs, we can reconstruct the original three Cartesian coordinates (X, Y, and Z) of
the notebook.

In the case of two-dimensional shapes, we start outwithK landmarks in two dimensions,
so we have 2K coordinates, which constitute 2K independent measurements (because each
coordinate is independent of the others, in principle). In the course of superimposing the
shapes on the reference form, we perform three operations: (1) we center the matrix on the
centroid, thereby losing two degrees of freedom; (2) we set centroid size to one, thereby
losing another; and (3)we compute the angle throughwhich to rotate the specimen, thereby
losing one more. By the end, we have lost four degrees of freedom as a consequence of
applying these constraints to the data. However, unlike the notebook example, we still
have 2K variable coordinates in our data matrix; none of them have been removed or
constrained. We have not lost degrees of freedom by removing coordinates, because the
loss of degrees of freedom is shared by all coordinates – each coordinate has lost some
fraction of a degree of freedom because each is partially constrained by the operations of
centering, scaling and rotation. Consequently, we have too many variable coordinates for
the degrees of freedom. The primary advantage of the thin-plate spline methods (discussed
in Chapter 6) is that we can work with 2K−4 variables, so that the number of variables
and the number of degrees of freedom are the same.

Summary

Because there are several different morphometric spaces and distances, some with only
slightly different names, we summarize them below.

The configuration space is the set of all matrices representing landmark configurations
that have the same number of landmarks and coordinates. This space has K×M
dimensions, where K is the number of landmarks and M is the number of coordinates.

The pre-shape space is the set of all K×M configurations with a centroid size of one,
centered at the origin. This space is the surface of a hypersphere of radius one. Because of
the centering, configurations that differ only in position are represented as the same point in
pre-shape space. Similarly, because of the scaling, configurations that differ only in centroid
size are represented by the same point in pre-shape space. Consequently, this space has
KM – (M+1) dimensions; M dimensions are lost due to centering, and one dimension is
lost due to scaling. In pre-shape space, the set of all configurations that may be converted
into one another by rotation lies along a circular arc called a fiber, which lies on the surface
of the pre-shape hypersphere. The distance between shapes in pre-shape space is the length
of the shortest arc across the surface connecting the fibers representing those shapes, and
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is called the Procrustes distance. Because the radius of the pre-shape hypersphere is one,
the length of the arc is also the value (in radians) of the angle subtended (ρ).

To construct a shape space, we select one point on each fiber, removing differences in
rotation. The number of axes on which a configuration can be rotated is a function of the
number of landmark coordinates: M(M−1)/2. This also specifies the number of dimen-
sions that are lost in the transition from pre-shape space to shape space (1 if M=2, 3 if
M=3). The construction of a shape space begins with the selection of one shape in a conve-
nient orientation to serve as the reference configuration. Every other shape (called a target
configuration) is placed in the orientation that corresponds to the location on its fiber that
is closest to the reference. This orientation is the position that minimizes the square root of
the sum of the squared differences between the coordinates of corresponding landmarks.
When minimized simply by rotation, this quantity is called the partial Procrustes distance.
Configurations that satisfy this condition are said to be in partial Procrustes superimposi-
tion on the reference. The partial Procrustes distance is the length of the chord of the arc
between the fibers in pre-shape space.

After rotation to partial Procrustes superimposition, the square root of the sum of the
squared differences between the coordinates of corresponding landmarks can be further
reduced by rescaling the target to centroid size of cos(ρ). Configurations that satisfy this
condition are said to be in full Procrustes superimposition on the reference; and the result-
ing distance between shapes (square root of the sum of the squared differences between the
coordinates of corresponding landmarks) is the full Procrustes distance. The set of shapes
in full Procrustes superimposition comprises a hypersphere of radius one-half, inside the
hypersphere of shapes in partial Procrustes superimposition, and tangent to the larger
hypersphere at the reference. This smaller, inner hypersphere is Kendall’s shape space.

Problems and exercises on the theory of shape

To get a feel for what the software will be doing for you, do these problems and exercises
using pencil, paper and a scientific calculator. The numbers of landmarks are small, to
keep the level of tedium to a minimum!

1. Suppose that the configuration matrix for a given shape is:

A =

0.0 −1.0
0.0 0.5
0.7 −0.2




a. Howmany landmarks are there in this configuration? Howmany dimensions does
it have?

b. Sketch the shape representing this configuration (youmaywant to use graph paper,
if it helps). Number the landmarks.

c. Write out the row vector form of this landmark configuration.
d. Find the centroid position of this landmark configuration. Howmany coordinates

are in the centroid position? Sketch the location of the centroid on your picture
from (b) above.
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e. Write out the centered form of this configuration matrix, by subtracting the value
of the X-coordinate of the centroid from each of the values in the first column,
and subtracting the value of the Y-coordinate of the centroid from each of the
values in the second column.

f. Find the centroid size of this landmark configuration.
g. Now form the pre-shape configuration forA. Do this by dividing the centered form

of this matrix (solution to (e) above) by the centroid size (solution to (f) above).
Remember that when you divide a matrix by a scalar (an ordinary number, like
centroid size), youmust divide each value in thematrix by the scalar divisor (which
is centroid size in this case).

2. Suppose a configuration of dimensional landmarks is given by:

B={0.3,−1.0, 0.25,−0.4, 0.0, 0.75,−0.2, 0.35}
a. How many landmarks are in this configuration?
b. Write out the configuration matrix for this configuration.
c. Find the centroid for this configuration.
d. Find the centroid size for this configuration.

3. Given the landmark configuration:

C={0.1, 0.1, 0.1, 0.3,−1.0, 1.1,−0.6,−0.3, 0.2, 0.3,−0.1, 0.15}
can you determine what K and M are?

4. Suppose we have the configuration matrix:

X =

 0.5 0.5
−0.2 0.3
0.1 0.3




a. Compute a configuration matrix that would represent X in pre-shape space.
b. Now, for the truly stout of heart, suppose we have a second configuration matrix

in pre-shape space:

Y =

 0.6864 0.1961
−0.6864 −0.0981

0.0 −0.0981




Determine the angle that you would have to rotate the pre-shape space matrix
form of X (from (a) above) to produce a partial Procrustes superposition of X on
the reference form Y.

5. Given two matrices:

X =

 0.7146 0.2150
−0.6438 −0.0913
−0.0709 −0.1237




Y =

 0.6864 0.1961
−0.6864 −0.0981

0.0 −0.0981
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where X is in partial Procrustes superposition with Y:
a. Find the partial Procrustes distance between the two.
b. Use the partial Procrustes distance to find the Procrustes distance between the two.
c. Use the Procrustes distance to calculate the full Procrustes distance between

the two.

Answers to problems and exercises

(A full solution is given if the calculation has not been seen before.)

1. Looking at the configuration matrix:
a. There are three landmarks (K=3 rows) and each is in two dimensions (M=2

columns).
b. See Figure 4.19.
c. In row form, A= {0.0, −1.0, 0.0, 0.5, 0.7, −0.2}.
d. The centroid is located at (0.2333, −0.2333), or X=0.2333, Y =−0.233.

The centroid position is calculated:

XC = (0+ 0+ 0.7)
3

= 0.2333

YC = (−1+0.5−0.2)
3

=−0.2333

Figure 4.20 shows the location of the centroid.

1
(0, �1)

2
(0, 0.5)

3
(0.7, �0.2)

Figure 4.19 Answer to Exercise 4.1b.
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1
(0, �1)

2
(0, 0.5)

3
(0.7, �0.2)

Figure 4.20 Answer to Exercise 4.1d.

e. We simply subtract theX-coordinate of the centroid (0.2333) from the first column
of A, and subtract the Y-coordinate of the centroid (−0.2333) from the second
column. This leaves us with:

−0.2333 −0.7667
−0.2333 0.7333
0.4667 0.0333




Note that if you add up the values in the first column you get zero, which is also
true for the second column. Thus the centroid position of the centered matrix is
(0, 0).

f. The centroid size is 1.2055. The centroid size is the square root of the summed
squared distances of the landmarks from the centroid, which is:

CS = {(0− 0.2333)2 + (−1− (−0.2333))2+ (0−0.2333)2

+ (0.5− (−0.2333))2 + (0.7−0.2333)2

+ (−0.2− (−0.2333))2}½
= 1.2055

An easier approach is to use the centered form of the configuration matrix (with
the centroid set to zero). With this form, we can take the square root of the summed
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squared coordinates of the landmarks:

CS = {(−0.2333)2+ (−0.7667)2+ (−0.2333)2

+ (0.7333)2+ (0.4667)2+ (0.0333)2}½

= 1.2055

g. The resulting pre-shape space configuration is

Apre-shape =


−0.1936 −0.0630
−0.1936 0.6083

0.3871 0.0277




Note that the entries are identical to the centered matrix values (see (e) above)
divided by 1.2055.

2. Looking at the configuration:
a. There are four landmarks.
b. The configuration matrix is:




0.3 −1.0
0.25 −0.4
0.0 0.75

−0.2 0.35




c. The centroid is located at XC =0.0875, YC =−0.075.
d. The centroid size CS=1.4087.

3. No! This might be K=6 and M=2 (a two-dimensional system), or K=4, M=3 (a
three-dimensional system). If the data are in a row format, you cannot tell the value
of K or M from looking at it.

4. Looking at the configuration matrix:
a. The pre-shape space form of X is




0.7013 0.2550

−0.6376 −0.1275
−0.0638 −0.1275




b. The triangles can be iteratively rotated, or Equation 4.13 can be used:

θ = arctangent

(∑K
j=1 YRjXTj −XRjYTj∑K
j=1XRjXTj + YRjYTj

)
(4.13)
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Substituting the appropriate values of X and Y for the reference (R) and target
(T) yields:

θ = tan−1{(0.1961× 0.7013+ (−0.0981)× (−0.6376)+ (−0.0981)
× (−0.0638)+ (−0.6864)× 0.2550+ (−0.6864)× (−0.1275)
+ 0× (−0.1275))/(0.6864× 0.7013+ (−0.6864)× (−0.6376)
+ 0× (0.0638)+ 0.1961× 0.2550+ (−0.0981)× (−0.1275)
+ (−0.0981)× (−0.1275))}

θ = −0.0562 radians=−3.2175◦
5. Looking at the matrices:

a. To find the partial Procrustes distance between the two, we take the square root
of the summed squared differences in the landmark coordinates:

Dp ={(0.7146−0.6864)2+ (0.2150−0.1962)2

+ (−0.6438− (−0.6864))2 + (−0.0913− (−0.0981))2

+ (−0.0709−0)2+ (−0.1237− (−0.0981))2}½
=0.0933

b. Because ρ=2 arcsin(Dp), ρ=2 arcsin(0.0933/2)=0.0933 radians; the two are
equal through three decimal places.

c. DF = sin(ρ), so DF = sin(0.0933)=0.0932.
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5
Superimposition methods

In Chapter 3 we presented a simple method for obtaining shape variables: the two-point
registration that produces Bookstein’s shape coordinates. We began with this method
because it is especially easy to understand, even without knowing any of the theory devel-
oped in Chapter 4. Having covered that theory, we now can develop a more general
approach to the problem of matching up shapes prior to comparison. This matching is
termed “superimposition” because the landmark configurations are placed on top of each
other (by the mathematical operations that do not alter shape, i.e. translation, scaling, and
rotation). Several superimposition methods are available; they differ in how these opera-
tions are applied. The objective of this chapter is to explain some of these superimposition
methods, compare them, and discuss their relative advantages and disadvantages. We also
discuss in some detail the issue of interpreting the pictures of superimposed landmarks. At
first sight different methods may appear to suggest different interpretations of the shape
differences, but to a large extent the differences are illusory – the pictures might look
different, but they have the same meaning.

Before discussing the alternative methods of superimposition, we first explain why we
would even want an alternative to Bookstein’s shape coordinates (BC). We then describe
a superimposition method that is based on a very similar approach. This method, called
sliding baseline registration (SBR), also involves a two-point registration, but the two
points are not entirely fixed (they are allowed to “slide” along one axis). Next, we present
the most widely used method, Procrustes generalized least squares (GLS), followed by
an alternative that is similar to it in some respects (variously called Procrustes resistant
fit, or resistant fit theta-rho analysis, RFTRA). After presenting all of these methods, we
summarize their similarities and differences, discuss the interpretation of their graphical
results, and conclude with recommendations regarding their uses.

Why we want an alternative to Bookstein shape coordinates

Recall that Bookstein’s shape coordinates (BC) are obtained by the two-point registration
method (Chapter 3). This procedure fixes the coordinates of two points at (0, 0) and (1, 0);

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
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thus the segment bounded by these landmarks (the baseline) has a standard orientation
and length in all specimens, and the coordinates of all the other landmarks indicate their
positions relative to the baseline. Fixing the baseline coordinates is the source of the prin-
cipal advantages of this superimposition method, and also of the main disadvantages. The
severity of the disadvantages may persuade you to use one of the other methods, even if
the purposes of those methods seem a bit obscure at first.

The most notable advantages of BC arise from standardizing the coordinates of the
baseline. Because four coordinates are fixed (X- and Y-coordinates of the two baseline
points), the number of variable coordinates is 2K−4 (whereK is the number of landmarks).
Consequently, the number of variable coordinates is exactly the same as the number of
dimensions of the shape space they occupy, which is also the number of statistical degrees

(A)

(B)

Figure 5.1 Variation in landmark positions relative to a fixed baseline for an ontogenetic series
of the piranha Serrasalmus gouldingi: (A) coordinates of landmarks relative to a fixed baseline that
extends between landmarks 1 and 7 (the tip of the snout and posterior termination of the hypural
bones); (B) vectors indicating displacements of landmarks relative to the fixed baseline. (The summed
squared lengths of these vectors does not equal the Procrustes distance between juvenile and adult
shapes.)
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of freedom. The advantage of the correspondence of these numbers is that we can perform
analytic tests likeHotelling’sT2 without discarding variables. Because the four coordinates
of the baseline are fixed, the orientation of the baseline is standardized. The advantage of
this is that the pictures of the superimposed configurations are often quite easy to interpret,
especially if the baseline is an important morphological feature like an anatomical axis.

The most notable disadvantages of BC also lie in standardizing the coordinates of the
baseline. One of these disadvantages arises because there are no truly invariant landmarks;
every landmark varies in location relative to all of the others. Fixing the locations of the
two landmarks that serve as endpoints of the baseline means that the variance of those
landmarks must be put somewhere. In an ontogenetic series of the piranha Serrasalmus
gouldingi, superimposed at two landmarks near the dorsoventral midline (Figure 5.1A),
we can see that the three most dorsal landmarks vary primarily along the dorsoventral axis.
Whenwe regress these coordinates on log centroid size (usingmethods discussed in Chapter
10), we see that these landmarks move away from the midline during growth (Figure 5.1B).

If two of the dorsal landmarks are used as the baseline, the pictures look strikingly
different (Figure 5.2). The dorsoventral component has been removed from all three dorsal

(A)

(B)

Figure 5.2 Ontogenetic variation in S. gouldingi visualized relative to a baseline on the dorsal body
(landmarks 3 and 5): (A) coordinates of landmarks relative to the baseline; (B) vectors indicating
displacements of landmarks relative to the fixed baseline. (Note the greater apparent magnitude of
the variance landmarks compared to Figure 5.1.)
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(B)

(A)

Figure 5.3 Ontogenetic variation in S. gouldingi visualized relative to a baseline on the dorsal head
(landmarks 2 and 3): (A) coordinates of landmarks relative to the baseline; (B) vectors indicating
displacements of landmarks relative to the fixed baseline. (Note the apparent rotation of landmarks
around this baseline.)

landmarks (because they covary to a high degree), and is expressed as displacement of every
other landmark away from the dorsal edge. In addition, the elongation of the middle of
the body relative to the rest of the piranha is now expressed as a relative contraction of
the ends towards the middle.

If we use a baseline that rotates relative to most of the other landmarks, the resulting
superimposition seems to indicate that the piranha’s body rotates around the baseline as
it grows (Figure 5.3).

Clearly the baselines used in Figures 5.2 and 5.3 are spectacularly bad choices; how-
ever, they simply exaggerate the general problem that the variance of baseline points is
transferred to the other landmarks. It should be intuitively obvious, even if not visibly
so, that the actual anatomical landmarks are really no more variable than in Figure 5.1;
changing the baseline does nothing to the data set but rotate and rescale it. The conse-
quences for our perception of the shape differences can be dramatic, particularly when it
makes the data seem inordinately noisy, but they can be understood as the consequences
of a change in perspective. What makes this transfer of variance really worrisome is that
it is not necessarily unbiased – it is related to the distance of the free landmarks to the
baseline (Dryden and Mardia, 1998). Consequently, the transfer of variance can induce
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correlations among landmarks (compare the relative displacement of the most posterior
landmarks across the three baseline registrations).

A second disadvantage arising from standardizing the coordinates of the baseline points
is that this superimposition does not minimize the distance between configurations (the
summed squared distance between corresponding landmarks). Scaling configurations of
landmarks to unit baseline length need not produce configurations of the same centroid
size, much less configurations of unit centroid size. Similarly, the rotation to align the base-
line is unlikely to be the exact rotation needed to remove rotational effects, as prescribed
by Kendall. Consequently, the summed squared distances between corresponding land-
marks is not the minimized partial Procrustes distance between shapes. In other words,
the configurations produced by the two-point registration do not differ solely in shape (as
defined by Kendall), so the graphics based on this superimposition cannot be said truly to
embody the differences between shapes. This is not merely a graphical problem; it is also a
serious metrical problem. There is a profound conceptual and mathematical inconsistency
between the distances measured as summed squared differences of shape coordinates, and
the Procrustes distances between shapes in shape space. This discrepancy is likely to be
especially large when the baseline points are close together and more variable than most
other landmarks (as in Figures 5.2 and 5.3), but no choice of baseline can completely
eliminate the problem.

Given these rather substantial disadvantages, it is useful to have alternative superim-
position methods. The first alternative we discuss is conceptually similar to the two-point
registration, but addresses the problems of scaling and variance transfer. The second alter-
native addresses the discrepancy between distance metrics. The third alternative is concep-
tually related to the second, but addresses problems arising from highly localized shape
change.

Sliding baseline registration

The sliding baseline registration (SBR) was developed by David Sheets in collaboration
with Mark Webster (Webster et al., 2001) and Keonho Kim (Kim et al., 2002) to reduce
the disadvantages of aligning landmark configurations along one edge as in the two-point
registration. To that end, configurations are scaled to unit centroid size, which directly
addresses the conceptual and mathematical inconsistency between the scaling used in the
superimposition and the scaling used in the definition of shape. As we will demonstrate
below, this also reduces the problem of variance transfer. Because the configurations are
scaled to unit centroid size, their baselines will usually differ in length and consequently,
the two end points cannot be superimposed simultaneously. Instead, their Y-coordinates
are fixed at zero and their X-coordinates are allowed to vary as necessary to align the
X-coordinates of the centroids at the zero, in effect sliding the baseline along the X-axis.
(The Y-coordinate of the centroid is the average perpendicular distance of the landmarks
from the baseline after scaling to unit centroid size.)

At first glance, the SBR superimposition appears to indicate that the S. gouldingi
ontogeny involves a smaller increase in body depth than was seen using BC (Figure 5.4).
Closer examination reveals that the baseline is getting shorter as depth increases, so
the increase in relative depth is the same (scaling to the same size makes adults, with
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(B)

(A)

Figure 5.4 Ontogenetic variation in S. gouldingi visualized by sliding baseline registration. As
in Figure 5.1, the baseline is formed by the two most distant landmarks, 1 and 7. (A) Coordinates
of landmarks relative to the baseline; (B) vectors indicating displacements of landmarks relative
to the fixed baseline. (Note the lesser apparent magnitude of the variance landmarks compared to
Figure 5.1.)

relatively deeper bodies, look both shorter and deeper). This difference arises because
part of the variation in the relative positions of the baseline endpoints is expressed in the
X-coordinates of those points under the SBR superimposition. This also means that SBR
transfers correspondingly less variance to the other landmarks.

Although SBR can reduce the variance that is transferred to the free landmarks, it
cannot completely eliminate the problem. The tremendous deepening of the midbody of
S. gouldingi still induces a large covariance among the other landmarks if the dorsal land-
marks are used for the baseline (Figure 5.5).

When the baseline also rotates relative to the other landmarks, that rotation can be a
more prominent component of the induced covariance under SBR than in BC (Figure 5.6).
Therefore, SBR cannot compensate for a poor choice of baseline.

Another problem that SBR shares with BC is that the implied displacements of the
landmarks still do not equal the partial Procrustes distance between the shapes. Again,
the configurations are not centered on the centroid (although they are closer after SBR),
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(A)

(B)

Figure 5.5 Ontogenetic variation in S. gouldingi visualized by sliding baseline registration, using a
baseline near the dorsal edge of the body (landmarks 3 and 5): (A) coordinates of landmarks relative
to the baseline; (B) vectors indicating displacements of landmarks relative to the baseline. Less vari-
ance is transferred than was the case when this baseline was fixed, but there are still substantial
induced correlations because the variance of the baseline endpoints is mostly perpendicular to the
baseline.

nor are they rotated to the orientations that minimize the summed squared distances
between the corresponding landmarks. This means that the configurations produced by
SBR, like those produced by BC, do not differ solely in shape as defined by Kendall; they
are not the same set of configurations as would appear in Kendall’s shape space. Even so,
the configurations produced by SBR might be preferable if the orientation of the baseline
has some biological significance. In that case, we might judge that rotation does change
shape, so the only rotation permitted during superimposition is that which corrects an
earlier misalignment when specimens were digitized. By choosing to rotate each configu-
ration to a specific orientation, we have effectively chosen to include information about
orientation (i.e. “rotational effects”) in what we mean by “information about shape.”
This is not a trivial choice; it takes us away from the mathematical theory discussed in
Chapter 4.
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(A)

(B)

Figure 5.6 Ontogenetic variation in S. gouldingi visualized by sliding baseline registration, using
a baseline (landmarks 2 and 3) that rotates relative to most other landmarks: (A) coordinates of
landmarks relative to the baseline; (B) vectors indicating displacements of landmarks relative to the
baseline. Again, there is improvement relative to fixing the length of this baseline, but substantial
induced correlations remain.

In addition to the lingering problems shared with BC (variance transfer and constrained
alignment), SBR has a new problem that may also limit its utility for data analysis. By
allowing theX-coordinates of the two baseline points to vary, two new variables are added
to the analysis. Consequently, the number of variables exceeds the number of degrees of
freedom by two. Thus, if these coordinates are to be analyzed using conventional statistical
methods, such as Hotelling’s T2, we must exclude two coordinates from the analysis.
Unfortunately there is no general rule for deciding which to exclude, and there is an
obvious risk that the ones selected are chosen because they produce the desired results.
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One possible solution is to try all possible pairwise combinations of dropped coefficients,
asking if the statistical results are robust to the choice. A better solution is to replace the
conventional statistical methods with resampling-based methods, which do not require
estimates of the degrees of freedom (see Chapter 8).

Even if you decide that SBR (or BC) is not appropriate for analysis, you can still choose
to use it for purely graphical purposes, reserving the statistical analysis for the coordinates
introduced in the next section. This will not lead to any inconsistencies between statistical
and biological inferences; the statistical inferences should not depend on the choice of
variables, and nor should any biological inferences. Obviously the statistical tests must be
based on some set of variables, and so must the pictures, but if the analyses and the pictures
are done correctly, all complete sets of variables will yield the same statistical results and
all illustrations of those results will support the same interpretations.

Generalized least squares Procrustes superimposition

Of all the topics covered in this book, this section on the generalized least squares Procrustes
superimposition (GLS) may be the most important. For reasons discussed below, this is
the generally favored superimposition method. This is the method we (and many others)
use to take the raw data from the digitizer and turn it into the data we analyze. If you
understand the coordinates obtained by GLS, you understand enough about the data to
use them in studies based on ordination methods, such as principal components analysis
(Chapter 7), or in studies using multivariate statistics (Chapters 8, 9 and 10).

The name Procrustes comes from Greek mythology; Procrustes fit his visitors (victims)
to a bed by stretching or truncating them. In doing so, Procrustes minimized the difference
between his visitors and the bed. In this sense the comparison is apt; Procrustes superimpo-
sitions minimize differences between landmark configurations. In another sense, the name
does not fit; what Procrustes did altered the shape of his visitors, whereas the mathematical
superimposition methods only use those operations that do not alter shape. Presumably
Procrustes’ guests would have preferred that he had done likewise!

As prescribed in Kendall’s definition of shape (discussed in Chapter 4), Procrustes
superimpositions rely on translation, scaling, and rotation to remove all information
unrelated to shape. However, these operations are used in several other superimposition
methods for the specific reason that they do not change shape. The crucial distinction of
the GLS method is the criterion used to minimize differences between configurations: the
Procrustes distance (the summed squared distances between corresponding landmarks – see
Chapter 4). The particular combination of translation, scaling and rotation that minimizes
the Procrustes distance is considered the optimal Procrustes superimposition. (An interest-
ing historical note on this method is that it was developed before the importance of the
Procrustes distance was fully realized.)

A step-wise description of the GLS method was presented by Rohlf (1990). We sum-
marize each step below; they should be familiar from the previous chapter, in which we
discussed putting shapes into shape space (we also presented the mathematical details of
each operation in that chapter):

1. Center each configuration of landmarks at the origin by subtracting the coordinates
of its centroid from the corresponding (X or Y) coordinates of each landmark. This
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(A)

(B)

(C)

Figure 5.7 Ontogenetic variation in S. gouldingi visualized by three different superimpositions:
(A) Bookstein’s shape coordinates from the 1–7 baseline: (B) sliding baseline registration to the same
baseline; (C) Procrustes superimposition.
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translates each centroid to the origin (and the coordinates of the landmarks now reflect
their deviation from the centroid).

2. Scale the landmark configurations to unit centroid size by dividing each coordinate of
each landmark by the centroid size of that configuration.

3. Choose one configuration to be the reference, then rotate the second configuration
to minimize the summed squared distances between homologous landmarks (over all
landmarks) between the forms. In other words, rotate the second configuration to
minimize the partial Procrustes distance.

When there are more than two forms, all are rotated to optimal alignment on the
first; the average shape is then calculated and all are rotated to optimal alignment on the
average shape, which is the new reference. At this point, the average shape is recalculated.
If it differs from the previous reference, the rotations are recalculated using this newest
reference. When the newest reference is the same as the previous, the iterations stop (usually
only a few iterations are necessary). The final reference is the one thatminimizes the average
distances of shapes from the reference. Note that this result does not depend on the shape
of the first specimen used in the alignment; instead, it depends on the distribution of shapes
in the sample.

The protocol outlined above has been called partial Procrustes superimposition (Dryden
and Mardia, 1998). The centroid size is set to one for all specimens, so the minimum
distance of a specimen from the reference is the partial Procrustes distance (the length
of the chord connecting fibers in pre-shape space at their points of closest approach –
see Chapter 4). Two steps can be added to the end of this protocol to produce a full
Procrustes superimposition, a method that minimizes the full Procrustes distance: the first
is to compute the full Procrustes distance and corresponding centroid size from the partial
Procrustes distance (this relationship was discussed in Chapter 4); the second is to rescale
each configuration to the new centroid size. The partial Procrustes superimposition is more
commonly used in biological applications, partly because size is held constant, simplifying
the interpretation of shape differences.

The results of the partial Procrustes superimposition (GLS) computed for the piranha
ontogenetic series are compared to coordinates generated by BC and SBR in Figure 5.7.
The coordinates generated by this superimposition are much like those generated from the
two baseline methods when the baseline connected landmarks 1 and 7. These landmarks
are the most distant from the center, so they will tend to have a larger influence than other
landmarks on the rotation to minimize the partial Procrustes distance (a small angular
displacement produces a large linear displacement, which is squared). In addition, the
GLS result appears to be more similar to the SBR result than it is to the BC result. This is
because GLS and SBR both scale each specimen to unit centroid size, so both show relative
deepening as a combination of deepening and shortening.

One advantage of GLS is that the transfer of variance seen in BC is reduced even
more than in SBR. This reduction is partly due to allowing both coordinates of all land-
marks to vary freely (subject to the other constraints of translation, scaling and rotation).
The consequences of this can be seen readily in the pictures of the inferred ontogenetic
transformations of S. gouldingi (Figure 5.8). In BC (Figure 5.8A) the dorsal and ventral
displacements of landmarks are largest, because this is the only way to express deepening
relative to the fixed baseline. In SBR (Figure 5.8B) the dorsal and ventral displacements
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(A)

(B)

(C)

Figure 5.8 Ontogenetic change in S. gouldingi depicted by vectors of relative landmark displacement
computed from three superimpositions: (A) Bookstein’s shape coordinates from the 1–7 baseline;
(B) sliding baseline registration to the same baseline; (C) Procrustes superimposition. Note that the
points that had been anchored to the baseline are displaced ventrally as well as posteriorly.
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are reduced, because relative deepening can also be expressed as relative shortening; con-
sequently, landmarks 1 and 7 are shown moving posteriorly and anteriorly respectively.
Both BC and SBR also indicate that the dorsal body deepens faster than the ventral body,
and that several landmarks in the head are displaced dorsally. In GLS (Figure 5.8C) we
see landmarks 1 and 7 moving toward each other as in SBR, but only in GLS do we see
these two landmarks move ventrally relative to all other landmarks. The ventral displace-
ments of these landmarks are an equally valid representation of the greater deepening of
the dorsal body, but one that minimizes the covariance of head and dorsal body land-
marks. This effect is achieved by minimizing the implied displacements of all landmarks
simultaneously.

The more important advantage of GLS is that it is grounded in the mathematical theory
of shape. Configurations of landmarks are manipulated using the three operations that do
not alter shape as defined by Kendall. These operations are used in a manner that removes
all differences that are not shape differences. The configurations produced by this procedure
are those that map to points in the shape spaces implied by Kendall’s definition of shape.
The computed distances between these configurations (the various Procrustes distances)
are the distances between points in those spaces, or in certain linear approximations of
those spaces. The characteristics of these metrics are well known, providing a secure and
stable foundation for biological shape analysis.

One of the main disadvantages of GLS is that it yields the full complement of 2K
variable coordinates, which is four more than the number of dimensions of the shape space.
Fortunately, this is a relatively minor problem that can be circumvented rather easily. One
option is to convert the coordinates to the variables discussed in Chapter 6 – the partial
warps scores (the two sets of results will be consistent because both use the same distance
metric). Another option is to use the resampling-based statistical methods discussed in
Chapter 8, which do not require estimates of degrees of freedom. Yet another option is
to use statistical tests specifically adapted to the GLS coordinates (e.g. Goodall’s F-test,
discussed in Chapter 9). Thus the excess number of variable coordinates does not pose an
obstacle to valid statistical analysis.

Another disadvantage is that GLS can yield visually unsettling results, such as rotated
axes of symmetry. For example, analyses of rodent skulls (Zelditch et al., 2003) use
“symmetrized” landmarks on one half of the skull to avoid inflating degrees of freedom
(coordinates for one side are reflected onto the other and the coordinates of the two sides
are averaged for each specimen; see Chapter 3). In the GLS result (Figure 5.9A) the midline
of the skull appears to rotate, but that cannot happen; the midline is the midline regardless
of variation in shape. Not only is this apparent rotation of the midline visually troubling,
it also complicates the interpretation of the results. These are the problems that SBR was
designed to overcome (Figure 5.9B). Because SBR prevents rotation of the baseline, it
yields a more realistic representation of the data – in this case, of the ontogenetic change in
skull shape. Actually, a very similar picture can be obtained by duplicating the landmark
coordinates (except the landmarks on the midline) and reflecting the second set across
the midline, then performing GLS superimposition on the reconstructed whole skulls (Fig-
ure 5.9C). In general, reconstructing the whole skull makes a more interpretable picture
(one that looksmore like the organism), so itmight be useful to present results in these terms
even if the statistical analyses used the GLS coordinates computed for the symmetrized
half skull.
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(A)

(B)

(C)

Figure 5.9 Superimpositions of forms with an axis of symmetry – ontogenetic changes in a rodent
skull. Dotted lines connect landmarks on the sagittal plane. (A) Landmark displacements inferred
from GLS, which appears to indicate translation and rotation of the sagittal plane; (B) landmark
displacements inferred from SBR, which does not appear to suggest translation and rotation of the
sagittal plane; (C) landmark displacements inferred from GLS on symmetrized and back-reflected
configurations, which also does not appear to suggest translation and rotation of the sagittal plane.
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(We should note that all the analytic software we provide uses the coordinates obtained
byGLS, but other types of superimposition are available for depicting the results – although
GLS is usually fine for that purpose as well.)

Resistant-fit superimposition

Like GLS, resistant-fit superimposition methods minimize differences between configu-
rations by minimizing differences at corresponding landmarks over all landmarks. In
recognition of this general similarity, the resistant-fit methods have also been characterized
as “Procrustes methods” (see Chapman, 1990). However, the crucial difference between
resistant-fit methods and GLS is that the former do not use Procrustes distance as the cri-
terion for optimal superimposition. The resistant-fit methods also differ from each other
in the optimization criteria they do use. Below we examine the rationale for rejecting the
Procrustes distance metric and the general objective of the alternative optimization criteria,
then we focus on the oldest and most well-known of these methods, resistant-fit theta-rho
analysis (RFTRA; Siegel and Benson, 1982) and examine its optimization criterion in
somewhat greater detail.

The general objection is that least squares optimizations like GLS are very sensitive
to large displacements at few landmarks. In statistical procedures like regression, a few
cases with unusually large deviations from the general pattern (“outliers” or “influential
observations”) can have a large effect on the results because the procedure minimizes the
sum of the squared deviations. In shape analysis, a large change limited to one or a few
landmarks is sometimes called the Pinocchio effect (however, the influential landmarks
need not be at the tip of a long process). Figure 5.10A shows a hypothetical example in
which the only shape change in a tree squirrel scapula is the ventral displacement of the
three most ventral landmarks. When GLS is used to superimpose landmark configurations
(Figure 5.10B), the Pinocchio effect can have a large effect on the superimposition. The
least squares criterion distributes the displacement of the few landmarks across all the
other landmarks. In graphical displays, the Pinocchio effect appears to be “smeared out”
over all landmarks, which can be unsettling for some workers. The more severe conse-
quence is that the least squares criterion causes the variances of the influential landmarks
to be allocated to other points, inducing covariances (Walker, 2000). Ironically, mini-
mizing induced covariances was one of the reasons for using GLS rather than a baseline
method.

Resistant-fit methods reduce the influence of the Pinocchio effect by taking a “robust”
approach to superimposition. In statistics, “robust” means that the method is relatively
insensitive to outliers in the data. Similarly, a robust superimposition method is relatively
insensitive to a few landmarks with large relative displacements. A wide variety of error
functions have been used as criteria for robust fitting procedures, the interested reader
is referred to Press et al. (1988) for a discussion of several alternatives. None of them
allow analytic solutions for the rotation and scaling parameters needed to carry out a
superimposition; instead they use numericalmethods (simplex searches) to find the rotation
and scaling necessary to minimize the error function.

The robust approach implemented by RFTRA uses the method of “repeated medians”
to determine the scaling and rotation necessary to superimpose one shape on another
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(A) (B)

Figure 5.10 Hypothetical example of the Pinocchio effect as exemplified by ventral displacements
of the three most ventral landmarks of a tree squirrel scapula: (A) configurations superimposed by a
resistant-fit method (RFTRA); (B) configurations superimposed by GLS. The outline of the scapula
is approximated by lines connecting the landmarks.

(Chapman, 1990). We describe the steps used to find the scaling factor in some depth;
then more briefly describe the steps to find the rotation. For the scaling factor:

1. Compute the pairwise interlandmark distances in both shapes and then compute the
ratio of each pair of corresponding distances.

2. For each landmark, find the median of ratios for all segments radiating from that
landmark. This will yield one ratio for each landmark.

3. Find the median of the medians generated by step 2. This median of medians is the
scaling factor used in the superimposition – in other words, all coordinates of the
second shape are scaled by this factor.

After scaling the second form, the rotation angle used by RFTRA can be determined in
a similar fashion from the same set of line segments. The first step is to compute the angles
between the corresponding segments; the remaining steps find the median angle associated
with each landmark and then the median of the medians. (As in GLS, an iterative procedure
is used to compute a reference shape and superimpose all the specimens on it.)

RFTRA is robust because medians are relatively insensitive to outliers, and, conse-
quently, large changes at one or a few landmarks will not appreciably alter the median
scaling factor or the median rotation angle. This makes RFTRA resistant to the Pinoc-
chio effect, which helps to highlight the region where the effect occurs, as in Figure 5.10.
However, in the absence of the Pinocchio effect, superimpositions produced by resistant-
fit methods usually do not differ greatly from those produced by GLS. Figure 5.11 shows
GLS and RFTRA superimpositions of the real squirrel scapulae that were the basis of
the hypothetical example. The real scapulae differ in the relative length of the ventral
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(A) (B)

Figure 5.11 Comparison ofGLS (A) andRFTRA (B) superimpositions for data that lack a Pinocchio
effect: real differences in scapula shape between two squirrels. The circles denote the two landmarks
that undergo large relative displacements, in addition to the three most ventral landmarks. The
outline of the scapula is approximated by lines connecting the landmarks.

process, as in the hypothetical case, but they also differ in the shape of the anterior edge
of the scapula (producing large relative displacements of the two circled landmarks). The
difference between the superimpositions is subtle; it is most noticeable at the ventral end,
where RFTRA attributes somewhat greater anterior displacements to the more ventral
landmarks.

The principal advantage of RFTRA and other resistant-fit methods lies in their ability
to address the Pinocchio effect. Their principal disadvantage lies in their departure from
the Procrustes distance metric. Comparisons performed under these superimpositions are
not covered by the theory developed in Chapter 4.

If you are considering a resistant-fit method, we recommend that you compare several
alternative methods. Not all rely on the median of medians, as RFTRA does; some employ
an explicit distance metric (or error function), not just the Procrustes distance. Methods
that use different metrics will produce different superimpositions, which may lead to dif-
ferent biological inferences as a consequence of the difference between metrics. It is usually
difficult to justify using any particular metric, so it is important to compare results based
on a variety of methods. That will increase the likelihood that your conclusions reflect
the structure of your data and do not depend on the type of software that happened to be
available. The program SuperPoser (Liebner and Sheets, 2001) carries out robust resistant-
fit methods using a variety of error functions. A different robust approach, one based on
identifying and excluding highly variable landmarks and then carrying out the superimpo-
sition on the remainder (using either generalized least squares or a resistant-fit method),
has been developed by Dryden andWalker (1999), but the software for this approach does
not seem to be readily available at present.
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Summarizing the advantages and disadvantages of different methods

Before summarizing the advantages and disadvantages of the methods, we must admit to
our own preference. In general, we favor GLS because of its most notable advantage over
all other methods – it is the one consistent with the general theory of shape. The Procrustes
distance is the function minimized by this method, so it is the one most consistent with
theory (and therefore with our agreed-upon definition of shape). Even the pictures embody
that measure. When you look at the pictures, you can see the distance between shapes – it
is the square root of the summed squared lengths of the vectors displayed in the graphics.
At this point you still may have difficulty appreciating how important this is, but it is the
primary advantage of the method and the reason these coordinates are the ones preferred
for statistical analyses. Accordingly, we regard it as the “default” method – the one to
use unless there is a good reason to choose an alternative. We thus use it as the basis for
comparing all other methods.

Another important advantage of GLS over the baseline methods (BC and SBR) is shared
with the resistant-fit methods. The advantage is that GLS and the resistant-fit methods do
not have landmarks constrained to lie on the baseline, so there is no transfer of variance
from these points to all other landmarks. In general, this reduces the induced covariances
among landmarks and produces smaller variance ellipses around most landmarks. How-
ever, GLS enjoys less of an advantagewhen there is a strong Pinocchio effect. In this case the
resistant-fit methods will have a greater advantage, particularly if the user is not troubled
by their departure from the Procrustes distance metric and the associated shape spaces.

One disadvantage of GLS is that the number of variable coordinates exceeds the number
of shape variables by four. If the data are analyzed by conventional statistical tests, four
randomly selected coordinates must be dropped – which could have a substantial impact
on results. Fortunately, there are three generally accepted ways of getting around this
problem. One is to replace the landmark coordinates with a set of shape variables that
convey the same information but use the correct number of variables (the partial warps
scores discussed in Chapter 6). The second is to use resampling based methods that do
not require estimates of the number of degrees of freedom (these methods are discussed in
Chapter 8). The third option is to use statistical tests specifically adapted to the coordinates
produced by GLS (such as Goodall’s F-test, discussed in Chapter 9). Thus the discrepancy
between the number of variable coordinates produced by the GLS superimposition and
the number of shape variables is an obstacle that is easily removed.

A potentially more serious problem is that the Procrustes method freely rotates forms
to maximize their similarity. This is consistent with the definition of shape that forms the
basis of geometric morphometrics, in which rotations do not alter shape. From a bio-
logical perspective, however, this attitude toward rotations might seem unreasonable. As
Bookstein (1996) observes, the method “happily” rotates shapes around axes of bilateral
symmetry. The effect is illustrated in the analysis of rodent skulls (Figure 5.9), in which
the Procrustes superimposition appears to rotate and translate the midline, even though
that is biologically unrealistic. The effect is not due to asymmetry in the skulls because the
data for each individual were “symmetrized” (as described earlier); instead, the rotation
reflects the fact that posterior landmarks generally undergo larger medio-lateral displace-
ments than anterior landmarks (this might be most visible in the depiction by the sliding
baseline, Figure 5.9B). The change in the relative width of the two ends forces the GLS
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superimposition to rotate the skull, and the midline with it. The GLS is free to perform that
rotation because the orientation of the skull is not information relevant to an analysis of
shape. In contrast, our interpretation that the midline has been rotated, and especially our
unease with that interpretation, reveals a perspective in which orientation is information
relevant to an analysis of skulls.

The conflict between the two views outlined above raises an important conceptual issue.
If we regard rotation as inappropriate under some conditions, we need to clarify what we
actually mean by equivalent shapes. In particular, if we would not consider two forms to
be equivalent when they differ by rotation (or translation) of an axis of symmetry, then
we should not place them in the same class or claim that there is no distance between
them. This view of rotation is not consistent with the Procrustes metric, or with the idea
that rotations do not alter shape. Either we must adopt a different definition of shape
(and a new theory of shape analysis to go with it), or we must recognize that sometimes
the difference of interest is not purely a difference in shape. The latter approach seems
more productive; not only does it retain a well-established theory of shape analysis, but
it also recognizes that there is more to morphology than shape. In the case of the rodent
skulls, the rotations that were used to reveal shape differences removed an important
component of information about skull morphology – namely skull orientation. Usually
orientation is viewed as a “nuisance” parameter because it only refers to the orientation
of a specimen on a digitizer, but when dealing with axes of symmetry, orientation has
a biological significance. The loss of information about orientation is what makes the
pictures difficult to interpret.

Fortunately, the conflict between biological and geometric perspectives can be addressed
by judicious choice of graphical styles; we do not need to give up one perspective for the
other. The statistical analyses can be performed on the symmetrized data (the half skull)
to evaluate shape differences, regardless of the graphical representation. One option is to
use SBR to depict the results, although this method will not convey the actual Procrustes
distances among shapes (the coordinates obtained by SBR can be analyzed statistically,
using a resampling method, to check that the results are consistent with those based on
the coordinates obtained by GLS). Another option is to duplicate the coordinates of the
symmetrized landmarks, reflect them back across the midline to create whole symmet-
rical shapes, and then perform a GLS superimposition on the reconstructed whole skulls
(Figure 5.9C; see alsoZelditch et al., 2003). This approach allows us to use coordinates that
are consistent with the Procrustes distance metric (hence directly depict the results of any
statistical analyses that are done) while avoiding the problem of interpreting inappropriate
translations or rotations of the baseline.

Although none of the limitations of GLS are particularly burdensome, there are still
times when a baseline superimposition method might be preferred. Generally, these are
cases when it is useful to have all shapes aligned to a standardized or conventional ori-
entation. Alignment of the skulls along the midline (as above) is just one such example.
Frequently, fixing the baseline simplifies the interpretation of complex shape changes by
making it possible to begin with an analysis of each landmark’s displacement relative to
the baseline (although it remains difficult to talk about changes in all the free landmarks
relative to each other). To the extent that this is an advantage, it is a bigger advantage
for BC than SBR because BC fixes all four coordinates of the baseline endpoints and
SBR fixes only two. In some cases this advantage might be cancelled out by the fact that
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SBR coordinates are scaled by centroid size rather than baseline length. Not only does
SBR have the advantage of using a concept of scale that is consistent with the theory of
geometric morphometrics; the implied shape distances are also closer to the Procrustes
distances.

Interpreting graphical results: resolving apparent inconsistencies

The graphical representation of results is one of the main reasons why geometric methods
are so useful. Because the graphics can influence the interpretation of results, it is impor-
tant to understand exactly how the superimposition methods influence the graphics. To
illustrate these effects, we use the four superimposition methods that have been the focus
of this chapter (BC, SBR, GLS and RFTRA) to depict the results of a single analysis of the
ontogeny of body shape in the piranha S. gouldingi (Figure 5.12).

Perhaps the most obvious difference among the four panels is the degree to which
postcranial landmarks are vertically displaced. It might appear that Bookstein shape coor-
dinates either exaggerate the degree to which the postcranial body is deepened, or else
that the other superimpositions understate it. However, this is not the case; all the other
superimpositions show a relative shortening of the body, which is equivalent to a relative
deepening. Both mean exactly the same thing. Relative body depth is a ratio between depth
and length, so it is just as reasonable to think of it as a decrease in length relative to depth as
to think of it as an increase in depth relative to length. Increasing body depth increases the
ratio by increasing the numerator; decreasing body length also increases the ratio, but by
decreasing the denominator. Because we come to the pictures informed by our knowledge

(A) (C)

(B) (D)

Figure 5.12 Ontogenetic change in body shape of S. gouldingi depicted by vectors of relative land-
mark displacement computed from four superimpositions: (A) BC coordinates from the 1–7 baseline;
(B) SBR to the same baseline; (C) GLS; (D) RFTRA.
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that body length increases over ontogeny, it may be difficult to grasp that it decreases
relative to depth. We would probably avoid saying that body length decreases relative to
depth, simply because that phrasing is disconcerting to biological intuition; instead, we
would say that depth increases relative to length. When pictures show a relative decrease
in a feature that is increasing in absolute length, readers may need some explanation of the
unexpected contrast. In particular, it is important to explain that the decrease is in relative
(not absolute) length.

Other apparent inconsistencies between pictures can also be reconciled, usually by con-
centrating on the changes in relative positions of landmarks rather than on the vectors at
individual landmarks. It may take a lot of practice before this is easy. For example, look at
the circled landmark in Figure 5.13. If you look only at this landmark, the results from the
different superimpositions appear to be inconsistent. That landmark appears to “move”
quite far anterodorsally in the BC superimposition (Figure 5.13A), but much less and in
three different directions in the other superimpositions: anteriorly in SBR (Figure 5.13B);
anteroventrally in GLS (Figure 5.13C), and almost entirely ventrally in RFTRA (Figure
5.13D). However, none of these statements actually reflect what the pictures show. None
of the pictures show the independent movement of any one point in isolation; rather, what
they show is the relative displacements of all points.

We get a better indication of the displacement of the circled landmark relative to neigh-
boring landmarks by “connecting the dots” – drawing line segments between landmark
locations to approximate the profile of S. gouldingi’s head. In Figure 5.14 we show the
same superimpositions and ontogenetic displacements of landmarks as in Figure 5.13, and
we add lines to show the relative positions of the landmarks early in ontogeny (dotted
lines connecting the bases of the arrows) and late in ontogeny (solid lines connecting the
tips of the arrows). Now we can see that the profile of the head is initially fairly shallow

(A) (C)

(B) (D)

Figure 5.13 Ontogenetic change in body shape of S. gouldingi, highlighting the landmark at
the epiphyseal bar. Displacements are shown in four superimpositions: (A) BC coordinates from
the 1–7 baseline; (B) SBR to the same baseline; (C) GLS; (D) RFTRA.
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(B)

(A) (C)

(D)

Figure 5.14 Ontogenetic changes in dorsal head profile are highlighted by drawing in line segments
between the locations of landmarks at two different ages: early in ontogeny (dotted line) and late in
ontogeny (solid line). Displacements are shown in four superimpositions: (A) BC coordinates from
the 1–7 baseline; (B) SBR to the same baseline; (C) GLS; (D) RFTRA.

(nearly a straight line across all three points), and becomes much steeper (particularly
between the tip of the snout and the second landmark – the one that was circled). All
four superimpositions show this same change in profile. Despite apparent discrepancies
in the displacements of individual landmarks, the relationships among the landmarks are
consistently represented. Before we can interpret the results in terms of these vectors of
relative landmark displacement, we must become accustomed to what these vectors rep-
resent. The individual vectors do not show changes at landmarks; rather, the differences
between vectors show changes between the landmarks.

Because the different superimpositions show the same shape change, the primary cri-
terion for choosing which to use to display results is simply the ease of interpretation. In
some cases, it is easier to understand the results depicted by Bookstein shape coordinates
because the fixed baseline provides a simple, straightforward line of reference. That line
makes it easier to interpret and to verbalize the information contained in the pictures;
aiding both your ability to understand your results and your ability to communicate your
results to others.

Recommendations regarding superimposition methods

1. Unless there is a good reason for choosing an alternative, use GLS.
2. When an axis of symmetry is present, and it is rotated by GLS, decide whether you

think that shape is unaltered by rotation. If you are willing to redefine shape, so that
it actually is altered by rotation, use SBR, and use resampling-based statistical tests.
Alternatively, use GLS for statistical analyses and depict the results by back-reflecting
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the data. However, if choosing this second approach, realize that ordination methods
(like principal components and canonical variates analysis, discussed in Chapter 7) do
not necessarily give the same results for the symmetrized and back-reflected data. If
using ordination methods, do the analysis on the symmetrized data, save the PC or
CV scores, and regress the back-reflected data on those scores to obtain the pictures.

3. When conventional statistical tests are the only option, either use Bookstein’s shape
coordinates or use the variables explained in Chapter 6 (partial warps). These are
the only methods that produce 2K−4 variables, equal to the dimensionality of shape
space.

4. When the major objective is to depict the differences between forms, use several meth-
ods to see how each represents that difference. Only the GLS method displays the
difference in terms that are exactly commensurate with the Procrustes distance. If
your primary concern is having a picture that unambiguously represents the measured
distance between shapes, use the GLS to depict the results. If ease of interpretation
or communication is of greater importance, use whatever method produces the most
easily interpreted graphics.

5. When there is a great deal of noise that does not respond to alternative choices of
baselines, or at least not to alternatives that permit straightforward interpretations,
SBR or GLS will be more useful than Bookstein shape coordinates (regardless of
interpretability).

6. If you insist on a robust fitting method, look beyond RFTRA. Determine which of
the many possible error functions is most appropriate for your data, and use that in
weighting the variances.

Software

The program CoordGen, introduced in Chapter 3, can also be used to obtain coordinates
by SBR, GLS, and RFTRA, in addition to BC. A variety of resistant-fit coordinates can be
calculated using SuperPoser. Virtually all the software in the IMP series can read coordinate
data produced by any kind of superimposition and convert it to GLS for analysis, so you
can input the BC coordinates you saved earlier and use them in all subsequent analyses.
Each program gives you the option to display your results (based on the GLS) using any
of the other available superimposition methods.

When running CoordGen, you will follow the same general procedure to obtain super-
imposed coordinates regardless of the method of superimposition, so most of the directions
for using CoordGen are given in Chapter 3 (which introduced BC). There is one major
difference that applies to GLS and RFTRA. Unlike BC and SBR, GLS and RFTRA do not
depend on baseline, so you do not need to enter the endpoints of the baseline. However,
during the input of a new dataset, CoordGen automatically aligns the specimens to the
default baseline. This will be the approximate orientation of your specimens after GLS,
unless you change it. To select a more convenient orientation, enter a baseline that is closer
to your preferred orientation, click Show BC, then click Show Procrustes. Another option
for orienting your GLS superimposition is to click the Show Procr (PA) button. This will
align the reference configuration so that its principal axis (its long axis, approximately)
is aligned with the X-axis. You can also click on the Vertical Axis (Procrustes PA) before
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clicking on Show Procr (PA). This will rotate the reference shape so that its principal axis
is aligned with the Y-axis. If none of these provide a reasonable orientation, don’t panic;
other IMP programs have interactive tools that allow you to rotate pictures of results
(shape differences) through any desired angle.
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6
The thin-plate spline: visualizing shape

change as a deformation

Shape coordinates of all kinds are fundamentally limited when it comes to depicting trans-
formations in shape – they cannot tell us what happens between landmarks. Sometimes it
is obvious what happens between landmarks, as in Figure 6.1, where we can see that the
snout elongates relative to the eye. That is obvious because the posterior eye landmark is
displaced towards the anterior eye landmark, and that anterior eye landmark is not dis-
placed towards the snout – so the snout must be lengthening relative to the eye. However,
it is not so obvious whether the postorbital region is elongating (relative either to the head
or body). Similarly, it is difficult to judge whether the head (as a whole) elongates relative
to the postcranial body. The problem is not that we lack landmarks in the relevant regions;
rather, it is that so many landmarks are displaced relative to the others that it is mentally
exhausting to track what happens between them all. That tracking requires looking at the
lengths of all the vectors to determine whether several landmarks are displaced to a sim-
ilar degree in concert, or if some are displaced relatively more than others (thereby either
increasing or decreasing the distance between them). Even the landmarks that are not dis-
placed relative to others must be considered. What we need is a method for visualizing
changes between landmarks over the entire form.
That visualization is the primary purpose of the thin-plate spline. Using it, we can

interpolate between landmarks, taking all displacements of all landmarks relative to all
others into account (Figure 6.2). The other major purpose of the spline has been men-
tioned previously in this text: we need a set of shape variables to use in conventional
statistical tests. Specifically, we need a set of variables that spans the entire space of our
data but numbering only 2K−4 for two-dimensional data (more generally, numbering
(KM−1−M− (M(M−1)/2)) where K is the number of landmarks in M dimensions).
The spline provides such a set. Unlike the coordinates obtained by the Procrustes-based
superimposition methods, the thin-plate spline coefficients (called partial warp scores) can
be used in conventional statistical tests without adjusting the degrees of freedom. Also
unlike the coordinates produced by the two-point registration, which also have the appro-
priate number for statistical tests, the partial warp scores employ the correct tangent space

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
ISBN 0–12–77846–08 All rights of reproduction in any form reserved



chap-06 4/6/2004 17: 23 page 130

130 GEOMETRIC MORPHOMETRICS FOR BIOLOGISTS

1

2

3
4

5

6

7

8

11

10 9

12

13

14
15

16

Figure 6.1 Ontogenetic change in body shape of Serrasalmus gouldingi, depicted by relative
displacements of Bookstein shape coordinates.

measure of distance – the Procrustes distance. Using partial warps you will get precisely
the same results as you get using the coordinates obtained by the Procrustes (GLS) super-
imposition if you correctly adjust the degrees of freedom, or use tests that calculate them
properly (like Goodall’s F).
In summary, the thin-plate spline provides a visually interpretable description of a defor-

mation, with the same number of variables as there are statistical degrees of freedom, and
it employs the Procrustes distance as a metric. Even if we were not concerned with the
advantages of the spline for graphical analysis, we might still want to use it for purposes of
statistical inference. Conversely, even if we were not concerned with the advantages of the
spline for statistical analysis, we might still wish to use it for its graphical capabilities. You
can use the spline to depict your results, and you can use partial warps in your statistical
analyses without worrying that the mathematical details (and complexities) will have any
impact on your results. The spline is a convenient tool for visual display and for obtaining
variables with the correct degrees of freedom – it is nothing more (or less) than that.
In this chapter, we begin with a basic overview of the mathematical idea of a defor-

mation. We then discuss the mathematical metaphor underlying one particular model of
a deformation, the thin-plate spline, and how we can decompose it to yield variables.
In general, we present a largely intuitive overview before delving more deeply into the
mathematics.
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Figure 6.2 Ontogenetic change in body shape of S. gouldingi, depicted both by relative displace-
ments of Bookstein shape coordinates and by the thin-plate spline.

Modeling shape change as a deformation

A deformation is a smooth function that maps points in one form to corresponding points
in another form. Intuitively, smoothness means that the function goes on without inter-
ruptions or abrupt changes. More precisely, it means that the function is continuously
differentiable (it can be differentiated, its first derivative can be differentiated, and so can
its second, and so forth). To be differentiable, a function must be continuous. For example,
the function Y =X3 is continuous, but the absolute value function is not because it has a
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sharp corner at X=0 and so is not differentiable at that point. The Dirichelet function
Y = {1 when X is rational; 0 when X is irrational} is also not continuous – it is not dif-
ferentiable anywhere. To be continuous, it is not enough to have a first derivative, that
first derivative must also be a differentiable function. That deformations are continuously
differentiable is important, because it means that the function must extend between land-
marks – it cannot be defined only at certain discrete points and disappear in the regions
between them.
If a function blows up (becomes infinite or non-differentiable) between points, we cannot

use it to interpolate values between them. This is important because we are using the thin-
plate spline as an interpolation function, inferring what happens between landmarks from
data at given anatomical points. If it is unreasonable to interpolate, it is unreasonable to
use the thin-plate spline for that purpose. It is also unreasonable to interpolate between far
distant landmarks, just as it is unreasonable to extrapolate a linear regression far beyond
the range of the observed data. If our landmarks are far apart, we have too few data
to draw conclusions about what happens between them. For example, in Figure 6.2 we
are assuming that the changes in regions between postcranial landmarks can be inferred
from landmarks on the dorsal and ventral periphery. That assumption can be questioned,
because if we actually had more landmarks in that region we might find abrupt changes –
small regions where the grid dramatically compresses or expands. We are simply assuming
that no such localized changes occur.
Another case in which it would be inappropriate to think of shape change as a defor-

mation is when there is change concentrated at a single landmark. That is equivalent to a
function with an abrupt change, which violates the assumption of continuity. Such discon-
tinuities can be detected as displacement of one shape coordinate against a background
of invariant points. That pattern may be rare, but one close to it has actually been found
in data (Myers et al., 1996). In that study, mice (Peromyscus maniculatus bairdii) fed
different diets were found to have skulls that differ only in the location of the tips of the
incisors relative to the other skull landmarks. This is an extreme case of a Pinocchio effect
(as discussed in Chapter 5). Such highly local changes should be ruled out before any
deformation-based method is applied; if such highly localized change is found, it is better
to rely on shape coordinates.
There is one other case in which a deformation-based approach might be unwise; when

the interpolation spans a large amount of extra-organismal space – that is, when it is
interpolating the changes over regions of “tissue” outside the organism. This can happen
when landmarks are located at tips of long structures, or on structures that extend far
laterally. Normally this is not a serious problem because we can simply avoid interpreting
the changes in regions between those landmarks, except to say (perhaps) that the long
bony structures are relatively elongated or reoriented more laterally. However, this can
be a problem when multiple landmarks are located at tips of long structures and no other
landmarks serve to pin down what is happening to the regions between them. It is possible
to analyze the changes in relative position and length of those tips using shape coordinates,
but it may not be wise to draw a grid interpolating changes at those tips to regions between
them – there is no organismal tissue there.
If we do not have one of the special cases described above – that is, if we do not

have evidence that some landmarks are largely independent of the others – then we can
apply an interpolation function to understand changes between landmarks. Because the
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interpolation function is continuously differentiable, relative displacements of landmarks
can be used to calculate the displacement of any location on the organism. These inferred
displacements between landmarks can be illustrated using a variety of graphical styles;
Figure 6.2 demonstrates the one most often used, a deformed grid in the style of D’Arcy
Thompson (1942).

The physical metaphor

The mathematical basis for drawing the picture of the deformed grid is a metaphor –
the bending of an idealized steel plate (Bookstein, 1989). According to this metaphor,
displacements of landmarks in the X,Y plane (the plane in which we have drawn them
in Figure 6.1) are visualized as if they were transferred to the Z-coordinate of an infinite,
uniform and infinitely thin steel plate. That is, instead of depicting a landmark as displaced
in some direction within the plane of this page, it is visualized as if it were displaced in the
third dimension (out of this page).
The metal plate is constrained by little stalks that weld the landmarks in one shape

to the landmarks in the other. This is difficult to draw because the imagery is inherently
three-dimensional, so imagine two plates and place a configuration of landmarks on each.
Now, put one plate above the other, and construct little stalks that attach a landmark
on one plate to its homologue on the other plate. If a landmark in one shape is displaced
a long distance relative to the other landmarks, construct a long stalk. Thus when the
landmark is displaced a long distance in one direction (such as far anteriorly) the stalk
is long; conversely, when displaced only a short distance the stalk is short. Therefore the
stalks are of uneven lengths, and that unevenness means that one plate cannot be flat. The
conformation that plate takes is determined by the relative heights of the stalks, and by
the distances between them on the plate.
In some cases the plate simply tilts or rotates (it does not actually bend); in other cases

the plate must actually bend, such as when a point in the middle is elevated higher than
four surrounding points. That bending may be gentle or quite sharp. For real steel plates,
the conformation of the plate tends to minimize the magnitude of bending over the whole
plate (as well as the physical energy required to produce that bending). Here we use the
expression tends to minimize the magnitude and energy of bending, because real steel
plates may have flaws, and the situation is not a pure case of work against elasticity. In
the ideal case, the bending energy depends solely on the distance between the points and
the relative heights of the stalks, and the total amplitude of bending. If we consider two
different deformed plates, both describing the same total overall amount of change (the
same set of stalk heights) but one with the stalks proportionately closer together, the one
that is bent between the more closely spaced points requires more energy than the one that
is bent between more widely spaced points.
The bending energy depends on the spacing of the stalks because it is a function of the

rate of change in the slope of the plate – i.e. whether the slope of the surface increases
rapidly or slowly. In these terms, more energy is required when the slope of the surface
changes at a higher rate (for the same net amplitude of change). Imagine a tall stalk sur-
rounded by short ones, which induces a steep slope in the curvature of the plate. The
steepness of that slope is proportional to the function being minimized – the rate of change
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in slope of the surface – and thus the function being minimized is a function of the second
derivative (the slope of the surface is the first derivative) integrated over the whole surface
of the plate. It can also be termed the integral of the quadratic variation over the plate.
To return from ideal plates to the analysis of a deformation, we now project the changes

that were visualized as if in the Z-direction back into the X,Y plane (the plane of our
landmark data). The idea of bending that had a physical meaning when we were talking
about changes in the Z-direction is now reinterpreted as “spatially local information.”
This interpretation may not be intuitively obvious, but consider what a relatively rapid
increase in slope means – that there are contrasting displacements of closely spaced points.
When closely spaced points change in opposite directions it requires more energy to bend
the plate between them; so there is an inverse relationship between the spatial scale of the
change and its metaphorical bending energy. Minimization of bending energy is equivalent
to minimization of spatially localized information.
It is always possible to envision changes as highly local by assuming that the plate

flattens out immediately after rising, then rises again just at the next stalk, then flattens
again, then rises again, etc. The argument against doing so is that this would be the most
unparsimonious interpretation possible. By minimizing bending energy, we obtain a more
parsimonious description of the change. We do not assume highly localized change unless
the data demand doing so.

Uniform and non-uniform components of a deformation

Some transformations require no bending energy at all; these are equivalent to tilting
or rotating the plate. These are often called affine or uniform transformations, meaning
that they leave parallel lines parallel. The terms “affine” and “uniform” are both used to
describe the same component of a deformation; “affine” is favored by mathematicians, but
“uniform” appears more often in the geometric morphometric literature. Consequently,
we will use “uniform” for this component and “non-uniform” for its complement. In our
example (Figure 6.2), if the entire fish simply elongates relative to its depth, without any
disproportionate lengthening of one region relative to another, that is a uniform elongation.
Uniform elongation is equivalent to uniform narrowing, as should be recalled from our
discussion of shape variables in previous chapters. Because it is uniform, meaning that
the same change occurs everywhere, we need only one descriptor for the change of the
whole organism. In contrast, the non-uniform or non-affine deformations (which involve
the metaphorical bending) have regionally differentiated effects.
A deformation can be broken down into uniform and non-uniform components, as in

Figure 6.3. Most real biological transformations will have both uniform and non-uniform
components. These components are computed separately, so we describe them separately
(first the uniform, then the non-uniform), but it is important to bear inmind that a complete
description, and an accurate illustration, requires specifying all the components.

Uniform (affine) components

There are six distinct types of uniform deformations for landmarks in two dimensions, and
they are independent of each other (meaning that they are mutually orthogonal). Figure
6.4 shows these six operations carried out on a square configuration of landmarks. The
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Figure 6.3 Ontogenetic change in body shape of S. gouldingi, depicting: (A) the total deformation
and its two components; (B) uniform component; (C) non-uniform component.

first four are the familiar ones that do not alter shape: translation along two perpendicular
axes (Figures 6.4A, 6.4B), scaling (Figure 6.4C) and rotation (Figure 6.4D). These are
all used in superimposing shapes. The other two uniform deformations do alter shape:
compression/dilation (Figure 6.4E) and shear (Figure 6.4F). Compression/dilation refers
to the case in which one direction has expanded (the vertical or Y-direction in Figure
6.4E) while the other has contracted (the horizontal or X-direction). Shearing refers to
translating landmarks along one axis by a distance proportional to their location along
the other axis.
Because compression/dilation and shear alter shape whereas translation, rotation and

scaling do not, it is common to talk about the two that alter shape without mentioning the
ones that do not. All of them need to be tracked, so we will refer to compression/dilation
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(A) (B) (C)
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Figure 6.4 The six uniform (affine) transformations: (A) translation along the vertical axis; (B)
translation along the horizontal axis; (C) scaling; (D) rotation; (E) compression/dilation; (F) shearing.
The original (or reference) square is shown with dotted lines, while the deformed shape is shown
with solid lines.

and shear as the explicit uniform deformations or explicit uniform terms because they are
the ones explicitly tracked. We will refer to the others as the implicit uniform deformations
or implicit uniform terms. They are implicit because they can bemathematically determined
from the superimposition method used, the explicit uniform components, and the non-
uniform components of a deformation – they are the translation, rotation and scaling
that must have been carried out. Both explicit and implicit uniform terms are needed, in
addition to the non-uniform terms, to draw the deformation correctly.
Each deformation has an inverse. Applying the inverse of a deformation is equivalent to

traveling backwards along the path that was taken until we arrive back at the starting point.
We can think of the deformation in terms of a 2K-dimensional vector (i.e. two dimensions
per landmark). There would be a vector at each landmark indicating the direction in
which that particular landmark will be mapped under the deformation (although there
are only 2K−4 independent dimensions). In the inverse of the deformation, the directions
of the arrows would be reversed. The inverse of a translation is the same magnitude of
translation in the opposite direction (negative X instead of positive X). Similarly, we
can represent rotation as an angular displacement so its inverse is a negative angular
displacement (counterclockwise instead of clockwise). Scaling is slightly different because
it involvesmultiplication (whereas translations and rotations could be treated as additions).
Scaling is multiplication by a factor F; its inverse is multiplication by the inverse of F(1/F).
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Unfortunately, the algebraic descriptions of the last two deformations and their inverses
are not quite as simple (as we will see below). Graphically, we can see that the inverse of
compression/dilation involves a reversal of which axis is compressed and which is dilated,
and that the inverse of a shear is a shear of the same amount along the same axis in the
opposite direction.

Calculating the shear and compression/dilation terms
Here we present the mathematical derivation of formulae for calculating the uniform com-
ponents of a deformation that changes shape. Unlike the formulae for computing the
non-uniform part of a shape change, which have been stable over the last decade, the for-
mulae for computing the uniform part have changed repeatedly. Over the last several years,
the uniform component has been computed using the formulae presented by Bookstein
(1996). These, which are based on the Procrustes distance, are the ones we present here.
We begin with a conceptual framework for Bookstein’s derivation of the current formulae;
then follow that with the full mathematical details.

Conceptual framework The goal of this derivation is to find a unit vector that describes
the direction of deformation at each landmark due to shearing or compression/dilation,
followed by a Procrustes generalized least squares (GLS) superimposition of the deformed
shape back onto the original (undeformed) one. This represents what we measure in data:
a deformation followed by a superimposition operation. Thus, both mappings must be
taken into account. When we are done, we will have a set of unit vectors that describe
the deformation under shearing or under compression/dilation. We can then take the dot
product of the observed deformation with the unit vectors to obtain the component of
the observed deformation lying along the shear or compression/dilation vectors. These are
what we have been calling the explicit uniform components of the deformation.
Notice that we are taking a verbal description of the situation, turning the verbal

statement into two mathematical operations or mappings (shear or compression/dilation,
followed by the superimposition), then using those mappings to determine the direction
of the vectors describing the deformation. That allows us to calculate components of any
deformation along those desired directions. What might not be obvious yet is that vec-
tors describing the uniform deformations depend on only one form – the one that we are
modeling as deformed, which we will call the reference form (the other is the target). This
terminology should be familiar – the reference form is the same one that we discussed in
Chapter 4. If you do not wish to read further, you do not have to. You can go directly to
the section on decomposing the non-uniform (non-affine) component.
Although we now have a general idea of the procedure, there are still a few ideas that

need to be added. The first is the idea of complex number notation for landmark locations,
which is often used in mathematical derivations (see Dryden and Mardia, 1998, for exam-
ple). Consider a landmark configuration consisting of K landmarks in two dimensions,
which we will call Z, the reference form. Mathematically, we will say:

Z = {Zj,Zj =
(
Xj,Yj

)}K
j=1 (6.1)

which means that Z is a set of K pairs of landmark positions Zj, or (Xj,Yj). It is a useful
mathematical shortcut to think of Zj as being a complex number Zj =Xj + iYj, where
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i is the square root of minus one. Complex number notation is often used in texts on the
statistics of shape, so understanding it is useful.
The next idea is to require that the reference form be rotated to a principal axis

alignment, so that
∑

j XjYj =0, which will later simplify the mathematics (but may pose
problems for aligning specimens in some software, discussed below). The summation

∑
j

is from j=1 to j=K, and all the summations in the derivation are likewise over all K
landmarks. We are also going to assume that the reference has a centroid size of one, so
that

∑
j (X

2
j +Y2j )=1, and a centroid position of (0, 0), so that

∑
j Xj =0 and∑j Yj =0.

Mathematical derivations Let us consider the two functions of interest: shear, which we
will call S1(λ), and compression/dilation, which we will call S2(λ) (λ describes the magni-
tude of the mapping). We will be taking the limit as λ→0 at the end of this derivation,
so terms including λ2 will be discarded. The mappings from a reference form Z to a target
form Z′ under these operations are as follows:

S1(λ) : Z→ Z′,Z′ =
{
Z′j =

(
Xj + λYj,Yj

)}K

j=1 (6.2)

S2(λ) : Z→ Z′,Z′ =
{
Z′j =

(
Xj,Yj + λYj

)}K

j=1 (6.3)

You can probably convince yourself that S1 describes a shear; the X-coordinates of each
point are displaced a distance proportional to their Y-axis position relative to the centroid.
Similarly, you should be able to recognize that S2 describes an expansion of the landmarks
along the Y-axis. We do not need to worry about modeling the contraction along the
X-axis, even though it must also be occurring, because the Procrustes GLS superimposition
will take care of that.
If Z and Z′ are both centered (i.e. have a centroid position of zero), then the Procrustes

superimposition may be approximated as the multiplication of Z′ by the complex factor
PZ′ , where:

PZ′ = ZZ′

Z′Z′
(6.4)

and the expressionZ′ refers to the complex conjugate of the complex vectorZ′ representing
the landmark configuration after the compression/dilation. The Procrustes superimposition
of Z′ on Z is thus PZ′Z′. To get the vectors that describe the uniform deformation, we just
subtract the starting position Z from PZ′Z′ and then divide through by the magnitude of
the deformation λ, yielding (PZ′Z′−Z)/λ as the set of vectors describing the deformation.

Further derivation of the uniform components To find PZ′ for the S2(λ) mapping
(compression/dilation), we note that the numerator of PZ′ is:

ZZ′ =
∑

j

(
Xj + iYj

)× (Xj − i
(
Yj + λYj

))
(6.5)

which expands to:

=
∑

j

(
X2

j − iXjYj − iXjλYj + iXjYj −
(
iYj
)2 − (iYj

)2
λ
)

(6.6)



chap-06 4/6/2004 17: 23 page 139

THE THIN-PLATE SPLINE 139

Because i2=−1 and the products of XjYj sum to zero (under the alignment specified
earlier), we can simplify this to:

=
∑

j

(
X2

j + Y2j + Y2j λ
)

(6.7)

Now add the constraint that
∑

j (X
2
j +Y2j )=1 because we scaled the reference to unit

centroid size, and we have:

ZZ′ = 1+ λ
∑

j

Y2j (6.8)

Now we simplify the denominator of PZ′ :

Z′Z′ =
∑

j

(
Xj + iYj (1+ λ)

)× (Xj − iYj(1+ λ)
)

(6.9)

=
∑

j

(
X2

j + Y2j (1+ λ)2
)
=
∑

j

X2
j + Y2j

(
1+ 2λ+ λ2

)
(6.10)

=
∑

j

X2
j + Y2j + 2Y2j λ+ Y2j λ

2 (6.11)

As mentioned before,
∑

j (X
2
j +Y2j )=1, and terms including λ2 can be discarded in the

limit of small λ, so that:

Z′Z′ ∼= 1+ 2λ
∑

j

Y2j (6.12)

This leaves us with:

PZ′ = ZZ′

Z′Z′
=
(
1+ λ∑j Y2j

)
(
1+ 2λ∑j Y2j

) (6.13)

We can now expand the term 1/(1+ 2λ∑j Y2j ) as 1−2λ
∑

j Y2j , keeping only first order
terms in λ for this power series expansion. This gives us:

PZ′ = ZZ′

Z′Z′
∼=

1+ λ∑

j

Y2j




1− 2λ∑

j

Y2j


 ∼= 1− λ∑

j

Y2j (6.14)

to first order in λ.
Now we can calculate the landmark coordinates after the operation of the

compression/dilation (S2(λ)) and Procrustes superimposition (which is just a multiplication
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by PZ′ , since Z′ is already centered):

PZ′Z′ =

1− λ∑

j

Y2j


× Z′ =


Zj =


Xj


1− λ∑

j

Y2j




 ,


(Yj + λYj

)1− λ∑
j

Y2j








K

j=1
(6.15)

The vector describing the displacement from Z to PZ′Z′ is then:

PZ′Z′ − Z =





Xj


1− λ∑

j

Y2j


−Xj


 ,

(Yj + λYj

)1− λ∑
j

Y2j


− Yj








K

j=1
(6.16)

=





−Xjλ

∑
j

Y2j


 ,

λYj − λYj

∑
j

Y2j − λ2Yj

∑
j

Y2j








K

j=1
(6.17)

Noting that λ2∼=0, we can simplify this to:

=





−Xjλ

∑
j

Y2j


 ,

λYj − λYj

∑
j

Y2j








K

j=1
(6.18)

= λ



Xj


−∑

j

Y2j


 ,Yj


1−∑

j

Y2j








K

j=1
(6.19)

We now define γ =∑j Y2j and α = 1−
∑

j Y2j =
∑

j X2
j , so that γ +α=1. After making

these substitutions and dividing through by λ, we have:

V2 =
(
PZ′ − Z′

)
λ

= {(−γXj,αYj
)}K

j=1 (6.20)

which is the vector of the displacements at each landmark point (Xj,Yj) produced by the
mapping S2 per unit of λ. All we need to do now is to normalize this set so that the length
of the vector is one.
The magnitude of this vector is:√∑

j

(
γ2X2

j + α2Y2j
)

(6.21)

Using the definitions of α and γ to rearrange this and simplify it, we get:

=
√
γ2
∑

j

X2
j + α2

∑
j

Y2j =
√
γ2α+ α2γ = √αγ (α+ γ) = √αγ (6.22)
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So if we normalize V2, we get:

V′2 =
V2√
αγ
=
{(
− γ√

αγ
Xj,

α√
αγ

Yj

)}K

j=1
(6.23)

=
{(
−
√
γ

α
Xj,

√
α

γ
Yj

)}K

j=1
(6.24)

which is now a unit vector describing a compression/dilation operation followed by
Procrustes superimposition.
Similarly, we start with a shearing operation, S1(λ), and corresponding Procrustes super-

imposition, PZ′ , to find the unit vector corresponding to these operations. First we need to
find PZ′ for the S1(λ) mapping:

ZZ′ =
∑

j

(
Xj + iYj

)× (Xj + λYj − iYj
)

(6.25)

=
∑

j

(
X2

j + Y2j +XjYjλ+ iY2j λ
)

(6.26)

As before,
∑

j

(
X2

j + Y2j
)
= 1,∑j XjYj = 0 and∑j Y2j = γ; therefore:

ZZ′ = 1+ iγλ (6.27)

Also:

Z′Z′ =
∑

j

(
Xj + λYj + iYj

)× (Xj + λYj − iYj
)

(6.28)

∑
j

(
Xj + λYj

)2 + Y2j =
∑

j

(
X2

j + 2λXjYj + λ2Y2j + Y2j
)
= 1 (6.29)

Therefore:

PZ′ = ZZ′

Z′Z′
= ZZ′

1
= 1+ iγλ (6.30)

Now we can simplify:

V1 = PZ′Z′ − Z
λ

= (1+ iγλ)(Xj + λYj + iYj)− (Xj + iYj)
λ

(6.31)

= Xj + λYj + iYj + iγλXj + iγλ2Yj + i2γλYj −Xj − iYj

λ
(6.32)

= λYj + iγλXj − γλYj

λ
= Yj + iγXj − γYj (6.33)

This leads to the series of coordinate pairs:

= (Yj(1− γ), γXj) (6.34)
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or

V1 = (αYj, γXj) (6.35)

Dividing this by its magnitude to normalize it yields:

√∑
j

(
α2Y2j + γ2X2

j

)
=
√
α2
∑

j

Y2j + γ2
∑

j

X2
j =

√
α2γ + γ2α (6.36)

= √αγ (α+ γ) = √αγ (6.37)

so the unit vector V′1is:

V′1 =
{(

αYj√
αγ
,
γXj√
αγ

)}K

j=1
=
{(√

α

γ
Yj,

√
γ

α
Xj

)}K

j=1
(6.38)

which may now be used to determine the shear component of the uniform deformation.
Some software packages will give you α and γ as used in the calculation of the uniform

component, othersmay give you the unit vectors instead. The expressions above (Equations
6.24 and 6.38) are for coordinates of the unit vectors for shear and compression/dilation
for a reference form rotated to principal axis orientation. It turns out to be straightforward
to rotate them to unit vectors to match any reference orientation preferred by a researcher,
although some programs may not offer this option, meaning that the reference may be
oddly oriented by the software.

Calculating uniform components based on other superimpositions
The approach taken in the above derivation was to determine the unit vectors that would
result from a shear or compression/dilation of a reference form, followed by Procrustes
superimposition back onto the reference form. It is also possible to determine the unit
vectors produced by a shear or compression/dilation of a reference, followed by sliding
baseline registration (SBR) or a two-point registration that yields Bookstein coordinates
(BC). These unit vectors and specimens can then be used in SBR or BC to calculate the
uniform components of the deformation, just as we did with those in Procrustes superim-
position. Estimates of the explicit uniform components under SBR are identical to those
derived from the Procrustes-based method presented here. This is not surprising, since the
Procrustes superimposition differs from SBR only in the implicit uniform deformations
(assuming that the Procrustes superimposition, like SBR, is performed with centroid size
set to one, two superimpositions differ only in the rotation and translation terms). Thus,
a deformation displayed by a Procrustes superimposition shows the same change in shape
as the deformation displayed by SBR – the differences between them are due to the implicit
deformations, and do not alter shape. Deformations shown by BC differ from those in
Procrustes superimposition in scale as well as rotation and translation, but these are still
implicit uniform terms. Likewise, RFTRA differs from the other superimpositions only in
the implicit uniform terms.
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Decomposing the non-uniform (non-affine) component

The non-uniform part of a deformation differs from the uniform in that it does not leave
the sides of a square parallel. However, like the uniform part, the non-uniform can be
further decomposed into a set of orthogonal components. The decomposition of the non-
uniform deformation is based on the thin-plate spline interpolation function, and produces
components called partial warps. We first describe an intuitive introduction to partial
warps, then a more mathematical one.

An intuitive introduction to partial warps
The non-uniform component describes changes that have a location and spatial extent on
the organism; they are not the same everywhere. They describe spatially graded phenomena
such as anteroposterior growth gradients, and more highly localized changes such as the
elongation of the snout relative to the eye. The notion of spatial scale is central to the
analysis, so we need an intuitive notion of spatial scale. In general (but imprecise) terms,
a change at small spatial scale is one confined to a small region of an organism. To refine
that idea, and develop a firmer grasp of the concept, we show several components at
progressively smaller spatial scales (Figure 6.5).
Figure 6.5A shows a component at large spatial scale that, while broadly distributed,

is not the same everywhere (so it is not uniform). The particular example shown in Figure
6.5A is the elongation of the midbody relative to the more cranial and caudal regions. A
more localized change, confined to the posterior region of the body, is shown in Figure
6.5B – a shortening of the region between the dorsal and adipose fins relative to the dorsal
fin and caudal peduncle. Because more distant landmarks are not involved in the change, it
is more localized than the one shown in Figure 6.5A. Another localized change is shown in
Figure 6.5C, this time confined to the cranial region. This is a shortening of the postorbital
region relative to the regions just anterior and posterior.
The components we have described above and depicted in Figure 6.5 are partial warps,

but to draw them we had to specify their orientation (we drew them as oriented along
the anteroposterior body axis). That orientation is not actually specified by the partial
warps themselves; rather, it is provided by a two-dimensional vector, the partial warp
scores. There is one two-dimensional vector per partial warp. These scores express the
contribution that each partial warp makes to the total deformation. The scores have anX-
and Y-component, and indicate the direction of the partial warp. The idea of direction or
orientation should be familiar from previous chapters. In Figure 6.6 we show one partial
warp (that depicted in Figure 6.5B) multiplied by three different vectors. It may be easiest
to see the directions by looking at the orientation of the vectors at landmarks. Figure
6.6A shows the partial warp oriented horizontally, which in our case corresponds to the
X-direction, so the coefficient of the X-component is large and that of the Y-component
is negligible. In contrast, Figure 6.6B shows the vector with a negligible X-component and
a large Y-component. Figure 6.6C shows the vector with X- and Y-components of equal
magnitudes.
We have described partial warps one at a time, but a complete description (and interpre-

tation) requires combining them all. Taken separately, partial warps are purely geometric
constructs – a function of the location and spacing of the landmarks of the reference form.
They are obtained by a geometric decomposition of the landmarks of the reference form
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Figure 6.5 Three components of the non-uniform deformation, called partial warps. (A) A par-
tial warp at large spatial scale, depicting an expansion of the midbody relative to the head and
caudal body; (B) a partial warp at moderate to small spatial scale, depicting a contraction of the
region between dorsal and adipose fins relative to the length of the dorsal fin and caudal peduncle;
(C) another partial warp at moderate to small spatial scale, depicting a shortening of the postorbital
region relative to the preorbital head and anterior postcranial body.
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Figure 6.6 One partial warp, oriented in three directions: (A) along theX-axis; (B) along theY-axis;
(C) equally alongX- andY-axes. Due to the orientation of our landmark coordinates, theX-direction
corresponds to the anteroposterior axis, and the Y-direction corresponds to the dorsoventral axis.
To make it easier to see the direction in which the partial warps are oriented, we also display them
by vectors of relative landmark displacements.
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(as explained in detail in the next section). Although they provide a basis for the tangent
space, they cannot be interpreted except in these abstract terms – we cannot, for example,
say that one part of the change in the ontogeny of the fish is a shortening of the region
between dorsal and adipose fins relative to the dorsal fin and caudal peduncle. That is
a component of the deformation, not a component of an ontogeny. Only by looking at
the total deformation can we say where change occurs. We have discussed them sepa-
rately only to explain what they are (none of the currently available software draws them
separately – to produce Figures 6.5 and 6.6 we had to use specialized software).
To summarize our intuitive presentation of spatial scale, we repeat our major points.

First, any non-uniform deformation can be decomposed into a series of components (par-
tial warps) at progressively smaller spatial scales. Each component describes a pattern of
relative landmark displacements, based on the spacing and location of landmarks in the
reference form. Each partial warp is multiplied by a two-dimensional vector (the partial
warp scores) that measures the contribution made by the partial warp (in each direction)
to the total deformation. We now present a more technical introduction to the thin-plate
spline.

An algebraic introduction to partial warps
Algebraically, partial warps are obtained by eigenanalysis of the bending energy matrix.
Eigenanalysis may be familiar from a quite different context, for example, principal com-
ponents analysis, where it is used to extract eigenvectors (PCs) of the variance–covariance
matrix of measurements. The exact same mathematics is involved in calculating the partial
warps; the difference lies in the matrix being analyzed. Rather than extracting eigenvectors
of a variance–covariance matrix, we instead extract them from the bending-energy matrix.
(We will discuss eigenanalysis further in Chapter 7; here we focus on the derivation of the
bending energy matrix.)
The idea behind the thin-plate spline is that it will approximate the observed deformation

by a linear combination of a function that is the smoothest available and that fully describes
the observed deformation. The function satisfying that pair of requirements has the form:

Z(X,Y) = U(R) = −R2 lnR2 (6.39)

where R is the distance between a pair of landmarks in the reference configuration (scaled
to unit centroid size). This particular function satisfies the biharmonic equation:

�2U =
(
d2

dx2
+ d2

dy2

)2
U(R) ∝ δ(0,0) (6.40)

where δ(0,0) is the generalized function, or delta function, which is defined to be zero
everywhere except at X=0, Y =0, with the odd requirement that:∫ (

δ(0,0)dxdy
) = 1 (6.41)

The delta function is oddly behaved, but mathematically tremendously useful. It is
sometimes called a functional, rather than a function.
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U is said to be the fundamental solution of the biharmonic equation, which is the
equation for the shape of a thin steel plate lifted to a heightZ(X,Y) above the (X,Y)-plane.
This is because the bending energy (BE) of the steel plate at a point (X,Y) is given by:

(
d2U

dx2

)2
+ 2

(
d2U
dxdy

)2
+
(
d2U

dy2

)
= BE(X,Y) (6.42)

and the total bending energy of the entire plate is:

∫ (
BE (X,Y)dxdy

)
(6.43)

which is the bending energy at each point integrated over the entire surface. The choice of
U(R) minimizes this total bending energy.
For biological purposes, we do not really care about the bending energy of a steel plate.

Rather, we care about the connection between bending energy and the curvature of the
plate (and their connection to spatial scale). Minimizing bending energy minimizes the
curvature of the plate, so when we fit a linear combination of the U(R) function to our
data, we are fitting a function that minimizes the amount of curvature needed to model
the observed deformations.
Suppose we want a linear combination of U(R) values, centered on each of the K land-

marks of our reference form (because we are describing a deformation, we are talking
about changes relative to a reference). We need to describe deformations in the X and Y
directions, so we form the following linear combinations:

fX (X,Y) = AX1 + AXXX + AXYY +
K∑

i=1
WXi U(X −Xi,Y − Yi) (6.44)

fY (X,Y) = AY1 + AYXX + AYYY +
K∑

i=1
WYi U(X −Xi,Y − Yi) (6.45)

where fX(X,Y) and fY (X,Y) are the spline functions that describe the deformations along
the X- and Y-directions relative to the reference form, and WXi and WYi are weights
of the functions U(X−Xi,Y −Yi), centered on the landmark locations of the reference
(Xi,Yi). The A terms describe uniform (or affine) deformations of the target, using what
is known as the six-component uniform model. We need to include those A terms at this
stage, but will discard them later in favor of the two uniform components discussed earlier
(Equations 6.24 and 6.38).
Fitting the functions to the observed deformations is a standard problem in systems of

linear equations; we can thus cast the problem into matrix form. We form a (K+3) ×2
matrix V of the observed deformations at each of the K landmarks, where the deformation
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at the ith landmark is denoted (X′i, Y ′i ):

V =




X′1 Y ′1
X′2 Y ′2
...

...

X′K Y ′K
0 0
0 0
0 0



=




fX (X1,Y1) fY (X1,Y1)
fX (X2,Y2) fY (X2,Y2)

...
...

fX (XK,YK) fY (XK,YK)

0 0
0 0
0 0



= LW (6.46)

where LW is the product of two matrices L and W. L is the (K+3)× (K+3) matrix:

L =




U (0) U
(
R1, 2

)
U
(
R1, 3

) · · · U
(
R1, K

)
1 X1 Y1

U
(
R2, 1

)
U (0) U

(
R2, 3

) · · · U
(
R2, K

)
1 X2 Y2

U
(
R3, 1

)
U
(
R3, 2

)
U (0) · · · U

(
R3, K

)
1 X3 Y3

...
...

...
. . .

...
...

...
...

U
(
RK, 1

)
U
(
RK, 2

)
U
(
RK, 3

) · · · U
(
RK, K

)
1 XK YK

1 1 1 · · · 1 0 0 0
X1 X2 X3 · · · XK 0 0 0
Y1 Y2 Y3 · · · YK 0 0 0




(6.47)

in which U(R) is the function appearing in Equations 6.44 and 6.45 evaluated at each
landmark location (Xi,Yi). W is the (K+3)×2 matrix of weights and uniform terms
appearing in Equations 6.44 and 6.45:

W =




WX1 WY1
WX2 WY2
...

...

WXK WYK

AX1 AY1
AXX AYX

AXY AYY




(6.48)

So we have the equation:

V = LW (6.49)

in which L and W are the matrices just described. We wish to solve for W, the matrix of
coefficients in our spline model, which gives us:

W = L−1V (6.50)

We can use the weights in the matrixW in conjunction with the spline functions in Equa-
tions 6.44 and 6.45 to interpolate the observed deformation at the landmarks over the
entire specimen. However, it turns out that we can make some further use of the matrix
L−1. This matrix is (K+3) by (K+3); if we take the first K rows and the first K columns
of L−1, we can form L−1

K , which is called the bending energy matrix.
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The bending energy matrix can be rearranged into a series of eigenvectors Ei, and
eigenvalues, λi, such that:

L−1K Ei = λiEi (6.51)

The eigenvectors Ei have the usual properties of eigenvectors, and consequently they are a
basis (or a set of coordinate axes) of a space. In this case, the eigenvectors are the basis of
the Euclidean space tangent to shape space at the reference shape. This means that we can
express our matrix of observed deformations V as a linear combination of the eigenvectors
of the bending energy matrix. The eigenvalues are the bending energies required to effect
a change (of a given amount of shape difference, i.e. a unit of Procrustes distance) at that
spatial scale.
Three of the eigenvalues of the bending energy matrix are zero, corresponding to the

components with no bending (with X- and Y-coefficients, these eigenvectors account for
the six uniform components of the deformation). The remaining K−3 eigenvectors are
the explicitly localized components of a deformation. These eigenvectors are called the
partial warps; the vector multipliers of the partial warps are called the partial warp scores
(following Slice et al., 1996). They are “partial” because they describe part of a deforma-
tion. We should note that Bookstein (1991) called the eigenvectors of the bending energy
matrix principal warps, analogous to principal components. By “partial warp,” he meant
the vector multiple of a principal warp. Slice and colleagues use the term principal warp
to refer to a partial warp interpreted as a bent surface of the thin-plate spline, and because
the latter terminology has become standard, we use it here.
As evident in the definition of L−1

K , only one matrix of landmarks enters into the cal-
culation of bending energy; the coordinates of the form usually called the reference or
starting form. Thus, the eigenvectors that give us a coordinate system for shape analy-
ses are a function of one single form. This may be highly counterintuitive, because more
familiar eigenvectors, such as principal components, are functions of an observed variance–
covariance matrix. They are functions of variation (or differences) among observed forms.
That is not the case for the eigenvectors of the bending energy matrix. The eigenvalues
of the bending energy are the bending energies that would be required to modify a given
shape by a single unit of shape difference at each spatial scale. Thus the partial warps are
not themselves features of shape change, they are simply a coordinate system or basis for
the space in which we analyze shape change.
The “A” coefficients in Equation 6.48 describe the uniform deformation of the shape.

There are six of these coefficients, which is enough to describe the six components of the
uniform deformation of shape. However, we know that the reference and the target do
not differ by rotation, rescaling or translation, because those differences were removed by
the superimposition process. Consequently, we do not need six parameters to describe the
uniform component of the deformation, only the two components derived earlier in this
chapter.
By convention, partial (or principal) warps are numbered from the lowest to highest

bending energy; the onewith the highest number corresponds to the onewith greatest bend-
ing energy. The two uniform components are sometimes called the zeroth principal warp.
Thinking of the uniform components in those terms is useful because it emphasizes that the
uniform components cannot be viewed separately from the non-uniform ones. Including
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the uniform terms also completes the tally of shape variables. The K−3 partial warps
contribute 2K−6 scores; adding the two uniform scores brings the count up to 2K−4.

Using the thin-plate spline to visualize shape change

The combination of the uniform and non-uniform components completely describes any
shape change. The set of partial warp scores (including scores on the uniform component)
can be used in any conventional statistical analysis and, like the coordinates obtained by
GLS, the sum of their squares equals the squared Procrustes distance from the reference.
Moreover, like Bookstein’s shape coordinates, they have the correct degrees of freedom.
Thus we can use partial warps in any statistical procedure, such as regression, and diagram
the results as a deformation.

Interpreting changes depicted by the thin-plate spline

Interpretations should be presented in terms of the total deformation, not by detailing the
separate uniform and non-uniform components (or themore finely subdivided components
of them). Just as we cannot talk about individual landmarks as if they were separately
moved, we cannot talk about components of the total deformation as if they were separate
parts of the whole. It is important to remember that the changes depicted are based on
an interpolation function – we do not actually know what occurs between landmarks. If
we have sparsely sampled some regions of the body, we cannot assume that the spline
provides a realistic picture of their changes; there might be many highly localized changes
that cannot be detected in the absence of closely spaced landmarks. All we can say is that
our data do not require any more localized changes.
We cannot show an example of a biological transformation depicted by the thin-plate

spline until we have results to show, so we will borrow examples from a later chapter
(Chapter 10) to discuss the description of shape change using the thin-plate spline. In
Figure 6.7 we depict the ontogenetic changes in body shape of two species of piranhas:
S. gouldingi (Figure 6.7A),whichwe used earlier in this chapter, andPygopristis denticulata
(Figure 6.7B). In both species the head (as a whole) grows less rapidly than the middle of
the body, and the eye grows far more slowly than the head. In neither species does the
shortening of the eye result solely from the generally lower cranial growth rates; rather,
there is an abrupt (and localized) deceleration of growth rates in the orbital region. How-
ever, that does not, by itself, fully account for the apparent contraction of the grid in the
head, especially in S. gouldingi. Part of the relative shortening of the head, supraorbitally,
results from the displacement of the landmark at the epiphyseal bar (landmark 2) towards
the anterior landmark of the eye (landmark 14). Suborbitally, the apparent shortening
of the head results from the displacement of the posterior jaw landmark (landmark 13)
towards the posterior eye landmark (landmark 15), as well as from the more general short-
ening of the snout and eye. These two species also differ in the ontogeny of posterior body
shape. In S. gouldingi, the caudal peduncle (the region bounded by landmarks 6, 7, and
8) appears to contract, but no change appears to be localized there – the posterior body
generally shortens (as does the head). Growth rates appear to decrease, moving posteriorly
from the midbody to the tail. Because the caudal peduncle is the most posterior part of
the body, the growth rates are lowest there. In P. denticulata, growth rates decrease more
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Figure 6.7 Ontogenetic shape change for two species of piranhas: (A) Serrasalmus gouldingi;
(B) Pygopristis denticulata.

slightly, and most of the change in the posterior body seems to result from the posterior
displacement (and relative shortening) of the anal fin. That increases the distance between
the pelvic and anal fins (which expands the grid between them), but because that is not a
part of the general expansion of the midbody (it is limited to the ventral region between
the fins) the change is ventrally localized. Due to the sparse sampling of landmarks in the
middle of the body, there is no abrupt contraction or expansion of the grid such as we see
in the head. Sparse sampling of that region makes it difficult to detect localized changes
because we cannot show what happens between landmarks when we have not sampled
them (quoting Gertrude Stein, “there is no there there”).

Software

Until we have results to depict, the spline serves the purpose of providing variables, with
the correct degrees of freedom, for statistical analysis. A file of partial warps, along with
the uniform components, can be computed by several programs in the IMP software series,
all of which output the data in a form that can be input into statistical packages (i.e. they
are in the X1,Y1,…CS format). They are perhaps most easily obtained from the Principal
Components Analysis program (PCAGen, discussed in Chapter 7), which calculates partial
warps relative to the mean shape (that is, the mean serves as the reference form). Within
that software, as in all the others, the explicit uniform terms are always calculated using the
partial Procrustes superimposition (meaning that centroid size is fixed to one). To draw the
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deformations in different registrations, the software simply calculates the implicit uniform
deformations corresponding to the desired method of depicting the shape change. We will
return to this when we have results to depict.
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7
Ordination methods

In this chapter, we discuss two methods for describing the diversity of shapes in a sam-
ple: principal components analysis (PCA) and canonical variates analysis (CVA). Our
discussion of these methods draws heavily on expositions presented by Morrison (1967),
Chatfield and Collins (1980), and Campbell and Atchley (1981). Both methods are used to
simplify descriptions rather than to test hypotheses. PCA is a tool for simplifying descrip-
tions of variation among individuals, whereas CVA is used for simplifying descriptions
of differences between groups. Both analyses produce new sets of variables that are lin-
ear combinations of the original variables. They also produce scores for individuals on
those variables, and these can be plotted and used to inspect patterns visually. Because
the scores order specimens along the new variables, the methods are called “ordination
methods.” It is hoped that the ordering provides insight into patterns in the data, per-
haps revealing patterns that are convenient for addressing biological questions. The most
important difference between PCA and CVA is that PCA constructs variables that can
be used to examine variation among individuals within a sample, whereas CVA con-
structs variables to describe the relative positions of groups (or subsets of individuals) in
the sample.

We discuss PCA and CVA in the same chapter because both serve a similar purpose,
and because the mathematical transformations performed in the two analyses are similar.
We describe PCA first because it is somewhat simpler, and because it provides a founda-
tion for understanding the transformations performed in CVA. We begin the description
of PCA with some simple graphical examples, and then present a more formal exposi-
tion of the mathematical mechanics of PCA. This is followed by a presentation of an
analysis of a real biological data set. The description of CVA follows a similar outline;
the only difference is that we begin with a discussion of groups and grouping variables.
CVA requires that the individuals be grouped, because the method analyzes the relative
positions of groups in the sample. Consequently, the sample must be divided into groups
before the analysis begins. The analysis of groups requires a few more computational steps
than PCA, but none of the steps in CVA introduce new mathematical concepts. CVA
will be just a new application of ideas you have already encountered in the discussion
of PCA.

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
ISBN 0–12–77846–08 All rights of reproduction in any form reserved
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Principal components analysis

Geometric shape variables are neither biologically nor statistically independent. For exam-
ple, the shape variables produced by the thin-plate spline describe variation in overlapping
regions of an organism or structure. Because the regions overlap, they are under the influ-
ence of the same processes that produce variation; and therefore we expect them to be
correlated. Even when they do not describe overlapping regions, morphometric variables
(both geometric and traditional) are expected to be correlated because they describe fea-
tures of the organism that are functionally, developmentally or genetically linked. Their
patterns of variation and covariation are often complex and difficult to interpret. The pur-
pose of PCA is to simplify those patterns and make them easier to interpret by replacing the
original variables with new ones (principal components, PCs) that are linear combinations
of the original variables and independent of each other.

One might wonder why it would be a worthwhile exercise to take simple variables that
covary with each other and replace them with complex variables that do not covary. Part
of the value of this exercise arises from the fact that the new complex variable is a function
of the covariances among the original variables. It thus provides some insight into the
covariances among variables that can direct future research into the identity of the causal
factors underlying those covariances. Another useful purpose served by PCA is that most
of the variation in the sample usually can be described with only a few PCs. Again this is
useful, because it simplifies and clarifies what needs to be explained. Another important
benefit of PCA is that the presentation of results is simplified. It is much easier to produce
and explain plots of the three PCs that explain 90% of the variation than it is to separately
plot and explain the variation on each of 30 original variables.

An indirect benefit of PCA that is useful (but often misused) is that it simplifies the
description of differences among individuals. Clusters of individuals are often more appar-
ent in plots of PCs than in plots of the original variables. Finding such clusters can be quite
valuable, but those clusters do not represent evidence of statistically distinct entities. Legit-
imate methods for testing the hypothesis that a priori groups are statistically significantly
different will be presented in Chapters 8 and 9 (computer-based statistical methods and
multivariate analysis of variance, respectively).

Geometric description of PCA

Figure 7.1A shows the simple case in which there are two observed traits, X1 and X2.
These traits might be two distance measurements or the coordinates of a single landmark
in a two-dimensional shape analysis. Each point in the scatter plot represents the paired
values observed for a single specimen. We expect that the values of each trait are normally
distributed, and we expect that one trait is more variable than the other because one
variable, (in this case, X1) has a larger range of observed values and a higher variance. In
addition, the values of X1 and X2 are not independent; higher values of one are associated
with higher values of the other. This distribution of values can be summarized by an ellipse
that is tilted in the X1, X2 coordinate plane (Figure 7.1B). PCA solves for the axes of this
ellipse, and uses those axes to describe the positions of individuals within that ellipse.

The first step of PCA is to find the direction through the scatter that describes the
largest proportion of the total variance. This direction, the long axis of the ellipse, is the
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Figure 7.1 Graphical representation of the problem to be solved by PCA. (A) Scatter plot of indi-
viduals scored on two traits, X1 and X2; (B) an ellipse enclosing the scatter of points shown in part
(A); (C) a line through the scatter and the perpendicular distances of the individuals from that axis.
The goal of PCA is to find the line that minimizes the sum of those squared distances.
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Figure 7.2 Graphical representation of PCA on three original variables (X1, X2, X3). (A) The
distribution of individual specimens on the three original axes is summarized by a three-dimensional
ellipsoid; (B) the three-dimensional ellipsoid is cut by a plane passing through the sample centroid
and perpendicular to the longest axis (PC1) at its midpoint, showing the distribution of individuals
around the longest axis in the plane of the section; (C) the upper half of the ellipsoid in B has been
rotated so that the cross-section is in the horizontal plane. Perpendicular projections of all individuals
(from both halves) onto this plane are used to solve for the second and third PCs.

first principal component (PC1). In an idealized case like that shown in Figure 7.1A, the line
we seek is approximately the line through the two cases that have extreme values on both
variables. Real data rarely have such convenient distributions, so we need a criterion that
has more general utility. If we want to maximize the variance that the first axis describes,
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then we also want to minimize the variance that it does not describe – in other words, we
want to minimize the sum of the squared distances of points away from the line (Figure
7.1C). (Note: the distances that are minimized by PCA are not the distances minimized in
conventional least-squares regression analysis – see Chapter 10.)

The next step is to describe the variation that is not described by PC1. When there are
only two original variables this is a trivial step; all of the variation that is not described by
the first axis of the ellipse is completely described by the second axis. So, let us consider
briefly the case in which there are three observed traits: X1, X2 and X3. This situation is
unlikely to arise in optimally superimposed landmark data, but it illustrates a generalization
that can be applied to more realistic situations. As in the previous example, all traits
are normally distributed and no trait is independent of the others. In addition, X1 has
the largest variance and X3 has the smallest variance. A three-dimensional model of this
distribution would look like a partially flattened blimp or watermelon (Figure 7.2A). Again
PC1 is the direction in which the sample has the largest variance (the long axis of the
watermelon), but now a single line perpendicular to PC1 is not sufficient to describe the
remaining variance. If we cut the watermelon in half perpendicular to PC1, the cross-
section is another ellipse (Figure 7.2B). The individuals in the section (the seeds in the
watermelon) lie in various directions around the central point, which is where PC1 passes
through the section. Thus, the next step of the PCA is to describe the distribution of data
points around PC1, not just for the central cross-section, but also for the entire length of
the watermelon.

To describe the variation that is not represented by PC1, we need to map, or project,
all of the points onto the central cross-section (Figure 7.2C). Imagine standing the halved
watermelon on the cut end and instantly vaporizing the pulp so that all of the seeds drop
vertically onto a sheet of wax paper, then repeating the process with the other half of
the watermelon and the other side of the paper. The result of this mapping is a two-
dimensional elliptical distribution similar to the first example. This ellipse represents the
variance that is not described by PC1. Thus, the next step of the three-dimensional PCA
is the first step of the two-dimensional PCA – namely, solving for the long axis of a
two-dimensional ellipse, as outlined above. In the three-dimensional case, the long axis
of the two-dimensional ellipse will be PC2. The short axis of this ellipse will be PC3, and
will complete the description of the distribution of seeds in the watermelon. By logical
extension, we can consider N variables measured on some set of individuals to represent
an N-dimensional ellipsoid. The PCs of this data set will be the N axes of the ellipsoid.

After the variation in the original variables has been redescribed in terms of the PCs, we
want to know the positions of the individual specimens relative to these new axes (Figure
7.3). As shown in Figure 7.3A, the values we want are determined by the orthogonal pro-
jections of the specimen onto the PCs. These new distances are called principal component
scores. Because the PCs intersect at the sample mean, the values of the scores represent
the distances of the specimen from the mean in the directions of the PCs. In effect, we are
rotating and translating the ellipse into a more convenient orientation so we can use the
PCs as the basis for a new coordinate system (Figure 7.3B). The PCs are the axes of that
system. All this does is allow us to view the data from a different perspective; the positions
of the data points relative to each other have not changed.

As suggested by Figure 7.4, we could compute an individual’s score on a PC from the
values of the original variables that were observed for that individual and the cosines of
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Figure 7.3 Graphical interpretation of PC scores. (A) The star is the location of an individual in
the sample. Perpendiculars from the star to PCs indicate the location of the star with respect to those
axes. The distances of points S1 and S2 from the sample centroid (intersection of PC1 and PC2)
are the scores of the star on PC1 and PC2. (B) The figure in part A has been rotated so that PCs
are aligned with the edges of the page. The PCs will now be used as the reference axes of a new
coordinate system; the scores on these axes are the location of the individual in the new system. The
relationships of the PC axes to the original axes has not changed, nor has the position of the star
relative to either set of axes.
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Figure 7.4 Graphical interpretation of PC scores, continued. The angles α1 and α2 indicate the
relationship of PC1 to the original axes X1 and X2. Thus, S1 can be computed from the coordinates
of the star on X1 and X2 and the cosines of the angles between PC1 and the original axes. S2 can be
computed from the coordinates of the star on X1 and X2 and the cosines of the angles between PC2
and the original axes.
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the angles between the original variables and the PCs. In our simple two-dimensional case,
the new scores, Y, could be calculated as:

Y1 = A1X1 + A2X2 (7.1)

where A1 and A2 are the cosines of the angles α1 and α2 and the values of individuals
on X1 and X2 are the differences between them and the mean, not the observed values of
those variables.

It is important to bear inmind for our algebraic discussion that Equation 7.1 represents a
straight line in a two-dimensional space. Later we will see equations that are expansions of
this general form and represent straight lines in spaces of higher dimensionality. So, in case
the form of Equation 7.1 is unfamiliar, the next few equations illustrate the simple conver-
sion of this equation into amore familiar form. First, we rearrange the terms to solve forX2:

Y1 − A1X1 = A2X2 (7.2)

A2X2 = −A1X1 + Y1 (7.3)

X2 = −A1X1

A2
+ Y1
A2

(7.4)

Then we make two substitutions (M=−A1/A2 and B=Y1/A2) to produce:

X2 =MX1 + B (7.5)

Thus the formula for the PC is, indeed, the formula for a straight line.

Algebraic description of PCA

We begin this description of PCA by repeating the starting conditions and the constraints
we want to impose on the new variable. We have a set of observations of P traits on N
individuals, where P is the number of shape variables (not the number of landmarks). The
data comprise P variances and P(P−1)/2 covariances in the sample. Wewant to compute a
new set ofP variables (PCs)with variances that sum to the same total as that computed from
the variances and covariances of the original variables, and we also want the covariances
of all the PCs to be zero. In addition, we want PC1 to describe the largest possible portion
of variance, and we want each subsequent PC to describe the largest possible portion of
the variation that was not described by the preceding components.

The full set of observations can be written as the matrix X:

X =




X11 X12 X13 . . . X1P
X21 X22 X23 . . . X2P
X31 X32 X33 . . . X3P
...

...
...

. . .
...

XN1 XN2 XN3 . . . XNP


 (7.6)

where XNP is the value of the Pth coordinate in the Nth individual. We can also think of
this as a P-dimensional space withN points plotted in that space – just a multi-dimensional
version of the simplistic examples presented in the previous section.
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Our problem is to replace the original variables (X1, X2, X3, . . .XP), which are the
columns of the data matrix, with a new set of variables (Y1, Y2, Y3, . . .YP), the PCs
that meet the constraints outlined in the first paragraph of this section. Each PC will be a
straight line through the original P-dimensional space, so we can write each Yj as a linear
combination of the original variables:

Yj = A1jX1 + A2jX2 + · · · + APjXP (7.7)

which can be expressed in matrix notation as:

Yj = AT
j X (7.8)

where AT
j is a vector of constants {A1j, A2j, A3j . . .APj}. (The notation AT

j refers to the
transpose, or row form, of the column matrix Aj.) All this means is that the new values of
the individuals, their PC scores, will be computed bymultiplying their original values (listed
in matrix X) by the appropriate values AT

j of and summing the appropriate combinations

of multiples. Now we can see that our problem is to find the values of AT
j that satisfy the

constraints outlined above.
The first constraint we will address is the requirement that the total variance is not

changed. Variance is the sum of the squared distances of individuals from the mean, so
this is equivalent to requiring that distances in the new coordinate system are the same as
distances in the original coordinate system. The total variance of a sample is given by the
sample variance–covariance matrix S:

S =




s11 s12 s13 . . . s1P
s21 s22 s23 . . . s2P
s31 s32 s33 . . . s3P
...

...
...

. . .
...

sP1 sP2 sP3 . . . sPP


 (7.9)

in which sii is the sample variance observed in variable Xi, and sij (which is equal to sji) is
the sample covariance observed in variables Xi and Xj.

We can meet the requirement that the total variance is unchanged by requiring that each
PC is a vector of length one. If we multiply matrix X by a vector of constants as indicated
in Equation 7.8, the variance of the resulting vector Yj will be:

Var(Yj) = Var
(
AT
j X

) = AT
j SAj (7.10)

Thus the constraint that variance is unchanged can be formally stated as the requirement
that the inner product or dot product of each vector AT

j with itself must be one:

AT
j Aj = 1 =

p∑
k=1

A2
kj (7.11)

This means that the sum of the squared coefficients will be equal to one for each PC.
Substituting Equation 7.11 into Equation 7.10 yields Var(Yj)= S, demonstrating that the
constraint has been met.
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The next constraint is the requirement that principal component axes have covariances
of zero. This means that the axes must be orthogonal. More formally stated, this constraint
is the requirement that the dot product of any two axes must be zero. For the first two
PCs, the constraint is expressed as:

AT
j A2 = 0 =

∑
A1iA2i (7.12)

The general requirement that the products of corresponding coefficients must be zero for
any pair of PCs is expressed as:

AT
i Aj = 0 (7.13)

The requirements imposed by Equations 7.11 and 7.13 indicate that we are solving for
an orthonormal basis. A basis is the smallest number of vectors necessary to describe a
vector space (a matrix). An orthogonal basis is one in which each vector is orthogonal
to every other, so that a change in the value of one does not necessarily imply a change
in the value of another – in other words, all the variables are independent, or have zero
covariance (Equation 7.13) in an orthogonal basis. An orthonormal basis is an orthogonal
basis in which each axis has the same unit length. This very particular kind of normality
was imposed by the first requirement (Equation 7.11). In an orthonormal basis, a distance
or difference of one unit on one axis is equivalent to a difference of one unit on every other
axis; consecutive steps of one unit on any two axes would describe two sides of a square.

So far, we have defined important relationships among the values ofAT
i . There is an infi-

nite number of possible orthonormal bases that we could construct to describe the original
data. The third constraint imposed above defines the relationship of the new basis vectors
to the original vector space of the data. Specifically, this constraint is the requirement that
the variance of PC1 is maximized, and that the variance of each subsequent component is
maximized within the first two constraints.

We begin with the variance of PC1. From Equation 7.10 we know that:

Var(Y1) = Var
(
AT
1 X

) = AT
1 SA1 (7.14)

The matrix S can be reduced to:

� =




λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λp


 (7.15)

where each λi is an eigenvalue, a number that is a solution of the characteristic equation:

S− λiI = 0 (7.16)
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In the characteristic equation, I is the P×P identity matrix:

I =




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


 (7.17)

If each original variable in the data matrixX has a unique variance (cannot be replaced by a
linear combination of the other variables), then each λi has a unique value greater than zero.
Furthermore, the sum of the eigenvalues is equal to the total variation in the original data.

For each eigenvalue, there is a corresponding vector Ai, called an eigenvector, such that:

SAi = λiAi (7.18)

This must be true, because we have already required:

S− λiI = 0 (7.19)

Therefore:

(S− λiI)Ai = 0 (7.20)

which can be rearranged to:

SAi = λiAi (7.21)

Thus, the eigenvectors are a new set of variables with variances equal to their eigenvalues
and covariances equal to zero. Because the covariances are zero, the eigenvectors satisfy the
constraint of orthogonality. Eigenvectors usually do not meet the constraint of normality
(AT

i Ai=1), but this can be corrected simply by rescaling. Accordingly, the rescaled eigen-
vectors are the PCs, which comprise an orthonormal basis for the variance–covariance
matrix S.

All that remains is to order the eigenvectors so that the eigenvalues are in sequence
from largest to smallest. We can now show that the variance of PC1 is the first and largest
eigenvalue. From Equation 7.10 we have Var(Yj)=AT

j SAj, and from Equation 7.18 we
have SAi= λiAi. Putting these together, we get:

Var(Y1) = AT
1 λ1A1 (7.22)

We can rearrange this to:

Var(Y1) = λ1AT
1 A1 (7.23)

which simplifies to λ1 because we have already imposed the constraint that (AT
1 A1=1).

A formal proof that principal components are eigenvectors of the
variance–covariance matrix

This is the derivation as presented by Morrison (1990). Let us suppose that we have a
set of measures or coordinates X= (X1,X2,X3 . . .XP), and we want to find the vector
A1= (A11,A21,A31 . . .AP1) such that:

Y1 = A11X1 + A21X2 + A31X3 + · · · + AP1XP (7.24)
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We would like to maximize the variance of Y1:

s2Y1 =
P∑
i=1

P∑
j=1

Ai1Aj1sij (7.25)

where sij is the element on the ith row and jth column of the variance–covariance matrix
S of the observed specimens. We can write the variance of Y1 in matrix form as:

s2Y1 = AT
1 SA1 (7.26)

Now we seek to maximize s2Y1 subject to the constraint that A1 has a magnitude of one,

which means that (AT
1 A1=1). To do this, we introduce a term called a Lagrange multiplier

λ1, and use it to form the expression:

s2Y1 + λ1
(
1− AT

1 A1

)
(7.27)

which we seek to maximize with respect to A1. Therefore, we take this new expression for
the variance of Y1 and set its partial derivative with respect to A1 to zero:

∂

∂A1

{
s2Y1 + λ1(1− AT

1 A1)
} = 0 (7.28)

Using Equation 7.26, we can expand the expression for the partial derivative to:

∂

∂A1

{
AT
1 SA1 + λ1(1− AT

1 A1)
} = 0 (7.29)

which we now simplify to:

2(S− λ1I)A1 = 0 (7.30)

where I is the P×P identity matrix. Because A1 cannot be zero, Equation 7.30 is a vec-
tor multiple of Equation 7.16, the characteristic equation. In Equation 7.30, λ1 is the
eigenvalue and A1 is the corresponding eigenvector.

Given Equation 7.30, we can also state that:

(S− λ1I)A1 = 0 (7.31)

This can be rearranged as:

SA1 − λ1IA1 = 0 (7.32)

and simplified to:

SA1 − λ1A1 = 0 (7.33)

and further rearranged so that:

SA1 = λ1A1 (7.34)

This leads to the following substitutions and rearrangements of Equation (7.26):

s2Y1 = AT
1 SA1 = AT

1 λ1A1 = λ1AT
1 A1 = λ1 (7.35)

Thus, the eigenvalue λ1 is the variance of Y1.
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Interpretation of results

As we stated above, PCA is nothing more than a rotation of the original data; it is simply
a descriptive tool. The utility of PCA lies in the fact that many (if not all) of the features
measured in a study will exhibit covariances because they interact during, and are influ-
enced by, common processes. Below, we use an analysis of jaw shape in a population of
tree squirrels to demonstrate how PCA can be used to reveal relationships among traits.

Fifteen landmarks were digitized on the lower jaws of 31 squirrels (Figure 7.5). These
landmarks capture information about the positions of the cheek teeth (2–5), the incisor
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Figure 7.5 Outline drawing of the lower jaw of the fox squirrel, Sciurus niger, showing the locations
of 15 landmarks.
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Figure 7.6 Plot of landmark coordinates of 31 S. niger jaws after partial Procrustes superimposition.
The locations of landmark 6 in all 31 specimens are enclosed by an ellipse. Similar ellipses could be
drawn for each landmark.
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(1, 14 and 13), muscle attachment areas (6, 9–12, 15) and the articulation surface of the
jaw joint (7 and 8). The 31 specimens include 23 adults and 8 juveniles (individuals lacking
one or more of the adult teeth).

Figure 7.6 shows the landmark configurations of all 31 specimens, after partial Pro-
crustes superimposition. This plot does not tell us much beyond the fact that there is
shape variation in the sample. We can infer from the areas of the scatters for individual
landmarks that there is not much variation in the relative positions of the cheek teeth. In
contrast, many of the ventral landmarks have noticeably larger scatters, suggesting that
their positions relative to the teeth are more variable.

To obtain more precise information about the pattern of shape variation, the 31 sets of
landmark coordinates are converted into shape variables (see Chapter 6 for review), and
these shape variables are subjected to PCA. The 15 landmarks yield 26 shape variables,
so there are 26 PCs, and 26 scores for each specimen (its score on each component). The
output from PCA consists of the list of coefficients describing the PCs, the variance of each
component and its percentage of the total variance, and the scores of each specimen on
each component.

As shown in Table 7.1, each PC has progressively less variance. Many of the components
represent such a small proportion of the total variance that it is reasonable to ask whether

Table 7.1 Eigenvalues from PCA of squirrel jaws

PC Eigenvalues % of total variance

1 1.13×10−3 51.56
2 2.15×10−4 9.83
3 1.64×10−4 7.49
4 1.36×10−4 6.22
5 1.16×10−4 5.32
6 9.52×10−5 4.36
7 7.18×10−5 3.28
8 5.45×10−5 2.49
9 4.49×10−5 2.05
10 3.58×10−5 1.64
11 3.25×10−5 1.49
12 2.36×10−5 1.08
13 1.79×10−5 0.82
14 1.37×10−5 0.63
15 9.83×10−6 0.45
16 9.31×10−6 0.43
17 6.87×10−6 0.31
18 3.72×10−6 0.17
19 3.06×10−6 0.14
20 2.17×10−6 0.10
21 1.66×10−6 0.08
22 7.04×10−7 0.03
23 5.37×10−7 0.02
24 3.62×10−7 0.02
25 1.15×10−7 0.01
26 5.02×10−8 <0.01
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Figure 7.7 Scree plot of the proportion of variance described by each PC for the squirrel jaw data
set. Arrow indicates the inflection point.

they describe anything biologically meaningful. One common rule of thumb is to interpret
only those components that represent more than 5% of the variance. In the squirrel jaw
example, PCs 1 through 5 meet this criterion. They account for a total of 80.4% of the
variance in the sample, leaving 19.6% undescribed. This may seem like a large proportion
of the variance to omit from further analysis, but it is doubtful that any one of the remaining
21 components describes a meaningful amount of variance.

The similarity in magnitudes of variances described by most components can be seen in
a scree plot, in which the variance, or percentage of the total variance, is plotted against the
ordinal number of the PCs (Figure 7.7). In this example, there is a large difference between
the variances of the first two PCs, and much smaller differences between successive pairs
of components. This difference is reflected in the scatter plot of scores in the two axes
(Figure 7.8); the range of scores is much larger on PC1 than PC2, indicating that PC1
accounts for a much larger portion of the total variance. If two components have similar
variances (e.g. if the distribution of scores in Figure 7.8 were closer to circular), then we
have grounds to question whether either of them can be attributed to a distinct causal
factor. Thus, an alternative rule of thumb is to find the inflection point on the scree plot
and interpret only those components to the left of the inflection point (where the variance
of each component is distinct from the variance of the following component). The main
difficulty with applying this rule is that scree plots often do not have inflection points that
are as obvious as the one in Figure 7.7.

Fortunately, there is a more rigorous approach to testing whether two successive PCs
have distinct variances. This is an application of a test developed by Anderson (1958)
and discussed in Morrison (1990). The null hypothesis is that some set of R consecutive
eigenvalues are equal to each other. In other words, the variation described by these com-
ponents cannot be distinguished from random variation. The eigenvalues are numbered
from Q+1 to Q+R, where Q is a function of P (the total number of eigenvalues) and
R (the number of the particular components of interest) such that Q=P−R. Anderson
(1958) derived a χ2 statistic based on the likelihood-ratio criterion to test the hypothesis
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Figure 7.8 Scatter plot showing scores on the first two PCs for the sample of 31 squirrel jaws shown
in Figure 7.6.

that the Q+1 eigenvalue is not distinct from the higher numbered eigenvalues:

χ2 = −N
N∑

j=Q+1
ln λj +NR ln

(∑N
j=Q+1 λj
R

)
(7.36)

where N is the sample size minus one. When N is large, the degrees for freedom are
(½R(R+1) − 1) (d.f.=2whenR=2). In the special case where Q+R=P, the test eval-
uates whether variation in the last R eigenvectors is spherical. To test two successive
eigenvalues,R is set to 2. For the squirrel jaw example, comparison of the first two eigenval-
ues yields χ2=19.12, which has a p-value less than 0.0001. Comparison of the second and
third eigenvalues yields χ2=0.55, which has a p-value of 0.76. Thus, PC1 is the only one
with a distinct eigenvalue, and the only one that can be regarded as biologicallymeaningful.

If you use several software packages to run PCAs, you may occasionally find the results
differ in signs for the PCs (when that happens, the scores for individuals on those axes also
differ by a sign). Reversed axes and scores can be disconcerting, but there is no need to
worry – the sign of a PC is arbitrary. If A1 is an eigenvector corresponding to λ1, then so is
−A1. If we change the sign on A1, then the score of the jth specimen on the first axis will
also change sign; Yj=AT

1 Xj so the product Y1A1 does not change sign. In other words,
the eigenvectors A1 and −A1 are simply mirror images. The choice of sign has no effect on
the interpretations of this component, and no effect on the computation of the subsequent
component (a vector orthogonal to A1 will also be orthogonal to −A1).

To this point we have not discussed how to interpret the pattern of variation represented
by a PC. That rests on the coefficients of the PC, which express the relationship between
the PC and the original variables. Because our original variables are shape variables, we
can generate a picture of shape variation along any PC by multiplying the original shape
variables by the coefficients of the PC and summing them. Figure 7.9 shows the result of
that computation for PC1 of shape variation in the sample of squirrel jaws.
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Figure 7.9 Pattern of shape change along PC1 for the 31 squirrel jaws shown in Figure 7.6. Circles
indicate the locations of the landmarks in the mean shape of the sample; arrows indicate the changes
in the relative positions of the landmarks as the score on PC1 increases. The deformed grid illustrates
the thin-plate spline interpolation over the entire form.

We should note that many of the studies applying PCA to geometric data call themethod
“relative warps analysis” (RWA). PCA and RWA are not exactly equivalent, because the
components of variance extracted by RWA are sometimes weighted by bending energy
(originally, RWA was an analysis of components of variation relative to bending energy,
hence the term “relative” in the name of the method). When variation is not weighted by
bending energy, RWA is PCA. We prefer the more familiar term.

Canonical variates analysis

The purpose of CVA is to simplify the description of differences among groups. For exam-
ple, CVA could be used to describe differences in mandible shape among queens, soldiers
and workers in a colony of ants. It could also be used to describe differences in soldier mor-
phology among colonies, species, or more inclusive categories. If individuals in a study can
be sorted into mutually exclusive sets, CVA can be used to describe the differences among
those sets. However, again we caution that CVA cannot be used to test the statistical signif-
icance of the differences among sets; for that, multivariate analysis of variance is needed.

There are many similarities between CVA and PCA. Like PCA, CVA constructs a new
coordinate system (the canonical variates, CVs) and determines the scores on those axes
for all individuals in a study. Also, the CVs are linear combinations of the original variables
and are constrained to be mutually orthogonal. However, whereas PCA is used to describe
differences among individuals, CVA is used to describe differences among group means.
In this sense, CVA is analogous to a PCA of the group means. Another difference between
CVA and PCA is that CVA uses the patterns of within-group variation to scale the axes
of the new coordinate system. Because of this rescaling, CVs are not simply rotations of
the original coordinate system, and distances in CV space are not equal to distances in the
original coordinate system. (This is where the analogy breaks down.) Although rescaling
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may complicate interpretations of CVs, it also adds to their utility. As a result of the
rescaling, CV1 is the direction in which groups are most effectively discriminated, which
is not necessarily the direction in which the group means are most different.

Groups and grouping variables

A group is a set of individuals that share a particular state of a discontinuous trait. Exam-
ples of groups include sexes, color morphs, species, and supraspecific categories like guilds.
To be analyzed by CVA the groups must be mutually exclusive, meaning that they cannot
comprise nested or intersecting sets. The groups differ by a categorical variable, which is
sometimes called a “qualitative trait” or a “grouping variable.” The important character-
istic of these variables is that they are not measured nor arrayed in a sequence; they do not
have intrinsic numerical values, and nor do they have an inherent order or sequence.

Sometimes, features that can be scored on a continuous graded scale are treated as cate-
gorical variables. For example, the proportions of meat and vegetation in an animal’s diet
can be quantified and scored along a continuum. Nevertheless, it is a common practice to
sort diets into a small number of categories (e.g. carnivore, herbivore, omnivore). Other
traits that might be treated in a similar fashion include geographic location and age. There
are several reasons for treating these kinds of traits as categorical variables. One is a lack
of sufficient information to justify or support a more finely graded analysis – for example,
a researcher may not have precise data on the proportions of food items in the diets of
all species or individuals in a study. Another reason for treating a quantifiable trait as a
categorical variable is that the investigator may not want to impose a hypothesis of order-
ing on the data, which is often a consideration when groups are not dispersed along a
single straight line. Similarly, the investigator may not want to assume that all steps are of
equal value (e.g. ontogenies often can be divided into discrete instars or age classes based on
sequences of developmental events, but the sequentially numbered steps may represent dif-
ferent amounts of time or ontogenetic change). Under these circumstances, a quantifiable
trait can be treated as a categorical variable and CVAwould then be used to describe differ-
ences among the groups delineated by distinct states. However, the user should be aware
that taking this approach also limits the inferences that can be drawn from the result – for
example, an observation that age classes can be differentiated does not necessarily imply
the kind of monotonic progression from age to age that can be inferred from a regression.

Geometric description of CVA

To develop a geometric intuition for CVA, we return to the metaphor of a slightly flattened
watermelon. In PCA, we described the positions of seeds within the watermelon by finding
its greatest dimensions. In CVA, we are not interested in the positions of seeds in the
watermelon; instead, we want to describe the positions of the watermelons in the field
(centroids of the ellipses in Figure 7.10). If all we want to know is the location of each
melon, we could simply plot each melon’s centroids; however, suppose we want to find
the direction in which it is easiest to walk across the field without stepping on any of the
melons (perhaps we want to spread fertilizer in the field). To solve this problem, we want
to find the direction in which the melons are farthest apart. This requires that we know
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Figure 7.10 Ellipses of variation in two dimensions (X1 andX2) for four sample populations. Stars
indicate locations of the means of each sample.
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Figure 7.11 Graphical representation of the first step of CVA. The entire data set is rotated to a
new coordinate system that is aligned with the PCs of the pooled variances. At this stage the relative
positions of the four samples (and the individuals within groups) have not changed. The original
coordinate system (Figure 7.10) is shown in the dotted lines. The axes of the new coordinate system
are labeled in parentheses because we have not specified the location of the average sample, only the
directions of its variances.

the average of the shapes and orientations of all the melons, not just the position of each
melon’s centroid.

Similarly, CVAbegins with a PCAof the pooled (averaged) within-group variances. This
gives us a new coordinate system in which we can describe the position of each group. In
our field, we begin by defining a new coordinate system that would be aligned with the
axes of the average melon (Figure 7.11).
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Figure 7.12 Graphical representation of the second step of CVA. The new coordinate system (solid
lines) is rescaled in proportion to the pooled within-group variances in the original space. Variation
within samples will be circular in the new space if the original variances were all identical. Note that
the axes of the original coordinate system (dotted) are not orthogonal in the new space. Furthermore,
distances in the new space are not equivalent to distances in the original space (Figure 7.10).

Now we can see that the melons overlap more in the direction defined by the long axis
of the average melon. To take this into account, we rescale this axis proportionate to the
elongation of the average melon. In effect, we distort our plot of the field until the average
melon looks circular rather than elliptical (Figure 7.12).

Now we can solve for the direction in which melons tend to be farthest apart in the
rescaled space by performing a PCA on the group centroids. The axes produced by this
last computation are the CVs (Figure 7.13A). The scores of individuals on the CVs are the
projections of the individuals onto these new coordinate axes (Figure 7.13B).

Because computation of the CVs involves a rescaling, interpretation of CV scores can
be complex. If we undo the rescaling and rotation that were used to solve for the CVs
(Figure 7.14), we see that each CV is a linear combination of the original variables.
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Figure 7.13 Graphical representation of the final steps in CVA. (A) CV1 is the direction through
the rescaled space (outer, dashed axes) in which the group means are most different; CV2 is the
direction orthogonal to CV1 in which the group means are most different. (B) Scores of individu-
als in the CV space are their projections onto the CVs. Circles represent the scores of one of the
sample means.

However, we also see that the CVs are not orthogonal axes in the original coordinate
space. Furthermore, distances on CVs are not equivalent to distances in the original space.

Note that in this example, there are more groups than variables in the original data set.
In such cases, the number of CVs will be equal to the number of variables. Most studies
will have fewer groups than variables, and in these cases the number of CVs will be one
less than the number of groups. If there are three groups in a study, the differences among
them can be summarized as a plane defined by two vectors, whether the original data
included three variables or 300.

Algebraic description

In CVA, as in PCA, we begin with a set of measures or coordinatesX= (X1,X2,X3 . . .XP),
and we want to find the vector A1= (A11, A21, A31 . . .AP1) such that:

Y1 = A11X1 + A21X2 + A31X3 + · · · + AP1XP (7.37)

In PCA,we solved for the eigenvalues and eigenvectors of the variance–covariancematrix S.
In CVA, we are concerned with the ratio of two variance–covariance matrices: one is the
pooled within-groups variance–covariance matrix, SW, which represents the deviations of
individuals from their respective group means; the other is the between-groups variance–
covariance matrix, SB, which represents the portion of the total variance (deviations from
the grand mean) not explained by SW. In other words, SW represents differences within
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Figure 7.14 Interpretation of CV scores in terms of the original axes. (A) Rescaling the axes has been
reversed, restoring orthogonality of X1 and X2. White circles represent the scores of one individual
on each CV. (B) Rotation of the original axes is reversed, restoring the original orientation. Arrows
show projections of the CV scores onto the original axes; each CV score represents a combination
of scores on the original axes.

groups, and SB represents differences between the groups. So, in CVA we want to find
the Y1 that maximizes the ratio of between-group variance to within-group variance. The
within-group variance of Y1 is:

s2Y1within = AT
1 SWA1 (7.38)

and the between-group variance of Y1 is:

s2Y1between = AT
1 SBA1 (7.39)
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The form of these expressions should be familiar from our discussion of PCA. As before,
we use the Lagrange multiplier λ1 to form the expression:(

s2Y1between
s2Y1within

)
− λ1

(
1− AT

1 A1

)
(7.40)

then make the substitutions indicated by Equations 7.38 and 7.39 to form:(
AT
1 SBA1

AT
1 SWA1

)
− λ1

(
1− AT

1 A1

)
(7.41)

This is the expression we will maximize relative to A1, under the constraint that AT
1A1=1.

Taking the partial derivative of this expression again yields a characteristic equation that
can be solved for the eigenvalues and corresponding eigenvectors of S−1W SB.

Interpretation of results

Results of CVA will look different from those of PCA for two crucial reasons. First,
CVA is describing differences between groups, and the direction in which group means
are most different is not necessarily the direction in which individuals are most different.
Second, CVA does not simply rotate the original data to the axes that maximize the group
differences (if it did, it would be exactly equivalent to a PCA on the group means). CVA
finds the axes that optimize between-group differences relative to within-group variation
and, in general, these axeswill be different directions from the ones thatmaximize between-
group differences. In addition, optimization also involves rescaling such that the new
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Figure 7.15 Landmark coordinates, in partial Procrustes superimposition, for 119 squirrels from
three geographic samples. Circles=western Michigan, squares= eastern Michigan, triangles=
southern states.
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axes are scaled differently from the original axes and scaled differently from each other.
Consequently, distances in CV space can be quite different from distances in the original
data, and interpretations of results can be counterintuitive.

To illustrate the differences between PCA and CVA, we show results from performing
each on the same data set. This data set is composed of 15 landmarks on the lower jaws
of 119 squirrels from three geographic areas. As shown in Figure 7.15, the distribution
of shapes in the three groups overlaps broadly, and this broad overlap is reflected in
the plot of the first two PCs (Figure 7.16A). Clearly, the combination of shape variables
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Figure 7.16 Scatter plots from PCA (A) and CVA (B) of 119 squirrel jaws from three geographic
areas. Circles=western Michigan, squares= eastern Michigan, triangles= southern states.
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represented by these components will not be useful for discriminating among these groups.
In contrast, the plot of the twoCVs (Figure 7.16B) showsmuch less overlap, indicating that
other combinations of the shape variables are more effective discriminators than the PCs.

Like PCA, CVA will compute a set of axes under the specified constraints, regardless of
whether the differences between groups are statistically significant. The optimal discrim-
inator in a data set need not be an effective discriminator. To determine how many CVs
are effective discriminators, we employ Bartlett’s (1947) test for differences in the value of
Wilk’s lambda (�). Wilk’s � is the within-groups sum of squares divided by the total sum
of squares (within-plus between-groups):

� = det(W)
det(T)

= det(W)
det(W + B)

(7.42)

where det is the determinant of the matrix. Conveniently, � can be computed as the
product of the eigenvalues of W(W+B)−1. Bartlett’s test uses the following formula to
estimate a χ2 test statistic:

χ2 = −(W − (P− B+ 1)/2)ln� (7.43)

In this expression, P is the number of variables, W =N−B−1 (where N is the total
number of individuals) and B=G−1 (where G is the number of groups). The degrees of
freedom are determined by the product of P and B.

The testing procedure begins by computing the estimated χ2 in which � is the product
of the eigenvalues of all CVs. If this value is significantly greater than expected for the
given degrees of freedom, it is safe to infer there are statistically significant differences
among the groups. (We will discuss this implication further in Chapter 9.) In the squirrel
jaw example, there are three groups and 26 shape variables, and the maximum possible
number of meaningful CVs is two. Bartlett’s test on both CVs yields a χ2 of 206.6, with
52 degrees of freedom, for a p-value less than 0.000001. This result indicates that at least
some of the groups in the study can be discriminated using scores on these two CVs.

We do not yet know whether both CVs contribute to discrimination of the groups, so
the next step is to remove the eigenvalue for the first CV (the most efficient discriminator)
and repeat the test. Reducing the number of CVs reduces the number of groups that can
be discriminated, which reduces B by 1 and the degrees of freedom by P. These changes
produce aχ2 of 83.5with 26 degrees of freedom for a p-value that is still less than 0.000001.
Thus, the second CV also contributes to discriminating among the groups.

In general, the test is reiterated using the remaining R (=B− i) eigenvectors until R=0
(all eigenvalues have been removed) or some set of R remaining eigenvectors fails the test.
If R goes to zero, the analysis will have shown that some groups can be discriminated on
the CV that is the least efficient discriminator. If a set of R eigenvectors fails the test, then
only the first B−R CVs contribute to discriminating among the groups. Note that the test
cannot be taken to indicate that all groups can be discriminated, and it does not indicate
which groups can be discriminated (see Chapter 9 for further discussion).

The utility of the CVs for discriminating among groups can also be evaluated using the
Mahalanobis distances of specimens from the group mean. The means are computed using
the a priori group assignments. The Mahalanobis distance between a specimen X and the
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Table 7.2 CVA classification table for 119 squirrel jaws

A priori assignments A posteriori assignments Total

Western Eastern Southern
Michigan Michigan states

Western Michigan 62 4 3 69
Eastern Michigan 1 22 0 23
Southern states 0 1 26 27

The a priori classifications are based on the geographic localities where spec-
imens were collected. The a posteriori assignments are based on Mahalanobis
distances of individuals from the means of the a priori groups. Total is the total
number of specimens in each geographic sample. Thus, 62 specimens in the west-
ern Michigan sample were correctly classified using Mahalanobis distance, and
7 were misclassified as members of one of the other geographic samples.

meanM of a group, is given by:

D =
√
(X −M)T S−1 (X −M) (7.44)

where S−1 is the inverse of the variance–covariance matrix of the CV scores of the speci-
mens. The predicted groupmembership of each specimen based on the scores is determined
by assigning each specimen to the group whose mean is closest (under the Mahalanobis
distance) to the specimen. All of the CVs that pass Bartlett’s test, and only those CVs, are
used to compute the Mahalanobis distances and assign specimens to groups. As shown in
the first row of Table 7.2, 62 of the 69 westernMichigan squirrels have jaws that are closer
to the mean of their sample than to the mean of another sample, based on theMahalanobis
distance. In contrast, only one specimen from each of the other samples is farther from
the mean of its own sample than it is from the mean of another sample. Like the plot in
Figure 7.16B, this result contributes to the general impression that the members of these
three groups can usually be discriminated.

Having established that the CVs of the shape variables can be used to discriminate
members of the three geographic samples, it would be useful to know what patterns of
shape differentiation the CVs represent. So, as we did with the PCs, we multiply the
original shape variables by the coefficients of the CVs and sum them. This produces a
series of vectors of relative landmark displacement that illustrates the shape differentiation
represented by the CVs. Figure 7.17A is a highly exaggerated picture of CV1 for the squirrel
jaws. This figure shows that differences in the relative heights of the teeth are themost useful
trait for discriminating among the groups. When the deformation is scaled to represent
the actual magnitude of the difference between groups along this axis (Figure 7.17B), the
amount of the shape difference is imperceptible. Figure 7.17C illustrates all of the other
shape differences that are correlatedwith CV1. The comparison of the figures demonstrates
an important point to bear in mind when using this method: the CV is not a complete
description of the difference between groups, even when the group centroids lie on the
axis. In fact, the CV may be only a small part of the difference between the groups. The
CV is simply the part of the difference that is the most effective discriminator, the part that
has the least variation within groups relative to the difference between groups.
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(A)

(B)

(C)

Figure 7.17 Shape differentiation associated with CV1 for the three geographic samples of squirrel
jaws. (A) Transformation of the reference shape to the shape corresponding to a score of 0.1 on
CV1; (B) transformation of the reference shape to the shape corresponding to a score of 0.01 on
CV1, reflecting the actual magnitude of difference between the means of the eastern Michigan and
southern samples; (C) deformation representing all of the shape change correlated with CV1, for an
individual with a score of 0.01 on CV1.

Software

The IMP series includes a program that performs PCA, PCAGen, and one that performs
CVA, CVAGen. The two programs have nearly identical interfaces with many of the same
options. CVAGen requires you to execute a few extra steps and offers a few options that are
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Table 7.3 Part of the group list file used in analyses of squirrel jaws

1
1
1
1
1

…
7
7
7
7
7

…
10
10
10
10
10

The ordinal position in this file corresponds to the ordinal position of the
specimen in the data file generated by CoordGen. The numerical value of the
code specifies the symbol used in the plot generated by PCAGen andCVAGen.
1= black circle, 7= yellow triangle, 10= red square.

not available in PCAGen. Accordingly, we describe running PCAGen first, then describe
the differences between PCAGen and CVAGen. In the last part of this section we describe
the program CCoder, which can be used to define the symbols used in plots generated by
PCAGen and CVAGen. Both programs read files in standard IMP format (X1, Y1, . . .
CS). When the file is loaded, both programs will display the superimposed landmarks in
the visualization window.

PCAGen

PCAGen:

1. Performs a Procrustes GLS superimposition and provides a plot of the superimposed
specimens (with groups color- or symbol-coded if desired)

2. Calculates partial warps and uniform component scores
3. Extracts the principal components of those scores and plots them as well as depicting

the variables loading on the PCs
4. Determines the number of distinct eigenvalues based on Anderson’s test.

Running PCAGen
Load a file; you may use coordinates obtained from any superimposition method. PCAGen
will perform a Procrustes (GLS) superimposition before carrying out the analysis (the first
plot you see will be a GLS superimposition of the data). You will also need to load another
file if you want to color-code or symbol-code your plots (so you can visually distinguish
among groups). This is the GroupList (described below). Loading a GroupList is optional.
If your data come from a single homogenous population (or if you do not wish to plot by
groups) you can select the No group list option. An example of a GroupList is shown in
Table 7.3, part of the list for the squirrel jaws (the full file comprises 119 entries), in one
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column of one- or two-digit numbers. The number in each row is a code that corresponds
to the a priori grouping, in this case, the geographic locations where the specimens were
collected. (The key to the group list codes is given in the PCAGen manual; CCoder allows
you to alter the default codes.)

After you load the data, and specify either of the GroupList options, the landmarks for
all specimens will (eventually) appear in the visualization window. You can save the plot
now, or reproduce it later by clicking on the Show Landmarks button. If you want to show
the landmarks using a different superimposition method, select the desired option from the
Show Landmarksmenu (the PCA will be based on a GLS superimposition regardless of the
method you select for displaying the landmarks). If you have a large number of individuals,
youmaywish to plot only the means; you can do that by going to theMore Plots pull-down
menu on the toolbar and selecting the desired superimposition for the means. If you do
not load a GroupList, the mean that is shown will be the mean shape of the entire sample.
If you do give a GroupList, the mean of each group will be plotted. You may wish to
rotate the plot (e.g. the anteroposterior axis is oriented vertically or tilted, and you want it
oriented horizontally); you can change this in either of two ways. One way to change the
plot orientation is to type in the desired angle through which to rotate the image (if you
know what it is) by typing it intoDefault Ref Angle box (on the lower left); otherwise click
on the Reference Rotation Active radio button to find the orientation you prefer by trial-
and-error. Activating the rotation option will cause a new window to pop up, where you
can type in the angle through which you want to rotate your plot, and keep going until you
find the one you prefer (at which point you either hit Cancel or type zero). You can type in
“10” and keep going in increments of 10; on your next plot, the net rotation used in your
first plot will appear in that window (e.g. if you type in 10 and you rotate by 10◦ three times,
the next time the window appears in that session, the value of 30 will appear in it). You
may save the plot either by clicking on theCopy Image to Clipboard option, orCopy Image
to EPS File (an encapsulated postscript file that can be imported into a graphics program
such as Adobe Illustrator). The plot can be edited before copying, using editing options
available in the Display Options and Axis Controls pull-down menus on the toolbar. The
Display Options allow you to adjust the line weight, symbol fill and symbol size; the Axis
Controls allow you to remove the axes from your plot (and restore them later).

The PCA is finished as soon as the superimposed specimens appear in the visualization
window. To find out howmany distinct eigenvalues are in the data, go to the Statistics pull-
down menu on the toolbar and click on Significant Differences in PC Components. This
will generate a Window’s window that tells you the number of distinct eigenvalues. Before
you click the OK button (which closes the window), write down the number of distinct
eigenvalues. If you really want the p-value of the test, save the eigenvalues as described
above and plug the values into Equation 7.36. The same menu gives you two options for
displaying a scree plot, either of the eigenvalues or of the percent of variance described by
the eigenvalues. If you want to save the scree plot, click on one of the yellow Copy Image
to … buttons below the plot. Depending on your graphics software, you might want to
edit the image of the scree plot before copying it. Click on the Display Options pull-down
menu. Use the options to adjust line weight, symbol fill and symbol size. The other options
are only available for plots of deformations.

The eigenvalues are not displayed on the screen (only the percent variance explained is),
but they have been computed and can be saved to a text file. To save them, select the File
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pull-down menu at the top of the screen, and then select Save Eigenvalues. You can also
save the eigenvectors (select Save Principal Component Vector Matrix). You can also save
the PCA scores, partial warp scores and the reference (consensus) form; to save these, click
on the button on the interface. Use the pop-up window to choose the folder and filenames.

To plot the scores, click on the Show PCA Plot button in the purple field. This plots
the scores of all individuals on the two PCs indicated in the windows below the buttons.
To label the points (by specimen number), click the Label Points radio button (below the
window), then click Show PCA Plot again. You can plot other pairs of PCs by clicking the
Up and Down buttons or by entering the ordinal numbers of the desired PCs in the boxes
on the left. If you have many specimens crowded together it may be difficult to see them; to
zoom in, go to the Axis Controlsmenu and zoom in; to restore the original size of the plot,
select Original Plot Size. The plot can be edited using the options available in the Display
Options pull-down menu. You can alter the line weight (the lines being altered are those
surrounding the symbols), you can fill the symbols (or remove the fill) and you can also
adjust the size of the symbols. The plot can be copied to the clipboard or to an EPS file.

To generate a picture of the shape difference along a PC, select the PC and choose the
superimposition you prefer for this display. If you want Bookstein coordinates (BC) or
sliding baseline registration (SBR) superimpositions, and did not already specify the base-
line, you must do this now. The deformations can be displayed using a variety of graphical
methods; the default is the deformed grid. To select another, go to theDeformationDisplay
Format menu; among the alternatives are a quiver plot, relative landmark displacements
depicted as vectors on the landmarks of the reference form, and a combination of the
deformed grid and vectors of relative displacements of landmarks. Each time you choose
a different option, you will need to ask the program to Display Deformation again. The
default is to show the deformation of the reference into a hypothetical specimen having a
score of +0.1 on PC1 and 0.0 on every other PC. To change the scale (such as to see the
deformation to a specimen having a score of 0.2 on PC1), you can enter a number in the
Scaling Factor window. If you want to show a specimen with a score of −0.1, you can
type in the minus sign in the Scaling Factor window.

The image can be edited using the options available in the Display Options pull-down
menu and on the interface. To edit the plot, go to the Display Options pull-down menu;
you may alter line weight, line color, plot density (the number of lines used in drawing the
grid), symbol type, whether arrowheads are used in drawing vectors of relative landmark
displacement, whether symbols are filled, and the symbol size (this applies both to the size
of the symbols in the scatter plot of scores and to the size of the symbols representing the
landmarks).

If the grid does not fully encompass the specimen, you can increase the range of the grid
using the Adjust Grid Size for PW in the blue-green field (below the Deformation Display
Format menu). If the grid is too large, you can trim it by clicking on the Grid Trimming
Active, which is centrally located at the bottom of the interface. The first step in trimming
the grid is to define the lower left boundary of the plot, which is done by moving the red
box right or left (this box appears when grid trimming is activated). To move it, left-click
the mouse, walking the box across the grid, until it is positioned correctly, then right-click
the mouse to set that value. Next you need to specify the bottom boundary of the grid;
now move the red box vertically, left-clicking the mouse to walk the box vertically until
you reach the desired location, then right-click the mouse. Next, set the upper right extent
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of the grid by left-clicking the mouse, moving the red box horizontally until you reach the
desired location and set that value by right-clicking the mouse. Finally, to set the top of
the grid, left-click the mouse and move it vertically until you reach the desired location,
then right-click to set the value. The grid will be redrawn between those limits. When you
have edited the image to your satisfaction, you can either copy it to the clipboard or save
it to an encapsulated postscript (EPS) file. After trimming the grid, the axes you see on the
next plot of scores may be compressed – turn off the grid-trimming option and redisplay
a plot (such as the deformation). The axes should now be more conveniently scaled.

You may wish to display the deformation between a particular pair of specimens, or
along a direction other than a PC. You can do that using the options in the Show Defor-
mation Implied by PCA menu in the lower right. You will need to choose your desired
superimposition method for this plot – the default is BC. You can either show the deforma-
tion from the consensus (located at the origin on the plot of the scores) to a single specimen,
or the deformation between any two specimens. The two specimens are symbolized in the
menu as M1 and M2. If you want to display the deformation from the reference to M1,
click on the Place M1 button. The cursor is replaced by a pair of cross-hairs (which may
be partly hidden by the various boxes on the interface). Move the cross-hairs to the plot
window, center them over one of the specimen points, and click the left mouse button. A
red diamond will appear on top of the specimen point. Select the superimposition type to
be used in this display in the gray boxwithin the pink field, and go to theDeformation Dis-
play Format in the blue field, as before. Now click the Show M1 button. The picture will
represent the sum of the deformations specified by the scores on both of the selected axes.
It represents only a part of the total deformation of that individual from the consensus;
differences that are not within this plane are not depicted.

If you nowwant to look at the deformation between two specimens, rather than between
one and the consensus, redisplay the PCA scatter plot (go to the purple field again). If you
want one of them to be the specimen you had already selected as M1, go to the pink
field and click the Restore Markers button. The red diamond will reappear where you had
placed it. Click the Place M2 button, and use the cross-hairs to select a second specimen.
A green diamond will appear on it. You can click on the Show M2 button to display the
deformation represented by that pair of scores, which you might want to compare to the
deformation of the specimen under M1. To show the difference between M1 and M2,
click the Show M2-M1 button. This will produce a picture of the second specimen as
a deformation of the first, using the differences between the specimens’ scores on these
two PCs. Again, this will only be the part of the difference between the specimens that
lies in the plane of the two components. (The Marker Exaggeration box in the pink field
functions like the Scaling Factor box in the gray field; the scores of the marked locations
are multiplied by the indicated amount.) You do not have to place the markers on actual
specimens – you can place them wherever you want.

CVAGen

CVAGen conducts a canonical variates analysis. CVAGen:

1. Performs a Procrustes GLS superimposition and provides a plot of the superimposed
specimens (with groups color- or symbol-coded)
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2. Calculates partial warps and uniform component scores
3. Extracts the canonical variates of those scores and plots them, as well as all the

variables correlated with them
4. Performs Bartlett’s test
5. Uses the discriminant function to classify specimens into groups
6. Does an assignment test, which determines the probability that the specimen is closer

to the mean of the group to which it was assigned a priori than to the mean of another
group.

Running CVAGen
When you startCVAGen, two windows will open. The main window is almost identical to
the interface for PCAGen, the second is anAuxiliary Resultswindow that you canminimize
for now. Because of the similarity in interfaces between the two programs, we will focus
herein on what differs (if you skipped the section describing PCAGen, read it now).

Unlike PCAGen, CVAGen requires a GroupList because the whole purpose of the anal-
ysis is to compute variables that optimally discriminate among groups. If you did not
already read the description of the GroupList file given above, or look at the example
GroupList file in Table 7.3, do so now. After the GroupList file has been loaded, CVAGen
will compute the Procrustes superimposition of all the specimens, the partial warp and the
uniform scores, the CVs and their eigenvalues, and perform Bartlett’s test to determine
the number of CVs that discriminate among the groups. When this is done, the Procrustes
superimposed coordinates will appear in the plot window, with different symbols indicat-
ing group membership. Again, alternate superimpositions can be selected using the green
Show Landmarks box, but, regardless of what you choose for displays, computation of
CVs are based on the Procrustes superimposition of all specimens on the sample mean.

When the computations are completed, a pop-upwindowwill appear, showing the sum-
mary results of Bartlett’s test. This information is also written to the Auxiliary Results box
window, along with additional details of the test. These results can be redisplayed at any
time by going to the Statistics pull-down menu and selecting Tests of significance. In this
same menu, select Show groupings by CVA to generate a table comparing a priori group
assignments to the classification that would be based on theMahalanobis distances of each
specimens all of the groupmeans. This tablewill be shown in theAuxiliaryResults boxwin-
dow. These results can all be saved using options on the File menu. You can also copy the
contents of theAuxiliary Results box and paste it into a file, by selecting the text, copying it
(Ctrl-C) then pasting it (Ctrl-V). You can also see the results of the Assignment Tests, and
save those or copy and paste them to a file. The assignment test determines the probability
that a Mahalanobis’ distance between an individual and the mean of the group is larger
than expected under a null model of random variation around the mean of each group. The
p-value for each specimen indicates the probability that it is amember of the group towhich
it is assigned (low values indicate that it is unlikely to be a member of that group). The par-
ticular method for determining that probability, and the particular implementation of the
test in CVAGen, has yet to be subject to peer-review; for that reason, the test should now
be regarded as useful more for heuristic purposes than as a rigorous or valid statistical test.

CVAGen provides the same options as PCAGen for generating plots. You can plot
the superimposed specimens, scores of specimens on the canonical variates and the shape
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variables maximally discriminating among groups. The one unfamiliar (and very impor-
tant) option is the Regr? radio button. This will direct CVAGen to regress all shape
variables on the scores for the selected CV. The result will be a picture of all shape dif-
ferences correlated with the CV. As discussed earlier in the text, this picture can be quite
different from the picture of the CV itself (see Figures 7.16A, 7.16B, and related discus-
sion). Use this option if you wish to display all of the differences between groups, and not
just the most efficient discriminator.

All the options for editing and saving the plots are the same as for PCAGen.

CCoder

The programs PCAGen and CVAGen use a default set of 12 colored symbols to plot
landmark coordinates and scores on scatter plots. CCoder (Color Coder) is a utility you
can use to specify a different set of colors that are better suited to presentation graphics, to
increase the number of symbols (if you have more than 12 groups), or use black-and-white
or gray-tone symbols that are better suited to printed manuscripts.

To create a code file, go to the File pull-down menu and select Start New Group Code
File. A pop-up windowwill appear asking if you want to change the default for the number
of groups. If the default value of 12 groups is enough, clickNo. If you need more than 12,
specify your desired value. The program will then proceed to load a set of default symbol
and color codes. Use the Up button to the right of the plot window to scroll through the
Active Groups. This will give you a preview of the symbols, each in a successively lighter
gray tone. Note that higher numbers are associated with lighter tones.

To modify a group code, use the Up or Down button to make that group code active
(e.g. if you wish to modify the code for Group 1, move up to activate Group 1). The size,
shape and color of the default code will appear in the plot window. Use the options below
the window to modify the symbol. None of the options will take effect until you click on
the Show Symbol and Set Values button. When you click on the button, the new symbol
will be displayed and the new code will be written to a temporary file.

When creating the codes it is important to understand thatmixing screen colors is not the
same as mixing paints. You can mix red and blue to make purple, but mixing red and green
makes yellows and oranges. Rather than thinking about mixing paints, think of balancing
lights of three purewavelengths. If all three numbers are 0, the symbol will be black because
there is no light of any wavelength. If you increase the intensity of color, you get a pure
color tone and a progressively lighter symbol. In general, the symbol will be quite dark if
the intensity is less than 50 because there is little light of any color being emitted. Similarly,
if one color has a high intensity but the others are low, the color will be indistinguishable
from the pure tone because little additional light is being added to the dominant light color.

When all three colors are at the same intensity, the symbol will be some shade of gray
(you can control how dark the gray is by the values you give each color – the lower they are,
the darker the gray). When all three numbers are 100, the symbol will be white. (Caveat:
the color you see on one screen may not be the color you see on another screen or on a
printed page. Translations to printers or graphics programs that use cyan–magenta–yellow
codes can be especially tricky; so you might want to see a preview to avoid surprises.)

The changes you make are saved to a temporary file, so the original codes are not
overwritten until you return to the File pull-down menu and select Save Group Code File.
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Enter the name you wish to give the file in the pop-up window. Be sure you have saved
changes to a file before you click Exit. The files produced by this program are text files, but
youmaywant to use an extension like .cod instead of .txt to help you keep track of the files.

To instruct PCAGen and CoordGen to use your group code file instead of the default,
you need to load this file into PCAGen and CoordGen before it plots the superimposed
landmarks. This means you need to load the Group Code File after loading the data file
and before entering your GroupList. The option to load the Group Code File is on the File
menu on the toolbar up top.
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8
Computer-based statistical methods

Most active scientists are probably familiar with some computer-based statistical methods,
such as the bootstrap, jackknife, permutation or Monte Carlo simulations. The point of
this chapter is to present their underlying principles in a coherent fashion. The basic ideas
of all these methods appeared in the work of R. A. Fisher in the 1930s, but the ideas and
techniques were neither developed extensively nor used widely until recently. Perhaps the
best summary of the discipline is contained in the title of Efron’s (1979) paper, Computers
and the theory of statistics, thinking the unthinkable. The approach he outlined was indeed
unthinkable prior to the advent of computers, and it could not be used widely until com-
puters became inexpensive as well as fast, and generally available to researchers (which is
why there is such a long time-lag between the original development of the ideas and their
widespread application). Computer-based statistical methods are computationally inten-
sive because they replace the complex analytic mathematical methods of classical statistics
by an extensive use of randomization and repeated calculations. The enormous number of
calculations required by these methods makes them unthinkable without inexpensive (and
fast) computers.
Classical statistics is highly algebraic, relying on extended algebraic derivations of for-

mulae that are based on a limited number of well studied distributions, particularly the
normal (Gaussian), F-, gamma, chi-square, uniform, and Poisson distributions, among
others. Before the advent of personal computers, extensive calculations were expen-
sive (in both time or money) so statistical research relied primarily on analytic proofs
and mathematical approximations to minimize the number of calculations needed. Cur-
rently, most calculations are done by computers even when analytical statistical methods
are used; computers have altered even how classical statistical methods are used and
taught.
In this chapter, we present a brief discussion of some of the basic statistical concepts that

are needed to understand statistical methods in general (such as confidence intervals and
hypothesis testing), as well as the more specialized concepts that are needed to understand
computer-based statistical methods. We present four classes of these methods, including
the bootstrap, jackknife, and permutation tests, and Monte Carlo simulations. To illus-
trate these methods, we will focus on a few univariate statistical tests. The extension to
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multivariate statistics is not difficult, but it seems useful to focus on univariate statistics to
develop an intuitive understanding of how computer-based methods work. More complete
discussions of the topics presented in this chapter can be found in the texts by Efron and
Tibshirani (1993) and Manly (1997).

Basic statistical concepts

Human beings look for general patterns, such as connections between events. Statistics
provides tools to help identify these patterns as well as to verify that they are reliable,
given the information we have. Two statistical tasks related to studying patterns are the
estimation of confidence intervals, and hypothesis testing. To talk about these in any detail,
we need the basic concepts of:

• samples
• populations
• variables
• probability distributions
• statistics
• parameters.
A sample is a collection of individual observations made on a limited number of indi-

viduals representing a population. An individual observation is the smallest sampling unit
in the study, which might be an individual organism or one of its parts, or even a collection
of organisms such as a species or bacterial colony. The sample is drawn from a population,
which is the set of all individuals of a specific type, such as all members of a species, or
all teleosts in a given river basin, or all the leaves on an individual tree. In general it is not
possible to observe (much less measure) all the individuals in the population, so we rely
on the sample, from which we generalize to the population.
A variable is a measurement (or observation) made on individuals within the sample.

Univariate indicates that a single measurement was made on each individual; bivariate
indicates that two measurements were made, andmultivariate indicates that three or more
measurements were made. Variables can be subdivided into two distinct types: discrete and
continuous. Discrete variables comprise integer-valued variables, which are ordered (e.g.
1<2<3), and categorical variables, which are not ordered (e.g. males versus females).
Categorical variables are sometimes represented by integers, but no ordering is thereby
implied. Continuous variables are real-valued, meaning that they are measured on an
infinitely divisible scale.
A probability distribution is a mathematical function that describes the probability of

a measurement taking on a particular value or a range of values, depending on whether
the variable is discrete or continuous, respectively. Since landmark coordinates and partial
warp scores are always continuous variables, we will focus on probability distributions
for continuous variables. If X represents a specific value of a measured variable and f (X)
is a probability distribution function, then the following relationship holds:

Probability (A ≤ X ≤ B) =
∫ B
A
f (X)dx (8.1)
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whichmeans that the probability thatX lies betweenA andB is the sum of the probabilities
that X is equal to each value between A and B. Given the probability distribution of a
variable, or a function of a variable, we can determine (in principle) a large number of
useful results, such as the mean and the standard deviation of the variable, as well as the
probability of the different outcomes of different types of measurements.
Analytic statistical methods use a number of well-known, well-characterized mathemat-

ical models of populations, including the normal (or Gaussian) distribution:

f (X) = 1√
2πσ2

e
−(X−X0)2

2σ2 (8.2)

whereX0 is the mean of the distribution and σ is the standard deviation. Analytic statistical
methods start by assuming a specific distribution function for the variable, then use that
distribution function to derive results (analytically) about the probabilities of different
events. A commonly used result, based on the normal distribution, is that ifX0 is the mean
of the distribution and σ is the standard deviation, then the chance that X measured on
an individual drawn randomly from the sample exceeds X0+1.96σ is 2.5%. This result
is derived by integrating the Gaussian distribution function from 1.96σ to infinity, which
yields a probability of 0.025. As you might expect, the results based on analytic statistical
models are valid only when the mathematical model of the distribution matches the actual
distribution of the measured variables.
We would like to make statements about the population from which our sample is

drawn so we can generalize from our limited observations to the population as a whole.
That would not be necessary if we could measure every individual in a population, because
then we could determine the exact value of any statistic of interest. A statistic is any math-
ematical function calculated from all measured individuals, such as the mean, standard
deviation, variance, maximum, minimum, or range. Because we cannot measure all the
individuals in a population we must rely on our representative sample, which leads to
uncertainty about our conclusions. The true value of the statistic in the population is the
parameter, which is what we are trying to estimate from our sample.

Confidence intervals

The confidence interval tells us the range of values that a given statistic might have in
light of the uncertainties due to sampling. Whenever we present results based on samples,
such as the value of a mean, we must also include a statement about how accurately that
value is known. Otherwise, we cannot evaluate the meaning of the difference between
two measurements. For example, suppose you are told that John is 185 cm tall and Bob
is 190 cm tall: is it possible to say that Bob is taller than John? In this case, it would seem
easy to say that he is because these are two individuals – they are not samples representing
populations. However, even in this case, the height of an individual is a sample of heights
that we could measure for these individuals. Perhaps their heights were measured with
their shoes off, with a very precise measuring device, by a single technician practiced in
such measurements. Under those conditions, we might anticipate a small error, such as
1 cm or less. Considering that expected error, we could say that John’s height is 185 cm,
with a confidence interval of 184 cm to 186 cm, whereas Bob’s height is 190 cm, with a
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confidence interval of 189 cm to 191 cm. Given that information, we can conclude that
Bob is taller than John. Now imagine measuring their heights using a much coarser device,
such as marks placed every 10 cm on a pillar in the hallway, and imagine replacing the
expert technician by an observer sitting on a chair on the opposite side of the hall who
notes the height of people passing by the marks. Furthermore, suppose that two different
observers estimate John’s and Bob’s heights on different days, sitting on chairs of dif-
ferent heights. Under these conditions, we might expect substantial measurement errors
for a large variety of reasons, including differences in posture between John and Bob,
the difficulty of measuring heights of moving objects, differences in the thickness of the
soles of their shoes, as well as differences between observers and the parallax introduced
by changing chair height, and so on. The measured heights might be off by as much as
5 cm, so John’s height should be given as 185 cm with a confidence interval ranging from
180 cm to 190 cm, while Bob’s height should be given as 190 cm with a confidence interval
ranging from 185 cm to 195 cm. Each estimate would be within the confidence interval
of the other estimate, so we could not say that Bob and John are significantly different
in height.
We are all used to thinking about numbers mathematically, so it may seem obvious that

190 is greater than 185. However, we need to bear in mind that scientific measurements are
not pure mathematical objects; rather, they result from human attempts to assign numbers
to physical quantities. Not all attempts are of equal quality, so we need to take that quality
into account when comparing measurements. That is part of what enters into confidence
intervals.
Most often, we are comparing statistics calculated over samples drawn from popula-

tions, rather than comparing observations on two individuals. Sampling introduces another
possible source of error. We wish to make statements about the population, so our con-
fidence interval must reflect not only the quality of the individual measurements but also
how well the sample is expected to reflect the population from which it is drawn. Statis-
tics calculated from large samples drawn from homogeneous populations will tend to
yield accurate estimates of the population’s parameters, whereas those calculated from
small samples drawn from heterogeneous populations will not. The confidence interval
expresses the uncertainty of sampling as well.
We need the confidence intervals as well as the estimated statistics to determine if pop-

ulations differ. The confidence intervals for many statistics can be calculated from the
probability distribution functions of the population. For example, if we assume that the
population follows a normal distribution, we can state the uncertainty of a measurement
by stating its standard deviation. In doing so, we imply that the measurement follows a
normal distribution. Another approach to stating the uncertainty of the measurement is to
give its 95% confidence interval. Doing so implies that repeating the measurement process
many times would result in 95% of the measured values falling within that interval (which
is equivalent to saying that there is a 95% chance that any single repetition would fall
within that interval), but it does not imply anything more about the distribution of values
within those limits.
Just as the value of the mean is an estimate from a sample, so is the confidence interval.

Different statistical approaches differ in how accurately they are able to estimate confidence
intervals. We return to this issue belowwhen we talk about using computer-based methods
to estimate confidence intervals.
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Hypothesis testing

Statistics works with limited samples, so it is difficult to prove that a statement is true.
Statistics is more useful for proving that a statement is false within some level of confidence.
Our measurements will always have some degree of uncertainty, so we cannot prove the
truth of a statement like “the adult body mass of shallow water crabs is 40 g.” Even if
we could measure every crab in the population, we would still have some error in our
measurements, so we would still have uncertainty in our estimate of the mean. The true
mean body mass is likely to be somewhere within a confidence interval, but we cannot say
exactly where within that range it is. At best, we can say that the center of the interval is
the same as the hypothesized value. This is still not enough to claim that the hypothesis is
actually true. We can, however, disprove a statement like the hypothesis with some level of
confidence. Suppose that we found that the 95% confidence interval of mean adult body
mass is 37–39 g; this means the chance that the mean adult body mass of the shallow water
group is greater than 39 g is 2.5% ((100−95)/2). By convention, a hypothesis is rejected
when there is only a 5% probability of being incorrect, so we would normally reject the
hypothesis that the mean weight is 40 g.
In general, when using a statistical approach to hypothesis testing, we state the hypoth-

esis we wish to disprove, which is called the null hypothesis. Usually, the null is the
hypothesis of “no difference” or “no effect.” The null hypothesis states that there is noth-
ing to explain – the apparent signal in the data is an outcome of chance. In our example
above, the null hypothesis is: “The adult body mass of the shallow water crabs is 40 g.”
We could state two alternatives: (1) “The adult body mass of the shallow water crabs is
less than 40 g” and (2) “The adult body mass of the shallow water crabs is greater than
40 g.” Based on the test of the null hypothesis, the chance that it is true is less than 2.5%.
The data are consistent with only one of the two alternatives – that the adult body mass
of the shallow water crabs is less than 40 g.
There are several subtleties to note about this approach to hypothesis testing. First, being

unable to reject the null hypothesis does not mean that the null is actually true. Instead, our
samples might be so small and the variability within a population so great that we do not
have enough evidence to reject a false null. When we cannot reject the null, all we can say
is that the data are consistent with it. Given more data (or more powerful tests), we might
be able to reject it. Another point to note is that we might have more than two alternative
hypotheses, and rejecting the null might not tell us which of them is most consistent with
the data. Additional statistical tests may be needed to rule out alternative nulls.
When carrying out statistical hypothesis testing, we can make two kinds of errors. Type

I error is rejecting a null hypothesiswhen it is true; the converse isType II error – i.e. failing
to reject the null when it is not true. Thus, Type I error means that we improperly rejected
the null, and Type II error means that we have improperly failed to reject it (working
through the double negatives can be difficult, but we do not ever accept the null, so we
cannot avoid using the phrase “fail to reject”). The rate of Type I errors is controlled by
setting the alpha level of the test, which is the chance that the null hypothesis is true. The
alpha level typically favored is 5%, meaning that the null is rejected as “untrue” when the
estimated probability of the observed value of the test statistic (under the null hypothesis)
is 5% or less. For example, if the probability is less than 5% that two populations have
the same mean, we reject the null hypothesis of equality of means. The rate of Type II
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error is more complex, being influenced by: (1) the nature of the null hypothesis and the
alternatives; (2) the statistical test used; (3) sample size; and (4) the alpha level used to
reject the null hypothesis. Higher alpha levels lower the rate of Type I error but increase
the rate of Type II error (for a more extensive discussion of the relationship between these
errors, see Sokal and Rohlf, 1995). Estimation and control of the Type II error rate is
rather difficult, and many workers focus on Type I error, neglecting Type II error, when
assessing results of statistical tests.

Why we need computer-based statistics: an example

To develop an intuition about the need for computer-based statistics, we will work through
an example. Suppose X is a set of 31 observations of a length:

X = {2, 2, 3, 4, 2, 5, 3, 2, 6, 2, 3, 4, 6, 2, 1, 4, 3, 7, 2, 3, 4, 4, 5, 8, 5, 2, 1, 3, 4, 4, 3} (8.3)

In this case, N=31. We can compute the mean (denoted <X> for “the expectation of
X”) by:

<X> =
N∑
i=1

Xi
N

(8.4)

where Xi is the ith element in the list. In our example, <X>=3.52. Of course, we also
need to quantify our uncertainty in this value. If we assume that the distribution of X fits
the model of a normal distribution, then the standard error of the mean is given by the
standard deviation σ divided by the square root N (the number of observed individuals).
The standard deviation is:

σ =
(∑N

i=1 (X0 −<X>)2
N − 1

)1/2
(8.5)

so the standard error of the mean (SEM) is:

SEM = σ√
N
=
(∑N

i=1 (X0 −<X>)2
N(N − 1)

)1/2
(8.6)

For our example, σ=1.69 and N=31, so SEM=1.69/(31)1/2=0.304.
The 95% confidence interval for the mean, assuming a normal distribution, ranges

from <X>−1.96(SEM) to <X>+1.96(SEM) because, for a normal or Gaussian distri-
bution, 95% of the values in the distribution lie within 1.96 standard deviations of the
mean. So, for our example, 1.96 SEM=0.304 and <X>=3.52, so the 95% confidence
interval is from 2.92 to 4.12. Suppose that we want to claim that the average body length
of this population is greater than 3.0 cm. Again, using the normal distribution, we can
calculate that the chance of the mean being less than or equal to 3.0 is 0.049%, so we
can reject the hypothesis that the mean is less than or equal to 3.0 at a 5% confidence
level (meaning that we accept a 5% chance of rejecting the null model when it was true
(Type I error)).
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What difficulties arise in this example? First, we have assumed that the distribution
is normal. This is important, even though statistics based on the normal distribution are
known to be robust to violations of the assumptions of normality. Nevertheless, as the
distribution departs further from normality, larger errors appear in the results, leading
to increased error rates. The validity of the normal distribution for our example has not
been determined. Is that assumption reasonable? If the distribution is normal, 1.9% of
the measurements will be less than or equal to zero (that is the expectation under the
model). Does that pose a problem? Yes, because we are measuring lengths, and none
can be less than zero, under any circumstances – in fact, the lower bound may be sub-
stantially larger than zero (due to physiological constraints on the size of the organism).
So we know that our distribution must deviate from the normal distribution. Perhaps
that deviation has only a small effect on our estimate of SEM, but we are relying on
the reputation of the normal distribution as a robust estimator to reassure ourselves
about that. We really do not know what effect that lower bound has on our statistical
inferences.
The other difficulty we face is the lack of an exact formula for the standard error of any

statistic other than the mean. Suppose we want to know the standard error in the median
of the distribution. We can calculate the median of our measurements of X, which equals
3.0, but can we actually conclude that the median of the population is greater than 2.0? We
do not really know the range of values that the median might take on for this distribution,
and the normal model provides no estimate of the uncertainty in the median. The standard
deviation and variance of populations are also of tremendous biological interest, but how
do we estimate the range of values for these statistics?

Resampling-based methods

Having noted that we can face serious difficulties when we assume a normal distribution
and rely on the theory based on it, we now examine methods that allow us to make
statistical inferences without assuming any distribution.

The bootstrap

We begin with the bootstrap because it is probably the easiest to understand. It was not the
first computer-based statistical method developed; in fact it is one of themore recent (it was
developed from jackknife and permutation methods). The term “bootstrapping” comes
from the novel Baron Münchausen’s Narrative of his Marvellous Travels and Campaigns
in Russia, by Rudolph Erich Raspé (1785), in which the Baron falls to the bottom of a
deep lake. He cannot figure out what to do until, at the last moment, he thinks to pull
himself up by his own bootstraps. This describes, fairly accurately, the approach used in
a bootstrap procedure: the observed data themselves are used as a basis for resampling;
we approximate the unknown statistical distribution from which the data were drawn by
(randomly) resampling our data.
A bootstrap set is a set of data of the same sample size as the original data set, whose

elements are randomly drawn with replacement from our original set of observations. To
randomly draw them (with replacement) from a set ofN elements, a uniformly distributed
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random number from 1 to N is generated by a random number generator. The corre-
sponding element from the original set of observations then forms the first element in the
bootstrap set. For example, given our 31 observations, we will construct a sample that
also has 31 observations. The number provided by the random number generator is 8, so
we take the value of the eighth individual of our sample as the first value in the bootstrap
set. This procedure is repeated N times. Note that a single value from the original data
set may appear multiple times in a bootstrap set (this is because we are sampling with
replacement, meaning that we do not remove an individual from the sample after we have
placed its value in the bootstrap set). Additionally, not all values in the original set need
appear in the bootstrap set.
To develop an understanding of how a bootstrap set is formed, we’ll consider an

abstract, symbolic example. Suppose C contains five values:

C = {C1,C2,C3,C4,C5} (8.7)

To form a bootstrap version of C, we generate a list of five random numbers, each
independently chosen and ranging from 1 to 5 (because N=5):

L = {5 2 4 3 5} (8.8)

The numbers in L are the ordinal positions of the elements of C; CBootstrap contains the
corresponding values of C (e.g. L1=5, so it corresponds to the fifth element of C, which
is C5). Thus:

CBootstrap = {C5,C2,C4,C3,C5} (8.9)

Note that C1 does not appear in this bootstrap set, while C5 appears twice.
Returning to the numerical example presented earlier:

X = {2, 2, 3, 4, 2, 5, 3, 2, 6, 2, 3, 4, 6, 2, 1, 4, 3, 7, 2, 3, 4, 4, 5, 8, 5, 2, 1, 3, 4, 4, 3} (8.10)

To form a bootstrap set, XBoot, from X, we generate the list, B, of 31 random numbers:

B = {30, 8, 19, 16, 28, 24, 15, 1, 26, 14, 20, 25, 29, 23, 6, 13, 29, 29,
13, 28, 2, 11, 26, 1, 5, 7, 7, 19, 9, 7, 1} (8.11)

We then select the elements of X corresponding to those ordinal values:

XBoot = {4, 2, 2, 4, 3, 8, 1, 2, 2, 2, 3, 5, 4, 5, 5, 6, 4, 4, 6, 3, 2, 3, 2, 2, 2, 3, 3, 2, 6, 3, 2}
(8.12)

The first element of XBoot is the 30th element of X (because 30 is the first element of B),
and the seventh element of X appears three times in the bootstrap set (because 7 appears
three times in B). We can now calculate the mean, standard deviation and median ofXBoot:
<XBoot>=3.39, σXBoot =1.62, and median(XBoot)=3. These values are slightly different
from those of the original distribution, <X>=3.52; σ=1.69, and median(X)=3.0.
To arrive at an estimate of the confidence intervals for these statistics, we will compute

a large number (NBootstrap) of bootstrap sets. We will then determine the 95% confidence
interval over the NBootstrap sets, forming a bootstrap estimate of the confidence intervals
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on the mean, standard deviation and the median. If we generate 200 bootstrap sets based
on X, we find that the 95% confidence intervals for the mean is 3.00–4.10; for the stan-
dard deviation the confidence interval is 1.23–2.10, and for the median it is 3.00–4.00.
The normal model predicted a 95% confidence interval for the mean, 2.91–4.12, so the
two methods approximately agree. They appear to differ at the lower boundary (at small
lengths), which is where we expect departures from the normal distribution, for the reasons
discussed earlier.
The approach outlined here may be extended to virtually any statistic and to any

function, univariate or multivariate. We now use it to perform t-tests.

Using the bootstrap to conduct t-tests
The t-test is used to compare the means of two samples, the F-test to compare means of
two or more samples (both procedures are discussed at more length in the next chapter).
The question is whether the mean of one group differs from the mean of another in a
statistically significant way. It is possible that the observed difference in means is due to an
arbitrary division of one group into two, such that the variability within the two groups
gives rise to a difference between means solely by chance.
Let us look again at our sample of 31 measured lengths:

X = {2, 2, 3, 4, 2, 5, 3, 2, 6, 2, 3, 4, 6, 2, 1, 4, 3, 7, 2, 3, 4, 4, 5, 8, 5, 2, 1, 3, 4, 4, 3} (8.13)

and consider a second group of 18 lengths:

Y = {2, 2, 3, 2, 4, 2, 3, 2, 8, 9, 2, 9, 3, 2, 3, 3, 3, 9} (8.14)

Using the normal model, we find that <X>=3.52, σX =1.69, and <Y>=3.94 and
σY =2.71. To test whether the means are different, we find the probability of statistic t:

t = (<Y>−<X>)√√√√(σ2X(NX − 1)+ σ2Y (NY − 1)
NX +NY − 2

)(
NX +NY
NXNY

) (8.15)

with degrees of freedom of (NX +NY −2). For relatively large values of NX and NY , the
t-value will be normally distributed with a mean of zero and a standard deviation of one,
provided that the null hypothesis of equal means is true. If the absolute value of t exceeds
1.96, we may assert that, under the normal model, there is only a 5% chance of the mean
values being that different by chance. We can thus reject the null hypothesis at a 5% level
of confidence.
The problem is that the list of lengths contained in Y is highly non-normal. Most values

are close to 3, but there are several around 8 or 9, so Y appears to be rather bimodal.
Also, in a normal distribution with a mean of <Y>=3.94 and a standard deviation of
σY =2.71, we would expect that 7.3% of the measured lengths would be less than zero.
So the distribution of Y departs substantially from normality, more so than does the
distribution of X.



chap-08 4/6/2004 17: 25 page 198

198 GEOMETRIC MORPHOMETRICS FOR BIOLOGISTS

To form a bootstrap version of the t-test, we will use the bootstrap approach to simulate
the null hypothesis we wish to reject. This simple principle is the key to understanding
how to form your own bootstrap tests when asking novel statistical questions. The null
hypothesis of the t-test is that the means of the two groups are equal, which we can also
phrase as the hypothesis that the two groups in question came from a single underlying
distribution that was arbitrarily subdivided into two groups. If this were the case, any
difference between the means would arise simply by chance. So to test this hypothesis,
we assume that the null hypothesis is true – i.e. that X and Y were drawn from the same
population. Therefore we merge the two sets of observations (X and Y) into a common
pool of specimens (Z) and draw (with replacement) two bootstrap sets from Z, one of size
NX and one of size NY , and compute the differences in means between the two bootstrap
sets. This is repeatedNBootstrap times. We can then determine the number of times in which
the difference between the means of paired bootstrap sets exceeds the observed difference
between the means ofX andY. Expressed as a proportion of the total, we get an estimate of
the probability that the observed difference is due to chance; i.e. if the difference between
means of pairs of bootstrap samples exceeds the observed differences in 5% (or fewer)
of the total number of iterations, we can reject the null hypothesis that the means are
equal. This is simply another way of phrasing the statement that the observed difference is
statistically significant at a 5% confidence level if the observed difference between means
exceeds the 95th percentile of differences between means of the bootstrap sets.
A symbolic example of this merging and subsequent formation of two bootstrap sets

may help to develop an understanding of how the test operates. Suppose we have a set C
of five elements, and a set D of four elements:

C = {C1,C2,C3,C4,C5} (8.16)

D = {D1,D2,D3,D4} (8.17)

The merged set,M, would have nine elements:

M = {C1,C2,C3,C4,C5,D1,D2,D3,D4} (8.18)

To draw two bootstrap sets out ofM, we would form a list of five random integers (because
there are five elements in C), and the elements in M corresponding to this list would be
the elements in the bootstrap version of C:

L1 = {7 5 1 8 5} (8.19)

CBootstrap = {D2,C5,C1,D3,C5} (8.20)

Note that two elements in CBootstrap come from D. A second list of four integers is used
to form a bootstrap version of D:

L2 = {2 4 9 9} (8.21)

DBootstrap = {C2,C4,D4,D4} (8.22)

The formation of the bootstrap versions of C and D reflects the null hypothesis that C
and D come from a common underlying distribution. The elements of C and D are thus
interchangeable.
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The difference between means of the bootstrapped versions of C and D can be deter-
mined by many repetitions, developing a bootstrap estimate of the distribution of the
differences between means produced by the null hypothesis (given the data). When we
carry out this bootstrap t-test on our numerical example, setsX and Y, we find that 268 of
1000 bootstrap sets (26.8%) have a difference between means as large or larger than that
between the means of X and Y. Thus, we cannot reject the null hypothesis that these sam-
ples were drawn from populations with equal means, the difference between them being
due to chance. Using a t-test based on the normal distribution, we would have rejected
that null hypothesis. Because both samples appear to have non-normal distributions, as
discussed earlier, it seems reasonable to attribute the difference between results to violating
the assumption of normality.
The bootstrap method is probably the most popular of the computer-based methods

for estimating confidence intervals, and it is also one of the easiest to implement.

Permutation tests

Permutation tests pre-date the bootstrap test. They were introduced by R. A. Fisher in
the 1930s as a basis for supporting the ideas of the Student’s t-test rather than as a tool
for computation. With the advent of computers, permutation methods could be used
profitably for statistical inference. Permutation tests operate in much the same manner as
bootstrap tests, but differ in that they resample groups without replacement. This makes
permutation tests suitable for hypothesis testing, but not for the estimation of confidence
intervals (Efron and Tibshirani, 1993).
Again, we can look at a simple, abstract example of how a permutation set is formed to

get a sense of how the approach works, and how it differs from the bootstrap. Consider
two data sets C and D:

C = {C1,C2,C3,C4,C5} (8.23)

D = {D1,D2,D3,D4} (8.24)

with sample sizes of five and four respectively. We form the merged setM of nine elements:

M = {C1,C2,C3,C4,C5,D1,D2,D3,D4} (8.25)

To produce permutation set versions of C and D, we want to resample M without
replacement. To do this, write a list of nine integers, then randomly permute it to form a
list L:

L = {5 2 6 8 7 3 9 4 1} (8.26)

The first five values in L are the ordinal values of the elements in M, placed in the
permuted version of C:

Cpermutation = {C5,C2,D1,D3,D2} (8.27)

The last four values in the list are the ordinal values of the elements inM that are placed
in the permuted version of D:

Dpermutation = {C3,D4,C4,C1} (8.28)
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Note the different way that the permutation sets (Equations 8.27, 8.28) and bootstrap sets
(Equations 8.20, 8.22) are constructed from C and D.
To carry out a permutation test of the hypothesis that the means of the two groups

X and Y (see Equations 8.13 and 8.14) are equal, we would first compute the difference
between the means of the two groups, which have sample sizes of NX =31 and NY =18.
The second step is to merge the two data sets into a single larger one and form a series of
paired permutation sets, each drawn from the merged data set. The first permutation set
in each pair, containing NX specimens, is drawn randomly without replacement from the
merged set. The second permutation set of the pair contains the remainingNY elements of
themerged data set. (No element of the original sets appears twice in the paired permutation
sets, and none is omitted.) The difference between means of the two permutation sets is
then calculated, and repeated for NPermutation sets. The proportion of times in which the
difference between the means of the paired permutation sets exceeds that between the
original data sets is taken as the probability that the observed value could have arisen by
a random splitting of a single underlying distribution.
The permutation test of the difference between the means of sets C and D indicates

that 21.3% of the permuted sets had a difference in means equal to or greater than the
observed difference of 0.428, so we cannot reject the null hypothesis that the means are
equal at a 5% level of confidence. The permutation test has produced results agreeing with
the bootstrap test (in which 26.8% of the bootstrap sets had a difference between means
as large or larger than the observed data set).
It is possible to form permutation tests for a wide variety of statistical hypotheses in a

manner similar to the bootstrap (see Efron and Tibshirani, 1993; Good, 1994). However,
there is an important difference between the permutation and bootstrapping approaches
due to fundamental differences in how they operate. Permutation tests are not suited to
the estimation of confidence intervals because the standard deviation of the estimates of
a parameter (such as a mean or median) is not a reliable estimate of the standard error
in that parameter. Rather, the permutation test yields an estimate of the range of param-
eter values possible under the null model simulated by the test. In contrast, the standard
deviation of the bootstrap estimates of the same parameter yields a reliable estimate of
its standard error because the bootstrap resampling simulates a repetition of the process
of selecting specimens from the population (Efron and Tibshirani, 1993). When used for
hypothesis testing, both methods tend to give very similar results, so it is difficult (and
perhaps unnecessary) to determine which approach is preferable in most cases. To some
extent, the choice between them appears to be a matter of preference among writers of
software. There are some reasons to think that permutation tests may yield a more exact
achieved significance level (ASL) than bootstrap approaches (Efron and Tibshirani, 1993),
but this is at the cost of precluding estimates of confidence intervals (or standard errors)
on the statistics involved.

The jackknife

Jackknife methods (Quenouille, 1949; Tukey, 1958) also preceded bootstrap methods,
and, to some extent, have been supplanted by them. Jackknife estimates are obtained by
resampling such that one element is left out at a time (hence the name – to use a jackknife,
you have to leave one out, either one blade or one specimen). If there are N specimens in
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a sample, then it is possible to form N jackknife data sets, each with N−1 specimens. If
we again look at the set C:

C = {C1,C2,C3,C4,C5} (8.29)

The five possible jackknife versions of C are:

CJ1 = {C2,C3,C4,C5} (8.30)

CJ2 = {C1,C3,C4,C5} (8.31)

CJ3 = {C1,C2,C4,C5} (8.32)

CJ4 = {C1,C2,C3,C5} (8.33)

CJ5 = {C1,C2,C3,C4} (8.34)

Jackknife data sets will always be more similar to the original data set than bootstrap
sets are because the bootstrap offers a greater variety of ways of resampling the data. The
jackknife may be viewed as an approximation to the bootstrap (Efron and Tibshirani,
1993), and it is a good approximation when the changes in the statistic are smooth or
linear with respect to changes in the data. The mean is a linear statistic, but the median
is not (because the median may change abruptly as observations are added or subtracted
from the sample); therefore the jackknife estimate of themeanwill not differ much from the
bootstrap estimate of the mean, but their estimates of the median may differ considerably.
There are some approaches to combining the bootstrap and the jackknife (see partic-

ularly Efron, 1992; Efron and Tibshirani, 1993, Chapter 19, on assessing the error of
bootstrap estimates), but otherwise the jackknife appears to offer few advantages over the
bootstrap.

Monte Carlo methods

Monte Carlo methods compare the value of an observed statistic to the range of values
expected under a given null hypothesis, assuming a model of the populations involved.
Like analytical statistical methods, Monte Carlo methods require making assumptions
about the nature of the distribution from which populations are drawn. They then fit
parameters of the distributional models to the observed samples. In contrast, analytic
statistical approaches use algebraic derivations to estimate the values of statistics (and
standard errors in those statistics) based on the nature of the underlying distributions.
The distinction is that Monte Carlo approaches generate random data sets based on the
parameters and distribution of the model; those random data sets are drawn from model
distributions having the same sample size as the original one. The distribution of the
statistic of interest (estimated over many computer-generated Monte Carlo sets) is used to
estimate the mean and standard deviation of that statistic, under the null model and the
model distribution used. Monte Carlo methods can be used both for hypothesis testing
and for generating confidence intervals.
Monte Carlo methods use numerical simulations to avoid the need for extensive alge-

braic computations and approximations. It may often be easier to program aMonte Carlo
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simulation than to determine analytically the distribution of an intricate statistical function,
particularly when the statistic is not a linear function. Because it is necessary to assume
a model of the distributions of the samples, the Monte Carlo method shares most of the
primary weaknesses of analytic statistics; if the observed distribution departs substantially
from the model, the Monte Carlo sets will not represent the actual system of interest. One
useful feature of the Monte Carlo method is the ability to determine the effect of different
distributional models (the ones typically used are the uniform, normal or Gaussian, and
Poisson) on the range of values estimated by the Monte Carlo sets. The comparison of
observed distributions to those produced byMonte Carlo methods is a powerful approach
to hypothesis testing.
For example, if we wish to determine the significance of the observed difference in the

means of sets X and Y:

X = {2, 2, 3, 4, 2, 5, 3, 2, 6, 2, 3, 4, 6, 2, 1, 4, 3, 7, 2, 3, 4, 4, 5, 8, 5, 2, 1, 3, 4, 4, 3} (8.35)

Y = {2, 2, 3, 2, 4, 2, 3, 2, 8, 9, 2, 9, 3, 2, 3, 3, 3, 9} (8.36)

we will test the null hypothesis that the two sets (X and Y) came from the same underlying
distribution, with the observed difference between them being due to a random assignment
of specimens into groups. To form the Monte Carlo set, we will assume that the single
underlying distribution is normal. We then estimate the mean and standard deviation of
this underlying distribution by merging the data sets into a single group. The mean of the
single distribution is 3.67 and the standard deviation is 2.1. To determine the significance
of the observed difference in the means of the two groups, we generate a series of paired
Monte Carlo sets, one with a sample size NX =31, one with a sample size NY =18, and
we determine the difference between the two means. We then determine the proportion
of NMonte Carlo sets in which the difference between the means of the paired Monte Carlo
sets exceeds that observed between the means of the original data sets.
For the sets X and Y above, the Monte Carlo sets were generated under the assumption

that both samples were drawn from the same normal distribution, with a mean of 3.67 and
a standard deviation of 2.1 (the mean and standard deviation of the combined data sets).
In 480 of 1000 pairs of Monte Carlo sets (48%), the difference between the means of the
paired Monte Carlo sets exceeds the observed difference between the means of the original
data sets, thus the null hypothesis of a single underlying normal distribution cannot be
rejected. It should be noted that the combined data set (of all specimens in X and Y) is
probably not normally distributed, so we might want to repeat the Monte Carlo test using
other models of the underlying distribution.
Monte Carlo simulations are particularly useful for testing different hypothetical sit-

uations when the underlying distributions are believed to be well known. Monte Carlo
methods can be used in cases when bootstrap methods cannot, such as to estimate the
effect of increasing the sample size on the estimated variance; Monte Carlo simulations
are not limited by the observed sample sizes (as bootstrap methods are).

Example: computer-based tests and regression models

To this point, we have focused on t-tests, but computer-based methods are useful for a
wide variety of tests. To develop a more general understanding of these methods, we now
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show how bootstrap and permutation methods can be used in regression analysis (the
subject of Chapter 10). Both approaches can be used to determine if one set of measured
variables Y (the dependent variable) has a statistically significant dependence on a second
set of measured variables X (the independent variable). If we have N observations, each
of a pair of measurements (Xi,Yi), then the typical linear regression model is:

Yi = A+ BXi + εi (8.37)

The regression slope, B, is given by:

B = sXY
sXX

(8.38)

The intercept term, A, is given by:

A = <Y>− B<X> (8.39)

where <X> and <Y> are the expected values (means) of the Xi and Yi values, and

sXX =
N∑
i=1
(Xi −<X>)2 (8.40)

sXY =
N∑
i=1
(Xi −<X>)(Yi −<Y>) (8.41)

are the values of A and B which minimized the summed square residuals (εi). This sum of
squared error terms is:

Error =
N∑
i=1
(Yi − A− BXi)2 =

N∑
i=1
(εi)2 (8.42)

under the assumption that the residuals are independently and identically normally
distributed.
To show that there is a statistically significant dependence of Y on X, it is sufficient to

show that the confidence interval on the slope excludes zero. This is equivalent to showing
that there is a non-zero correlation between Y and X, which may be tested using the
squared value of the correlation coefficient (R2) between X and Y, which indicates the
fraction of the variance in the dependent variable (Y) that is explained by the independent
variable (X). The expression for R2 is:

R2 = s2XY
sXXsYY

(8.43)

where

sYY =
N∑
i=1
(Yi −<Y>)2 (8.44)
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It is very common to interpret highR2 values as being indicative of high explanatory power
in a regression model. There is a method of testing whether an R2 value is statistically
significant (under the assumption of normality of the residuals), by the expression:

1
2
ln
(
1+ R
1− R

)
(8.45)

which is a normally distributed variable, with variance equal to 1/(N−3), where N is the
sample size.
The significance of the slope can be assessed by a permutation test. The objective is

to determine the range of slopes that could be generated by random permutations of the
associations amongX andY values. Thus, we again adopt the strategy of assuming that the
null hypothesis is true (which, in this case, is that the associations among X and Y values
is random). The associations of the Xi values with the Yi are then randomized, generating
a permutation set of paired X and Y values with the same distribution of X and Y values
as in the data, but with randomized combinations of X and Y. The regression model is
then fitted to each permutation set, and the slope (or correlation coefficient) is calculated.
The distribution of the regression slopes (or the correlation coefficients) generated by the
permutation sets can be used to determine if the observed regression slope (or correlation
coefficient) could have been produced by a random association among X and Y variables.
If the observed slope (or correlation coefficient) is outside the 95% confidence interval of
the permutation sets, then we can reject the null hypothesis that the slope (or correlation
coefficient) does not differ from zero. Note that the permutation test estimates the range of
slopes (or correlation coefficients) produced by the null model, not by the observed data.
Thus we reject the null hypothesis by showing that the observed statistic lies outside the
range of the values predicted by the null model.
To carry out a bootstrap test of the significance of the regression line, two approaches

are available: one is to bootstrap (resample with replacement) the paired observations
(Xi,Yi); the other is to bootstrap the residuals from the regression. When bootstrapping
specimens, we form bootstrap sets by sampling (with replacement) from the paired speci-
men values (Xi,Yi) to form a bootstrap set. The regression model is fitted and the slope (or
correlation coefficient) is determined for each bootstrap set, forming a bootstrap estimate
of the confidence intervals for the slope (or correlation coefficient). This yields a confidence
interval on the slope itself, so that if it excludes zero, we can reject a null hypothesis that
the regression slope (or correlation) is zero.
The alternative is to bootstrap the residuals, by first determining the residuals to the

bootstrap, and the Y values that are predicted by the regression model for each X value:

Ypredicted = A+ BX (8.46)

Then the residuals are randomly combined with the paired Xi and Ypredicted values, both
of which are resampled (with replacement). This approach produces a wider variety of
possible paired values of Xi and Yi; it can be thought of as bootstrapping the variable
part of the distribution, independently of the portion that is dependent on X. The range
of slopes (or correlation coefficients) is determined over many bootstrap sets; if the 95%
confidence interval for the slope (or correlation coefficient) excludes zero, we can infer
that there is a statistically significant dependence of Y on X at a 5% confidence level.
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The discussion of how a permutation test is used to determine the statistical significance
of a regression slope serves as a useful illustration of the differences in approach between
bootstrap and permutation methods. In the permutation method, the approach is to esti-
mate the confidence interval under the null model, given the distribution of observed data.
Thus, if the observed statistic is outside the confidence interval of the null, the observed
statistic is judged to be significant. In contrast, the bootstrap approach estimates the range
of the statistic on the observed data (rather than the range under the null). Permutation
tests almost always focus on estimating distributions under the assumption that the null
model is true, whereas bootstrap methods can be used to estimate the distribution of a
statistic either over the observed data or under an assumption that the null is true.

Issues common to all computer-based methods

Statistical power

When evaluating the utility of statistical tests we are faced with Type I error (i.e. falsely
rejecting the null hypothesis when it is true), which is controlled by setting the alpha level
of the test. Because that is under control, statistical tests cannot be said to differ in their
rates of Type I error. In contrast, statistical tests can differ in their rates of Type II error
(i.e. failure to reject the null hypothesis when it is false and an alternative is true). The
rate of Type II error depends on the nature of the test, the null hypothesis and the alterna-
tive hypotheses used. The power of a statistical test is its ability to distinguish between the
false null hypothesis and the true alternative, and it is sometimes expressed as 1 minus the
rate of Type II error.
Estimating the power of statistical tests turns out to be both difficult, and neglected

by many researchers. Some work indicates that permutation, bootstrap and analytic
tests have equivalent statistical power when the data meet the requirements of the ana-
lytic tests (Hoeffding, 1952; Robinson, 1973; Romano, 1989; Manly, 1997). Edgington
(1995) reports higher statistical power for randomization tests when there are violations
of the assumptions of the analytic statistical tests. Efron and Tibshirani (1993) present
an approach to estimating power, given a specific sample size. The approach offered by
Sheets and Mitchell (2001) is to use Monte Carlo methods to estimate the rates of Type
II error under several plausible alternatives to the null hypothesis. Despite the attendant
difficulty in estimating the statistical power of different tests, computer-based tests seem
to have at least as much statistical power as the more familiar analytical tests.

How many repetitions?

Regardless of the method used, the researcher is always faced with the question of how
many replications or repetitions should be made. We want a small bias and standard
deviation, but it is not clear how many replications are required to achieve this end.
The number of independent bootstrap samples that one may form out of N specimens
is (2N−1)!/N!(N−1) (Efron and Tibshirani, 1993), which is over 90,000 for N=10
specimens. In most cases, even thousands of bootstrap replicates will not come close to
exhausting all possible bootstrap sets. Typically, a modest subset of all possible sets is ade-
quate for most statistical questions. Estimates of standard errors can usually be produced
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using only 100 or fewer bootstrap sets (Efron and Tibshirani, 1993), but reliable estimates
of confidence intervals may require using many more. It does not appear that there is
complete consensus on this issue (see Efron, 1992; Efron and Tibshirani, 1993; Jackson
and Somers, 1989; Manly, 1997), but it does seem that more repetitions are necessary for
estimating confidence intervals, where we must estimate a specific percentile point value,
than either for hypothesis testing (see Manly, 1997) or for estimating of standard errors
(Efron and Tibshirani, 1993). If computer time is not an issue, a range of 1000 to 2000
bootstrap tests is recommended for estimating a 95% confidence interval on a parameter
(Efron, 1987; Efron and Tibshirani, 1993). When the time necessary to complete a calcu-
lation is a factor, one approach is to increase the sample size steadily until arriving at a
value that is stable with respect to further increases in sample size. The stability criterion is
perhaps most applicable to hypothesis testing, where we may not need to know the exact
confidence level of the observed statistic – only that we can (or cannot) reject the null
hypothesis at a 5% confidence level.
For example, if we run a bootstrap t-test and find that in 100 bootstrap tests the differ-

ence in means exceeds the observed difference 40 times (yielding p=0.40), it is probably
safe to state that we cannot reject the null at a 5% confidence level. A repetition of the
bootstrap procedure might yield a slightly different confidence level, even changing by
several percentage points, but it is highly unlikely to yield p<0.05. Similarly, in such a
bootstrap t-test, if the difference in bootstrap means never exceeds the observed difference
in means (in 100 bootstrap sets), a single repetition of the bootstrap calculations at 100
bootstrap sets confirms that p<0.05 appears to be reasonable. The difficulty arises when
the bootstrap estimate of the p-value is very close to the desired confidence level (p=0.05
in this example). In such a case, a large number of bootstrap sets may be warranted.
It is worth remembering that for NBootstrap sets, the smallest confidence level we could

possibly estimate is 1/NBootstrap – e.g. for 1000 bootstraps, the smallest confidence level
we could ever hope to estimate is 1/1000=0.001. The estimate of the confidence interval
at 0.001, using 1000 bootstrap sets, is essentially based on the value obtained from a
single bootstrap set (the one producing the largest or smallest value out of the 1000 sets
examined). This suggests that it would be more appropriate to use 10,000 to 20,000 sets
to obtain an estimate of the confidence interval at 0.001, so that the estimate is based on
the results of 10 to 20 bootstrap sets (the 10 or 20 most extreme values out of the 10,000
or 20,000 total sets). In most cases it is not necessary to estimate confidence intervals at
0.1% (0.001); 5% confidence intervals are the standard, and are achievable with lower
numbers of bootstraps.
When in doubt about the number of bootstrap sets that should be used to establish a

particular confidence interval, the safest approach is to repeat the analysis after doubling
the number of bootstrap sets (to determine whether that doubling alters the confidence
level). This doubling should be repeated until the estimate stabilizes; the iterative approach
may be time-consuming, but it is preferable to a blind reliance on a rule of thumb.

Summary

Computer-based statistics provide a useful alternative to themore familiar analytical statis-
tical approaches, particularlywhen the observed distribution departs substantially from the
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assumptions of analyticmodels, or when no analytic estimate is available for the confidence
interval of a specific statistic needed for the analysis. The performance of computer-based
methods appears to be equal to that of analytic methods, although the greater flexibility
of computer-based methods comes at the cost of increased computational time (and the
need to produce specialized software for specific tests).
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9
Multivariate analysis of variance

In Chapter 7 we discussed ordination methods, including one used to discriminate among
groups defined a priori, canonical variates analysis. In Chapter 8 we discussed sev-
eral computer-based statistical methods that use resampling techniques to test explicitly
whether an observed difference among groups is statistically significant. In this chapter
we present a second set of methods that take a somewhat different approach to testing
whether the observed difference is statistically significant. The approach used here is to
compare the observed value of a test statistic (e.g. the values of t for a difference between
two sample means) with the probability distribution of expected values for that statis-
tic under a particular theoretical model for the distribution of variation in a population.
This analytic approach is quite flexible, so the range of questions that can be addressed
by using it is broad. For example, an investigator might want to know whether males
and females differ in height. This is the simplest possible kind of question about differ-
ences between groups, because there is just one continuous variable (height), which is
a simple one-dimensional trait (i.e. it is a scalar), and there is just one categorical vari-
able (sex) with only two classes (male and female). Often the question is more complex,
as when the investigator is comparing shape differences among several species. This is
more complex because the continuous variable (shape) is multivariate (i.e. it is a vector)
and the categorical variable (species) has more than two classes (one for each species in
the study). The question can be made even more complex by considering multiple cate-
gorical variables (e.g. sexual dimorphism in several populations). Below we present the
analytic tests for answering both simple questions and more complex ones. Much of this
presentation follows expositions presented by Snedecor and Cochran (1967), Chatfield
and Collins (1980), and Morrison (1990); readers requiring further details are referred to
those works.

We begin this chapter with a brief review of groups and grouping variables. We then
present the simplest case, the test for a difference in one trait between two groups, and
the methods that would be used in such cases. We follow this with a series of more
complex analyses, and the more generalized methods that would be applied to them.
In the final section, we present instructions for performing the analyses discussed in this
chapter.

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
ISBN 0–12–77846–08 All rights of reproduction in any form reserved
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Groups revisited

A group is a set of individuals (a class) defined as sharing a state of a discontinuous trait.
In mammals and birds, “sex” is an example of a discontinuous trait that has two classes –
“male” and “female.” An individual is either one or the other as a consequence of having
one set of chromosomes or the other. Such traits may be called grouping variables, quali-
tative traits or categorical variables. All these names refer to the fact that the states of the
trait do not have intrinsic numerical values or an inherent order, but they can nonetheless
be used to sort individuals into groups or categories.

Frequently, traits that could be quantified are treated as categorical variables. “Diet”
and “locality” are examples of these kinds of traits. There are several reasons for treating
these traits as categorical variables: first, the available information may not be suffi-
ciently detailed to support a more finely graded analysis; second, the investigator may
not want to impose a hypothesis of ordering on the data; or third, the investigator may not
want to assume that all steps are of equal value. Under these circumstances, a quantifiable
trait may be treated legitimately as a categorical variable. The only requirement is that the
states of a particular variable are mutually exclusive – that is, each individual can belong
to only one group.

Analytic techniques

One simple trait, two groups

We begin with a simple case – a test for a difference in jaw size between male and female
adult squirrels collected at a single locality in western Michigan. Centroid size was com-
puted using the landmarks shown in Figure 9.1, and the observed values of jaw size and
their natural logs are given in Table 9.1. In this example, there is one continuous variable
(centroid size of the jaw) and one categorical variable (sex) with two categories or classes
(male and female). The question to be answered is whether jaw size differs between males
and females.
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Figure 9.1 Outline of squirrel jaw, with landmarks.
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The answer to this question can be obtained from a t-test. In this test, a variable known
as Student’s t (usually just ‘t’) is computed as a function of the difference between the means
of the two classes and variances around those means. The statistical model is the case in
which two samples of equal size are drawn from the same normal distribution. Under this
model, the difference between the sample means is expected to be zero and variance of the
difference is a function of the population variance and size of the samples. Thus:

t = (<X1>−<X2>)√
2σ2

N

(9.1)

Table 9.1 Jaw size variation in 58 squirrels from Allegan County, Michigan

Sex Centroid size ln centroid size Sex Centroid size ln centroid size

Female 53.0 3.97 Male 52.7 3.96
Female 51.8 3.95 Male 51.6 3.94
Female 51.5 3.94 Male 52.2 3.95
Female 48.6 3.88 Male 52.4 3.96
Female 50.7 3.93 Male 51.5 3.94
Female 51.4 3.94 Male 51.8 3.95
Female 52.0 3.95 Male 53.9 3.99
Female 50.3 3.92 Male 53.0 3.97
Female 51.7 3.95 Male 51.5 3.94
Female 52.2 3.96 Male 51.2 3.94
Female 50.6 3.92 Male 51.9 3.95
Female 51.8 3.95 Male 52.8 3.97
Female 51.3 3.94 Male 53.4 3.98
Female 52.7 3.96 Male 53.9 3.99
Female 50.6 3.92 Male 53.1 3.97
Female 52.6 3.96 Male 52.6 3.96
Female 51.1 3.93 Male 51.6 3.94
Female 50.4 3.92 Male 51.5 3.94
Female 51.0 3.93 Male 52.2 3.96
Female 51.4 3.94 Male 51.4 3.94
Female 52.0 3.95 Male 51.8 3.95
Female 52.0 3.95 Male 52.6 3.96
Female 50.4 3.92 Male 52.4 3.96
Female 51.9 3.95 Male 51.7 3.95
Female 53.0 3.97
Female 52.9 3.97
Female 51.0 3.93
Female 52.4 3.96
Female 52.4 3.96
Female 51.8 3.95
Female 53.0 3.97
Female 51.7 3.95
Female 52.8 3.97
Female 51.5 3.94
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where <X1> is the expected value (mean) of group 1, <X2> is the expected value of
group 2, σ2 is the variance, and N is the sample size. Under the conditions of the model
(a single population with a normal distribution), t has a known probability distribution,
which approaches the normal distribution as N increases. Thus, the t-test evaluates the
probability that two samples with means differing by the observed amount could be drawn
by random sampling from a single population with the given variance.

In most studies (as in the squirrel jaw example) the two classes are represented by samples
that have different variances and different numbers of individuals. This creates the problem
of deciding what values to use to compute the standard error. The usual solution to this
problem is to treat the two sample variances as estimates of one population variance, which
is consistent with the model underlying the t-test. Accordingly, the sample variances (s2i )
are weighted by their respective sample sizes (Ni) to compute a “pooled” estimate of the
standard error, as shown in Equation 9.2:

t = (<X1>−<X2>)√√√√( (N1 − 1)s21 + (N2 − 1)s22
N1 +N2 − 2

)(
N1 +N2

N1N2

) (9.2)

This is just a generalized version of Equation 9.1. In the special case where variances are
equal, the denominator of Equation 9.2 simplifies to:

√
s2
(
N1 +N2

N1N2

)
(9.3)

and when sample sizes are also equal, this simplifies further to:

√
s2
(

2
N

)
(9.4)

as in Equation 9.1.
For the natural logs of jaw centroid sizes in Table 9.1, the 34 females have a mean of

3.94 and a variance of 3.9×10−4, while the 24 males have a mean of 3.96 and a variance
of 2.4×10−4. Putting the sample sizes and variances into the denominator of Equation
9.2 yields a value of 0.0048. The difference between means is 0.02, so t=2.7. The degrees
of freedom are one less than the number of individuals, which is 57. With 57 degrees of
freedom, the probability that t could be greater than or equal to 2.7 is 0.0091, which is
usually considered statistically significant. Thus the difference between means is small, but
the variances are even smaller, and so we can infer that males and females in this squirrel
population do differ in jaw size.

The question of whether there is a significant difference between groups can also be
answered without computing the difference between means. Instead, the variance explained
by the categorical variable is compared to the variance it does not explain (which is the
basis of the term analysis of variance, or ANOVA). The ratio of these two variances
(explained divided by unexplained) is the test statistic F. Like t, F has a known probability
distribution for pairs of samples drawn from the same normal distribution. Consequently,
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(D)

(C)

(B)

(A)

Figure 9.2 Graphic representation of ANOVA. Bell curves for two distributions are shown; the
small stars are the group means of the respective distributions; the large star is the grand mean.
(A) Both overlapping distributions are shown; (B) regions occupied by individuals closer to their
group mean than the grand mean are shaded; (C) regions occupied by individuals closer to the grand
mean than their group mean are indicated by diagonal hatching; (D) regions defined in B and C are
shown side-by-side to compare their areas.

the probability reported for the F-test is the probability of an equal or larger F-ratio for
two samples drawn randomly from the same distribution.

The logic underlying the F-test can also be explained graphically (Figure 9.2). We can
represent the variation in each sample as the area under a curve (Figure 9.2A). In each
group, some individuals are closer to their group mean than they are to the grand mean
(Figure 9.2B); other individuals are closer to the grand mean than they are to their group
mean (Figure 9.2C). The areas under the curves represented by these sets are shown in
Figure 9.2D. If the means are far apart, a large proportion of individuals will be closer to
their respective group means than to the grand mean, the value of F will be high, and the
classes will be judged significantly different.
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Computation of the F-ratio is complicated by the fact that the variance explained by
the categorical variable cannot be calculated directly from the data but must be computed
indirectly as the difference between the total variance and the variance that is not explained.
If this seems strangely convoluted, look again at Figure 9.2. We can compute the deviations
of each individual from the grand mean and use them to compute the total variance. We
can also compute the deviations of each individual from its respective group mean and
use them to compute the unexplained variance (the variance within the groups cannot be
attributed to the factor responsible for the difference between the groups). Subtracting the
unexplained variance from the total variance leaves the explained variance. For the natural
logs of jaw size, the sum of squared deviations from the grand mean is 0.0207. The sums
of squared deviations from the group means are 0.0055 for males and 0.0128 for females
for a total within-groups sum of squares of 0.0183. The difference between the total and
within-groups sums of squares is 0.0024; this is the between-groups sum of squares that
can be used to compute the variance explained by the categorical variable, sex.

Variance is the sum of the squared deviations divided by the number of degrees of free-
dom. The total degrees of freedom areN−1. The number of degrees of freedom attributed
to the categorical variable isG−1, whereG is the number of groups or categories. (There
are fewer degrees of freedom than classes, because an individual that does not belong to the
first G−1 groups necessarily belongs to the last one.) Subtracting the degrees of freedom
allotted to the explained variance leavesN−G degrees of freedom for the unexplained vari-
ance. Returning to our example, N=58 andG=2. The explained variance (due to sexual
dimorphism) is 2.4×10−3/1, and the unexplained variance is 0.0183/56=0.33×10−3.
The explained variance divided by the unexplained is 7.3. This F-ratio, with 1 and 57
degrees of freedom, has a p-value of 0.0091, which is identical to the p-value that was
obtained from the t-test. Thus, despite taking different approaches, the F-test and t-test
lead to the same result – the same conclusion regarding the significance of the difference
between the two groups.

It is important to remember that both the t-test and the F-test assume that the variances
within the groups are the same. Furthermore, both tests are asking whether samples as
different as yours could have been drawn from a single sample with a specific known
variance. Fortunately, both tests are fairly robust to violation of the assumption of equal
variances.

One simple trait, more than two groups

Because ANOVA compares variation within groups to variation between groups, it can
also be applied to analyses that examine more than two groups. For example, Table 9.2
illustrates an analysis of geographic variation in jaw size (the rows in the lower half of this
table are not in the order usually reported, but in an order that corresponds more closely
to the sequence of calculations). The categorical variable is geographic location, which
has three classes referring to three collecting areas (eastern Michigan, western Michigan,
and southern states). To test whether there is significant geographic variation in jaw size
(to test whether there are significant differences among the three populations), we follow
exactly the same procedure as for two groups. The sum of squared distances of individuals
from the grand mean is the total sum of squares (SSQ), and the sum of squared distances
of the individuals from their class means is the unexplained sum of squares. The difference
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Table 9.2 ANOVA of jaw size with three groups

Western Eastern Southern All
Michigan Michigan States

N 69 23 27 119
Mean 3.95 3.96 4.01 3.97
SSQ 0.034 0.017 0.019 0.131

SSQ DF MSQ F p

Total 0.131 118
Within-groups 0.070 116 <0.001
Between-groups 0.061 2 0.031 >50 <0.0001

between these quantities is the between-groups sum of squares. The variances are the mean
squares (MSQ), computed by dividing the sums of squares by the appropriate numbers of
degrees of freedom (DF). As in the previous example, these values are the number of groups
(localities) minus one, and the number of individuals minus the number of groups. Again,
the value of F is the ratio of the explained and unexplained variances. In this particular
example, the ratio is enormous (and imprecise due to rounding error) and the p-value is
miniscule, indicating that there is a highly significant difference in jaw size among the three
localities.

The conclusion that there is a difference among three or more classes does not imply
that the mean of each class is significantly different from the mean of every other class.
To determine whether that is the case, t-tests must be performed for all possible pair-wise
comparisons. In the squirrel example, there are three pairs of localities, and the three tests
indicate that the means of the two Michigan localities are not significantly different from
each other but both are significantly different from the mean of the southern locality.

When performing multiple unplanned tests to determine which groups are different,
it is important to remember that each additional test increases the chance that we might
falsely reject the null hypothesis that the two groups are not different. If we perform a test
and accept that the null hypothesis is rejected when the p-value is less than or equal to
0.05, we are also accepting the possibility that the test could be erroneous 5% of the time
(based on the model of a normal distribution). Each time the test is repeated, we run the
risk that the particular result will be erroneous, and increase the cumulative probability of
at least one erroneous result. The way to correct this problem is to require a lower p-value
before accepting that a test result supports rejection of the null hypothesis. One common
adjustment is the table-wide Bonferroni adjustment, in which the desired p-value is divided
by the number of tests. In the example above, we would require p<0.05/3 for all tests.

Two or more categorical variables

The examples above have only a single categorical variable, but it is common to have
multiple categorical variables representing independent classifications of the specimens in
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the data set. In the data analyzed in the last example, there are male and female squirrels in
all three localities. This suggests that we should divide the variance in jaw shape into three
components: variance explained by sex, variance explained by geography, and variance
not explained by either sex or geography (Table 9.3). Two F-ratios are computed, one for
each categorical variable. As before, the variance explained by the categorical variable is
compared to the variance that is not explained, but now the unexplained variance is the
variance that is not explained by any categorical variable. This is a smaller quantity than
the variance that is not explained by that particular categorical variable.

The ANOVA can also be used to test whether sexual dimorphism differs among locali-
ties. In other words, we can test whether there is an interaction between the two categorical
variables. This requires computing the variance explained by a third categorical variable in
which the classes are defined by all possible combinations of the classes in the two original
categorical variables. This test can only be used if we have specimens representing all of
the possible classes in this new variable. If we had only males for one locality, we would
not be able to test for an interaction across all three localities (although we would be able
to test for an interaction over the two localities for which we do have both sexes). In the
jaw size example (Table 9.4), the interaction between sex and location explains very little
of the variation – albeit more than sex by itself. The lack of a significant interaction means
that sexual dimorphism is not significantly different among the three locations. (Sepa-
rate analyses on the three locations indicate that none of them exhibits significant sexual
dimorphism in jaw size.)

Notice that as we add explanatory variables to the model, the unexplained SSQ gets
progressively smaller as more of the total SSQ is attributed to the explanatory variables.
In addition, the unexplained SSQ is attributed to fewer degrees of freedom. Both of these
changes influence the F-ratios for the tests of specific hypotheses. In the squirrel jaw data,
the differences among localities are so large and the differences due to the other variables so
small that the decision to include additional variables did not alter conclusions. However,

Table 9.3 ANOVA of jaw size with two categorical variables

SSQ DF MSQ F p

Locality 0.061 2 0.031 >50 <0.0001
Sex <0.001 1 <0.001 <0.15 >0.69
Unexplained 0.070 115 <0.001
Total 0.131 118

Table 9.4 ANOVA of jaw size with two categorical variables and their
interaction

SSQ DF MSQ F p

Locality 0.060 2 0.031 >50 <0.0001
Sex <0.001 1 <0.001 <0.03 >0.86
Locality× sex <0.001 2 <0.001 <0.11 >0.89
Unexplained 0.070 113 <0.001
Total 0.131 118
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if the effects of sex or locality were marginal (if the F-ratios were close to the cut-off point
for an α of 0.05), then the conclusions could have been altered by the inclusion of the
interaction effect in the analysis. For this reason, all explanatory variables (including all of
their interaction terms) should be included in an ANOVA, and the explanatory variables
should be tested simultaneously, not one by one. If your data do not include specimens
for every possible combination of states of the categorical variables (e.g. you do not have
both sexes from every location), you should reduce the data set so that every possible
combination of the remaining states is included (e.g. include only the locations for which
you have both sexes). This will at least tell you whether there are interactions in that subset
of the data.

A categorical variable and a continuous variable

In some cases, one of the explanatory variables may be continuous rather than discontin-
uous. For example, we might anticipate that differences in shape between sexes are partly
due to differences in size between the sexes. Thus, we would want to account for the
differences in shape caused by differences in size so we can test for shape differences inde-
pendent of size differences. The continuous explanatory variable in this type of analysis is
called a “covariate.” The variance due to it is explained by the regression of the dependent
variable on the covariate. (Regression and related analyses, including alternative meth-
ods of accounting for variation explained by the covariate, are discussed in Chapter 10.)
Analyses of variance that include a covariate are called ANCOVA, or MANCOVA in the
multivariate case. Briefly, these methods use regression to control for the covariate. This is
done by estimating the expected value for the dependent variable(s) at a given value of the
covariate (usually, the Y-intercept). The value of the covariate does not matter when the
different groups have the same slope of the dependent variable on the covariate, because
their regression lines are then either parallel or coincident. If they are parallel, the groups
differ in shape even after adjusting for the covariate and they will differ by the same amount
and in the same direction over all possible values of the covariate. If the slopes are coinci-
dent, meaning the lines are actually the same, the difference between groups will be zero
for all values of the covariate. Thus, the first step of the analysis is to test for a significant
interaction between the covariate and the categorical variable. In Chapter 10 we present
a method for comparing shapes across groups when the interaction term is significant.

In Table 9.5 we show results for an analysis to determine whether there are differences
in jaw length among localities after accounting for variation in jaw length explained by
variation in jaw size (the covariate). This result shows a significant effect of locality on jaw
length, so there are differences in jaw length among localities that are independent of the
differences in jaw length that are associated with differences in jaw size. (The independence

Table 9.5 ANOVA of jaw length with jaw size as a covariate

SSQ DF MSQ F p

Locality 0.003 2 0.002 >24 <0.0001
Jaw size 0.052 1 0.052 >740 <0.0001
Unexplained 0.008 115 <0.0001
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of length and size suggests differences in shape; in the next section we present a more direct
test for shape differences.) We also find that most of the variation in jaw length is explained
by the regression on jaw size, not by differences among localities (indicated by difference
in mean squares).

A complex trait and a categorical variable

So far in this chapter, we have discussed tests in which the dependent variable is a simple,
one-dimensional, continuous trait such as size. In such cases, there is a single total variance
to parse into its explained and unexplained components. That total was divided into
more explained components when more categorical variables were added, but the test
still only evaluated the relative magnitudes of the explained and unexplained components.
In contrast, shape is a single, complex trait described by several continuous components.
To parse the variance of this multidimensional trait, we use the same technique that would
be used to parse the variances and covariances of multiple, separately measured traits,
namely multivariate analysis of variance (MANOVA).

In the simplest MANOVA, we have a multivariate dependent variable and just one
categorical variable with two classes. Our question is whether there is a difference between
classes in the dependent variable, so we want to perform a multivariate equivalent of
the t-test. In other words, we want to evaluate the difference between the two means
on all measured variables simultaneously. The multivariate generalization of the t-test is
HotellingsT2. T2 can be derived from the univariate t, using the formula introduced earlier
for the case in which samples have equal variances but different numbers of individuals
(from Equations 9.2 and 9.3):

t = (<X1>−<X2>)√
s2
(
N1 +N2

N1N2

) (9.5)

Squaring this expression produces:

t2 = (<X1>−<X2>)2

s2
(
N1 +N2

N1N2

) (9.6)

which can be rearranged to:

t2 =
(
N1N2

N1 +N2

)(
(<X1>−<X2>)2

s2

)
(9.7)

Now, we replace the univariate difference between means <X1>−<X2> with the vec-
tor of mean differences on all variables (<X1>−<X2>)T, and we replace the pooled
within-group variance s2 with the pooled within-group variance–covariance matrix Sw.
This yields:

T2 =
(
N1N2

N1 +N2

)
(<X1>−<X2>)TS−1

w (<X1>−<X2>) (9.8)
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which is distributed approximately as an F-distribution. The degrees of freedom are given
by the number of variables (V) and N1+N2−1−V .

When we have multiple groups, each described by a multivariate dependent variable,
we need a multivariate generalization of the F-test used in ANOVA. Recall that the uni-
variate F-test is a function of the variances within and between groups. Accordingly, the
multivariate F-test should also be a function of the within-groups and between-groups
variance–covariance matrices (W and B). Although this implies that the test statistic for
the multivariate F-test should be a function of the eigenvalues of W and B, it is not clear
what that function should be. One simple solution is the Hotelling–Lawley trace, which is
the trace of BW−1 (the trace of a matrix is the sum of its eigenvalues). Several alternatives
to the Hotelling–Lawley trace have been proposed; all can be equated with functions of
the eigenvalues of BW−1. Each of these test statistics can be converted to a value that
is distributed approximately as an F-distribution, making it possible to determine the
p-value for the hypothesis that the samples were drawn from the same multivariate nor-
mal distribution. For example, a commonly used statistic is Wilks’ �, formally defined as
the determinant of W(B+W)−1 (i.e. the product of the eigenvalues of that matrix), which

is equivalent to the product
∏ 1

1+ θi where θi are the non-zero eigenvalues of BW−1.

Wilks’ � can be converted to functions that approximate either the χ2 (−ln� weighted

by a function of the degrees of freedom) or F distribution (W
1−�1/H

�1/H , where H is 1 less

than the number of groups and W is a function of the degrees of freedom). Chatfield
and Collins (1980) cite several studies that compare the performance of these and other
tests, and conclude that the comparisons are indecisive. They also note that the two tests
mentioned above and a third test, Pillai’s trace (trace of B(B+W)−1), are asymptotically
equivalent, meaning that they approach the same value at large sample sizes and differ
little in power at small sample sizes. Furthermore, the three tests are exactly equivalent
when there is only one independent variable.

The total number of degrees of freedom differs slightly among the three test statistics,
but in all cases it is approximately the product of the number of groups (G) and the total
number of individuals in all groups (N). In all three tests, the number of degrees of freedom
for the between-groups variance isV(G−1) whereV is the number of variables andG is the
number of groups. The number of degrees of freedom for the within-groups variance is the
total degrees of freedom minus the between-groups degrees of freedom. For this difference
(approximately NG−VG) to be greater than zero, the number of individuals must be
greater than the number of variables. This is consistent with the algebraic requirement
that the number of equations must be greater than the number of variables in order to
have more equations than there are variables in those equations, so N must be greater
than V .

Although MANOVA can be used to test for shape differences among groups, there
are constraints on the kind of shape data that can be used. One constraint is due to the
fact that MANOVA assumes that the measurement space is Euclidean (as discussed in
Chapter 4, shape space is not Euclidean). Another constraint is due to the fact that the
number of shape variables is smaller than the number of variable coordinates produced by
most methods of superimposition (as described in Chapter 5). By specifying the “variable
coordinates” we mean to exclude the fixed baseline endpoints produced by the two-point
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Eastern Michigan
Western Michigan

Southern States

Figure 9.3 Superimposed landmarks of 119 squirrel jaws from three localities, eastern and western
Michigan, and southern states.

Eastern Michigan
Western Michigan

Southern States

Figure 9.4 Superimposed landmarks of the mean jaw shapes for the three geographic samples
shown in Figure 9.3.

registration (Chapter 2). For landmarks taken on two-dimensional images, the number of
shape variables is 2K− 4, where K is the number of landmarks. If the number of variable
coordinates is greater than the number of shape variables, then the number of variable
coordinates overestimates the true degrees of freedom.

Fortunately, we have two ways to project shapes in shape space onto a Euclidean tangent
space, thereby converting shape information to a form that satisfies these two assumptions
of MANOVA. One option is to compute Bookstein shape coordinates, which produces
the same number of variable coordinates as there are dimensions in the shape space. The
other option is to use partial warp scores for configurations obtained by Procrustes (GLS)
superimposition. The number of partial warps (including the uniform components) is the
same as the number of dimensions in the shape space.

Figure 9.3 shows the Procrustes superimposed landmarks for the squirrel jaws. At each
landmark the distributions of the position of that landmark in the three geographic samples
overlap broadly, suggesting there is little if any difference in jaw shape among localities.
Comparison to the picture of the three mean shapes (Figure 9.4) suggests that the differences
among groups are small relative to the variability within each group. Table 9.6 lists results
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Table 9.6 MANOVA of jaw shape among localities using thin-plate
spline coefficients

Test statistic Value F DF p

Wilks’ � 0.136 5.98 52, 182 <0.000001
Pillai trace 1.25 5.87 52, 184 <0.000001
Hotelling–Lawley 3.54 6.08 52, 180 <0.000001
trace

Table 9.7 Goodall’s F test for shape differences among locations

Localities PPd F DF p

W and E 0.0265 9.83 26, 2340 <0.000001
W and S 0.0384 22.2 26, 2444 <0.000001
E and S 0.0204 3.76 26, 1248 <0.000001
All three n.a. 13.5 52, 3016 <0.000001

W=western Michigan, E= eastern Michigan, S= southern states. PPd is the par-
tial Procrustes distance between pairs of mean shapes, which does not apply to
the three-sample case.

of three tests for differences in jaw shape among the three squirrel populations. The data are
the scores of the thin-plate spline components, with the mean of all individuals (computed
by Procrustes superimposition) as the reference shape. The F-values and degrees of freedom
differ slightly, reflecting differences in the computations performed for each test; when
p-values are close to the preferred α-level, these differences can lead to different conclusions.

An alternative to performing a MANOVA on shape variables in the tangent space is to
perform the analysis in shape space, measuring deviations from means as sums of squared
Procrustes distances. The test statistic for this analysis is Goodall’s F, which is the ratio of
explained and unexplained variation in those distances. As in conventional MANOVA, the
degrees of freedom for the explained variance are given byV(G−1), whereV is the number
of dimensions (variables) in shape space and G is the number of groups. However, the
total number of degrees of freedom, V(N−1), and the within-groups degrees of freedom,
V(N−G), are much higher than in a conventional MANOVA. This difference is due to
the fact that we are computing Procrustes distances for N individuals in V dimensions,
but do not need to estimate all the variances and covariances of the shape variables.

Table 9.7 shows the F-values and corresponding p-values obtained for all three pair-wise
comparisons of the three populations, and for a simultaneous analysis of all three groups.
The partial Procrustes distances between the means are also shown for the two-group
comparisons. Because the dimensionality of shape space is a factor in the total number
of degrees of freedom, the p-values can be quite small even when the categorical variable
explains very little of the shape variation in the data set. As might be surmised from Figures
9.3 and 9.4, differences among the three populations explain only a small fraction of the
variation in the Procrustes distances. Those differences can be judged significant because a
large amount of information (resulting in large numbers of degrees of freedom) was used
to estimate what those differences are.
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Other uses of the t-test

Earlier in this chapter we discussed a typical use of the t-test, namely to determine whether
the difference between two sample means is statistically significant. The t-test can also be
used to evaluate the uncertainty of a derived quantity – that is, a quantity that is not com-
puted for each specimen but is computed after analysis of several specimens. In geometric
morphometric studies, we often want to know whether the partial Procrustes distance
between one pair of mean shapes is significantly different from the distance between
another pair of mean shapes. For example, the distance between mean shapes of squirrel
jaws in the western Michigan and southern samples appears to be much greater than the
distance between mean shapes of the eastern Michigan and southern samples (0.0384 vs
0.0204). The partial Procrustes distances computed from the original data sets are the
expected values <X1> and <X2> in the formula for t (Equation 9.2, reproduced here):

t = (<X1>−<X2>)√√√√( (N1 − 1)s21 + (N2 − 1)s22
N1 +N2 − 2

)(
N1 +N2

N1N2

) (9.2)

The sample sizes N1 and N2 are the combined sizes of the paired data sets (69+27) and
(23+27) corresponding to the distances <X1> and <X2>. Although these replacements
are straightforward, the values of s1 and s2 are less clear. Given only the original data
sets, we have only one estimate for each of the distances; they are single observations, not
means of multiple observations. Without multiple observations, we have no direct way
to estimate the uncertainty of the expected value. One solution to this dilemma is to use
bootstrap resampling (Chapter 8) to estimate the standard error of each distance (another
solution is to bootstrap the difference between the distances – see the next section). Because
SE2= s2/N, we must substitute N · SE2 into Equation 9.2, producing:

t = (<X1>−<X2>)√√√√( (N1 − 1)N1SE2
1 + (N2 − 1)N2SE2

2

N1 +N2 − 2

)(
N1 +N2

N1N2

) (9.9)

Substituting the distances (0.0384 and 0.0204), standard errors (0.0030 and 0.0032) and
sample sizes (96 and 50) into this equation yields t=3.60 with 144 degrees of freedom for
p<0.0005. Thus, the difference between the two distances is statistically significant.

Whenever using the t-test, whether comparing means of observed variables or com-
puted values of derived variables, it is important to remember that the test assumes that
deviations within the groups are normally distributed. Fortunately, the test is fairly robust
to violations of this assumption, but care should be taken when the p-value is close to 0.05
(or whatever α is chosen as the criterion for statistical significance).

Resampling-based tests

All of the statistical tests discussed so far in this chapter make assumptions about the distri-
bution of variation around the means that are being compared. As discussed in Chapter 8,
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deviations of the populations from the model can lead to erroneous conclusions. Resam-
pling procedures can be used, allowing biological samples to deviate from ideal theoretical
distributions, but implementing a test using these procedures often requires the user to
write the program for that specific test. Below, we briefly demonstrate two readily available
bootstrap tests.

In the first example, we use the bootstrap to determine whether jaw shape differs
between the two samples of squirrels from Michigan. The null hypothesis is that the
observed difference could arise by chance when sampling from a single population, so
all 96 specimens were combined into a single pool. In each iteration, two bootstrap sets of
the original sample sizes (69 and 27) were drawn with replacement from the pool and the
F-ratio was computed for that pair. After the chosen number of iterations was completed
(400 in this case), the bootstrap sets with an F at least as large as the original set (9.83) were
counted. This number divided by the number of iterations is the probability of obtaining
the original samples under the null hypothesis. In this case, only the original samples had
an F as large as 9.83, so the p-value is 1/400 (0.25%).

In the second example, we use the bootstrap resampling procedure to evaluate the
uncertainty of a derived quantity: the partial Procrustes distance between the mean shapes
of the two samples. Here, the question is about the uncertainty of the distance between
sample means, which is a function of the sampling of each source population. To simulate
this by bootstrapping, we keep the samples separate, and in each iteration draw separate
bootstrap sets of each sample and compute the distance between the means of the bootstrap
sets. This set of distances is used to estimate the 95% range interval around the distance
between the population means. One use of this range interval is testing whether the distance
between one pair of samples differs from the distance between another pair of samples. In
the analysis of squirrel jaws, the partial Procrustes distances between mean shapes suggest
that the southern sample is much farther from the western Michigan sample than it is
from the eastern Michigan sample (0.0384 vs 0.0204). This is supported by the 95%
range intervals, which do not overlap (0.0338−0.0456 vs 0.0172−0.0295).

We can also answer the question about the difference between the two distances by
bootstrapping that difference (now the difference is the derived trait rather than one of the
distances). In this case, we draw bootstrap sets of all four samples in each iteration, com-
pute the two distances between pairs of means and the difference between those distances.
These results are used to determine the 95% range of the difference between distances over
the series of iterations. For the squirrel jaws, the distance between mean shapes of the west-
ern Michigan and southern samples (0.0384) is greater than the distance between mean
shapes of the eastern Michigan and southern samples (0.0204). The difference between
the distances is 0.0184. After 400 bootstrap iterations, the 95% range of the difference is
estimated to be 0.0070−0.0246. This range does not include zero, so we can infer that
the observed difference between distances is statistically significant.

Software

Two programs in the IMP series are available for performing the statistical analyses dis-
cussed in this chapter, CVAGen and TwoGroup. Both perform simple analyses; more
complex ones will require a commercial statistical package, or TPSRegress (at the end
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of this section we provide general instructions for using commercial packages to conduct
these analyses).

MANOVA of shape using CVAGen

As discussed in Chapter 7, CVAGen can be used to describe differences among groups. The
output for CVAGen includes a test of the hypothesis that differences among the groups
are statistically significant (for detailed instructions on running this program, look at the
discussion of CVAGen in Chapter 7). Here we discuss only the results of a statistical test
reported in theAuxiliary Results box window. These are the results of Bartlett’s test for the
number of informative CVs. Bartlett’s test is based on a MANOVA testing the hypothesis
that there are differences among the groups; the MANOVA is repeated with progressively
fewer CVs to determine how many of them are informative. Accordingly, each row in the
window shows the value of Wilk’s �, the corresponding χ2, the degrees of freedom and
the p-value for the test that there are differences among groups in a progressively smaller
subset of the data. The first iteration, using all of the CVs, is the one that is relevant
here; it is the test for differences among groups using all of the available data. The null
hypothesis is that there are no differences among the groups; that the differences among
the samples are no greater than would be expected if they had all been drawn from the
same multivariate normal population. Remember, rejection of this null does not mean that
each group is different from every other. The plots of CVA scores and the classification
table (produced by selecting Show Grouping By CVA in the Statistics menu) can suggest
reasonable hypotheses of which groups differ, but these are not definitive tests.

It is possible to use CVAGen explicitly to test whether two particular groups are signif-
icantly different by including only those two groups in the data file. Then there is only one
CV (the axis maximally discriminating between the two groups). If they can be differenti-
ated on this axis, then they are significantly different. Doing this requires you to construct
a separate file for each pair of groups, so we recommend using TwoGroup, which requires
fewer files to perform the same set of tests.

Running TwoGroup

Each group must be in a separate file, in standard (X1,Y1,…CS) format. The files are
loaded separately by clicking Load Data Set 1, finding the file, then clicking Load Data
Set 2 and finding that file. As usual, you can display the data in various superimpositions,
by clicking on your choice in the Show Data field below the visualization window. Be sure
to select the correct baseline points before choosing plots or analyses that use a baseline
superimposition (i.e. BC or SBR). After the files are loaded, all of the test options are
active, so be sure that you have selected the right number of bootstraps before clicking one
of these buttons.

To test the significance of the difference between samples using Bookstein coordinates,
choose Hotelling’s T2 (BC); this is the only test available for these coordinates. The results
window will report values for F, the degrees of freedom, and p. The results will also
include the distance between means. This distance is the sum of the squared distances
between corresponding landmarks, but it is not the minimized Procrustes distance because
the landmark configurations are not in Procrustes (GLS) superimposition.
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To test the significance of the difference between samples using the partial Procrustes
distances, choose Goodall’s F (Procrustes). For this test, the coordinates are superimposed
using GLS with the specimens rescaled to unit centroid size (see Chapter 5). Again, values
of F, the degrees of freedom, and pwill appear in the results window. The distance between
means is also reported, which is the partial Procrustes distance.

Next to the buttons for the analytic tests are buttons for two tests that use a bootstrap
resampling procedure (F-test, SBR and F-test, Procrustes). The F-test, SBR is a resampling-
based F-test for coordinates in the SBR superimposition; F-test, Procrustes is a resampling-
based version of Goodall’s F-test. Before choosing either option, select the right number
of iterations in the No. of Bootstraps box on the far left. The results, which will appear
in the results window, will include the F-value computed for the original data set. After
this is a “Significance level:..” which is the fraction of iterations (in decimal format) in
which F is greater than or equal to the value reported for the original data. The output
also includes a distance between the means of the original data sets. Again, if you selected
the Procrustes test, this is the minimized partial Procrustes distance; if you selected SBR,
it is not the minimized distance because the specimens are not in the partial Procrustes
superimposition.

The three buttons in the box labeled Bootstrapped Distances Between Means invoke
analyses in which bootstrap resampling is used to estimate the standard error and 95%
range of estimates for the distance between the group means under the indicated super-
imposition. The observed distance and the bootstrapped standard error of that difference
can be used to test whether the distance between one pair of samples is different from the
distance between another pair of samples (using TBox, described below).

Like the standard error, the 95% range is a measure of the uncertainty of the observed
distance between the two means. However, this range should not be used to test the
hypothesis that this distance is significantly greater than zero. A distance cannot be less
than zero. Even if the groups have identical means, it is unlikely that bootstrap sets will
be drawn in which the difference is exactly zero. You can demonstrate this by loading the
same file twice (i.e. using the same file as data sets 1 and 2); the lower end of the confidence
interval will be a small number, but still greater than zero.

The value of the 95% range is that it can be used to evaluate whether the distance
between one pair of groups is different from the distance between a second pair of groups.
If the ranges for the distances do not overlap, then the difference between the distances
is statistically significant. The limitation of this test is that it may be too stringent: the
probability that both distances are more similar than the adjacent ends of the ranges is
considerably less than 0.05 (in fact, it is less than 0.052 if the normal model applies). If
you have ranges that overlap, you may want to consider using the standard errors in an
analytic test (in TBox), as mentioned before.

Another option for comparing the difference between two distances is to bootstrap that
difference. Use Load Data Set 1 and Load Data Set 2 to load the first pair of samples,
then go to the File pull-down menu and use Load Group 3 and Load Group 4 to load the
second pair of samples. Now go to the More Stats pull-down menu and select Bootstrap
Distances 1+2 vs 3+4. When the iterations are completed, the results window will show the
partial Procrustes distance between means 1 and 2, the 95% range and the standard error.
Scrolling through the results will reveal the same information for the distance between
means 3 and 4. At the end, you will come to the 95% range for the difference between
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the distances. If this range includes zero, then the distances are not significantly different;
sometimes one distance is larger, sometimes the other distance is larger.

In addition to the statistical tests, TwoGroup can plot the superimposed landmarks
and the superimposed means (but only for the data sets 1 and 2). These plots can be
modified using the Symbols Control pull-down menu, which allows you to change the red
and blue symbols to black or gray, fill the symbols, and increase their size. The plots of
the differences between means can be edited using the options located on the Difference
Plot Options pull-down menu. As usual, you can select from a variety of superimposition
methods and types of displays, trim the grid and rotate the reference.

Using TBox

This program can be used to perform t-tests on means of directly measured traits or on
expected values of derived quantities like the Procrustes distances between groups. Type
the values you want to compare into the boxes labeled Mean of Group 1 and Mean of
Group 2. These values could be the means of a univariate trait, like centroid size. In that
case, simply type the means, sample sizes and standard errors into the appropriate boxes.
The group with the larger mean should be entered as group 1. When you click the big
green Run Calculation button, the program will compute the t-value for the difference
between the means and determine the corresponding p-value. If the values are Procrustes
distances between samples, enter the distance between the first pair of samples as theMean
of Group 1 and the distance between the second pair of samples as the Mean of Group 2.
The sample size for the group is the sum of the two sample sizes. Standard errors for the
distances can be obtained from the resampling tests in TwoGroup, as described above.

Note the caveats for TBox. You must have standard errors for the quantities you are
comparing; if you have variances or standard deviations, you must convert them to stan-
dard errors. The more important caveat is the assumption of normality. TBox reports the
value of p for t, when t is normally distributed, which is only expected when sample sizes
are large (>60). If your sample sizes are smaller, you may prefer to use the more con-
servative p-values reported in t-tables of more conventional statistics texts and programs.
However, even these p-values are computed under the assumption that deviations within
samples are normally distributed. If even this assumption of normality is doubtful, you
should probably use a resampling-based test.

Conducting ANOVAs/MANOVAs using other programs

Simple ANOVAs, like the test for differences in centroid size between two samples, can
often be performed using a hand-held calculator or a spreadsheet program. The hard part
is sorting the data correctly and keeping track of the number of entries. If you use a
spreadsheet program, be sure you choose the correct ANOVA or t-test options for equal
or unequal sample sizes, and for equal or unequal variances.

Complex MANOVAs, analyses in which there is more than one categorical variable
(locality and sex), or analyses in which there is a categorical variable and a covariate (sex
and size), usually must be performed in a computer program package specifically designed
for multivariate analysis. Although these analyses are not algebraically difficult, they can
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be computationally intensive. Below we present some general guidelines for performing a
MANOVA on shape variables in commercial statistical packages.

The first step is figuring out how to get your data into the program you intend to use
to analyze the data. To do this correctly, you will need to understand how the analytic
program expects the data to be formatted. One part of this is determining whether the
analytic program can accept data from your database, spreadsheet or text file; another
part is determining whether the program requires particular symbols to delimit fields
(e.g. space, tab, or comma), or types of variables (e.g. “$” as the last character in the
name of a categorical variable). You should also determine whether it will be easier to add
the categorical variables to the data before or after they are read into the analytic program;
this will be a function of how easy it is to edit the data file after it has been read.

The next step is deciding whether you want to analyze the shape variables from the thin-
plate spline decomposition (scores on the partial warps and uniform components) or the
coordinates of the landmarks. If you decide to use landmark coordinates, you will need to
useCoordGen to compute the superimposition before you import the data. Whichever you
choose, make sure you import all of the shape data. For spline components, this includes all
of the partial warps and uniform components. (IMP programs output partial warps in order
of increasing spatial scale, followed by the scores for the uniform component, with centroid
size or ln(centroid size) in the last column.) If you use landmark coordinates registered to
a baseline (Bookstein shape coordinates, or sliding baseline registration), remember to
omit the invariant coordinates of the baseline points. If you do not omit them from the
input file, you will have to remember to omit them when you select the variables to be
included in the analysis. If you do not use Bookstein shape coordinates or the scores on
the spline components, you must remember that the correct number of degrees of freedom
is less than the number of variables (−4 if Procrustes superimposition,−2 if sliding baseline
registration). You must also remember that Procrustes superimposition and sliding baseline
registration do not project the specimens onto the same space as the thin-plate spline or the
Bookstein shape coordinates (see Chapter 5). Under many circumstances, these choices will
not alter conclusions about the significance of differences between groups. One situation
in which the choice can influence conclusions is when the range of shape variation across
all groups is so large that the difference between the shape space and the tangent space
become noticeable (you can check whether that is the case for your data using TPSsmall).
The other situation in which the choice can influence conclusions is when the differences
among groups are so small relative to the variance within groups that a small difference in
the number of degrees of freedom shifts the p-value of the test statistic across the preferred
α-level. In such cases, it is better to be cautious about claiming significance.

After you have resolved all of the issues relating to formatting and entering data into your
program, the next step is navigating through the program to select the right analysis. If your
program does not have a giant button labeled MANOVA, look for a menu item referring to
“linear models” or “linear hypotheses;” MANOVA will be one of the options within that
category. (You could also try searching the help menu or the index of the manual.) After you
have started the MANOVA module, you will probably be asked to select variables. Again,
remember to include all of the relevant variables in the list of dependent variables (all of the
spline components or all of the variable landmark coordinates). The independent variable
will be the categorical variable or covariate hypothesized to explain shape variation. Your
program may also require an extra step to indicate that the explanatory variable is a
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categorical variable. Add the interactions between the explanatory variables if they are not
automatically included in the model. As discussed earlier in this chapter (see discussion of
simple and complex ANOVAs, Tables 9.2–9.4), exclusion of the interaction terms from
the analysis is not advised because it alters all of the sums of squares, which may influence
conclusions if any of the explanatory variables has a marginal effect.

Now punch the “go” button, sit back, and wait for the output to stop scrolling (if you
have a lot of landmarks and more than a couple of explanatory variables, it may take
a while for the program to work through all of the tests). If your program generates a
series of univariate tests for each landmark coordinate or spline component, ignore them.
As discussed in Chapters 4 and 6, these variables are not independent in the sense that is
relevant to these tests. If your results include a test for the MANOVA constant, this result
can also usually be ignored. However, this component of the test cannot be excluded; it
is analogous to evaluating whether a regression has a non-zero intercept. Excluding the
constant is equivalent to forcing a regression through the origin. In the case of regression,
this can affect the estimation of the slope, conclusions regarding the deviation of the slope
from zero, and inferences about the proportion of variation explained by the regression.
For similar reasons, excluding the constant from the MANOVA is not recommended under
most circumstances. (Effects of constants are also computed in ANOVA, but are often not
included in the output.) Eventually, scrolling through the results will reach the multivariate
results for each categorical variable and any interactions. As mentioned earlier, there are
several possible test statistics that could be reported. The differences among them only
matter when the effects are marginal. Each test statistic should have a corresponding F
or χ2, degrees of freedom, and p-value. These are the numbers on which you will base
conclusions regarding the significance of effects.
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10
Regression

Chapter 9 covered methods for testing hypotheses about samples that differ categorically.
This chapter covers methods for testing hypotheses about samples that vary along a con-
tinuously valued factor – a factor measured on an infinitely divisible scale. Size is an
example of such a continuously valued factor because there is always a size between any
two others; similarly, latitude is continuously valued because there is a latitude between
any two others. When we hypothesize that a continuously valued factor affects shape, we
use regression to test the hypothesis. Additionally, when we want to control for the effects
of such a factor so that we can distinguish between groups defined by a categorical vari-
able, we use regression to control for those effects. Finally, we would use regression when
our hypotheses concern the particular nature of an effect, i.e. the direction of the shape
variable covarying with the factor of interest. For example, if our hypothesis is that two
species follow a common ontogeny of shape, we use regression to describe each ontogeny,
then we compare the two vectors, asking if they point in the same direction.

The chief aim of regression is to explain the variation in one variable (shape, in our case)
by another. For example, we might suspect that several factors account for the variation in
our data, including: age or size; geographic variables such as latitude, longitude or temper-
ature; ecological variables such as the size of predators and the density of the canopy; or
even clinically important characteristics such as health status. So long as the candidate fac-
tor is measured, and measured along a continuously valued scale, we can test the hypothesis
that it affects shape. The strategy for testing the hypothesis is simple and straightforward:
(1) formulate a mathematical model that predicts shape as a function of the presumed
explanatory variable; (2) fit the model to the data; (3) evaluate the fit. However, the anal-
ysis is somewhat more delicate than it seems, for two reasons. First, and perhaps most
obvious, the mathematical model might not be simple (either to devise or to fit). Second,
what we actually are doing is predicting shape, not explaining it – and prediction is not
quite the same thing as explanation, just as a mathematical model is not quite the same as
a biological model. The distinction is important to keep in mind because, when we test our
model statistically, the hypothesis we are actually testing is that the mathematical model
predicts shape, which is not the same as testing the hypothesis that the independent vari-
able actually causes the variation in shape. It is common to make the distinction between

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
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causation and correlation, which is often done by pointing to trends that are accidentally
related; but sometimes the trends are biologically related and yet there still is not a direct,
causal relationship.

To clarify the distinction between prediction and explanation, and also between math-
ematical and biological models, we can consider one common predictor of shape: size.
Often, much (or most) of the variation in shape is predicted by size. Based on the good fit
of our model to the data, we might conclude that size predicts shape, and so it might seem
that size explains shape. However, size is not a process. In the context of developmental
biology, we can explain size in terms of the proliferation of cells that add tissue to a struc-
ture. Because growth rates vary over the organism, cell proliferation (in conjunction with
cell death, cell differentiation, deposition of an extracellular matrix, etc.) produces changes
in shape. In this context, saying that size “explains” shape does not mean that size itself
causes shape; rather, it means that we are using “size” as shorthand for all those develop-
mental processes that jointly alter size and shape. Also, we are modeling this process by
a simple mathematical function, which is the model that is actually tested. In the context
of functional morphology, “size” is also shorthand, but it is shorthand for a more com-
plex argument. The underlying causal hypothesis is biomechanical; the idea is that shape
covaries with size because the mechanically optimal shape for one size differs from that for
another size. However, in correlating shape to size we are not demonstrating that selection
molds shape, nor even that shape affects performance; instead, we are demonstrating that
the relationship between size and shape is predicted by a particular mathematical model.

Most often, that mathematical model is the equation of a straight line, hence the term
“linear regression.” We are fitting the equation of a straight line to the data to find the
coefficients that best predict shape from values of the independent variable (e.g. size).
More specifically, we are trying to find the best estimates of the coefficients m and b of
the equation:

Y =mX+b+ ε (10.1)

where Y is the dependent variable (shape in our case), m is the slope of the line, b is the
Y-intercept of the line, and ε is “error” (the variation in Y not explained by X). To predict
Y from X we need to find the values for m and b. Having obtained the best estimates for
them (using the approach described below), we can then ask whether they are statistically
different from zero.

The approach we use to find the values for those coefficients assumes a linear relationship
between X and Y. The reason for emphasizing this assumption is that a strong but non-
linear relationship might look like a weak linear one. Consequently, we end up rejecting
our biological model because the statistical analysis suggests a weak relationship between
variables, but the relation is actually strong but not linear. When the assumption of linearity
holds, our statistical analysis can tell us if Y is only weakly dependent on X – meaning that
knowledge about X does not enable us to predict Y. It is also possible that the relationship
of the two variables is statistically significant, but that m is such a small number that the
effect of X on Y is biologically trivial. It may be a statistically significant relationship, in
that it is stronger than expected by chance, but it might not be biologically significant.
Recognizing this distinction is important, because statistical significance is a matter of
sample size and the power of a test. With very large samples, or very powerful tests, we
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might have little difficulty rejecting the null hypothesis. However, if X accounts for very
little of the variation in Y, X provides little biological insight into Y. We therefore need to
pay as much attention to the explanatory power of X and to the magnitude of its impact
on Y as to the statistical results. The fraction of the variance in Y explained by X provides
the needed information about explanatory power; the magnitude of the effect is evident
primarily in the depiction of the regression as a deformation, although we can also estimate
it from the Procrustes distance between the shapes at the lowest and highest values of the
independent variable. If that distance is small, the impact of X on Y is slight.

To this point, we have talked about the relationship between Y and X as if it is the
primary focus of a study. Often it is, but sometimes their relationship is a complicating
factor. For example, we might want to know whether males and females differ in shape,
and to make that determination we might need to take into account that they also differ
in size. We then have two questions to address: (1) do males and females differ in shape?
and (2) do males and females differ in shape solely because they differ in size? Even if we
find that they differ in shape, we might suspect that they would be the same shape were
we able to compare them at the same size. Making such comparisons is another purpose
of regression. Using the regression model, we can control for differences in X when com-
paring groups. That is done by (multivariate) analysis of covariance ({M}ANCOVA). The
independent variable, X, is treated as a covariate whose effects are controlled statistically
when comparing two or more means. So long as the relationship between X and Y is
linear, and the groups have the same value for m, we can statistically control for the effect
of X on Y when comparing the groups. This analysis depends on two assumptions: (1)
linearity, and (2) equality of m. If either is false the results can be seriously misleading; we
might manufacture differences between groups, or fail to detect the ones that exist.

Prediction and control are the two main uses of regression, but there is a third: testing
the equality of the regression equations. This third use is important when we wish to
know whether populations evince the same response to a particular factor. For example,
we might want to know if species follow the same ontogeny of shape. Each ontogeny is
described by the linear model relating shape to size or age, so to compare the ontogenies we
compare the vectors of regression coefficients. Similarly, we might be interested in whether
two or more populations respond to variation in temperature in the same way – which we
can determine by testing the hypothesis that they undergo the same changes in shape as a
function of temperature.

In this chapter we begin with a general overview of regression, starting with simple
bivariate regression then generalizing to multivariate regression. We first discuss estimating
the parameters m and b, evaluating the strength of the relationship between X and Y, and
testing the statistical significance of the regression model. We then discuss the use of
regression to control for variation in X when we want to compare values of Y between
groups. Finally, we discuss comparative analyses.

An overview of regression

We presume that most readers are familiar with simple bivariate regression, but we discuss
it in some detail, both as a review of the general idea of regression and as preparation for
moving from the bivariate to the multivariate case.
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Bivariate regression

The simplest possible use of regression is to analyze the relationship between two vari-
ables, Y and X, both of which are single numbers (meaning that neither is a vector).
Many mathematical models could be used to analyze the dependence of Y on X, but the
simplest and most popular is a straight line, hence the model uses the formula for a line
(Y =mX+b). We must add another term to the model, ε, representing “error,” not only
because measurements are made with error, but also because individuals within popula-
tions vary. “Error” in this context refers not only to measurement error, but also to any
source of random variation in Y that is independent of X.

For the simple bivariate case, we have one dependent variable (Y) and one independent
variable (X), each of which is measured on N individuals. The relationship between the
two variables was given in Equation 10.1, but we repeat it here so you do not have to turn
back to that page:

Y =mX+b+ ε (10.1)

Our objective is to estimate m and b.
In a moment we will present the equations that provide the best estimates of m and b, but

to explain why they are considered “best” we first need to consider how that decision could
be made, in general. The standard approach for deriving the best estimator is to choose an
error function. By minimizing that error, we find the optimal values for the parameters.
A least squares analysis, as the term suggests, uses the sum of squared residuals as the error
function, so that is the function minimized. We then express the relationship between that
error term and the regression model:

N∑
i=1

ε2
i =

N∑
i=1

(yi −mxi − b)2 (10.2)

where xi =Xi −<X> (the difference between an observed value of Xi and its expected
value <X>, which is the sample mean) and yi =Yi −<Y> (the difference between an
observed value of Yi and its expected value <Y>). Thus, we are summing residuals, or
deviations from expected values, over all N individuals in a population. By minimizing
this function, we will obtain the best estimates for m and b.

To find the values of m and b that minimize the sum of squared residuals, we set the
derivative to zero (for both m and b). As you recall from calculus, the derivative of a
function is zero at the maximum and minimum. We then solve for m and b. Using this
optimization method, the equation for the slope, m, can be written as:

m =
∑

xy∑
x2 (10.3)

which is the sum of the products of the deviations divided by the sum of the squared
deviations of the X values (each sum is taken over all individuals). In other words, the
slope is the ratio of the deviations of Y to the corresponding deviations of X. When the
corresponding deviations are identical, the slope is one; when the deviations of Y are a
consistent multiple of the deviations of X, the slope will be that multiple.
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Substituting the Xi −<X> for xi and Yi −<Y> for yi allows us to compute m directly
from the observed values. The sum of the products can be written as:

∑
xy =

∑
(Xi −<X>) (Yi −<Y>) (10.4)

which can be simplified to:

N
∑

XiYi −
∑

Xi

∑
Yi (10.5)

After applying a similar substitution and simplification to the sum of the squared
deviations, we can write:

M =
(
N
∑N

i=1 XiYi

)
−
(∑N

i=1 Xi
∑N

i=1 Yi

)
(
N
∑N

i=1 X2
i

)
−
(∑N

i=1 Xi

)2 (10.6)

Now that we have an expression for the slope, we can solve for the intercept, b, and
complete the equation for the regression. When b=0, <Y>=m<X>, so we can calculate
b from the observed values, Xi and Yi, and the sample size, N:

b = <Y>−m<X> =
∑N

i=1 Yi −m
∑N

i=1 Xi

N
(10.7)

In addition to an estimate of the value of m, we will also need measures of the uncertainty
of that estimate. These measures will be used to test whether m is significantly different
from zero (because if we cannot say that, we cannot claim that Y depends on X), and
to test whether the value of m differs between samples (whether the relationship between
X and Y is different).

Before we derive the measures of uncertainty, it will be useful to introduce some
shorthand notation. The sums of squares of the deviations xi and yi will be:

sxx =
N∑

i=1

x2
i (10.8)

and

syy =
N∑

i=1

y2
i (10.9)

Similarly, the sum of the products of the deviations will be:

sxy =
N∑

i=1

xiyi (10.10)

In testing whether the regression is significant, it is important to keep in mind that we
are asking whether the relationship between X and Y explains a significant proportion
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of the variance in Y. If we knew the values of the error terms, εi, we could compute
their variance and use that to determine the proportion of the variance in Y explained by
the regression of Y on X. More often than not, εi are unknown, so we need a different
approach. Following the logic of ANOVA (Chapter 9), we can compute an F-ratio from
the information we do have. F is a ratio of variances or mean squared deviations, which
are sums of squared deviations divided by the appropriate degrees of freedom. The sum of
squared deviations explained by the regression is s2

XY /sXX. This has one degree of freedom,
so the variance explained is also s2

XY /sXX. Recall that the slope is sXY /sXX, so the explained
variance can also be written as m · sXY . The unexplained or residual sum of squared devi-
ations is sYY −m · sXY , which has N−2 degrees of freedom, so the unexplained variance
is (sYY −m · sXY )/(N−2). F is the explained variance divided by the unexplained, so
(N−2)m · sXY /(sYY −m · sXY ) with 1 and N−2 degrees of freedom; the corresponding
p-value indicates the likelihood that such a high F (such a large proportion of the variance
in Y explained by regression on X) is due to chance.

We can also use the explained variance to calculate an estimate of the variance of the
slope:

s2
m =

(
sYY −msXY

N − 2

)

sXX
(10.11)

The square root of this quantity is the standard error of the slope, which can be used
in conjunction with the t distribution to test whether the slope deviates from a specific
value and to construct confidence intervals around the slope. To test whether the slope
differs from zero, compute t= (m−0)/sm and look up the p-value associated with that
t and N−2 degrees of freedom. To construct a confidence interval around m, select an
appropriate value of α, which is the critical value for the test statistic. This value is chosen
according to the rate at which we are willing to make a Type I error (which is the error
of rejecting a true null hypothesis). Usually α is chosen to be 0.05, which means that we
are willing to risk an error rate of 5%. To have a total error rate of 0.05, we usually
want the value of t that allows on 2.5% error on either side of the estimate (tα/2, N−2, i.e.
the critical value of the t distribution for the confidence level of α, with N−2 degrees of
freedom). The width of the confidence interval is 2t · sm; its upper and lower bounds are
given by m± t · sm. To show that Y depends on X, m must be significantly different from
zero. When N is large (>60 or so) the t-distribution approximates the normal one, so that
t0.05/2, N−2 is 1.96 (the 2.5% upper and lower bounds for the normal distribution).

In some circumstances it is desirable to estimate the variance in the intercept. This can
be computed as:

σ2
b =

(
sXX +N<X>2

)
σ2

NsXX
(10.12)

in which σ2 is the unexplained variance (above). Again, there are N−2 degrees of free-
dom. Then the confidence interval for b can be determined using either the t or normal
distribution, depending on N.
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The correlation coefficient

The correlation coefficient (R), which ranges from minus one to one, expresses the strength
of the linear relationship between X and Y. Its squared value (R2), which ranges from zero
to one, indicates the fraction of the variance in Y explained by X. The expression for R2 is:

R2 = s2
XY

sXXsYY
(10.13)

It is very common to regard high R2 values as if they indicate high explanatory power of
the model. However, even high values of R2 need not be statistically significantly greater
than zero. For that reason we need to test the statistical significance of R2, which we can
do (assuming normality of the residuals) by the expression:

1
2

ln
[

(1+ R)
(1− R)

]
(10.14)

which is a normally distributed variable, with variance equal to 1/(N−3), where N is the
sample size.

Multivariate regression

To apply this theory to shape we need to extend it to the multivariate case, because shape
is multidimensional. Our dependent variable is a vector with 2K−4 components (where
K is the number of landmarks and each landmark has two coordinates). The statistics are
much easier to handle if we use partial warp scores instead of the coordinates obtained by
a Procrustes (GLS) superimposition, because partial warp scores have the correct degrees
of freedom. Thus, throughout the remainder of this chapter, the dependent variable is a
vector of partial warp scores (including the scores on the uniform component – rather than
saying this repeatedly, assume that the uniform component is included whenever we refer
to the vector of partial warp scores).

To regress shape on an independent (scalar) variable, we regress the full set of partial
warp scores on the independent variable. For example, suppose we have P partial warp
and uniform components, which we can write as a row vector {Y1, Y2, Y3, . . . YP}. Then
the (linear) model for the regression of that vector on a scalar (X) is:

{Y1, Y2, Y3, . . .YP} = {m1, m2, m3, . . .mP}X + {b1, b2, b3, . . .bP} + {ε1, ε2, ε3, . . . εP}
(10.15)

where {m1, m2, m3, … mP}, {b1, b2, b3, … bP} and {ε1, ε2, ε3, … εP} are vectors of slope
and intercept coefficients and residuals, respectively. Although this expression looks far
more complicated than that for a bivariate regression, it actually is not. In fact, we can
determine the ith component of the slope and intercept terms using the same mi and bi

values that minimize the residuals in the corresponding bivariate model.
Mathematically, the regression of P components on a scalar X is identical to doing

P separate simple bivariate regressions of each Y on X. The parameters mi and bi are
determined by the equations for the bivariate case, given above. However, the test for
the significance of the regression is different from that for the bivariate case because we
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are dealing with a multivariate system. One approach is to use the Wilks’ Lambda, 
,
which is:


 = det(�R)
det(�)

(10.16)

where �R is the variance–covariance matrix of the predicted values of Y at a value of X in
the data set, det is the determinant of the matrix, and � is the variance–covariance matrix
for the original set of variables (i.e. partial warp scores in our case); this is the same statistic
discussed in Chapter 9 (MANOVA). Several other conventional multivariate test criteria
can be used that all give the same results when there is only one independent variable. Addi-
tionally, we can use a generalized form of Goodall’s F-statistic to test the significance of the
regression of geometric shape data on size (this statistic was also introduced in Chapter 9).

To determine the proportion of the shape variance that is a function of the independent
variable we should not use the standard multivariate version of R2 because that is a function
of two determinants, one of which is the determinant of the sample variance–covariance
matrix (the other is the determinant of the matrix of predicted values). Because R2 is
partly a function of the correlations among the dependent variables, it does not measure
the correlation between dependent and independent variables. As an alternative measure
of the explanatory power of the regression, we can use one that depends on the Procrustes
distance between each specimen and its expected shape (given its value of X). Squaring
and summing those distances gives a measure of the variance in shape not explained by
X (because the distances are the deviations from the regression, so the model does not
explain them). This metric corresponds to what we would normally regard as the variance
not explained by the regression, i.e. 1−R2, and has the advantage of being in the familiar
(and meaningful) units of Procrustes distance.

The assumption of linearity

When we fit a straight line to the data we are assuming that the relationship between shape
and the independent variable is linear. Sometimes it is not. Fortunately, in some of those
cases, it is easy to transform the independent variable to make the relationship linear. For
example, a number of studies of ontogenetic allometry use the logarithm of centroid size,
rather than centroid size itself, as the independent variable. That transformation is useful
when most of the shape change occurs over small values of X, such as when most shape
change occurs early in ontogeny (as it often does). In other cases, other transformations of
X (such as other trigonometric functions, for example) might do a better job of linearizing
the relationship between variables. We should note that it does not matter whether the
logarithm is taken to base 10 (log) or base e (ln) because these differ only by a constant,
i.e. log(X)= log(e) ln(X)=0.4329 ln(X).

The assumption of linearity should always be checked before using a linear model (and
before taking any statistical test at face-value). There are at least two ways to check this
assumption, although neither is ideal. One is to look at the relationship between each
individual component of shape and the independent variable, such as by regressing each
partial warp on size. If one or more evinces a highly non-linear relationship, such as shown
in Figure 10.1A, then it is unlikely that shape and size are linearly related. This method is
not ideal, because it falls back on bivariate regression when it is multivariate linearity that
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Figure 10.1 Checking the assumption of a linear relationship between shape and the independent
variable: (A) using a single variable plotted on centroid size; (B) using the Procrustes distance of each
specimen from the shape having the smallest size, plotted on centroid size.

matters. Another approach is to estimate the Procrustes distance between each specimen
and the shape at the lowest value on the independent variable. Regressing that distance on
the independent variable may show if that relationship is non-linear (as in Figure 10.1B).
If not, it is unlikely that shape and size are linearly related. This method is again not ideal,
because the Procrustes distance measures only the magnitude of the difference between
each specimen and the reference, not its direction. Two specimens that differ a great deal
from each other in shape may be equally distant from the reference.

Nevertheless, we can use the results from these two less than ideal methods to determine
if it is unlikely that shape is linearly related to size. The results shown in Figure 10.1 both
indicate a non-linear relationship, and both also suggest that shape might be linearly related
to the log of centroid size (that suggestion is in the shape of the curves, which indicate a
very rapid change in shape relative to size over the smaller values of size). So we can
try a log transform of centroid size, then repeat the analyses to check for linearity again
(Figure 10.2). Both plots now suggest a nearly linear relationship between shape and log
centroid size. Thus, we would use log centroid size as our independent variable.
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Figure 10.2 Checking the assumption of a linear relationship between shape and the independent
variable: (A) using a single variable plotted on ln centroid size; (B) using the Procrustes distance of
each specimen from the shape having the smallest size, plotted on ln centroid size.

To this point, we have talked about the assumption of linearity as it is usually stated
in bivariate regression. However, in multivariate studies there is another assumption of
linearity – the mutual linearity of all the components of the dependent variable. In other
words, we are assuming that all the components of shape are linearly related to each
other. This assumption will not hold if some components of shape are linearly related to
the independent variable, but others are non-linearly related. The components of shape
cannot be linearly related to each other if different ones fit differently shaped curves.
Because this departure from the assumption of non-linearity is specific to multivariate
data, it does not arise at all in bivariate studies, so it may not be intuitively obvious what
the assumption means. What it means is that the slope of the relationship between shape
and the independent variable is constant – the values {m1, m2, m3, … mP} are not functions
of the independent variable.

In some cases, such as in studies of ontogeny, the shape variable correlated with age
changes from age to age. If so, we cannot model the ontogeny of shape by a single vector of
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Figure 10.3 Checking the assumption of multivariate linearity of the dependent variable: (A)
using principal components analysis; (B) using two shape variables on each other (the two uniform
components).

slope coefficients because that vector changes with time. This means that the ontogenetic
trajectory of shape is a curving path in shape space, not a straight line. The assumption of
multivariate linearity can be checked in two ways, although again neither method is ideal.
One, shown in Figure 10.3, is to conduct a principal components analysis (PCA) of the
data, and check for a statistical relationship between multiple PCs and the independent
variable. In the example shown in Figure 10.3A, there is a substantial deviation from
linearity – not only is PC1 correlated with age (which we would expect), but PC2 and PC3
are also. PC2 and PC3 describe the deviations from the linear trend represented by PC1.
The assumption can also be checked by regressing several shape variables on each other
(Figure 10.3B). If the relationship among these variables is non-linear, we must reject the
assumption of multivariate linearity.
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When shape data violate the assumption of multivariate linearity, there is no easy way
to transform them. They are not individual variables that can be individually transformed;
they all, taken together, represent a single variable – shape. If we log transform some of
the components, we thereby alter the meaning of “shape.” Also, whenever the dependent
variable is transformed, the error structure of the data is also affected (which does not hap-
pen when only the independent variable is transformed, because that variable is presumed
to be measured without error). Moreover, and perhaps most important, the non-linear
dynamics of the shape variable are not just a nuisance, they are biologically interesting
(but they do complicate statistical analyses).

Testing the null hypothesis of isometry for S. gouldingi
We checked the assumption that shape is linearly related to size over the ontogeny of
S. gouldingi in Figures 10.1 and 10.2, determining that shape is nearly linearly related to
log centroid size. We can now test the null hypothesis that the relationship between shape
and size is no greater than we would expect by chance. Our null hypothesis is isometric
growth, meaning that shape does not change as a function of size. If we can reject that null
hypothesis, we can say that shape is a function of size. Regressing the full set of partial
warps on the natural log of centroid size yields a value of Wilk’s
 of 0.0109, corresponding
to an F-statistic of 29.1 with 28 and 9 degrees of freedom (p=6.07×10−6). Thus, it is
highly improbable that the null hypothesis is true. We can therefore reject it in favor of
the alternative hypothesis – that shape is allometric (meaning it changes as a function of
size). To determine the proportion of the shape variation predicted by size, we will sum the
squared Procrustes distances between the observed shape and the shape predicted for that
individual given its size. From that sum, we conclude that 28.1% of the shape variance is
not explained by the regression. Thus, 100%−28.1%=71.9% of the shape variance is
explained by size.

Using regression to compare group means

To this point we have used regression to examine the relationship between continuous
variables, but regression can also be used for comparing populations that differ categori-
cally if the categories are viewed as discrete points along an inherently continuous scale.
This application of regression requires transforming what was measured as a categorical
variable into a variable on a continuous scale, a procedure that can be tricky (and even
unjustified). We first show how it is done, then discuss when it might be justified (or not).

We will begin with a simple case, in which we are actually doing a simple two-group
analysis of variance. We assign numerical values (called “dummy codes”) to our two
groups. Typically, one is assigned a value of 1 and the other a value of −1 or 0. Then,
shape is regressed on these coded values. If the dummy codes are 1 and 0, the regression
describes the difference between groups, and the intercept is equivalent to the mean of the
group coded “0” (because the intercept, by definition, is the value for Y when X equals
zero). Alternatively, if the groups are coded by −1 and 1, the Y-intercept is located at the
mean over both groups, and the regression will show half the difference between them. The
statistical significance of the regression indicates whether there is a significant difference
between the two groups, and the test is equivalent to a generalized Hotelling’s T2 test.
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This simple case of using regression to compare two groups raises no problems, either
conceptual or statistical. It does not matter that we have transformed categorical variables
A and B into the ordinal variables −1 and 0, or 0 and 1, and used a method that presumes
these are continuous variables. However, real problems can arise when we are analyzing
more than two groups because then the codes (e.g.−1, 0, and 1) are treated as if the distance
between the integers is meaningful on a continuous scale. When we use regression, we are
calibrating the effect of a change of a given amount in X on Y; if that amount of change
in X is arbitrary, the calibration does not make sense. Thus, whether this approach is
justified or not depends on whether it makes sense to translate the categorical variable into
a continuous one.

In some cases that translation might seem reasonable, even more appropriate than
leaving the variable categorical, because the categories are arbitrary subdivisions of an
underlying continuum. For example, perhaps we subdivided a continuum of ages into
classes such as juveniles, subadults and adults. Age is a continuously valued variable and the
age classes are ordered from youngest to oldest, and we would like to take that ordering into
account when analyzing the data. Using analysis of variance we cannot take the ordering
into account, so regression might seem a superior approach to the data. However, our
ordered classes might not be separated by equal increments of time (either chronological
or developmental) – the distance from juvenile to subadult on a temporal scale might not
correspond to the distance from subadult to adult on that same scale. If that is the case
our X-axis is not meaningful, so it does not make sense to calibrate the change in shape
by the change along a meaningless scale. That objection might be subdued by finding a
strong linear relationship between shape and age class. However, it is far more difficult
to justify using this approach when we cannot view the coded variables as representing a
progression from least to most along an underlying factor.

The most problematic cases are those in which the categorical variable is complex but
we single out one component as the independent variable. For example, suppose we wish to
know whether diet has an effect on shape. To that end, we subdivide diets into “herbivore,”
“carnivore” or “omnivore,” perhaps ordering them by percentage of meat in the diet. This
approach might seem reasonable at first, but we could also order diets by hardness of food
(or even by the energy required to find it, capture it, or process it, or the net energy required
by all those activities). Hardness might be a reasonable choice, because carnivores that
crush bone might be more similar to herbivores that crush nuts than either is to carnivores
that shear flesh or to frugivores. The energy required to capture and process prey is also
a reasonable choice, because shape may matter when the costs of energetically expensive
activities can be reduced by optimizing shape. Considering that all three characterizations
of the independent variable can yield different results, we cannot equate one of them
to “diet.”

Another, more technical, issue that also makes this approach problematic is that we are
modeling the relationship between shape and the categorical variable by a straight line.
That assumes that the relationship between them is linear, and the form of the relationship
might depend largely on how we have subdivided the categories. It also assumes that
there is a meaningful distance between the classes that we have quantified with some
arbitrariness. For the distance to be meaningful, the change from 0.0 to −1.0 should be
of the same magnitude, and in the opposite direction, as the change from 0.0 to 1.0.
Moreover, the change from 1.0 to 3.0 should be in the same direction, and equal to twice
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the magnitude, as the change from 0.0 to 1.0. To calibrate the effect of the coded states on
shape, which is what we are doing when we estimate a slope, we must have good reason to
assume that there is a linear and regular relationship between coded states. For example,
if we subdivide diets into herbivory, omnivory, and carnivory, coding them as 1, 2, and
3, we are assuming that the difference between herbivory and ominivory is equal to the
difference between omnivory and carnivory, which implies that frugivory and granivory
are equivalent (as types of herbivory). Additionally, it implies either that insectivory and
molluscivory do not occur, or that they can be classified with carnivory (on physiological
grounds). The problems we face are due to the complexity of “diet.” Like shape, it is
a multidimensional variable, so we face both the problem of transforming a complex
multidimensional variable into a simple scalar, and also the challenging task of creating
meaningful distances along the continuum. It may be more appropriate to treat complex
multidimensional factors as exactly that and use a different method (such as partial least
squares, Chapter 12) rather than regression.

The reason for raising these issues is that regression may seem like an attractive approach
to analyze ordered variables. Unlike MANOVA, it does not merely ask if discrete classes
differ. When the classes are ordered, regression may be a more appealing method. However,
it is not always an appropriate one, even when the underlying factor is continuous. To
decide whether regression is appropriate, consider whether it makes sense to treat the
dependent variable as one-dimensional, and if there is a meaningful metric along that
dimension.

Standardization

To this point, we have used regression to study the phenomenon of interest – the depen-
dence of shape on another variable (size in our example). Often that relationship is not of
primary interest, but is a nuisance that may be obscuring something more interesting. For
example, we might want to ask if two species differ in shape, when we already know that
they differ in size. We also know that size affects shape, so before comparing the species,
we want to remove the effect of size on shape. Specifically, we want to ask if they differ in
shape when the effect of size is controlled. To take a concrete example, suppose we wish
to compare the shapes of S. gouldingi and S. manueli; and, as we have already shown, the
shape of S. gouldingi depends highly on size (the same is true for S. manueli). If we were
fortunate enough to have large samples of comparably sized specimens of both species (so
that the mean size is the same for both), we could compare their mean shapes directly.
However, the average body size in our sample of S. gouldingi is 177.99 mm whereas it is
108.95 mm in our sample of S. manueli, so it is possible that any differences we might find
between their shapes is due to the impact of size on shape.

One common approach to solving this problem is to include a covariate in the analysis
of variance (thus doing an analysis of covariance, ANCOVA, or MANCOVA in the mul-
tivariate case). The null hypothesis of an ANCOVA is that the groups (the two species in
our case) do not differ after we take the covariate into account. In effect, we will remove
the shape variance predicted by the covariate (size, in our example) and ask if the mean
shapes differ. That is done by fitting both species to the same regression line (meaning
the slopes are the same for both species) and comparing their values of {b1, b2, b3, … bP}
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Figure 10.4 Why the assumption of common slopes matters. (A) When the slopes are the same,
the same results are obtained regardless of the value of the independent variable at which samples
are compared. (B) When the slopes differ, the results are a function of the values of the independent
variable at which samples are compared. The points on the lines indicate the shapes being compared.
Note that in (A) the same distance separates the points on the two lines over all sizes, whereas in (B)
the distance between points increases then decreases as size increases.

which gives the expected shape when the independent variable is zero. Actually, it does
not matter what size we use for the comparison – if the assumption of a common slope
holds, we will always find the same difference between the two species. The rationale for
this is shown in Figure 10.4: when the slopes are the same, the difference between the
two regression lines is constant (Figure 10.4A). It is not a function of the size at which we
compare them. In contrast, when the slopes are different, the difference between the two
groups is a function of the independent variable; the difference between the shapes of these
two groups depends on the size at which they are compared (Figure 10.4B). Because the
two lines intersect, there is a value at which their shapes are the same; but because they
intersect at just one point, there is only one point at which their shapes are the same.

The first step in any analysis of covariance (ANCOVA or MANCOVA) is to test the
null hypothesis that the slopes are the same. This null is rejected when there is a significant
interaction between the covariate (size in this case) and the factor of interest (species in
this case). In the comparison between S. gouldingi and S. manueli, the null hypothesis of a
common slope is unequivocally rejected; Wilks’
=0.151, corresponding to an F-statistic
of 9.46 with 28 and 47 degrees of freedom (p	1×10−6). Clearly, it is highly improbable
that the null model is true.

At this point it might not seem necessary to pursue the analysis any further, because we
have already shown that the regression lines intersect so the difference in shape between
these two groups cannot be a simple consequence of their difference in size. Even if their
shapes are not different at some value of size, they will be at another. Nevertheless, we
might still wish to pursue the analysis further because we might want to know if they
differ at a particular size. For example, we might want to know if they are different early
in development, or just later. Just because we know that the difference in shape between
the two species depends on the size at which we compare them does not mean that we
no longer are interested in their differences at particular sizes. In ruling out the simple
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hypothesis that the interspecific difference in shape is purely a function of the interspecific
difference in size, we have not exhausted our questions.

When slopes differ, we can still use regression to remove the effects of size but we must
remove those effects separately, group by group. Now, we have to choose the value(s)
of size at which we will compare them, because the results will depend on that choice.
We also need to decide whether to compare them at the same size or at a biologically
comparable size. If we want to interpret the shape differences in functional terms, it makes
sense to compare them at the same size; all the theories we are considering relate shape to
size. However, if we want to interpret shape differences in developmental terms, we might
prefer to compare groups at developmentally comparable stages. Different groups may
reach the same developmental stage at different sizes (and/or ages), so comparing them at
a comparable stage may require comparing them at different sizes.

Whatever size(s) we pick, the procedure is the same. We fit the data to the linear
model, predict the expected shape at a particular size, and use that expected shape in
our comparisons. The expectation is for the mean, and if we want to know whether the
difference between species is statistically significant, we need more than the estimate of
the mean. We also need to know the variation around the mean for each species. We can
estimate that from the variation around the regression line – each individual deviates from
the shape expected for its size. The residuals from the regression line are the deviations
of an individual from the mean shape expected for its size, so we can use those residuals
to estimate the variation around the expected shape at one particular size. We add those
residuals to the expected shape at a given size, creating a “model population.” The model
population has the mean shape predicted by the regression equation, and the variance
obtained from the residuals from the regression. In producing this model population we
are assuming linearity of the relationship between size and shape, and even small departures
from linearity can become important because the residuals will not be randomly distributed
around the regression line (hence they are not randomly distributed around the mean).
Also, in using the regression equation to remove the effect of one factor on shape, we are
assuming that this factor does not interact with any others.

We need to take a cautious approach to size standardization (and to standardization by
any other variable), but it is often useful when we want to know whether samples differ
in another variable, taking into account their differences in size. To exemplify both the
rationale for size standardization, as well as its impact on comparative studies, we will
compare the shapes of S. elongatus, S. gouldingi and S. manueli, first without controlling
for the effects of size, and then after standardizing them to two different sizes.

Comparing shapes of S. elongatus, S. gouldingi and S. manueli

We first ask whether these three species differ significantly in shape, and if so how and by
how much. We will use MANOVA to test the hypothesis that they do not differ in shape
(see Chapter 9), then use canonical variates analysis (CVA) to find the dimensions along
which they are optimally discriminated (see Chapter 7), and then measure the Procrustes
distance between their shapes to determine by how much they differ. Based on MANOVA,
the three species are unquestionably different in shape, Wilks’ 
=0.0095 corresponding
to a χ2 of 500, with 56 degrees of freedom (p	1×10−6). The discriminant function
misclassifies only three of the 124 specimens (one individual of S. gouldingi is misclassified
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Figure 10.5 Canonical variates analysis of three species of piranhas; data are from an ontogenetic
series and are not standardized to remove the variation related to size.

Table 10.1 Procrustes distances between species, the unstandardized values are
calculated without removing the variation due to size from the data

Species Unstandardized Standardized Standardized
juveniles adults

S. elongatus vs S. gouldingi 0.079 0.060 0.126
S. gouldingi vs S. manueli 0.046 0.080 0.051
S. elongatus vs S. manueli 0.076 0.071 0.128

The distances between juvenile shapes and adult shapes are calculated after removing the
variation due to size from the data. Juvenile shapes are standardized to the size at which each
species undergoes the transition from larval to juvenile growth; adult shapes are standardized
to the maximum adult body size for each species.

as S. manueli, and two S. manueli as S. gouldingi). A posteriori tests of the pairwise
differences find that all are distinct from all others at (p<0.001). The two dimensions
maximally distinguishing among species are shown in Figure 10.5, and the Procrustes
distances are given in Table 10.1.

We will now compare them at 20 mm standard length (SL), the size at which all three
species undergo the transition from larval to juvenile growth. We do not have specimens
of that size for either S. gouldingi or S. manueli because we have been unable, to date,
to distinguish between them at those sizes. However, analyses of other species show that
the regression of shape on size is nearly linear and that it does not tend to depart from
linearity at small values, so we will extrapolate the regression to 20 mm even though that
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Figure 10.6 Canonical variates analysis of three species of piranhas; data are from ontogenetic
series and are standardized to remove the variation related to size. Comparisons are made at the
transition from larval to juvenile phases.

is beyond the range of the data for these two species. Having adjusted the data for size,
we will repeat the same three analyses. Once again, we find that the three species are
unquestionably different in shape, Wilks’ 
=0.0013 corresponding to a χ2 of 718 with
56 degrees of freedom (p	1×10−6). This time, no specimens are misclassified. The a
posteriori pairwise tests again show that all three species differ significantly from all others
in mean shapes (p<0.001). To this point, standardization might seem to have had little
effect, other than to inform us that the differences we found above are not an artifact
of the distribution of body sizes in our samples. However, the Procrustes distances are
clearly affected by the removal of the size-related variation (Table 10.1). Based on the
unstandardized data we would conclude that S. elongatus is strikingly different from the
other two species, but based on the standardized data it appears that S. manueli and
S. gouldingi are actually more different from each other than either is from S. elongatus.
Also, the directions along which the species are optimally discriminated change when the
data are standardized (Figure. 10.6), and so do the directions in which pairs of species
differ (Figure 10.7).

The comparison between these three species conducted at their maximum body sizes
reveals a very different pattern. CVA at this size still reveals unequivocally significant dif-
ferentiation, with Wilk’s 
=0.0014 corresponding to a χ2 of 703 with 56 degrees of
freedom (p	1×10−6) and no specimens misclassified. However, the optimal discrimi-
nator is very different from that determined for both the unstandardized data and the data
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Figure 10.7 Pairwise differences between means of unstandardized data (on the left) and the data
standardized to 20 mm SL (on the right): (A) S. elongatus vs S. gouldingi; (B) S. gouldingi vs
S. manueli; (C) S. elongatus vs S. manueli.

standardized to a small juvenile’s size (Figure 10.8), and the pairwise differences do not
resemble those found in either the standardized data (Figure 10.9) or in the comparisons
at small juvenile sizes (Figure 10.10). Also, the interspecific distances are affected both by
standardization and by the size/age at which they are compared (Table 10.1). The distance
from S. elongatus to both S. gouldingi and S. manueli is far greater when compared at the
small juvenile size than when compared at maximum adult size, and the distance between
S. gouldingi and S. manueli is far less. Although that second distance is not much greater
than that found in the unstandardized data, the ratio of the distance between S. gouldingi
and S. manueli relative to the distance between S. elongatus and each of those two species
differs dramatically.

This simple example makes two important points: one is that standardization can have
a large impact on both the magnitude and direction of a difference between groups, and
the second is that the inter-group differences are sensitive to the value of the independent
variable. This sensitivity is due to violating the assumption of a common slope. When
regression lines are parallel, it does not matter what value of X is chosen – the same
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Figure 10.8 Canonical variates analysis of three species of piranhas; data are from ontogenetic series
and are standardized to remove the variation related to size. Comparisons are made at maximum
adult body size.

differences are found over all values, so we can arbitrarily pick any point (usually, they are
compared at X=0). However, when regression lines are not parallel, the results depend
upon the value chosen for the standardization. This is important because it means that we
cannot find “the difference” between species – the differences are a function of the value
of X at which they are compared. Consequently, the value of X must be chosen carefully,
and that choice is a biological matter, not a technical, statistical one.

It can be difficult to make a choice, especially when we are using one variable as a
proxy for another, such as when using size as a proxy for age. When species differ in
the relationship between size, age and developmental stage, the results can depend on
whether they are standardized to a common size, age or developmental stage. However,
one advantage of separately standardizing each sample is that we can pick different values
of the independent variable to make the samples comparable by age or developmental stage
rather than by size. Of course, if we are actually interested in size, we would make them
of comparable sizes. Because our biological conclusions will be affected by these choices,
alternatives must be weighed carefully.

Comparing dynamics of shape

Often we are interested in comparing groups according to how they respond to a com-
mon factor. For example, we might want to know if two populations follow a common
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Figure 10.9 Pairwise differences between means of unstandardized data (on the left) and the data
standardized to maximum body size (on the right): (A) S. elongatus vs S. gouldingi; (B) S. gouldingi
vs S. manueli; (C) S. elongatus vs S. manueli.

latitudinal gradient, or if their ontogenies are the same. These questions are complex
because there are two components to them:

1. Do the groups respond at the same rate to that factor?
2. Do the groups undergo the same changes in shape in response to that factor?

In the case of ontogeny, for instance, we might want to know whether species have the
same developmental rate and we might also want to know whether they undergo the same
ontogenetic changes in shape. Such questions are answered by comparing the multivariate
regression equations.

Comparing regression equations (directions of change)

The question addressed in this section is whether two (or more) samples undergo the same
change in shape in response to the same independent variable. For example, is the change
in shape over one phase of ontogeny the same as that over another phase, or do two species
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Figure 10.10 Pairwise differences between means of data standardized to 20 mm SL (on the left)
and the data standardized to maximum body size (on the right): (A) S. elongatus vs S. gouldingi;
(B) S. gouldingi vs S. manueli; (C) S. elongatus vs S. manueli.

share the same ontogeny of shape? This question is answered by comparing the multivariate
regression vectors, which is done by measuring the angle between them. From geometry,
when the regression vectors are the same line they point in the same direction, so the angle
between them is 0◦. Thus, the angle between the two vectors is a measure of their similarity
in direction. The cosine of the angle is the vector correlation (RV ), so we can also use this
as a metric of similarity. Using one or both of these measures we can quantify the similarity
between vectors, and ask if the angle between them differs statistically significantly from
0◦, meaning by more than expected by chance. This is equivalent to asking whether the
correlation between them is significantly lower than 1.0. We can also ask if the samples
differ by less than expected under the null hypothesis that the two vectors are independent,
which is equivalent to asking if the angle between them is less than 90◦ and if the correlation
between them is greater than 0.0. We first explain how to calculate that angle, then how
to test it statistically.
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Calculating the angle between two vectors
The angle between any two vectors A and B, each with P components, may be computed
by taking the dot product (also called the “inner product”) of the two vectors. The dot
product is calculated by multiplying the corresponding components of the two vectors
together, then summing those products. For example, if we have two vectors, A and B,
with A= {A1, A2, A3, … AP} and B= {B1, B2, B3, … BP}, the dot product is:

A · B = A1B1 + A2B2 + A3B3 + · · · APBP (10.17)

To calculate the angle between two vectors of shape variables, we would first estimate
the regression coefficients for each such component, such as the regression coefficients
for partial warps. We would then calculate the dot product by multiplying the coefficient
of PW1X in one species by the coefficient of PW1X in the other, and then multiply the
coefficient of PW1Y in the first species by the coefficient of PW1Y in the other, continuing
the same process for all coefficients. Finally, we would sum all those products. When the
two vectors are both normalized to unit length (meaning that the square root of their
summed squared coefficients equals one), the dot product is the vector correlation, RV .
Because a correlation is a cosine of an angle, we can also write the equation for the dot
product as:

A · B = |A| |B| cos θ (10.18)

where |A| is the magnitude (length) of A, which is calculated by (A2
1+A2

2+ . . .A2
P)1/2,

and similarly |B| is the length of B, calculated by (B2
1+B2

2+ . . .B2
P)1/2, and θ is the angle

between them. If A and B are unit vectors the two lengths |A| and |B| are both one, so to
find the angle between the two vectors we solve for θ by:

θ = arccos
(A · B)

( |A| |B| ) (10.19)

When two vectors are parallel, the angle between them is 0◦ and the vector correlation
between them is 1.0; in contrast, when two vectors point in exactly the opposite directions
(which is termed being anti-parallel), the angle between them is 180◦ and the vector cor-
relation between them is −1.0. The angle between perpendicular (orthogonal) vectors is
90◦, and the correlation between them is 0.0.

Testing the statistical significance of the angle

Once we have computed an angle between two regression vectors, we are left with the
question of whether it is statistically significant. Rather than attempt to find an analytic
test of significance, we can rely on a bootstrap procedure (see Chapter 8 and references
cited therein). The approach used will be to determine a confidence interval for the range of
angles between regression vectors that can be produced by random variation within each
group. At issue is whether the uncertainty of our estimate of each vector (due to sampling)
is so large that we cannot reject the null hypothesis of no difference.

To estimate the range of angles within each species, we estimate the residuals from the
regression of shape on the independent variable. Each individual gives a multidimensional
set of residuals that describe the deviation of that individual from its expected shape.
We then form a pair of bootstrap sets for each group that will be used to calculate the
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angle between the vectors. These pairs are constructed by resampling the residuals (with
replacement) and randomly assigning them to expected values of shape (derived from the
original regression model) at the values of size observed in the original data. This procedure
preserves the covariance structure among variables, and is a multivariate extension of the
standard approach to estimation of uncertainties of regression slopes by resampling.

From the paired samples we calculate the angles between the vectors, reiterating this
procedure to generate a distribution of within-group angles. Because sample sizes can differ
for different groups, the two bootstrap sets formed from the group with the larger sample
size match the sample sizes of the two groups (that is, one of the bootstrap sets will have
a sample size equal to that of the group with more observations, and one will have the
sample size equal to that of the group with fewer observations). Both bootstrap sets formed
from the data of the group with the smaller sample size have that group’s smaller sample
size because we ought not to form bootstrap sets larger than the original data set.

We then determine the statistical significance of the inter-group angle by comparing it
to the 95th percentile of the range of both within-group angles. Should it be larger, the
inter-group difference is judged to be statistically significant. Under those conditions, the
inter-group angle is judged to be statistically significant at a 5% level.

Comparing ontogenies of shape of S. elongatus, S. gouldingi and S. manueli
We will compare the ontogenies of S. elongatus, S. gouldingi and S. manueli using the
method described above. Each data set comprises an ontogenetic series; because we do
not have information on their ages, we will regress shape on size and compare those
regressions. Their ontogenies of shape are shown in Figure 10.11. They visibly differ, but
part of that difference might lie in a difference in developmental rate – the species might
differ in how much change they undergo, and hence in the lengths of the vectors rather than
in their directions. However, the angle between the ontogenetic vectors of S. gouldingi and
S. elongatus is 38.8◦ (corresponding to RV =0.779) and the 95th percentile of the ranges
of the within-species angles are 10.2◦ for S. gouldingi and 34.4◦ for S. elongatus. The
interspecific angle exceeds both those within-species ranges, so we can conclude that the
two species differ significantly in their ontogenies of shape.

Similarly, the angle between S. gouldingi and S. manueli of 35.0◦ (corresponding to
RV =0.819) exceeds the 95th percentile of the range obtained by resampling within
S. gouldingi (11.0◦) and within S. manueli (16.6◦). Also, the angle between S. manueli and
S. elongatus is 46.0◦ (corresponding to RV =0.695) in comparison to the range of angles
obtained by resampling within S. manueli (13.7◦) and S. elongatus (32.1◦). All three com-
parisons demonstrate statistically significant differences between ontogenetic trajectories
of shape.

These comparisons tell us that the vectors are significantly different, but they may still
be far more similar than expected by chance. We have tested the null hypothesis that the
vectors do not differ by more than expected by chance, but now we want to test the null
hypothesis that they are no more similar than expected by chance (meaning that the angle is
significantly smaller than 90◦). This second null hypothesis is tested by a permutation test,
comparing the observed vector to randomly permuted versions of it. These permutations
preserve the range of values in the original data, as well as the relative frequencies of
positive, negative, and high and low coefficients. Permuting of the coefficients numerous
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Figure 10.11 Ontogenies of shape: (A) S. elongatus; (B) S. gouldingi; (C) S. manueli.

times (e.g. 400) gives us a measure of the average angle among randomized vectors as well
as a confidence interval for the correlation. Permuting the vector of regression coefficients
of S. gouldingi 400 times, we find an average correlation among the randomized vectors
of 0.011, with a confidence interval ranging from −0.296 to 0.345 (corresponding to an
average angle of 89.3◦ within a confidence interval of 107.2◦ to 69.8◦). For S. manueli
the mean correlation among the randomized vectors is 0.020, with a confidence interval
ranging from −0.288 to 0.318, and for S. elongatus that mean is 0.024, with a confidence
interval ranging from −0.276 to 0.418. Therefore, the three species are all more similar
to each other than expected by chance.

Comparing two angles

In some cases, we might want to know whether the angle between one pair of regressions is
significantly different from the angle between another pair of regressions. For example, we
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might want to know if one ontogenetic trajectory departs more than another from the puta-
tive primitive trajectory. This question can be addressed by bootstrapping the difference
between angles, just as we would bootstrap the difference between Procrustes distances.
We begin by computing the angles between trajectories and the difference between those
angles, then we resample each data set with replacement and repeat the calculation of the
angles and the difference between them. After a sufficient number of bootstraps, we can
determine the 95% interval for the range of differences. If this range excludes zero, we can
conclude that the observed difference is significant at the 95% level.

Comparing rates of response to the independent variable

The simplest method for estimating the rate of response takes the approach used
above for checking the assumption of linearity between shape and independent variable –
calculating the Procrustes distance between each shape and the shape having the lowest
score on the independent variable. By regressing that distance on the independent vari-
able (e.g. size) we estimate the rate of response of shape to the independent variable, and
can also put confidence intervals on the rate. These confidence intervals, however, do
not take into account the uncertainty of the estimate of the shape that will be used as
the reference. Although that uncertainty does not normally matter much (because we are
not treating the reference as a statistic), it does in this case. An alternative and some-
what more complex procedure is to measure the distance between the average shapes
separated by one unit of the independent variable. This tells us how much shape has
changed over that single unit of change in the independent variable, which gives us the
distance traveled (for shape) relative to a unit change in the predictor. For example, if
we want to estimate a rate of development, we could measure the distance between the
mean shape at 3 mm and 4 mm; this would tell us how much of a difference occurs per
mm change in size. Because the function we are using is linear, that rate is a constant.
Confidence intervals can be constructed for both methods; the first is the confidence inter-
val around the slope of the regression, the other is the confidence interval around the
distance.

The two approaches can give different results, partly because of the different
sources of uncertainty that enter into the estimates of the rates, and partly because of
the impact of non-linearities on the relationship between shape and the independent
variable.

Comparing rates of ontogenetic shape change among S. elongatus,
S. gouldingi and S. manueli
Continuing the comparison between S. elongatus, S. gouldingi, and S. manueli, we can
now ask if they differ in their rate of change in shape relative to size. We use the two
methods for comparing those rates (Table 10.2), and it is clear that the species do differ
regardless of the fact that the two methods yield somewhat different values. Despite those
differences, it is clear that there is a striking difference between S. elongatus and the other
two species – S. elongatus undergoes about half as much shape change per unit change in
centroid size. The other two do not differ significantly in rate, although this is because of
the large confidence intervals surrounding the estimates.
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Table 10.2 Estimating the rate of response to a common independent variable
by the slope of the regression and by the distance traveled over a unit change
in the independent variable

Species Slope Distance traveled

S. elongatus 0.0215 (0.0172–0.0253) 0.0245 (0.0224–0.040)
S. gouldingi 0.0579 (0.0530–0.0627) 0.0510 (0.0436–0.0583)
S. manueli 0.0557 (0.0511–0.0603) 0.0469 (0.0412–0.0566)

Software

In the IMP series, four programs are currently available to implement the methods intro-
duced in this chapter: Regress performs a regression of shape on an independent variable;
Standard removes the variation in shape due to variation in the independent variable; Vec-
Compare estimates the angle between vectors of regression coefficients and statistically
tests whether that angle exceeds those that can be obtained by resampling within each
population; and ShuffleAllometry performs the permutation test (randomly reshuffling
vectors of regression coefficients) to test the hypothesis that the angle between two vectors
is no more similar than expected by chance. One other program, VecDisplay, performs no
calculations but is useful for visualizing similarities and differences among vectors. In addi-
tion to programs in the IMP series, TPSRegress fits a variety of linear models to the data
(including models more complex than those that can be analyzed using the IMP software
or discussed in this book).

Running Regress6

As with other programs in the IMP series, the input data should be in X1, Y1, … CS
format. The program will regress shape on the last column of your file; if you do not want
to regress shape on size, replace the column of centroid sizes with the independent variable
of your choice. The input coordinates X1, Y1, … can be obtained by any superimposition
method (Regress6 does a GLS Procrustes superimposition, and the analysis is based on
the Procrustes coordinates). The program asks you to set the superimposition type, but
this is for the display of results – you can input any coordinates you want and display the
results using any that you want (of the options listed). Specify your choice before loading
the data – you can change it later.

To run the program, load the data (clicking on Load Data) and then specify whether
you wish to use the untransformed values found in the last column of your data, or log
transform it instead. You will also need to specify the reference form. Usually, you will
choose the mean when performing the statistical analysis (where it asks you to Set N,
enter the sample size). However, you might want to depict the change away from the
specimens with the lowest values on the independent variable rather than away from the
mean. Although the change that is depicted will be the same regardless of your choice of
reference, the landmarks will be placed where they are in the reference – so, to show the
change away from a small juvenile to a large adult, you might want to place the landmarks
where they are found in a small juvenile. If so, Set N to the number of individuals in your
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sample that will allow you to estimate the desired mean shape. You will also need to use
that reference to plot the Procrustes distance away from that reference regressed on the
independent variable (if you use the mean you will probably see a U-shaped curve, because
the specimens will likely approach the mean shape then depart from it). Occasionally you
might want to load a file to use as a reference form, such as when you want to compare
vectors of partial warp coefficients regressed on size (in VecCompare) or if you want to
input the vectors into VecDisplay. For the regression vectors of partial warp scores to be
comparable, all must be calculated from the same reference form.

To run the program, click on Compute Partial Warps. This not only computes the PWs,
it also carries out the regression. You can now check that there is a significant relationship
between shape and the dependent variable (using the options on the Regression Statistics
pull-down menu), display the Procrustes distance of each specimen from the reference on
the independent variable (using Display Distance vs CS/LCS), and display the relationship
between shape and the independent variable as a deformation (using Display Regression
(Deformation)).

If your sample size is large enough for a multivariate analysis, you can select the option
on the Regression Statistics menu: PW+Uniform vs CS/LCS. This will give you Wilk’s

, Rao’s F, the degrees of freedom and the p-value (although it may tell you that p=0
if the value is smaller than the program calculates). At present, Goodall’s F-test is not
available (but it is in TPSRegress). If your sample size is too small, use the univariate test
of Procrustes Distance vs CS/LCS. However, the null hypothesis being tested is that the
Procrustes distance from the smallest value is significantly related to size – this is not the
same as the hypothesis being tested by the multivariate test. Still, it does give an estimate
of the rate of change, and you may wish to plot that relationship and save the plot. If so,
use Auxiliary Copy on the toolbar at the top. Copying the image directly to the clipboard
will not work because of the different ways the two copy functions treat the aspect ratio
of the plot.

If the statistical test indicates a significant association between shape and the indepen-
dent variable, you may display it using a variety of options – including vectors of relative
landmark displacements, the deformed grid, deformed grid plus vectors, a quiver plot,
contour plots, and contouring the absolute values of the partial warps. The plots can be
edited as described in Chapter 7 (see especially the discussion of the grid trimming options
and reference rotation options). The images can be copied to the clipboard or saved to an
Encapsulated Postscript (EPS) file.

As well as saving the pictures, you can save several files, including partial warp scores,
the growth vector (i.e. the vector of regression coefficients for the partial warps normalized
to unit length) or the deformation vector (which is the same as the growth vector except
it is not normalized), the reference form, the Procrustes distance between each specimen
and the reference. Normally there is no reason to save the files of partial warp scores or
the reference, but if you are planning on running VecCompare (see below) you will need
a file of partial warp scores for each group (all of which must be calculated from the
same reference). In addition, you may also save a file of regression information, including
the name of the file analyzed, its sample size, the reference (the name of the file and the
coordinates of the reference), the regression coefficients of the partial warps (the uniform
components are listed as PW0x, y), and results of the univariate test of Procrustes distance
on CS/LCS.



chap-10 4/6/2004 17: 26 page 257

REGRESSION 257

Running Standard6

This program is somewhat different from several others in the IMP series in that it requires
you actively to accept the defaults. As usual, you load the data in the standard X1,Y1…CS
format. The data set may be landmarks or partial warp scores. The data will be plotted in
the visualization window (but when they are partial warp scores, the plot will be mean-
ingless). You need to say whether the independent variable is in the last column of your
data file (where CS is usually located) or instead is contained in another file. To say that
it is in the last column, select Use x=CS (the independent variable need not be centroid
size; selecting this option means that the variable is located where CS usually is). Alterna-
tively, you can select Load x-List, which allows you to input a file containing the values
of the independent variable. This file must be a single column of data, with one entry per
specimen (in the same order as the specimens are in the input data file). The values must
be numerical, no letters or formatting codes can be read (although they can be included in
the file by placing them to the right of a % sign).

An error message will appear if the number of specimens and number of values in the
independent variable do not match. Also, you will get an error message if there is a hard-
return after the last value in the independent variable list (if you get an error message that
doesn’t make sense, check for this possibility).

You can choose to regress on the values in the last column of your data file (or on the
input independent variable file) or you can transform it, either to ln(x) or log(x). Once
you have made your choice (where you are asked to Accept: Regression Function), click
Accept. The last choice you need to make is the value of the independent variable; the
default is the minimum value of x, but you can choose the mean or the largest value, or
type in one of your choosing. Once you have decided whether to Accept: Standardize on
x=, click Accept.

Clicking on the Do Regression button runs the program. You can then show the stan-
dardized data (they are plotted in red if you ask to Show Standardized Data). As usual,
you can copy the image to the clipboard (with or without axes on the plot) using the Copy
Image to Clipboard button, and you can save the standardized data in the X1, Y1 … CS
file format by asking to Save Standardized Data.

Before loading your next file, click on Clear Data.

Running VecCompare

The purpose of this program is to determine whether two vectors differ significantly in
direction. It takes the input data, calculates the regression of all the dependent vari-
ables on the independent variable (i.e. the last column), normalizes the vector (to unit
length), estimates the angle between the vectors of two groups, and tests that angle for
its statistical significance by bootstrapping. The program was designed to be very flex-
ible – it can be used to compare vectors of traditional morphometric measurements (or
of any other set of variables) as well as geometric shape data. Because it was designed
to be flexible, the program does not superimpose the coordinates; nor does it calcu-
late partial warps from them. If you want to regress the GLS coordinates or partial
warp scores on the last column in the file, you will need to input files containing
GLS coordinates or partial warp scores (make sure that the same reference was used in
computing them).
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Each group must be in a separate file. When you load them, the data will be plotted in
the visualization window (the plots will not make sense if the data are traditional morpho-
metric measurements or partial warp scores). Before doing the analysis, choose whether
to regress on the values in the last column (where CS is usually located) or its log (LCS).
Also before doing the analysis, determine the number of bootstrap sets you wish to use;
the default is 100. To perform the analysis, click on Compute Growth Vector. The results
will be displayed in the results window; it will give the angle between vectors, and the
range of angles that can be obtained by resampling each. They can be saved to a file using
the Save File option.

To test whether the angles between pairs of vectors are significantly different, load the
first pair of data sets using the Load File 1 and Load File 2 buttons. Load the second pair
of data sets by going to the File pull-down menu and selecting Load Data Set 3 then Load
Data Set 4 (for a three-way comparison, A-B vs A-C, load A as data sets 1 and 3, load B
as 2 and C as 4). Next, select Regression Function (CS or LCS) and Number of Bootstrap
Sets Used in those control windows. Now start the calculation by going to the More Stats
pull-down menu and selecting Bootstrap Test of Difference in Angle. The results will be
displayed in the results window; they can be saved to a file using the Save File option.

Running ShuffleAllometry

Unlike all other programs in the IMP series, this one reads data in column vector for-
mat. The input data should be a single column of regression coefficients. These can be
regression coefficients from any sort of data, such as allometric coefficients of traditional
data. The original purpose of the program was to shuffle allometric vectors of traditional
morphometric data, so the program can read these as well as column vectors of geometric
shape variables. The reason for formatting the data as column vectors is because most
journals publish vectors of allometric coefficients (or principal component coefficients) as
column vectors. If your vectors are in rows, you can transpose them by opening the file
in Excel, copying the vector, then, pasting it, using the Paste Special menu to select the
option “transpose.”

Once you have loaded the data, you need to select the desired number of bootstraps;
the default is 400 and can be altered by typing the desired number in the box. Clicking on
Shuffle runs the program. The results will appear in the results window, where you will find
the mean value for the correlation between the input vector and 400 randomly permuted
versions of it, along with the upper and lower 2.5 and 5 percentiles of the distribution.
You will also obtain the maximum value found over the chosen number of bootstraps.

Running VecDisplay

This program is intended for purely graphical purposes. Its function is to provide pictures
of deformations that cannot be obtained by the conventional software but can be expressed
in terms of partial warp scores. You can use it to display a hypothetical vector, such as the
expected change in shape under a model (so long as you can frame the model in terms of
partial warp scores). You can also use it to display the difference between two deformations
obtained from other software, such as the difference between two regressions (those files,
properly formatted for input into VecDisplay, are produced by Regress6 and can be saved
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either in normalized (the Growth vector) or unnormalized (the Deformation vector) form).
The program will display each vector individually, and the sums and differences between
them, using all the standard display options. In addition to the usual displays, there is also
an option to show the difference between two deformations by pairs of vectors at each
landmark.

The input files each contain a row vector of partial warp scores, ordered from greatest
to least bending energy, including the two uniform components (the last column, as usual,
is centroid size). For VecDisplay to be able to interpret the partial warp scores, it needs the
reference form that was used in calculating them. The same reference must have been used
in calculating the partial warp scores for both files. If you want to input a hypothetical
vector, you need to produce the partial warps describing it. One method you could use for
this purpose is to draw expected changes in landmark locations (as vectors of landmark
displacement from a given shape, which will serve as the reference). You can then digitize
the coordinates located at the endpoints of the vectors and use those coordinates in any
program that outputs partial warp scores. In some cases a biological model might corre-
spond to a particular partial warp – for example, one partial warp might describe a global
growth gradient. If that is the case, you can input a vector of zeros for all scores except
for that one.

After loading the reference form and selecting the superimposition method, load the
one or two vector files. If using only one file, select the Zero Vector option for the second.
You may display (1) each vector separately (these are the first two options), or (2) the sum
of the two vectors (which represents an average between them, omitting only the step of
dividing the scores by two), or (3) the difference between them, either by subtracting the
second from the first or the first from the second.

The options for drawing the deformations, as well as for editing them, are as described
in Chapter 7, with the exception that you can also draw the difference between the two
groups as pairs of vectors at each landmark (the final option). We should note that if
the input vectors are the normalized growth vectors produced by Regress6, you probably
will need to rescale them because the changes will be so large that they will be virtually
unreadable. To reduce the scale, use the Deformation Multiplier function.
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11
Partial least squares analysis

Partial least squares (PLS) is a method for exploring patterns of covariation between two
(and potentially more) blocks of variables. It can be used to study covariation between two
blocks of shape variables, making it potentially useful for studies of morphological integra-
tion (e.g. Bookstein et al., 2003; Bastir et al., 2004), and also for synthesizing information
about three-dimensional morphologies sampled by two two-dimensional views (e.g. Rohlf
andCorti, 2000). Themethod can also be used for analyzing the relationship between shape
and other variables, including traditional morphometric or meristic variables, or measures
of biomechanical, ecological factors or behaviors (e.g. Corti et al., 1996; Lundrigan, 1996;
Rüber and Adams, 2001). A particularly creative use of the method examines the relation-
ship between patterns of fluctuating asymmetry and variation (Klingenberg et al., 2001).

An important feature of the method is that the blocks are taken as a given – the data
are partitioned into blocks before the analysis begins. For that reason, PLS is not useful
for finding the blocks in the first place, which means it is not suited for dissecting complex
morphologies intomodular units. Even so, it may be useful for building integrated units out
of the modules, if we accept that the blocks are indeed modules. We can ask whether one
block is more highly correlated with another than either of those is with a third block (e.g.
Bastir et al., 2004). Although that is part of the question normally addressed in studies of
integration, the other part is the identity of the blocks. PLS may eventually prove useful for
that second question as well, but no current implementation of the method has attempted
to address it. Thus, when using PLS to study morphological integration, it is important to
remember that the method is useful for analyzing correlations between units but not for
subdividing the whole into units.

PLS is probably unfamiliar to many biologists, although it has been used extensively
in the social sciences (see Bookstein, 1982; Jöreskog and Wold, 1982) and in clinical
studies (e.g. Sampson et al., 1989; Streissguth et al., 1993; Lowe et al., 1997). Thus,
a large part of this chapter discusses similarities and differences between PLS and more
familiarmethods, including regression, principal components analysis (PCA) and canonical
correlation analysis (CCA). Because of the potentially wide range of applications of this
method, it is important to understand how it is related to other methods that address
similar questions. As well as understanding the relationships of PLS to other methods it
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is also important to understand the limitations of PLS, especially when another method
might be equally appropriate (both conceptually and mathematically).

Before exploring the relationships among methods, we should note that partial least
squares analysis employs a mathematical technique called singular value decomposition
(SVD), which has not been introduced yet in this text. SVD is related to the more familiar
decomposition by eigenanalysis used to extract principal components (from the variance–
covariance matrix) and partial warps (from the bending-energy matrix). Because PLS
uses SVD, the vectors generated by PLS are often called singular axes (SAs); in studies
of covariances among geometric shapes, they are also sometimes called singular warps.

PLS compared to regression

Both regression and PLS examine the relationship between two sets of variables, but they
differ in that the (Model I) regression model casts one set of variables as dependent on the
other whereas PLS treats them symmetrically. That is, PLS does not assume that one set
of variables causes the other, but rather views both sets as jointly (and linearly) related to
the same underlying causes. Linear combinations of measured variables that are thought
to reflect responses to underlying (unobserved) variables sometimes are called “latent vari-
ables,” and the terminology of latent variables often is used in PLS (in this, PLS resembles
factor analysis).

PLS seeks the latent variables in one block that are maximally correlated with the latent
variables of another block. Thus, there is assumed to be at least one latent variable within
each block. These linear combinations are constructed to account for as much of the
covariation as possible between the two blocks of variables. The method yields two sets of
vectors, one consisting of the coefficients of the latent variable underlying the first block,
the other of the coefficients of the latent variable of the second block. The number of
interblock linear combinations is equal to that of the smaller block, Pmin. So, for example,
if we have two blocks, one of which has four variables and the other of which has three,
the first linear combination will have four coefficients, the other will have three, and there
will be three interblock linear combinations.

Linear regression is based on a linear statistical model, which assumes that the indepen-
dent variable is measured without error (hence all the error is ascribed to the dependent
variable). No model underlies PLS, and no error is ascribed to any variables (in either
block). For this reason alone, we would not expect to obtain the same coefficients from
PLS as we obtain from regression. However, there is a more important reason for expecting
that the two methods will yield different results when there is more than one independent
variable. In that case, we would compare PLS to multiple regression, and the coefficients
of PLS and multiple regression have very different interpretations. The vectors obtained by
multiple regression express the dependence of the dependent variables on just one of the
independent variables, with all others held constant. The coefficients produced by multiple
regression do not assess the covariance between the two blocks of variables, a distinction
that becomes particularly important when several independent variables are highly cor-
related. Under those conditions, most of the variance in the dependent variables will be
associated with one independent variable, leaving little to be explained by the others. Even
though all the independent variables might affect the dependent variables, only one would
be accorded a high weight, so the others might appear to have trivial explanatory power.
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That is because they are explaining the residual variance – i.e. the variance not already
explained by the one with the large coefficient. Consequently, interpreting the coefficients
of multiple regression can be difficult, and the method is poorly suited to cases in which the
independent variables are uncorrelated with each other. In those cases, no latent variable
accounts for covariances among the independent variables because they do not covary.

PLS treats the variables of both blocks symmetrically, and therefore we obtain variables
within one block most relevant for predicting the variables in the other block and vice
versa. These coefficients are called saliences because they indicate which variables in one
block are most relevant (salient) for explaining covariation with the other block.

PLS compared to PCA

PLS and PCA greatly resemble each other in the definition of axes. As we saw in Chapter 7,
PCs are extracted from a variance–covariance matrix (by eigenanalysis), producing a set
of mutually orthogonal dimensions (eigenvectors) ordered according to the amount of
variance each one explains. Similarly, PLS decomposes a matrix into mutually orthogonal
axes, but the matrix is an interblock variance–covariance matrix and the components
are ordered according to the amount of covariance between blocks explained by each
one. The mathematical difference is that, instead of using an eigenvalue decomposition
of the variance–covariance matrix, PLS uses a SVD of the interblock variance–covariance
matrix. The reason for using SVD instead of an eigenvalue decomposition is that the
covariance matrix between blocks need not be a square, symmetric matrix (a square,
symmetric matrix is one in which the number of rows equals the number of columns, the
first row of the matrix is the same as its first column, and every other row is also the
same as its corresponding column). Variance–covariance matrices are always square and
symmetric, but interblock variance–covariance matrices need not be (because the numbers
of variables in each block can differ). Therefore, we need a different method to decompose
the matrix. SVD yields pairs of singular axes (SAs), one per block. Each pair is associated
with a singular value (SV), which is a relative measure of the covariance explained by the
paired axes (we should note that singular axes “explain” covariance in the same sense that
principal components “explain” variance). Consequently, one of the primary differences
between PCs and SAs is that SAs come in pairs. For each singular value there is a pair of
axes that, taken together, accounts for the patterns of covariances between blocks.

Just as we can calculate scores for individuals on PCs, and explore the patterns of
variance in their plots, we can also calculate scores for individuals on SAs and explore the
patterns of covariance between blocks in their plots. Scores on SVs are computed the same
way as scores on PCs (i.e. by the dot product between either the PC or SA and the data for
an individual). Also, SAs, like PCs, can be depicted graphically by the deformation along
an axis, aiding the interpretation of their biological meaning. In the case of SAs, we would
plot SV1 for one block against SV1 of the other block. When one of the blocks is not a set of
landmark coordinates, no deformation can be drawn for the associated SA, but we can still
interpret the axis using the loadings of the variables on it. Rather than having a picture, we
will have a list of numerical values expressing the correlation between the variable and the
SA. The plots of the scores, as well as the depictions of shape transformations or numerical
values, provide the information about the nature of the covariance between blocks.
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Unlike the situation for PCA, there is no analytic statistical test of the significance of
SAs, nor for the significance of the correlation between blocks. However, resampling-based
approaches can be applied to test these hypotheses. A permutation test, discussed by Rohlf
and Corti (2000), determines if the singular values are larger than could be produced by
a random permutation of associations among variables between blocks (keeping within-
block associations intact). We can ask whether the covariances between blocks exceed
those we would expect by chance. We can also ask if the correlation between singular axes
is significant using a permutation test – this determines whether the correlation between
the scores for each block exceeds what we would expect by chance. Both tests indicate
whether the observed patterns of covariance between blocks are statistically significant.

The similarity between PLS and PCA is important to understand because both impose
a similar constraint on the analysis: both define axes to be mutually orthogonal. SV2 is
defined to be orthogonal to SV1, just as PC2 is defined to be orthogonal to PC1. This
becomes important when biological factors are not orthogonal, which may be the general
rule. Even though the axes (both PCs and SAs) provide a useful, simplified space in which
to explore patterns in the data, the axes themselves need not correspond to any biological
factors. It is likely that PC1 and SA1 have a biological interpretation when they account
for a very large proportion of the variance or covariance, but the remaining axes are,
by definition, constrained to be orthogonal to them, making their interpretation more
dubious. This same issue arises when using PCA for explanatory or even comparative
purposes (see Rohlf and Corti, 2000, pp. 747–748; Houle et al., 2002). It is possible that
no useful (interpretable) axes will emerge from the PLS analysis, and that no significant
correlations between blocks will be found, particularly when the structure of the variation–
covariation within each block is especially complex.

Another important similarity between the methods, which should also inspire a cautious
approach to interpreting results, is that PLS extracts linear combinations of variables
(like PCA), but the relationship between blocks may be non-linear. In such cases, the
first dimension may represent the dominant linear trend, and others represent orthogonal
deviations from linearity. Thus, we would need to interpret SV1 together with SV2 to
understand the relationship between the two blocks, recognizing that a single non-linear
factor accounts for both. Of course, the issue of linearity is also important whether we are
analyzing the data by PCA/PLS, by regression, or by the method discussed in the following
section, CCA. However, most workers recognize that linearity is an important assumption
of regression; non-linearity might not seem so important in studies using PCA or PLS
because neither method is explicitly based on a linear model, so the impact of non-linear
relationships among variables might not seem to violate assumptions of the method.

PLS compared to CCA

Canonical correlation analysis, like multiple regression and PLS, examines the correlation
between blocks of variables. CCA closely resembles multiple regression, although, like
PLS, both blocks are treated symmetrically (there is no presumption that one block of
variables comprises causes and the other comprises effects). Nevertheless, the coefficients
produced by a CCA are interpreted like partial regression coefficients. This means that each
coefficient indicates the contribution made by an independent variable when the effects of
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the others are held constant, as discussed above in the context of regression. In this way,
CCA, like multiple regression, differs from PLS.

CCA and PLS also differ in the quantity being maximized by the procedure. CCA seeks
pairs of axes (canonical axes) that are maximally correlated with each other; in contrast,
PLS seeks axes that maximally account for the covariance between the blocks (for a more
detailed comparison between CCA and PLS, see Rohlf and Corti, 2000).

Multigroup PLS: using PLS to compare patterns of covariance

PLS is usually used to examine patterns of covariances between blocks of variables mea-
sured in a single sample, but we can also use it to compare those covariances between
samples, as in a comparative analysis of morphological integration. Such comparisons rely
on the same logic (and methods) used in comparative analyses of regression equations or
PCs. In all of these, we are asking if the biologically corresponding vectors point in the same
direction. To answer that question, we can compute the angle between comparable SAs,
then test it statistically (using, for example, a bootstrapping procedure). In a similar fash-
ion, we can also compare SAs to PCs, asking whether the major dimension of covariance
between blocks is equivalent to the dominant dimension of variation within blocks. For
example, when our data come from an ontogenetic series, the major dimension of covari-
ance between blocks of variables may be their developmental correlations and the major
dimension of variance within each block might also be explained by ontogeny. Comparing
SAs to PCs can be especially useful for understanding causes of variance when PLS indi-
cates a significant relationship between morphology and some collection of environmental
variables; that same relationship may also explain the within-sample variation.

Mathematical details of two-block PLS

Suppose we have a matrix Y of P variables measured on N specimens, and that these
observations can be split into two blocks, Y1 and Y2, which have P1 and P2 variables
respectively. We can now compute the variance–covariance matrix, R, which can be
thought of as comprising the variance–covariance matrices within blocks Y1 and Y2 (R1
and R2, respectively) and the covariance matrix between the two blocks R12, giving:

R =
[
R1 R12
Rt
12 R2

]
(11.1)

where Rt
12 is the transpose of R12. We then perform a SVD of R12:

R12 = USVt (11.2)

which produces a P1×P2 diagonal matrix S, whose diagonal entries are the Pmin singular
values, λi. As mentioned above, there are as many singular values as there are variables in
the smaller block (Pmin). The matrices U and V have dimensions P1×Pmin and P2×Pmin,
respectively; their columns are called the singular axes (SAs). The first columns of U
and V comprise the paired SAs corresponding to the first singular value λ1, just as the
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first principal component (PC1) is the axis corresponding to the first eigenvalue of the
variance–covariance matrix. The SAs are ordered by decreasing singular values, just as
PCs are ordered by decreasing eigenvalues. Also, as mentioned above, scores on SAs are
calculated just like scores on PCs, i.e. by taking the dot product between an SA and the
data for a specimen (scores are calculated for each block separately). The fraction of the
total covariance of the two blocks expressed by the ith pair of singular axes is given by:

λ2∑Pmin
j=1 λ

2
j

(11.3)

Whether a singular value is larger than wewould expect from randomly related blocks is
determined by comparing the observed singular value to the distribution produced by ran-
domly permuting the covariance structure between blocks. In such a permutation test, the
vectors of P1 observations, each representing a specimen in the first block, are randomly
associated with vectors of observations from the second, thereby randomizing the covari-
ance structure between blocks without altering the variance–covariance structure within
the blocks. If the observed singular value lies outside the 95% confidence interval obtained
from the permuted data sets, the observed SA is judged to be statistically significant. The
correlation between the scores on the two blocks on the ith SA is also a measure of the
statistical significance of the axis, and this correlation may also be tested via a permutation
test in exactly the same manner.

Using PLS to examine ontogenetic integration between cranial and
postcranial regions

One of the most promising applications of PLS is in studies of morphological integration,
although, for the reasons discussed in the introduction to this chapter, it does not fully
address one of the basic questions asked in such studies: which parts comprise integrated
units or modules? PLS takes the blocks as a given rather than testing the hypothesis that a
given block is, in fact, a coherent unit. The value of PLS lies in its ability to test a different
sort of hypothesis – the integration between blocks. Granting its limitations, the method
can be useful for analyzing relationships among morphological parts that are chosen
a priori.

Studies of morphological integration usually focus on covariances among variables mea-
sured in a single homogenous sample (for studies of this sort using PLS, see Hingst-Zaher
et al., 2000; Bastir et al., 2004). It also has been used to analyze the relationship between
blocks in heterogeneous samples such as ontogenetic series and purported evolutionary lin-
eages (e.g. Bookstein et al., 2003). Used in that second way, PLS examines the covariance
between blocks over age, or “evolutionary divergence” or “geological time.”

When applied to studies of heterogeneous samples, regression is often a feasible alterna-
tive to PLS – so long as the factor explaining the heterogeneity of the sample is separately
measured. For example, if the sample comprises an ontogenetic series, the dominant fac-
tor explaining the heterogeneity of the sample is age. Age is not a factor in a causal
sense, but it explains the variation in shape within the sample. Because studies of inte-
gration are usually concerned with hypotheses of causality, age is not an explanation for
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morphological integration. However, often we want to know whether two or more struc-
tures are integrated through their ontogenies, and this is the sort of question we can answer
using either regression or PLS. Using PLS to explore the integration of ontogeny is an alter-
native to describing that same ontogeny by multivariate regression. Regression does not
require breaking up the data into multiple blocks a priori (and that subdivision is one of
the more problematic features of PLS), but it does require that we measure age (or a proxy
for it, like size). Furthermore, regression does not fully answer the question about inte-
gration because it only tells us whether shape covaries with age; it does not tell us which
blocks most covary with each other. The two questions, while at least subtly different,
are also interrelated – the block that covaries least with the others also covaries least with
the measured factor. Considering that regression is a feasible alternative to PLS for some
questions, it is important to understand how the two methods differ when describing the
same ontogeny. Additionally, because age might account for most of the variance in the
sample, it is also important to understand how PLS might differ from PCA.

We will use PLS to address three sorts of questions about the ontogenetic integration
between cranial and postcranial morphology:

1. How are cranial and postcranial regions integrated over ontogeny?
2. Do species differ in these patterns of ontogenetic integration?
3. Are cranial landmarks more highly integrated with those that measure the position of

median fins, or with those of the caudal peduncle?

A major objective of the first two analyses is to compare results based on PLS to those
based on regression and PCA. The primary objective of the third is to explore the use of
PLS to test explicit and conflicting hypotheses about integration.

Ontogenetic integration between cranial and postcranial shapes: results from
PLS, PCA and regression

The landmark configuration and its subdivision into two blocks are shown for the data
of Pygopristis denticulata (Figure 11.1). The two blocks do not correspond to halves of
the body, because the pectoral fin landmark (landmark 11) is topographically part of
an “anterior” block but is included in the postcranial block because it is not a cranial
feature. Thus, the cranial and postcranial blocks partly overlap on the body. Analyzed
by PLS, we find that the covariance between blocks is substantial; the first singular value
(0.0536) explains 67.1% of the total covariance, significantly more than expected by
chance (p<0.01). The correlation between the two blocks is a very high 0.862, and that
correlation is also significant (p<0.01). No other singular value is statistically significant,
so there is only one dimension of covariance between the blocks. The plot of the scores of
postcranial SA1 on cranial SA1 shows the pattern we expect from such a high correlation,
although the relationship between blocks is not strictly linear (Figure 11.2).

Having found that there is a dimension of significant covariation, we need to display
and interpret it (Figure 11.3). To aid in this interpretation, we first ask whether the SA1
of each block is correlated with size as expected – and they are; both cranial SA1 and
postcranial SA1 are indeed highly correlated with size (R=0.86, R=0.72, respectively).
Size thus appears to be a plausible interpretation of the biological factor responsible for the
covariance between regions. Given that result, we might expect to find a similar depiction
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Figure 11.1 Subdivision of landmarks into two blocks: (A) cranial configuration; (B) postcranial
configuration.
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Figure 11.2 Scores of postcranial SA1 on cranial SA1 for P. denticulata.
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Figure 11.3 Singular axis expressing the covariance between cranial and postcranial landmarks of
P. denticulata.

of ontogenetic integration using regression because that technique allows us to find the
shape variable correlated with size, which ought to explain the covariance between cranial
and postcranial landmarks. We would also expect PCA to yield the same result because
size is the dominant component of the variance in an ontogenetic series.

Despite such apparently realistic expectations, we find that regression and PCA give
similar results (Figures 11.4A, 11.4B), but they appear to differ from those yielded by
PLS (Figure 11.4C). However, the visual comparison of graphics is complicated for three
reasons. First, the analysis by PLS examines two partly overlapping parts rather than a
single whole, in contrast to PCA and regression. Second, when analyzed by PLS, each half
is separately scaled to unit centroid size rather than the whole, so the relative sizes of each
block are portrayed differently in the two analyses. Third, when analyzed by PLS, the
magnitude of change within each part is calculated and scaled separately rather than in
relation to thewhole as done bymethods that analyze the entire configuration of landmarks
comprising both blocks.

Proceeding with the visual comparison nonetheless, one apparent difference is the bal-
ance between cranial and postcranial changes. Regression and PCA (of the whole fish)
both suggest that there is a large change in the orbital region relative to the change of the
posterior body, but PLS suggests that they are more equally balanced. A more troubling
difference is that the posterior covariate of size found by regression or PCA looks quite
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(A)
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Figure 11.4 Comparing the direction of ontogenetic change in P. denticulata as determined by:
(A) regression of whole body shape on size; (B) PC1 of whole body shape; (C) SA1 of the axis of
covariance between cranial and postcranial shape extracted by PLS.

different than posterior SA1 – it appears that the most caudal region (the caudal peduncle)
is integrated with the posterior anal fin, and more change is localized here (relative to the
remainder of the posterior body).

The consequence of analyzing each half separately can be appreciated by regressing each
block separately on size, and also by using PCA to extract the dominant component of
variance of each separate half. Regression of each part separately on size yields a result
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Figure 11.5 Comparing results of three methods for analyzing the two blocks of landmarks: (A)
regression of P. denticulata cranial and postcranial landmarks separately on size; (B) PC1 of cranial
and postcranial landmarks analyzed separately; (C) cranial and postcranial SA1.

very similar to that of regression of the whole (compare Figures 11.4A and 11.5A). Each
block appears to be nearly linearly related to size, and the correlations between each block
and size equal the correlations between each SA1 and size (i.e. 0.89, 0.72 for cranial and
postcranial blocks, respectively). There is, however, a notable difference between the two
blocks in the magnitude of change in relation to size. Measuring the rate at which the
Procrustes distance away from the smallest specimen increases with size gives strikingly
different estimates for the two blocks: 0.08 for the cranial block and only 0.03 for the
postcranial block (Figure 11.6). Thus, over a given change in size, the cranial region
undergoes far more change than the postcranial body. Such information is captured by
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Figure 11.6 Relative rates of cranial and postcranial development analyzed by regressing the
Procrustes distance away from the average of the smallest specimens (D) against log centroid size
(LCS).

regression even when the parts are analyzed separately, because the changes are calibrated
in relation to size. Going back to the plot of the SA1 scores (Figure 11.2), it is now possible
to appreciate the effect of these different magnitudes of response by noting the larger range
of scores for cranial SA1 scores compared to postcranial SA1 scores.

PCA of the separate blocks yields one distinct eigenvalue for the cranial landmarks and
none for the postcranial block, which is not surprising in light of their different magnitudes
of change. Because of the larger ontogenetic change in the cranial region there is a larger
distance between the shapes of the smallest and largest specimens, and consequently varia-
tion is more elliptical because ontogeny produces a long axis of variation (correlated with
size). In contrast, the ontogenetic change of the postcranial region is subtle, so the distance
between the smallest and largest specimen is not as large, and the postcranial variation is
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Figure 11.7 Comparing results of three methods for analyzing the two blocks of landmarks, with
PLS results rescaled in light of relative rates of development. (A) Regression of P. denticulata cranial
and postcranial landmarks separately on size; (B) PC1 of cranial and postcranial landmarks analyzed
separately; (C) SA1 of cranial and postcranial shape.

more nearly spherical. There is no dominant size axis, although size is still a factor explain-
ing variation within the postcranium. When analyzed as part of the whole, we can see the
impact of size on the postcranium in the context of its effect on the cranium, an effect
that becomes more ambiguous when the blocks are analyzed separately (compare Figures
11.4B, 11.5B). However, that ambiguity is again partly due to the greater magnitude of
change undergone by the head.

We can rescale the plots of SA1, amplifying the deformation of the head to reflect
its greater developmental rate (Figure 11.7C). That does not fully reconcile the graphical
results of regression, PLS and PCA, but it removes onemajor discrepancy among them. The
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Figure 11.8 Comparing SA1 (solid lines) to PC1 (dotted lines).

changes within the head appear to be similar now, regardless of method. The similarity
between PCA and PLS is even more evident if we diagram PC1 and SA1 on the same
plot (Figure 11.8). The difference is most striking for the posterior block, where it is most
notable in the orientation of the vectors at the two anal fin landmarks (landmarks 8 and 9).

To check the generality of the conclusions we drew from the analysis of P. denti-
culata, we can (more briefly) analyze two other species. One, S. gouldingi, differs from
P. denticulata in that there are two distinct eigenvalues for the variation of the head
(rather than one) and there is one for the variation of the postcranial landmarks (rather
than none). In the analysis of S. gouldingi the first singular value is very high (0.2379),
accounting for 89% of the covariance between the two blocks, and the correlation is
also remarkably high (0.968). Not surprisingly, the covariance explained by the paired
SA1 axes is significant (p<0.01), as is the correlation (p<0.01). No other SA explains
more covariance than expected by chance, so these data, like those of P. denticulata, pro-
duce a one-dimensional solution. Having already found that differences in relative rates
of development between the blocks can produce apparent discrepancies among the results
of the three methods, we show the results taking the difference in cranial and postcranial
developmental rates into account. The primary discrepancy among the results of the three
methods is in their descriptions of posterior head deepening (Figure 11.9). There is virtu-
ally no difference between the results of PCA and PLS, to the point that we cannot visually
compare them by superimposing the two sets of vectors on the same plot – they entirely
overlap each other. The results of PCA and PLS do differ from those of regression, albeit
subtly.

The analysis of S. manueli, like that of the other two species, yields a single significant
dimension of covariation between blocks. SA1 accounts for 76%of the covariance between
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Figure 11.9 Comparing results of three methods for analyzing the two blocks of landmarks after
rescaling plots to reflect the magnitude of the change of each block relative to a unit change in
size. (A) Regression of S. gouldingi cranial and postcranial landmarks separately on size; (B) PC1 of
cranial and postcranial landmarks analyzed separately; (C) cranial and postcranial SA1.

blocks, which is significantly greater than expected by chance (p<0.01). The correlation
between blocks is 0.92, which is also significant (p<0.01). In drawing the SAs, we again
scale the magnitudes of the cranial and postcranial blocks in accordance with their relative
rates of development (Figure 11.10). As in the case of S. gouldingi, regression provides a
somewhat different picture of the ontogenetic change in shape than do PLS and PCA, but
the results of PCA and PLS are consistent with each other.

The possibility that the three methods can give different results underscores the
importance of deciding which methods ought to be used.
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Figure 11.10 Comparing results of three methods for analyzing the two blocks of landmarks after
rescaling plots to reflect the magnitude of the change of each block relative to a unit change in size.
(A) Regression of S. manueli cranial and postcranial landmarks separately on size; (B) PC1 of cranial
and postcranial landmarks analyzed separately; (C) cranial and postcranial SA1.

Interspecific comparisons of ontogenetic integration

We can use PLS to compare ontogenetic integration among species. This is another case
where we could also use a regression-based approach (as we did in Chapter 10), so we
focus on the distinction between the results of the two methods. To make the analyses as
similar as possible, we subdivide the landmarks into cranial and postcranial landmarks in
the analyses based on regression, just as we do for the analyses based on PLS.

In the comparison between P. denticulata and S. gouldingi, the interspecific angle
between cranial SV1s is small (13.8◦), suggesting that these species are virtually indis-
tinguishable in cranial ontogeny; not surprisingly, that angle is not statistically significant.
More surprisingly, the larger angle of 30.9◦ between postcranial SA1s is also not significant
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(owing to the larger range of angles obtained by resampling within S. gouldingi – 32.8◦).
Comparing the cranial regressions also yields a modest angle (12.8◦) that is not statisti-
cally significant. However, the interspecific angle between postcranial ontogenies is larger
(44.0◦), and this is statistically significant. Thus we can conclude that the two species
share a common cranial ontogeny, but the results for the postcranial landmarks are more
ambiguous. Based on PLS, we cannot say that the patterns of postcranial integration differ
between species. However, if we analyze the relationship between the postcranial land-
marks and size, we do find a significant difference between species. In this case, it is
important to decide whether the hypothesis ought to be formulated in terms of PLS or
regression.

In the comparison between P. denticulata and S. manueli, we find a relatively large
angle of 39.2◦ between SA1 of the cranial landmarks, which is statistically significant,
and an equally large angle for the postcranial landmarks of 40.2◦, which is also sig-
nificant. Turning to the comparison of their cranial ontogenetic allometries based on
regression, we find an interspecific angle of 45.4◦ between cranial landmarks, and an
angle of 51.1◦ for the postcranial landmarks. In this case, both methods detect statis-
tically significant differences between species in both blocks of landmarks. Similarly, in
the comparison between S. manueli and S. gouldingi, the results from both methods are
consistent. Comparing cranial SV1s between species yields an angle of 43.4◦, which is
statistically significant, and a comparably large angle between postcranial SV1s of 30.3◦,
which is also significant. The analysis based on vectors of allometric coefficients yields
an interspecific cranial angle of 46.8◦ and postcranial angle of 32.7◦, both of which are
statistically significant. Unfortunately we cannot assume that the results will always be
consistent, as they were not in the comparison between P. denticulata and S. gouldingi.
Thus, as in the analyses of intraspecific integration, it is important to decide whether the
analysis ought to be based on regression or on PLS.

Using PLS to test competing hypotheses of integration

Our objective now is to formulate competing hypotheses of integration and use PLS to
test them. Specifically, we ask whether the integration between the cranial and caudalmost
landmarks is greater than that between the cranial and median fin landmarks (the three
blocks are depicted in Figure 11.11). We might expect that this would be the case, because
the head and caudal body usually develop earlier than the midbody, and the deepening
of the midbody occurs fairly late in development. Any factors, both genetic and environ-
mental, that affect larval development are likely to affect both these cranial and caudal
regions, but might have little impact on midbody depth (or anteroposterior locations of
the median fins). Therefore, if the timing of development explains integration, we might
anticipate a greater correlation between parts that develop at the same time. We will test
this hypothesis using two species. In one, S. gouldingi, the general expectations appear
to be met (for reasons that will not be evident until Chapter 13, when we discuss the
relationship between allometric coefficients and developmental timing). In the other, the
caudalmost part of the body seems to develop unusually late in relation to the head, so
we would expect that this species would not evince greater integration between head and
tail than between head and fin/midbody landmarks.
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Figure 11.11 Landmarks subdivided into three blocks: (A) cranial; (B) midbody median fins;
(C) caudal.

We thus separate the landmarks into three blocks: (1) cranial, comprising landmarks
1, 2, 3, 12, 13, 14, 15, 16; (2) midbody median fins, comprising landmarks 4, 5, 9; and
(3) caudal, comprising landmarks 6, 7, 8 (Figure 11.11). Landmark 8 is the posterior
base of the anal fin, so it might seem appropriate to include it in the median fin block;
however, this landmark does not provide any information about body depth, distinguishing
it from the landmarks included in that block. Landmarks 10 and 11 are on the paired fins;
because they do not belong to any of the blocks singled out by this hypothesis, they are



chap-11 4/6/2004 17: 27 page 279

PARTIAL LEAST SQUARES ANALYSIS 279

excluded from the analysis. Wewill examine the integration between the cranial landmarks
and each of the other two blocks, producing two pairs of blocks with the cranial landmarks
being included in both pairs.

The correlation between cranial and tail landmarks is very high in S. gouldingi
(R=0.888), as is the correlation between cranial and fin landmarks (R=0.751). To deter-
mine if one correlation is higher, we need to determine whether the difference between the
two correlations is larger than we would expect by chance. There are two ways to test this
hypothesis: one is to compare the difference between the correlations to the standard error
of the difference; the other is to bootstrap the difference between correlations and ask if the
95% range of the difference includes zero. Based on the first (analytic) approach we would
reject the null hypothesis that the correlations are equal (p=0.011), but, because the test
presumes normality, we ought to check the result using a resampling-based method. The
95% range for the difference between correlations is −0.262 to −0.0342, which excludes
zero and also leads us to reject the null hypothesis of equal correlations. Thus we conclude
that cranial and tail landmarks are more highly integrated with each other than are cranial
and median fin landmarks.

The analysis of S. manueli reveals a different pattern. In this species, both correlations
are weak: that between cranial and tail landmarks is R=0.443, and that between cranial
and median fin landmarks is R=0.599. The analytic test of the difference between cor-
relations indicates that the two correlations differ by no more than expected by chance
(p=0.251), as does the resampling-based test (the 95% interval of R is−0.366 to+0.134,
which includes zero). This contrast between integration patterns of S. manueli and S.
gouldingi is expected in light of their different ontogenetic allometries; we would need to
devise a timing hypothesis for S. manueli that does not follow the expected spatiotemporal
pattern. An interesting subject to pursue further is whether we can use studies of allom-
etry to infer patterns of timing that accurately predict developmental correlations among
blocks.

Using PLS to relate shape to ecological factors

We now use PLS to examine the relationship between shape and a block of non-shape
variables, specifically latitude and longitude. We will examine geographic variation in
adult body shape in a widely distributed piranha species, Pygocentrus nattereri. Geo-
graphic variation is often analyzed using conventional ordination methods like PCA, so
we will analyze the same data using both PCA and PLS. To simplify the analysis we
restrict the sample to the northern populations, because the southernmost ones might
belong to a different species (an inference difficult to make from morphology without a
detailed analysis of geographic variation). Also, we exclude the smallest specimens to avoid
confounding geography with ontogeny. We could conceivably include all the specimens,
standardizing shape statistically (using the regression equation for shape on size), but that
procedure assumes that deviations from the regression are equal across the entire size
range. Violating that assumption could distort the covariance structure of shape, which
could complicate the analysis of geographic variation. Therefore we limit this analysis
to the 48 largest specimens of P. nattereri, which still includes considerable variation in
size: individuals range from 102mm to 225mm standard length. Before we can interpret
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Figure 11.12 Principal components of shape variation of P. nattereri, specimens coded to indicate
latitude where collected. The deformation grid depicts the shape transformation in the direction of
higher scores on PC1, which is towards the more southerly localities.

the covariance between shape and geography, we will have to determine whether that
covariance could instead be due to a covariance between size, shape and geography.

PCA of P. nattereri shape

The analysis of whole body shape by PCA yields no distinct eigenvalues: PC1 accounts
for just 18.1% of the variance, PC2 accounts for 15.1%. Although the variation has no
dominant direction, there is a slight hint of a geographic pattern in the scores on PC1
(Figure 11.12). Although the evidence is hardly compelling, the specimens collected in the
northern localities are generally towards the left of the plot, whereas those collected in
the most southern localities are generally towards the right. We thus tentatively explain
PC1 as a latitudinal gradient in shape: southern P. nattereri tend to have larger heads
for their bodies (especially relative to the most posterior body). However, the evidence
is not compelling. The analysis of the cranial landmarks provides even less evidence for
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Figure 11.13 Principal components of cranial shape variation of P. nattereri, specimens coded to
indicate latitude of the locality where the individual was collected.

any geographic trends (Figure 11.13). Again there are no statistically distinct eigenvalues,
although PC1 accounts for 31% of the variance and PC2 for only 18.4%. Individuals from
the northernmost locality appear to be scattered fairly evenly over the entire plane. Four
individuals from the southernmost localities are concentrated to the left, but two other
specimens from southern localities are towards the right. The variation in postcranial
shape also lacks a dominant direction, although PC1 explains 28.9% of the variance and
PC2 explains 16.2% of the variance (Figure 11.14).

Compared to cranial shape, postcranial shape offers a stronger hint of a geographic
pattern because individuals from the northernmost localities are generally concentrated to
the right of the plot of PC2 on PC1 whereas those from the southernmost localities are
generally to the left. Based on Figure 11.13, we might thus interpret PC1 tentatively as
indicating a latitudinal gradient in postcranial shape; more southern P. nattereri tend to
have a longer dorsal fin base relative to the length of the posterior body.

PLS: the covariance between P. nattereri shape and geography

When we explicitly examine the covariation between shape and geography for whole body
shape, PLS extracts one dimension of covariance (with a singular value of 0.0493) explain-
ing 46.6% of the covariance between the two blocks. Interestingly, the one statistically
significant singular value is the second; the first, with a value of 0.0564, does not explain
more covariance than expected by chance. The loadings of the two geometric variables
suggests that this is a longitudinal factor, and the reason why this may not be signifi-
cant is that there is a small number of eastern Brazilian specimens that might differ from
the more easterly populations (for reasons unrelated to a longitudinal trend). SA2 does
account for significantly more covariance than expected by chance (p<0.01), and the
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Figure 11.14 Principal components of postcranial shape variation of P. nattereri, specimens coded
to indicate latitude where collected. The deformation grid depicts the shape transformation in the
direction of lower scores on PC1, which is towards the more southerly localities.

correlation between the blocks (of 0.77) is also statistically significant. Before going any
further, we need to check whether this correlation between geography and shape might be
confounded by a correlation between shape and size. The evidence against this hypothesis
is in the weak (non-significant) correlation between scores on SA2 and size (R=−0.093).
Thus we can proceed to interpret SA2 as a possible geographic factor, bearing in mind that
SA2 is defined to be independent of SA1, and SA1 is not significant (and may be heavily
influenced by the easternmost specimens).

Only latitude makes a large contribution to SA2; its loading is 0.993 whereas that of
longitude is only 0.117. Figure 11.15 shows the shape covariate of latitude (depicting
the transformation in the whole shape moving southerly): a marked increase in head size
relative to that of mid- and posterior body (especially relative to the region between dor-
sal and adipose fins), with steepening of the anterior head profile and shallowing of the
more posterior head profile (producing a generally blunter head), and an expansion of
the postorbital region.
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Figure 11.15 The covariance between P. nattereri shape and geography, depicted as a transforma-
tion in the southerly direction.

In the analysis restricted to cranial landmarks we again find that the second singular
value, 0.0606, is significant. SA2 explains 31% of the covariance between geography and
shape. The correlation of 0.59 is moderately high and statistically significant (p<0.01).
SA2 does not appear to be confounding size and geography, because the correlation
between scores on SA2 and size is non-significant (−0.152; p<0.05). Again the geo-
graphic factor is dominated by latitude: the loading of latitude on SA2 is 0.99, whereas
that of longitude is only 0.16. Figure 11.16 shows the shape covariate of latitude (again
depicting the transformation in shape when moving southerly). As in the analysis of whole
body form, there is steepening of the anterior head profile and shallowing of the more
posterior head profile (producing a generally blunter head), and also a slight lengthening
of the postorbital head relative to eye diameter. Because the analysis is restricted to the
cranial landmarks, we cannot see the general increase in head length relative to the mid-
and posterior body.

In the analysis restricted to postcranial landmarks we find a strikingly different pattern,
although the salience of geography for shape is still apparent. As before, there is only one
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Figure 11.16 The covariance between P. nattereri cranial shape and geography, depicted as a
transformation in the southerly direction.

Figure 11.17 The covariance between P. nattereri postcranial shape and geography, depicted as a
transformation in the southeasterly direction.
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significant singular value; the second (0.050), which accounts for 46.4% of the covariance
between shape and geography. The correlation between postcranial shape and geography
is relatively low (R=0.40), but it is an interesting composite of latitude and longitude.
The loading for latitude is 0.617 and that of longitude is −0.717, so the two geographic
directions are nearly equal and inversely related. Figure 11.17 shows the transformation
in postcranial shape moving southeasterly: a shortening of the body posterior to the dorsal
fin (especially of the anal fin), which is in contrast to a slight elongation of the region
between pectoral and pelvic fins.

Software

Two programs in the IMP series perform partial least squares analysis. One is designed
to analyze a single population (PLSMaker), as in the analyses of developmental inte-
gration within species and in the analysis of geographic variation of P. nattereri; the
other (PLSAngle) is used for comparative studies, including comparisons between species
and comparisons between correlations of blocks (as in the analysis of correlations
between cranial and tail versus cranial and median fin landmarks in S. gouldingi and
S. manueli).

Both programs take input files of landmark coordinates in standard X1,Y1…CS format.
One block can be non-landmark data, which should be formatted so that all measurements
for each specimen are in the same row and the specimens are in the same order as they
are in the file of landmark data. Both programs perform a GLS superimposition prior
to computing SAs, so the superimposition used to produce the input file of landmark
coordinates does not matter.

Running PLSMaker

To load the first block of data, which must be landmarks, click on the Load Data button.
The second block can comprise any non-landmark data; if that is what you are loading,
click on the radio button in the second block next to Landmark Data (which will turn
off the default). You will notice that there is a third field, to allow for loading a third
block of data; this option is not yet enabled (check for upgrades). When the data are
loaded, they will appear in the visualization window to the left. You can see those plots
again by clicking on the Show Data buttons located within the field for each block below
Load Data.

To perform a two-block PLS, click on the 2Block SVD button below the Load Data
fields. The numerical results will appear in the orange field at the bottom, although only
the results for the first singular value and axis will initially be displayed. To look at those
for the second (and subsequent) axes, move Up or Down the Active SVD Axes. You will
see the singular value (SVD score), the percent covariance explained (SVD percentage),
and the correlation between blocks explained by that axis.

To determine which, if any, of the singular values and correlations are significant,
use the Statistics pull-down menu on the toolbar. At present, there is only one option
(Permutation Test). The default is to do 100 permutations, so if you wish to do more,
type in the number in the box under # of Permutations (located in the purple field of the
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display options). The results will appear in the auxiliary window. The first results state
the singular value, and the number of times that a value equal to or higher than this was
obtained in the chosen number of random permutations; the final column is the p-value
for the null hypothesis (that this frequency can be explained by chance). The second set
of results, printed below, gives the correlations between the scores of the first and second
blocks for each singular axis, and the number of times that an equal or higher value was
obtained in the chosen number of random permutations; again, the final column is the
p-value for the null hypothesis (that this frequency can be explained by chance). It is
entirely possible that the singular value is not significant but the correlation is. This occurs
when the axis explains a trivial part of the covariance. The results seen in the auxiliary
window can be copied from the window (by selecting the text and copying it using ˆC)
and pasted into a text file (using ˆV) or appended to a file by clicking on the option
Append Results to File. As usual, you can safely ignore the caution about overwriting
the file.

You can see the relationship between the scores of Block 1 and Block 2 by clicking on
Show Scores just below 2Block SVD (both are below the Load Data fields). If both data
sets are blocks of shape data the plot can be copied to the clipboard, but you will need
to use the auxiliary copy function (because the copy function that preserves the aspect
ratio in plots of the shape transformations interferes with copying the plots of the scores).
Alternatively, you can save the scores to files and use the plotting options in Excel (or
another program) by going to the File menu on the toolbar up top and selecting Save
Scores for Block 1 then Save Scores for Block 2.

To depict the singular axes as shape deformations (for landmark data) or as loadings of
the non-shape variables, click on Plot Axis (located in the field for each block, beneath the
Load Data and Plot Data options). You have the usual options for displaying the shape
transformations; some are in the purple field below the visualization window, the remain-
der are listed in the Image pull-down menu on the toolbar up top. In the purple field you
may select Plot Style, the Superimposition method to use when depicting the deformation
(if you select either Bookstein Coordinates (BC) or Sliding Baseline Registration (SBR),
make sure to type in the endpoints of your baseline in the boxes that are provided on the
right side of the purple field). You can multiply the deformation by a factor by typing
that factor into the Exaggeration box, you can alter the range of the grid (if it is too large
or small for your landmarks) by typing the desired range in the Range box, and you can
also alter the Density of the plot (the number of grid lines in the deformed grid plots).
To alter line weights, symbol sizes (and whether empty or filled) and to remove the axes
from the plot, go to the Image menu on the toolbar. As usual, you can trim the grid if
it extends too far beyond the landmarks by clicking on the Grid Trimming Active radio
button, located on the right, and you can rotate the plots by clicking on the Reference
Rotation Active. Because it may be difficult to see how the specimens are oriented when
looking at an unfamiliar subset of landmarks, you have the option of printing the number
for each landmark on the plot. This should help you determine the angle through which
you will need to rotate the plots.

You can save the scores for each SA for each block, and the singular value decomposition
information (the singular values, S-Value, the percentage of the covariance between blocks
explained, Percentage, and the U and V matrices). The files of scores are ordered so that
SA1 is in the leftmost column, SA2 in the one to the right of it, etc.
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Running PLSAngle

Two sorts of comparisons can bemade using PLSAngle. The first is between SAs of the same
blocks of landmarks belonging to different groups (i.e. species). In this kind of analysis,
the hypothesis being tested is that the corresponding SAs are the same between groups
(for example, that the SA1 of the cranial landmarks is the same for two species). The
second kind of comparison is between correlations. It is easiest to follow the logic of the
instructions by thinking of the groups as competing hypotheses of integration; one “group”
is the hypothesis that Block 1 and Block 2A are most highly correlated, the other “group”
is the alternative hypothesis that Block 1 and Block 2B are most highly correlated. As well
as asking if one correlation exceeds the other, we can also ask whether SA1 is the same
when Block1 is constant but Block 2 varies (i.e. whether the dominant axis of covariance
between the cranial and tail landmarks is the same dimension as the dominant axis of
covariance between the cranial and median fin landmarks). Finally, PLSAngle also allows
you to visualize PCs and SAs, so you can see if the dimensions of variance are equivalent
to the dimensions of covariance. You can also visually compare the PCs between the two
groups, as well as look at the PCs for each group separately. PLSAngle also displays the
SAs for each block in each group. The program is still under development, so check for
upgrades that offer statistical tests between PCs and SAs.

Comparing singular axes of homologous blocks between groups
The default is that both blocks are homologous. Load the blocks; the landmarks will
appear in the visualization window as each file is loaded. Clicking on theDo SVD (2Block)
button will calculate the angles between the corresponding SAs of the two groups. The
results will appear in the Auxiliary Results box (another window). You will see a list of
results, beginning with the line “SVD 1 Block 1=21.525 Block 2=30.534.” This means
that the angle between the SA1 of Block 1 in the two groups is 21.525◦, whereas the angle
between the SA1 of Block 2 in the two groups is 30.534◦. The next line reports the angles
between SA2 for each block, the third for SA3, and so forth.

Asking to do an SVD will not provide confidence intervals on the angles; to get those,
you will need to click on Bootstrap SVD Angle. The default is to run 100 bootstraps, and
to test the null hypothesis at an α level of 0.05. If you want to increase the number of
bootstraps or lower the alpha level, type in your preferences before clicking on Bootstrap
SVD Angle (Remember that α cannot be lower than 1/Nbootstraps, where Nbootstraps is the
number of bootstraps. For example, if you run 100 bootstraps, the smallest value of α you
can request is 1/100, or 0.01.)

You can save the SAs for Block 1 and Block 2 for each group, along with the reference
forms used to compute the partial warp scores. You can also save PC1 for each of the
blocks of each group. The output files are row vectors, the format required by VecDisplay.
If you want to save the SA scores for each specimen, use PLSMaker.

A long list of options for graphical displays is presented in the Display Item menu in
the purple field below the visualization window (although some of the options are not
available if Block 2 is not homologous):

1. SVD Block1, Group1+2 shows SA1 for Block 1 for both groups simultaneously. The
PCs are displayed by pairs of vectors of relative landmark displacements. The vectors
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for Group 1 are shown in black, those for Group 2 are shown in red. The position of
the landmarks is determined by the coordinates of the reference form. You can edit
the plot using the options on the Image Control pull-down menu (the options are to
alter line width, the size of the symbols for the landmarks, and to fill the symbols). To
remove the axes surrounding the plots, use the Axis Controls pull-down menu (also
located on the toolbar up top). You may need to rotate the plots if the orientation is
not interpretable. If so, use the Reference Rotation Active radio button at the bottom
center of the interface to rotate the reference interactively. Alternatively, if you know
the angle of rotation you need, you can type it into the Default Ref Angle window,
in the yellow field below the red Exit button.
If you would like to plot the difference between the two SA1s using a different plot-

ting style, such as a deformation grid, you can save the SAs (along with the reference
form) by going to the File pull-down menu located on the toolbar. These vectors can
be input into the program VecDisplay (described in Chapter 10), which shows the
difference between two vectors or their sum using a variety of display options.

2. SVD Block2, Group1+2 shows SA1 for the second block for both groups simulta-
neously. The plotting styles and editing options are as described for (1). This option
is not available if Block 2 is not homologous between groups.

3. SVD Block1, Group1 shows SA1 for Block 1 of Group 1; the available plotting styles
and editing options are the same as for PLSMaker, described above.

4. SVD Block1, Group2 shows SA1 for Block 1 of Group 2. The graphical options are
as described in (3).

5. SVD Block2, Group1 shows SA1 for Block 2 of Group 1. The graphical options are
as described in (3).

6. SVD Block2, Group2 shows SA1 for Block 2 of Group 2. The graphical options are
as described in (3).

7. Data Block1, Group1+2 shows the landmarks for the first block for both groups;
the data for Group 1 are in blue, those for Group 2 are in red. The Procrustes GLS
superimposition is the only option. Editing options are as given in (1).

8. Data Block2, Group1+2 is the same as (7), except that Block 2 is shown (this option
is not available if the Block 2 is not homologous between groups).

9. PCA Block1, Group1 shows PC1 for Block 1 in Group 1. Display and editing options
are as given in (3).

10. PCA Block2, Group1 shows PC1 for Block 2 in Group 1. Display and editing options
are as given in (3).

11. PCA Block1, Group2 shows PC1 for Block 1 in Group 2. Display and editing options
are as given in (3).

12. PCA Block2, Group2 shows PC1 for Block 2 in Group 2. Display and editing options
are as given in (3).

13. PCA+ SVD Block1, Group1 shows PC1 and SA1 for Block 1 of Group 1. SA1 and
PC1 are displayed by vectors of relative landmark displacements (the position of the
landmarks is determined by the coordinates of the reference form). Those for Group 1
are shown in black, those for Group 2 in red. Editing options are as described above
for (1).

14. PCA+ SVD Block2, Group 1 is the same as (13), except that the plot shows PC1 and
SA1 for Block 2.
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15. PCA+ SVD Block1, Group2 is the same as (13), except that the plot shows PC1 and
SA1 for Group 2.

16. PCA+ SVD Block2, Group2 is the same as (14), except that the plot shows Group 2.
17. −PCA+ SVD Block1, Group1 allows you to reverse the direction of the PC. The

signs of PCs and SAs are arbitrary; you may find that PC1 and SA1 look nearly
identical except that the arrows point in opposite directions.

18. −PCA+ SVDBlock2, Group1 is the same as (17), except that the plot shows Block 2.
19. −PCA+ SVDBlock1, Group2 is the same as (17), except that the plot showsGroup 2.
20. −PCA+ SVDBlock2, Group2 is the same as (18), except that the plot showsGroup 2.
21. PCA Block1, Group 1+2 shows PC1 for Block 1 for both groups simultaneously.

The PCs are displayed by pairs of vectors of relative landmark displacements. Those
for Group 1 are shown in black, those for Group 2 in red. The positions of the land-
marks are determined by the coordinates of the reference form. Editing options are
as given for (1).

22. PCA Block2, Group 1+2 is the same as (21), except that Block 2 replaces Block 1.
23. −PCA Block1, Group 1+2 is the same as (21), but reverses the sign of one of the PCs.
24. −PCA Block2, Group 1+2 is the same as (22), but reverses the sign of one of the PCs.

Comparing correlations between different pairs of blocks of a single group
In this analysis, the two “groups” are competing hypotheses of integration. The same set
of landmarks represents Block 1 for both hypotheses because we are asking if that block
is more highly correlated with one Block 2 than with another Block 2. Therefore, the first
step is to turn off the default option that Block 2 is homologous between groups. The
same file is input as Block 1 of both groups, and two different files are input as the two
Block 2s. To do the analysis, click on Do SVD 2Block to see the preliminary results (the
statistical analysis will be done when you click on Bootstrap SVD Angle). If you want
more than 100 bootstraps, or an α level other than 0.05, type your preferences in the
boxes provided. The results will appear in the Auxiliary Results box (another window).
The first results are the angles between Block 1 and each of the two “groups”. Below that
are the correlations between Block 1 and each Block 2, giving the observed correlation,
its confidence interval, and its standard error (which can be used in analytic tests of the
difference between correlations). The final three lines are the results of the resampling-
based test of the equality of correlations.

The variety of output files that can be saved, and the options for graphical displays, are
detailed above.
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12
Disparity and variation

Disparity and variation are closely allied concepts – both refer to the general idea of “vari-
ety.” Disparity usually signifies the variety of a group of species and is the outcome of evo-
lutionary processes; variation, on the other hand, refers to the variety of individuals within
a single (homogeneous) population and is the raw material necessary for evolution. In light
of the theoretical distinction between the two concepts, it may seem difficult to cover both
in a single chapter. However, the distinction between the concepts lies in the processes that
produce them and the theories that predict them. The metric (or formula) for measuring
disparity among species is the same as that used to measure variation within a species.
Because the same metric is used to measure both, we cover them both in the same chapter.
Even so, to avoid confounding concepts that have little in common aside from a metric,
we begin by reviewing their biological meanings, then turn to the issue of measurement.

Disparity

Disparity may be an unfamiliar term to many biologists, but it has emerged as a major
theme in the paleobiological literature. The term was introduced to clarify the distinction
between two notions of diversity that were often confounded: (1) phenotypic variety (often
but not always morphological), and (2) taxonomic richness. Over the past decade, owing
largely to work by Foote (especially Foote, 1990, 1993a, 1993b) the distinction between
them has been clarified – a major step towards increasing both conceptual clarity and
methodological rigor. In the early literature the number of taxa was often used as a measure
of “disparity,” but, as Foote showed (1993b), and as many other studies have confirmed,
the number of taxa increases even as their morphological variety decreases.

To date, most studies of disparity have focused on its temporal dynamics over a geo-
logical time scale. The chief questions addressed by such studies are:

1. What is the temporal pattern of disparity?
2. What evolutionary processes explain those patterns?

Such studies are almost invariably based on fossils because they require sampling disparity
at multiple times in the geological record. Some groups studied in this way include Cam-
brian marine arthropods (Foote and Gould, 1992; Wills et al., 1994), Paleozoic blastozoans
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(e.g. Foote, 1992), stenolaemate bryozoans (Anstey and Pachut, 1995), crinoids (e.g.
Foote, 1994; Ciampaglio, 2002), gastropods (Wagner, 1995) and Ordovician trilobites
(Miller and Foote, 1996). The growing empirical literature on disparity repeatedly doc-
uments a surprising historical pattern: disparity initially increases and then stabilizes or
even decreases while the number of taxa increases.

Efforts to explain this pattern have focused on two classes of hypotheses: ecological
and developmental. Ecological hypotheses postulate that ecological space is initially open
and then becomes saturated; limits on disparity are thought to arise from the structure
of the ecological space. In contrast, developmental hypotheses propose an intrinsic expla-
nation for limits on disparity – the acquisition of developmental constraints that stabilize
morphology (see Wagner, 1995 and Ciampaglio, 2002 for reviews of hypotheses and
approaches to testing them). Whether any explanation is even needed has been questioned
in a profound (if difficult) theoretical analysis (Gavrilets, 1999). At present it is not clear
what we ought to expect from disparity under plausible models; nor is it clear what role
artifacts might play in the patterns detected by empirical analyses. It is also difficult to
isolate causal factors that might explain the temporal dynamics of disparity because of the
multiplicity of uncontrollable factors that can influence those dynamics, including rates of
speciation and extinction, selectivity of extinction or speciation that is non-random with
respect to morphology, the magnitude of change within a lineage, and factors potentially
limiting that magnitude (such as developmental and selective constraints).

Of the various factors that can influence disparity, constraints may be the least under-
stood – partly because they are rarely documented prior to analyzing disparity. Instead,
constraints are inferred from the data, even though it is not clear how either developmental
or selective constraints ought to influence disparity. Both sorts of constraints are thought
to limit disparity, which may seem intuitively obvious; however, like many intuitions, it
may be faulty. We know little about the impact of either sort of constraint on disparity, and
determining their impacts will require studies that document constraints independently of
such supposed effects. We cannot simply infer constraints from decreases in disparity when
we do not know if they generally decrease disparity. Instead, we need to determine whether
development is constrained or not, and then ask how those constraints affect disparity.
In at least one case, developmental constraints are inferred to increase disparity (Zelditch
et al., 2003).

Studies of disparity of living taxa are still relatively rare, but they have been used to
address basic issues in evolutionary biology – such as whether decoupling of integrated
parts increases disparity (Schaefer and Lauder, 1996), whether biomechanical and mor-
phological disparity are related to each other (Hulsey and Wainwright, 2002), and whether
developmental constraints might limit disparity (Zelditch et al., 2003). Surprisingly few
studies have tried to relate ecological heterogeneity and morphological disparity, an
obviously important direction for future research (Roy and Foote, 1997).

Any biological explanation for an empirically documented pattern rests on the assump-
tion that the pattern is real. Whether it is real or an artifact depends partly on how disparity
is measured, and also on the sampling design. Both metrics and sampling designs have been
foci of critical reviews. In particular, a number of critics have taken issue with the phenetic
approach to disparity implicit in the use of a variance as its metric (e.g. Wills et al., 1994).
Alternative metrics, which measure change along branches of a phylogeny, have been rec-
ommended, but they are still in their infancy. Such metrics are difficult to apply when
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ancestors have not been sampled (or are unknown), and they also pose an interpretative
challenge because they redefine disparity, replacing the idea of variety (around an average)
with that of directed change away from the ancestor (see Wills et al., 1994; Wagner, 1997;
Smith and Lieberman, 1999). A second criticism is that measures of disparity typically
do not consider the biological significance of the contributing variables. It is conceivable
that large morphological changes could have few biological consequences, and some small
changes affecting just a few morphological details could have profound consequences for
function. In that light, weighted measures of disparity that take the biological significance
of the changes into account might seem more justified than measures of disparity per se
(see Wagner, 1995).

For recent reviews of the literature, including critical discussions of metrics and meth-
ods, and summaries of empirical studies, see Foote (1997), Ciampaglio et al. (2001) and
Wills (2001).

Variation

Variation within populations is a major theme in evolutionary biology because it is so fun-
damental to evolution – phenotypic variation provides the opportunity for selection to act,
and genetic variation enables selection to effect change. Variation is the raw material on
which selection acts, and its structure can influence the outcome of selection. Because evo-
lution can be constrained by limited or biased variance, the variance–covariance matrix is
sometimes viewed as an intrinsic constraint on evolution; such limits or biases arising from
developmental processes are developmental constraints (see Maynard Smith et al., 1984).
Although that view of variation emphasizes its role as a potential constraint, the structure
of (co)variation itself may be molded by selection. Theoretical models predict that pheno-
typic and genetic (co)variance structures evolve to match patterns of developmental and
functional integration (e.g. Lande, 1980; Cheverud 1982, 1984; Wagner, 1988; Wagner
and Altenberg, 1996). This matching is expected to result from differential elimination
of pleiotropic effects between members of different functional complexes, combined with
the maintenance (or augmentation) of pleiotropic effects within a complex. There is much
empirical evidence that phenotypic and/or genetic covariances reflect developmental and
functional relationships among traits, a conclusion based on many exploratory studies
(Olson and Miller, 1958; Berg, 1960; Van Valen, 1962, 1970; Gould and Garwood, 1969).
In addition, many studies have deduced the structure of (co)variation among measurements
from developmental and functional theories (e.g. Cheverud, 1982, 1995; Zelditch and
Carmichael, 1989; Kingsolver and Wiernasz, 1991; Marroig and Cheverud, 2001). Most
studies concentrate on a single developmental stage, but a few have examined the onto-
genetic dynamics of variance (e.g. Foote, 1986; Zelditch, 1988; Zelditch and Carmichael,
1989; Zelditch et al., 1993).

The concept of variation is also central to systematic studies, both because systematists
study evolutionary processes and also because the systematic value of a character is partly
a function of its variability. In the systematics literature the term “variation” is sometimes
used very broadly, such as when talking about “ontogenetic variation.” In that context the
“variation” results from the mixture of ages in the sample; because individuals differ in age,
they differ in everything that changes with age. Ontogeny is thus the factor explaining the
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variation within the sample, but that is not the variance on which selection acts (unless we
seriously entertain the idea that selection favors adults over juveniles, which is unlikely in
the first place and would not have any evolutionary consequences in the second). To study
the variance on which selection could act, we would first need to remove the variation
resulting from the heterogeneity of the sample. Should removing that variation strike you
as an improper manipulation of the data, ask yourself whether it is reasonable to imagine
that selection acts on it.

A classic hypothesis linking variance to disparity is often called the “Kluge–Kerfoot”
phenomenon: traits that vary the most (within populations) are also the ones that most
differentiate populations (Kluge and Kerfoot, 1973). The original empirical support for
the hypothesis was harshly criticized on methodological grounds (e.g. Sokal, 1976; Rohlf
et al., 1983), but the hypothesis has re-emerged in the recent literature with more impressive
empirical support; the dimension of greatest (genetic) variance is sometimes regarded as
the evolutionary line of least resistance (e.g. Schluter, 1996).

Metrics for disparity and variance

As mentioned above, there is no universally accepted metric for disparity (there is for
variation, so we will focus on disparity throughout this section). One major distinction
among available metrics is whether they measure the variety of forms in a sample or
the diversification along branches of a cladogram. The first could be viewed as a static
measure of disparity, the second as a dynamic measure of diversification. We will focus on
the first approach for two reasons: the first is that we define disparity in terms of variety
rather than in terms of magnitudes or rates of diversification; the second is that ancestral
morphologies are rarely observed and known to be ancestral. Without direct observations
of known ancestors, ancestral morphologies must be inferred, and the methods for inferring
ancestral morphologies are still a matter of dispute.

Metrics for the variety of observed forms can be subdivided into two broad classes: (1)
those applied to continuously valued variables (such as size and shape) and (2) those applied
to ordinal or categorical data. The distinction (which is based on the type of data) is impor-
tant, because continuously valued variables are measured on an unambiguous scale, which
is not the case for ordinal or categorical data. For example, if we want to know how dif-
ferent two organisms are, and one is 10 mm while the other is 12 mm, we can say that their
difference is 2 mm. Given a third, which is 14 mm, we would say that the difference between
the first and third is 4 mm, and the difference between the second and third is 2 mm. Because
2 mm is equal to 2 mm, we can say that the difference between the first and second organ-
isms is equal to that between the second and third. We might choose a scale that takes
proportions into account, so that 2 mm counts for more when organisms are near 1 mm
than when they are near 100 mm, but still the scale is unambiguous and measurements are
mathematically commensurable. In contrast, if we classify morphologies into three types –
“one,” “two” and “three” – “one” and “two” are taken to be one unit apart, as are “two”
and “three,” but we cannot say that the difference between “one” and “two” is equal to the
difference between “two” and “three.” Perhaps the first two types differ by the presence
or absence of a notochord, whereas the second two differ by the presence or absence of a
tubercle on the tibia. The problem faced here does not arise when coding discrete classes for
phylogenetic analyses because the characters may be equally informative in that context.
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However, weighting them equally in studies of disparity implies that they contribute equally
to morphological variety. Fortunately size and shape data are continuously valued vari-
ables, so we will concentrate on metrics of disparity suited to continuously valued variables.

The metrics for continuously valued variables can be either Euclidean or non-Euclidean
distances, although most workers use Euclidean distances. We can also distinguish among
metrics by whether the measures are of: (1) linear distances between forms (correspond-
ing to a standard deviation); (2) squared distances between forms (corresponding to a
variance); or (3) volumes. Measures of volume might seem most desirable because they
could appear to capture the most information about the size of the occupied morphospace.
Unfortunately no satisfactory measure of volumes is available yet, because measuring them
involves multiplication rather than addition. When distances along dimensions are multi-
plied, a trivial distance along one deflates the size of the space. For example, if we multiply
distances along several dimensions, such as 0.4, 0.3 and 0.2, we get a volume of 0.024, and
if we multiply that product by 0.002, we get 0.000048 – therefore, adding information
about that fourth dimension reduces the size of the space to nearly zero. Logically, we
would expect that the additional information would only increase the size of the space.
Another disturbing feature of this volume-based approach to disparity is that the volume of
several slightly disparate variables can be far larger than the volume of three very disparate
variables and one nearly invariant variable. For example, above we considered a case of
three disparate variables and one that is nearly invariant. We might have another case in
which there are also four variables, each with a disparity of 0.1; the product of (0.1)(0.1)
(0.1)(0.1)=0.0001, which is more than twice the volume of the first case (0.000048). In
contrast, if we restrict our analysis to only the first three variables, the disparity would be
(0.1)(0.1)(0.1)=0.001 – substantially less than that of the first case (0.024).

If we had an objective and non-arbitrary method for ignoring some dimensions (so that
their low levels of disparity do not deflate the space), we could circumvent these problems.
However, all methods for deciding whether to exclude a variable depend on subjective
arguments, and the decision about whether to exclude a variable can have an enormous
impact on the results. For that reason, we prefer metrics based on standard deviations and
variances. Both standard deviations and variances are equally useful metrics, and there is
no reason to debate which of them is preferable because one is easily derived from the other.
The major reason for using a variance is that variances are additive. Because of that prop-
erty, we can calculate the overall disparity of a group, then partition it into the contribution
made by each taxon (the partial disparity of that taxon; Foote, 1993a). The additivity of
variances means that the sum of partial disparities equals the overall disparity. However,
it is worth noting that the two measures weigh outliers differently, and consequently their
results can differ. Standard deviations and variances are not linearly related, and a highly
distinctive taxon has a much greater impact on a variance than on a standard deviation.

Measuring disparity

To measure morphological disparity (MD) by a variance, we calculate:

MD =
∑N
j=1D

2
j

(N − 1)
(12.1)
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where Dj is the distance of species j from the overall centroid (which is the grand mean
calculated over the n species or other groups being analyzed). We can use Equation 12.1
to calculate both size and shape disparity. For size data, Dj is the difference between the
centroid size of an individual species and the grand mean centroid size. For shape data,
Dj is the Procrustes distance between the average shape of an individual species and the
grand mean shape. We can compute shape disparity directly by estimating those Procrustes
distances, or we can calculate the variances of coordinates obtained by a generalized least
squares Procrustes superimposition (GLS) or variances of partial warp scores (including
scores on the uniform component). All three approaches yield the same results because the
sum of squared coordinates obtained by GLS equals the squared Procrustes distance to the
mean, as does the sum of squared partial warp scores. In those analyses the grand mean
shape is the consensus, so if we are using partial warps we can use the formula:

MD =
∑N
j=1 PW

2
j

(N − 1)
(12.2)

where PW represents the partial warp scores for an individual, so the formula tells us to
sum all the squared partial warp scores for each individual over all individuals. Because
the grand mean shape is the consensus, its partial warp scores are all zeros, so Equation
12.2 is equivalent to Equation 12.1.

Both are also equivalent to:

MD = Tr{S} (12.3)

where Tr is the trace of a matrix (the sum of its diagonal elements) and S is the variance–
covariance matrix of the partial warp scores (including the uniform component, and
computed using the grand mean as the consensus). The diagonal elements of a variance–
covariance matrix are the variances, so this formula tells us to sum the variances of the
variables, which takes us back to the squared distances from the consensus.

To exemplify the analysis of disparity, we will measure the disparity of adult body shape
of nine species of piranhas sampled at the 16 landmarks shown in Figure 12.1. Before doing
this analysis, we remove the shape variance within each species that is due to ontogeny,
allowing us to estimate the shape of an average adult (this is done by standardizing each
species to its maximum adult size, as explained in Chapter 10). Each species is represented
by a single data point, the mean shape for that species. There are nine species, so N=9.
The result of the analysis is that MD=0.00398. Of course, we cannot yet interpret this
number – we cannot say if that value is large or small, or how uncertain it is. Before we
can go any farther, we need to deal with the issue of uncertainty.

Placing confidence intervals on morphological disparity (MD)

To construct the confidence interval, we need first to consider the various parameters
being estimated. In general, there is uncertainty in the estimate of the mean shape of each
species, and in the estimate of the consensus. Both uncertainties must be taken into account
when putting confidence intervals aroundMD. Additionally, when the mean shape of each
species is calculated by removing the variance due to ontogeny (or some other factor) we
must also account for the uncertainty of the regression model used to standardize the
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Figure 12.1 Landmarks sampled on the external body form of piranhas.
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Figure 12.2 The line joining a species’ mean to the grand mean; random variation in the position of
the mean only rarely lies along the line within the shaded region. Changes in the position of shapes
orthogonal to that line or within the unshaded region increase the distance to the mean.

shapes. We may also need to take a further source of uncertainty into account – the samp-
ling of species, because unless we have measured them all we must consider the uncertainty
of the grand mean that arises from our sampling of species. If we do not consider this par-
ticular source of uncertainty, we cannot generalize from our sample of species to the larger
group that includes them, although we can make statements about our particular sample
of species that takes the uncertainty of our sampling of them into account.

The confidence intervals might look odd because they frequently are not symmetric
about the mean, even when the distribution of shapes around the GLS consensus is sym-
metric. That symmetric distribution of shapes implies that the uncertainty in the estimate
of the mean is roughly equal in all directions (i.e. it is a hyperspherical solid). Turning
to the estimates of disparity, we can see why the uncertainty in the distance of a species
from grand mean is not symmetric about the mean distance even then. The hyperspherical
distribution of uncertainty in the mean yields a non-symmetric distribution of distances –
there are many more possible locations of a species’ mean that increase the distance than
there are that decrease it. As we can see in Figure 12.2, the line joining the grand mean to a
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species’ mean is in a single direction in a high dimensional space; random variation in the
position of the sample mean rarely lies along the line between the species’ mean and grand
mean. In Figure 12.2, D is the distance from the species’ mean to the grand mean shape,
and the circle around X represents the range of uncertainty about the species’ mean. The
region within the circle that is a distanceD or less from the grand mean is shaded, and this
region is clearly smaller than the unshaded region that is farther than D from the grand
mean. This effect is even more pronounced in higher dimensions.

We can construct confidence intervals and standard errors for MD by bootstrapping.
When we need to take the uncertainty of the regression into account, we first fit a regression
model to the data, then use the procedure described in Chapter 10 – determining the
residuals, predicting the shape expected for each size, bootstrapping the residuals and
randomly allocating them to each predicted shape, then refitting the regression model to
the data to generate a standardized data set for the bootstrap set. This is iterated N times
(where N is the number of bootstrap sets). If we do not need to take the uncertainty
of the regression into account, we simply resample (with replacement) from each of the
samples. For each bootstrap set of standardized values, we calculate the disparity of that
sample using the formula forMD above. In the case of the adult piranhas discussed above,
the estimate of MD=0.00398; the 95th percentile over the bootstrap sets gives us the
two-tailed confidence interval on that estimate, 0.00377 to 0.00440.

We still do not know if that value is large or small because we have still not compared it
to the disparity of anything else. We will thus continue the analysis, comparing the levels
of adult disparity to that of juveniles, and comparing the disparities of several piranha
clades (Figure 12.3).

Example: ontogenetic and interclade comparisons of disparity

Table 12.1 gives the disparities (MD) of juvenile and adult shapes, as well as the standard
errors (SE) for the estimates. As explained in Chapter 9, we can use a t-test to determine
whether derived traits like mean disparities are significantly different:

t = MD1 −MD2√√√√( (N1 − 1)N1SE2
1 + (N2 − 1)N2SE2

2

N1 +N2 − 2

)(
N1 +N2

N1N2

) (12.4)

with (N1+N2−2) degrees of freedom. Because MD is computed from the mean shapes
of species, N1 and N2 are the numbers of species in the respective clades. We can also use
a bootstrap procedure like that used to test whether two Procrustes distances are different.
We begin by computing the disparities of the two groups and the difference between those
disparities, then we resample each data set with replacement and repeat the calculation of
the disparities and the difference between them. After a sufficient number of bootstraps,
we can determine the 95% interval for the range of differences. If this range excludes zero,
we can conclude that the observed difference is significant at the 95% level.

For the most inclusive piranha group (Clade 1), disparity decreases significantly over
ontogeny, as it does in Clade 2. In Clade 3, disparity increases statistically significantly,
but the change is slight – in contrast to the dramatic increase in Clade 4. In Clades 5 and 6,
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Figure 12.3 Cladogram of the piranhas analyzed in this chapter; nodes are numbered to designate
clades.

Table 12.1 Disparities of clades (numbered as in Figure 12.3), measured at two ontogenetic stages
(disparities of juveniles are measured at the transition from larval to juvenile growth; those of adults
are measured at maximum body size attained by each species)

Taxon Juvenile disparity Standard error Adult disparity Standard error

Clade 1 0.00543 0.0003 0.00398 0.0002
Clade 2 0.00575 0.0003 0.00405 0.0002
Clade 3 0.00431 0.0004 0.00550 0.0003
Clade 4 0.00229 0.0002 0.00603 0.0004
Clade 5 0.00116 0.0002 0.00151 0.0001
Clade 6 0.00073 0.0002 0.00051 0.0002

disparity is constant throughout ontogeny. A perhaps counterintuitive result is that adult
disparities of Clades 3 and 4 are significantly greater than that of the group as a whole
(Clade 1), which may seem impossible, but disparities measured this way are not additive.
In these analyses, we are measuring the disparity of each clade relative to that clade’s own
mean – hence a low disparity indicates that few species differ by much from the mean of that
clade. Consequently, a group comprising three or four species that differ a great deal from
each other (and from the group mean) can have a much higher disparity than a larger group
that includes those species. That is because the additional species in the larger group may all
be much closer to the grand mean. Consequently, their values ofDj are small and contribute
relatively less to

∑
D2
j , whereas the addition of each species increases N−1 by one.
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Table 12.2 Partial disparities (PD) of adults, and the standard
errors of PD

Species PD % MD Standard error

P. denticulata 0.00039 9.82 0.00032
S. elongatus 0.00144 36.27 0.00029
S. gouldingi 0.00026 6.55 0.00031
S. manueli 0.00033 8.31 0.00032
S. altuvei 0.00014 3.53 0.00032
S. spilopleura 0.00023 5.79 0.00032
P. cariba 0.00036 9.07 0.00028
P. nattereri 0.00039 9.82 0.00027
P. piraya 0.00043 10.83 0.00031

The net effect is that MD decreases. For that reason, a large group containing only a
few species that are far from the grand mean can be less disparate than a small group with
the same number of species far from the mean. That is one reason why morphological
disparity can decrease while taxonomic diversity increases.

Partial disparity

When we want to quantify the contribution that a particular taxon makes to the overall
disparity of a larger group, we want a metric that allows us to partition disparity additively.
Therefore, we need an alternative to the method discussed above. The alternative does
allow us to estimate partial disparity (PD) of the species, and the partial disparities sum to
the total disparity. We estimate partial disparities (PD), following the procedure outlined
by Foote (1993a), in terms of the variance contributed by each individual species:

PD = D2
i

N − 1
(12.5)

where Di is the distance of the ith species from the grand mean and N is the total number
of species (or other groups). If we wish to calculate the partial disparity of several species
(e.g. a subclade in a larger clade) we can sum their individual partial disparities, yielding
the partial disparity of that group.

We can see the difference between the two approaches by comparing results (for adults)
in Tables 12.1 and 12.2. The total disparity over all nine species (Clade 1) is the same for
both. By estimating the partial disparities for all the species, we can determine that the par-
tial disparity of Clade 4 is 0.00203, which is 52.6% of the total. The partial disparity of a
single species, S. elongatus, accounts for 36.3% of the total disparity of adults of these nine
species. Quantifying partial disparities is one method for estimating the phenotypic distinct-
ness of a particular taxon, which may have a practical application in conservation biology.

Variation

Studies of variation, like those of disparity, use a variance as a metric. The major computa-
tional difference between analyses of disparity and variance are that (1) studies of variance
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use the mean of a single homogeneous population as the grand mean, and (2) individuals
(rather than mean shapes of species) are the data points in studies of variance. One quick
method for estimating the variance in shape is to calculate the variance for all the coor-
dinates obtained by a GLS superimposition and sum those variances over all landmarks
(this is exactly the same as calculating the trace of the variance–covariance matrix, and
can be done in any spreadsheet). This method, while quick and intuitive, will not provide
confidence intervals. It can also be risky if it leads to thinking of variances as being at land-
marks (recall that changes in relative landmark positions are distributed across landmarks,
a topic discussed in context of superimposition methods, Chapter 3). Just as change is not
located at a landmark, neither is variance.

We exemplify an analysis of the ontogeny of variation by comparing the variance of
skull shape across four ages, 10-, 15-, 20-, and 25-days postnatal, of the house mouse
(Mus musculus domesticus). The superimposed landmarks for each sample are shown in
Figure 12.4; the estimates for the variance in shape at each age, and standard errors of
the estimate, are given in Table 12.3. To compare the levels of variance between suc-
cessive ages, we again use the t-test to evaluate the difference between variances relative
to the pooled standard errors of those variances (the same procedure discussed above
for comparing levels of disparity). Over the initial 5-day interval variance is halved, but
it is subsequently stable. The loss of variance, in the absence of any selective deaths in
the colony, indicates that variation is developmentally regulated and the later stability of
the variance also suggests canalization because we would expect continued production of
variation by the ongoing process of skeletal development.

Analyzing the structure of disparity

To this point we have talked solely about the magnitudes of disparity and variance; in this
section, we discuss methods for analyzing their structure. We address two questions about
that structure:

1. Are shapes randomly distributed throughout the morphospace?
2. Do two samples occupy the same subspace?

The first question is answered using nearest-neighbor analysis, the second by comparing
occupied subspaces or variance–covariance matrices.

Nearest-neighbor analysis

Nearest-neighbor analysis, as the term implies, examines the smallest distances between
shapes. From those distances, we can ask whether shapes are more (or less) similar than
expected by chance. If they are closer than expected by chance, we would reject the null
hypothesis in favor of one of clustering; conversely, if they are further apart than expected
by chance, we would reject the null model in favor of a hypothesis of “over-dispersion” (or
“repulsion”). Because the null model is the distribution expected by chance, it is important
to consider what the reasonable null model might be. One reasonable null model is that the
probability of being at any location in the morphospace is equal (uniform) over the entire
space, and is independent of the shape of any other species. Another reasonable null model
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(A)
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Figure 12.4 Superimposed landmarks of M. m. domesticus: (A) 10-day-olds; (B) 15-day-olds;
(C) 20-day-olds; (D) 25-day-olds. Analyses are based on the 16 landmarks of the half-skull.

Table 12.3 Skull shape variance of M. m. domesticus sam-
pled at four ages (given in days after birth), and the standard
errors of the variance (the superimposed landmarks are shown
in Figure 12.4)

Age Variance Standard error

10 0.000628 0.0001
15 0.000349 0.00005
20 0.000316 0.0001
25 0.000410 0.0001
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is that shapes follow a normal (Gaussian) distribution. The uniform model is a reasonable
null for comparisons among species, whereas the Gaussian model is more reasonable when
analyzing distributions of individuals around the mean of a homogeneous sample. Having
two null models allows us to guard against accepting a hypothesis of a particular random
distribution.

Nearest-neighbor analysis is another method pioneered by Foote (1990), so we begin
by reviewing his approach, and then we extend it to geometric shape data.

Foote’s approach to nearest-neighbor analysis The first step in a nearest-neighbor analysis
is to compute the nearest-neighbor distance Di for each of the N species (or other groups)
in the study. For the sake of brevity, we will refer to “species” as the units of analysis,
but the analysis follows the same protocol even when the units are individual specimens.
The next step is to construct a second data set using Monte Carlo simulations. That is
done by estimating the mean and range of each variable; from the data, N−1 simulated
specimens are generated with values randomly drawn from the observed range. Monte
Carlo simulations are similar to bootstraps in that they simulate data based on a given null
model and an observed set of data, but they differ in that bootstrapping is carried out using
a non-parametric resampling procedure whereas Monte Carlo simulations are based on a
distributional model. The distribution of the original data set is parameterized, and those
parameters are used to generate a simulated dataset having the distribution of the obser-
vations (see Chapter 8). Given the simulated data, a second nearest-neighbor distance, Ri,
is computed between each observed specimen and the one closest to it in the Monte Carlo
set (note that Ri is not a nearest-neighbor distance between Monte Carlo specimens, but
rather the distance between an observed specimen and the nearest Monte Carlo simulated
specimen).

Foote provides a measure that allows us to compare the fit of the simulated distances to
the observed ones, the proportional distance Pi for the ith specimen. This is a ratio whose
numerator is the difference between the two distances (Di, the observed nearest neighbor
distance, and Ri, the Monte Carlo nearest neighbor distance) and whose denominator is
the Monte Carlo nearest neighbor difference:

Pi = Di − RiRi
(12.6)

If the random model fits the data, we would expect that, on average, Di would equal
Ri, and hence the mean Pi over all specimens (Pmean) is zero. When Pmean is less than zero
the observed specimens are more clustered than expected by chance; conversely, if Pmean
is greater than zero they are further apart than expected by chance. To determine whether
zero lies within the confidence interval, we estimate the range of Pmean by running the
Monte Carlo simulation many times.

To generate a Monte Carlo set under a multivariate normal (Gaussian) model, we must
estimate the mean and standard deviation of each variable; to generate a Monte Carlo
set under a uniform distribution model, we must estimate the upper and lower bounds
of the range for each variable. It can be difficult to estimate the range accurately when
sample sizes are small because, at small sample sizes, the observed minimum and maximum
will underestimate the “true” range. Thus, rather than using the observed minimum and
maximum values to estimate the range, Foote uses estimators developed by Strauss and
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Sadler (1989) for the “true” minimum (Y) and the “true” maximum (Z) of a distribution:

Y = NA− B
N − 1

(12.7)

Z = NB− A
N − 1

(12.8)

where A is the lowest observed value and B is the highest observed value in N specimens.
Rather than use the observed minimum and maximum values, Foote determines the mean
and the standard deviation of a normal distribution fitted to the data. He uses normal
theory (citing Feller, 1968) to predict the mean and standard deviation:

Xmean = Y + (Z− Y)
2

(12.9)

SDX =
{

(Z− Y)2

12

}½

(12.10)

and he uses those to estimate the range parameters:

Y = Xmean − 3½SDX (12.11)

Z = Xmean + 3½SDX (12.12)

The geometric approach to nearest-neighbor analysis Extending nearest-neighbor analy-
sis to geometric data is straightforward. Distances Di and Ri are measured by Procrustes
distance; estimates of means, standard deviations or ranges used in the Monte Carlo sim-
ulation are obtained by calculating the statistics from the coordinates of each landmark.
The rest is straightforward: a Monte Carlo data set is generated and Ri is calculated for
each specimen, and these are used to estimate Pmean. The simulation is reiterated numer-
ous times, yielding the distribution of Pmean values over the Monte Carlo sets. It is then
possible to carry out all the usual statistical tests using this distribution.

Nearest-neighbor analysis of piranha disparity
We will test two hypotheses:

1. Piranha body shapes, both juvenile and adult, are further apart than expected.
2. Those shapes are more clumped than expected.

The reason for testing these hypotheses separately is that a conservative test of one is a
liberal test of the other. For the hypothesis of over-dispersion, the conservative approach
uses the Strauss and Sadler estimator of the range – the estimator enlarges the range so
that large distances between points will not necessarily be further apart than expected.
However, that expansion of the range can lead to a liberal test of clumping because, within
that expanded range, observations may be closer than expected. To be conservative, we
would test the hypothesis of over-dispersion using the enlarged range, but we would use
parameters of the observed range to test a hypothesis of clustering. Each hypothesis will
be tested using two null models, one uniform and the other Gaussian, because we have no
good reason to view one as a more plausible random model.
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Testing over-dispersion Using the uniform model, the average Pmean of the juveniles is
−0.2810 and the 95% range of Pmean is from −0.3551 to −0.1792, an interval that
excludes zero. This result suggests a non-random distribution, with distances being smaller
than expected under a random uniform model. Using the Gaussian model, the average
Pmean=−0.2758 and its range is from−0.3450 to−0.1950, an interval that again excludes
zero. Both results thus argue against the hypothesis of a random distribution and also
against over-dispersion. Instead they suggest clustering, the hypothesis we will explicitly
test after we have tested the hypothesis of over-dispersion for adults.

Using the uniform null model, the average Pmean of the adults is −0.267 and the range
is from −0.3365 to −0.1689, an interval that excludes zero. This result also suggests
a non-random distribution, with distances being smaller than expected under a random
uniform model. Using the Gaussian model, the average Pmean=−0.2636 and the range
is from −0.3312 to −0.2036, an interval that also excludes zero. As we found for the
juveniles, the data argue against the null hypothesis of a random distribution, and also
against over-dispersion. Therefore, we now explicitly test the hypothesis of clustering.

Testing clustering We now test the hypothesis of clustering using the narrower estimate
of the range. For the juveniles, based on the uniform model, the average Pmean=−0.3172
with a range from −0.3813 to −0.2247, an interval that excludes zero and supports the
hypothesis of clustering. Analyzing the data under the null Gaussian model, the average
Pmean=−0.3006 with a range from −0.3700 to −0.2372, an interval that again excludes
zero. Taking these results altogether, they suggest that juvenile piranha body shapes are
more tightly clustered than expected under either null model.

For the adults, using the uniform null model, the average Pmean=−0.2537 with a range
from −0.3092 to −0.1788, an interval that excludes zero. These results again support the
inference of clustering. Analyzing the data under the Gaussian null model, the average
Pmean=−0.2388 with a range from −0.3091 to −0.1598, an interval that once again
excludes zero. Taking these results altogether, they suggest that adult piranha body shapes
are more tightly clustered than expected under either null model.

While both developmental stages seem to exhibit clustering, that does not mean that they
are otherwise similar in their patterns of disparity. Later in this chapter we will compare
the subspaces of morphospace they occupy to determine if they are the same.

Nearest-neighbor analysis of 10-day-old house mouse skull shape variation
Nearest-neighbor analysis can be used to examine patterns of variation as well as disparity.
To exemplify this, we will analyze the variation in 10-, 15-, 20- and 25-day-old mouse
skulls. The superimposed landmarks for these ages were shown in Figure 12.4. Considering
that each sample comprises individuals from a single homogeneous population, we would
expect random variation to follow a Gaussian distribution. Results of analyses based on
both range estimators (i.e. the parameter values estimated using the Strauss–Sadler estimate
of the range (SS), and those estimated from the data (DP)) are given in Table 12.4. It is
difficult to argue that the data suggest a departure from random variation. When the
parameter estimates are based on an expanded range, the two youngest samples seem
to be more clustered than expected under the null hypothesis of a Gaussian distribution.
That expansion seems appropriate in light of the small sample sizes, but using it could be
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Table 12.4 Nearest-neighbor analysis of skull shape variation in M. m. domesticus, sampled at
five-day intervals (average Pmean and the range of Pmean obtained from 100 Monte Carlo simulations)

Age SS (Pmean) DP (Pmean)

Average Range Average Range

10 −0.0929 (−0.1356)–(−0.0276) −0.0028 (−0.0425)–(0.0377)
15 −0.0944 (−0.1503)–(−0.0334) 0.0153 (−0.0326)–(0.0598)
20 −0.0409 (−0.0963)–(−0.0178) 0.0126 (−0.0313)–(0.0658)
25 −0.0745 (−0.1343)–(−0.0051) 0.0122 (−0.0495)–(0.0654)

Parameter estimates are based either on the Strauss–Sadler estimators (SS) or on the parameters of the data (DP).

considered an overly liberal test of clustering. When estimates are based on the observed
values, the range of Pmean invariably includes zero, and for that reason we cannot rule out
the Gaussian null model.

Comparing patterns of (co)variance

The structures of disparity in different groups can be compared by comparing variance–
covariance matrices. Several methods are available, which differ in both underlying
mathematical models and statistical approaches. One currently favored method is com-
mon principal components analysis, which tests a series of hypotheses ordered according
to what is often termed “the Flury hierarchy,” based on the sequencing of hypotheses
established by Flury (1988). The highest level of similarity is complete matrix equality, the
next is matrix proportionality (they differ only by multiplication by a constant), the next is
common PCs, and the lower levels range from all but one common PC to only one common
PC; at the lowest level is complete inequality. A number of studies have used the method to
compare genetic and/or phenotypic covariance matrices (e.g. Steppan, 1997; Arnold and
Phillips, 1999; Phillips and Arnold, 1999; Marroig and Cheverud, 2001). An alternative,
based on a factor-analytic rather than principal component model, is confirmatory factor
analysis – a method which requires having a causal theory that predicts the factor structure
a priori, and asks whether two or more samples are randomly drawn from a single homo-
geneous population with the predicted factor structure (e.g. Zelditch, 1988; Zelditch and
Carmichael, 1989). Both CPCA and confirmatory factor analysis require large samples (it
is usually recommended that N>100 for CPCA, and samples that are large may also be
required for comparing parameters estimated by confirmatory factor analysis).

CPCA can be applied to geometric data just as easily as to traditional data (see Polly,
200x). Confirmatory factor analysis has never been applied to geometric data, and it may
prove difficult to do so; the difficulty lies in devising a priori hypotheses that predict the
variance–covariance matrix of geometric shape variables from theory (either developmen-
tal or biomechanical, for example). Such models are most readily devised for variables that
are individually meaningful. The method we highlight in the remainder of this chapter is
an innovative approach developed by J. Mezey and D. Houle (unpublished manuscript).
It is also based on PCA, the method widely used to reduce the dimensionality of a space.
The objective is to calculate the angles between subspaces, just as we earlier computed
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an angle between vectors of regression coefficients (Chapter 10). Using that method, we
can compute the angle between two-dimensional planes or extend the analysis to higher
dimensions, calculating the angles between hyperplanes (“flat” surfaces of more than two
dimensions embedded in higher dimensional spaces). The angle between two subspaces
embedded in a common higher dimensional space is the angle through which one subspace
must be rotated to match the other; this relationship applies whether the subspaces are
two-dimensional planes or hyperplanes. We first discuss the largest possible angle between
two hyperplanes, then how to calculate them, how to determine if the observed angle is
larger than that between random resamplings of a single group, and how to compare the
angles between hyperplanes of different groups.

What is the largest possible angle between two hyperplanes?
It is relatively easy to intuit the largest possible angle between two vectors in a plane – we
can rely on our physical intuition. To apply those intuitions to PCs we need to recall that
the sign of a PC is arbitrary – rotating a PC by 180◦ actually brings us back to where we
started; the rotated axis differs from the original by only its sign and, because that sign
is arbitrary, the two vectors do not differ at all. Another important point to remember
is that PCs always pass through the origin (0, 0) (the importance of this fact will become
apparent when we need to determine whether lines or planes intersect). In the simplest
possible case, PCs have been extracted from an analysis of two variables in two samples,
so we are comparing the subspace defined by PC1 between samples. The maximum possible
angle is 90◦ (because an angle of 180◦ corresponds to an angle of 0◦). If we now extract
PCs from three variables, and still compare PC1s between groups, we are comparing two
lines embedded in a three-dimensional space. We still cannot get an angle greater than 90◦;
nor could we get a larger one if we embedded them in a higher dimensional space. That
is because the two PCs define a plane, and a single rotation about the axis perpendicular
to the plane will always align the two PCs. The maximum possible angle depends on the
number of rotations required, each of which can range from 0◦ to 90◦.

We can see how understanding the number of rotations requires aids in determining the
maximal angle of rotation for the next simplest case: two PCs, still in a two-dimensional
space. Because we have two axes and our space is still a two-dimensional plane, the pair
of PCs must define the entire space (two orthogonal lines define a plane, and PCs are
orthogonal). Any point within that space can be located relative to the coordinate system
defined by the two PCs. Because the two PCs span the entire space, there cannot be an
angle between the spaces defined by the PCs.

We can now place those two PCs (from each of two groups) in a higher dimensional
space, meaning that we have analyzed three measurements in both groups (so the space in
which the PCs are embedded is three-dimensional). We are still measuring the angle
between the subspaces defined by two PCs in each group, so we are measuring the angle
between two two-dimensional subspaces embedded in a three-dimensional space. Both
planes pass through the origin, so the planes defined by each pair of PCs must intersect
along a line. If we use that line as the fixed axis of rotation (i.e. a “hinge”), we can super-
impose one plane on the other by a rotation ranging from 0◦ to 90◦. Again, the angle
cannot exceed 90◦. At this point it may seem that the angle cannot ever exceed 90◦, but
that is not the case.
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That the angle can exceed 90◦ becomes apparent when we consider two planes embed-
ded in a four-dimensional space. That means we have measured four variables in each of
two groups, and are comparing the subspaces defined by the first two PCs of each group.
The dimensionality of the subspace is two, and that of the space in which they are embed-
ded is four. Now there are three possibilities: (1) the two planes are identical; (2) the two
planes share a common line; or (3) the two planes are completely independent, intersecting
only at the origin. The latter case may be difficult to imagine, because it can only arise in
a space higher than three dimensions. If the two planes are identical, the angle between
them is 0◦. If they share a common line, then a single rotation around that line, which can
range from 0◦ to 90◦, will align them. However, if the two planes are entirely disjunct,
then we need to rotate them around two distinct axes, and each rotation ranges from 0◦ to
90◦ – although that does not mean that the maximal angle is 180◦. We need to think of the
rotations as vectors along orthogonal axes. To add the two rotations, we add the lengths
of the vectors. Therefore, expressing the rotations in radians, the total (net) rotation is the
square root of the sum of the squared rotations around each axis. That can be calculated
just like we compute net displacements along perpendicular axes – as the square root of
the summed squared rotations around each axis. Because the maximal rotation about any

axis is π/2 radians (90◦), the maximum possible angle of rotation is
√
(π/2)2 + (π/2)2=

π/
√

2 radians (∼127◦).
The maximal angle of rotation depends on two things: (1) the number of dimensions

of the hyperplanes (the number of PCs defining each subspace), and (2) the number of
perpendicular vectors shared by the two spaces. The maximum number of distinct axes
is equal to the difference between these numbers (the number of hyperplane dimensions
minus the number of shared perpendicular axes). Because the maximal angle of rotation
around a single axis is π/2, if there are Y distinct (unshared) axes in each hyperplane, the

maximal angle between them is
√
Y (π/2)2=√Y (π/2). If we are comparing pairs of two-

dimensional subspaces embedded in a high dimensional space, Y would still be 0, 1 or 2
because there cannot be more than two perpendicular (unshared) axes in two-dimensional
spaces. As the dimensionality of the subspaces under comparison increases, the maximal
value of Y increases.

Calculating the angle between two subspaces Using an algorithm generously provided by
Jason Mezey, we begin the calculation of an angle between two subspaces by calculatingM
PCs for two groups, A and B. Our objective is to determine the angle between subspaces
defined by the first K PCs of each group (within the total shape space of all PCs). To
compute that angle, we construct the matrix VA such that its N columns are the PCs
(eigenvectors) of the variance–covariance matrix for group A. Next we compute a similar
matrix, VB, based on the data set B. We will extract the first K vectors from the M×M
matrices, VA and VB, creating the M×M matrix P, such that:

P =
[
I 0
0 0

]
(12.13)

where I is a K×K identity matrix (i.e. a K×K matrix with ones on the diagonal and zeros
everywhere else). The zeros in Equation 12.13 indicate that all other elements in P are
zeros (these other elements are necessary to make P an M×M matrix).
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We then calculate the following projection matrices:

Q = VAPV−1A (12.14)

R = VBPV−1B (12.15)

The matrices Q and R are operators that project an arbitrary vector X in the original
M×M variable space onto the subspace defined by the first K eigenvectors of A and B,
respectively. We can then define an operator J, which is the difference between Q and R:

J = Q− R (12.16)

and do an eigenvector decomposition to determine the angular change implied by J.
The eigenvalues of J are paired positive and negative values, having the form (J1,−J1,
J2,−J2, J3,−J3 …). There will be several pairs of positive and negative values, and a
number of roughly zero eigenvalues. The Ji values (J1, J2, J3 …) express the angles of rota-
tion in orthogonal two-dimensional subspaces that produce the smallest rotation of one
K-dimensional subspace into another. To compute the total angular distance, we compute
the square root of the summed squared angles of rotation:

ADistance =
√

arcsin(J1)2 + arcsin(J2)2 + arcsin(J3)2 · · · + arcsin(JK) (12.17)

where all angles are in radians (in reporting the angles, we convert them into degrees).

Evaluating the statistical significance of the angle To determine whether the observed
angle is larger than expected by chance, we need to compare it to the range of angles
expected under the null hypothesis. That null hypothesis is that the observed angle arises
by a random subdivision of either group into two. Thus, the null hypothesis states that
the between-group angle is no greater than the within-group range (of either sample). To
determine if it is, we can use bootstrapping; each group is randomly partitioned into two
groups, and a pair of bootstrap sets is formed by resampling (with replacement). The 95th
percentile of the range of angles between the data sets (drawn from a single group) can be
compared to the angle between the two groups. When the two groups differ in size, the
bootstrap sets of the group with the larger sample size are the sample sizes of the (1) larger
and (2) smaller data sets. The two bootstrap sets drawn from the smaller of the two groups
both have the sample size of the smaller group, because we cannot create a bootstrap set
larger than that of the dataset from which it is drawn.

The entire PCA is carried out using the two bootstrap sets drawn from one group, and
the angle between hyperplanes is determined for these pairs (in the same manner as it was
for the original dataset). Then the same procedure is done for the other groups. Reiterating
the procedure for both groups numerous times yields the bootstrap distribution of within-
group angles. If the observed angle between the hyperplanes exceeds the 95% range of
the within-group angles (generated by the bootstrap procedure), we can conclude that the
observed angle could not have been arisen by a random subdivision of a single group. In
those cases, the observed angle between hyperplanes is statistically significant.

Implementing this procedure for geometric data is straightforward: we simply com-
pute the angle between hyperplanes defined by the first K PCs (which are calculated
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from the partial warp scores, including those of the uniform component following a GLS
superimposition).

Comparing angles between hyperplanes Above, we asked whether the angle between two
planes exceeds what we might expect by chance. We might also want to compare the angle
to that found in another comparative analysis. Suppose we are working with three groups,
A, B and C, and wish to know whether the subspaces of A and B differ by more than those
of A and C. To make that comparison, we follow a bootstrap procedure like that used
to test whether two disparities are different. We begin by computing the angles between
hyperplanes and the difference between those angles, then we resample each data set with
replacement and repeat the calculation of the angles and the difference between them.
After a sufficient number of bootstraps, we can determine the 95% interval for the range
of differences. If this range excludes zero, we can conclude that the observed difference is
significant at the 95% level.

Comparing occupied morphospaces across developmental stages
For the comparison between morphospaces occupied by juvenile and adult piranhas, we
first estimate the angle between subspaces defined by the first two PCs, and then by the
first five PCs. We compare two-dimensional subspaces because the variance–covariance
matrix of adult body shapes has two distinct eigenvalues (the variance–covariance matrix
of juvenile body shapes has none). We also compare the five-dimensional subspaces because
approximately 85% of the variance within each stage is explained by the first five PCs.
Looking at the distribution of shapes in the plane of the first two PCs (Figure 12.5) allows
us to anticipate the results: a significant difference between the subspaces. Indeed, for the
comparison between juvenile and adult two-dimensional morphospaces, the between-stage
angle is 83.83◦ and the 95% confidence intervals are 30.98◦ (juveniles) and 9.97◦ (adults).
Increasing the dimensionality to five PCs yields results consistent with the conclusion based
on two; the between-stage angle is 91.53◦ and the within-stage ranges are 49.23◦ (juveniles)
and 85.19◦ (adults), so the two samples occupy different subspaces.

Comparing mouse skull shape hyperplanes between ages
Comparisons among subspaces of successive age-classes of M. m. domesticus, sampled
at 5-day intervals, are more complex, because none of the variance–covariance matrices
(through 25 days) have distinct eigenvalues. The first three PCs, taken together, account
for only 50–60% of the variance of the two youngest age classes; it takes as many as five
PCs to explain just 75% of the variance of the two youngest ages. We thus need at least
four components to capture most of the variance of the younger stages, and five would be
preferable. Therefore, we will compare both four- and five-dimensional subspaces.

There is an enormous range of within-age variation (Table 12.5). This is expected,
because the within-age variation may be random (or nearly so), and under those con-
ditions variation is nearly spherical so PCs are nearly arbitrary. Consequently, PCs of
the resampled data may change a great deal from one iteration to the next, producing
a very large range of within-age angles. Nevertheless, two of the comparisons indicate a
significant difference between morphospaces; those between (1) 15- and 20-day-olds, and
(2) 20- and 25-day-olds.
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Figure 12.5 Principal components of piranha body shape: (A) juveniles; (B) adults.
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Table 12.5 Comparing hyperplanes of skull shape variation between successive ages of the house
mouse M. m. domesticus (the within-age ranges are calculated over 500 bootstraps)

Ages Four dimensions Five dimensions

Between-ages Within-age Within-age Angle between Within-age Within-age
(younger) (older) (younger) (older)

10–15 101.58 110.56 123.70 124.46 128.77 123.92
15–20 129.52 123.04 115.30 132.51 127.07 124.65
20–25 125.99 114.73 115.66 129.51 122.17 125.69

Software

Two programs in the IMP series are designed to implement analyses of disparity: Dispar-
ityBox (which calculates morphological disparity, MD, and partial disparity, PD, as well
as within-group variance), and SpaceAngle (which calculates the angles between hyper-
planes). To compare values of MD and variance (that is, to test the significance of the
difference between two values of MD or two variances), use T-Box (described in the
context of MANOVA in Chapter 9).

DisparityBox

DisparityBox takes input data, in standard (X1, Y1, … CS) format, estimates the disparity
or variance for geometric shape and also for traditional measurements (calculated from
the landmark coordinates), and provides confidence intervals for the estimates. Estimates
can be based on the input data, or the data can be standardized by regression (on the last
variable in the data, usually CS). Two sorts of analyses are available, but the distinction
between them does not correspond precisely to the distinction between within-population
variance and between-group disparity. That is because a data set comprising the means of
multiple species would correspond to a single group analysis (disparity is calculated as the
variance over those individuals, even though the individuals are species’ means). The basis
for choosing the type of analysis is the kind of resampling design you wish to employ. If you
want to remove individuals from species, thereby putting confidence intervals on disparity
taking into account the effects of sampling each species, you are removing specimens from
individual groups (not removing whole groups). This is the resampling scheme used in a
“multi-group” analysis. In contrast, if you want to remove entire species from the analysis,
thereby constructing confidence intervals that take into account the effect of sampling from
the population of species, you are doing the kind of analysis that DisparityBox terms a
“1-group analysis.”

The two analyses are logistically very different, and some methods (or tests) are available
only for one, so we explain how to conduct each. Features common to both the analyses
are discussed in the context of multi-group analysis.

Multi-group analysis
Each group should be in a separate file (in standard X1, Y1, … CS format). Load them one
after another, by clicking on the Load Data Set button, loading the file, then clicking again



chap-12 4/6/2004 17: 27 page 315

DISPARITY AND VARIATION 315

on the Load Data Set button and opening the next file. As each is loaded, its superimposed
landmarks will appear in the small visualization window on the upper right (the GLS
superimposition is used). It is a good idea to ask for the list of files loaded (so you can keep
track of the order in which they are loaded) by clicking on the List Loaded Sets button.
To save that list, go to the File menu on the toolbar and click on Save Results Box. Before
doing an analysis, you need to calculate the mean. A multi-group analysis uses the grand
mean across groups, so click on Find the Grand Consensus Mean (Groups). The other
option is for analyses of within-sample variance.

If you want to analyze the disparity of size-standardized data, you can load the list of
target sizes to which you wish to standardize shapes for each group (different values can
be used for different groups). This requires preparing the target size list, which is the list
of desired sizes, ordered in the same sequence as the species were loaded (i.e. the first size
on the list is the target size for the first group loaded). The sizes should be in units of log
transformed centroid size (to either base e or base 10). For example, the following list says
to standardize the first group to 3.1 LCS, the second to 2.3 LCS, and the third to 3.4 LCS:

3.1
2.3
3.4

Load the list either by clicking on the Load Log Size Targets button, or go to the File menu
on the toolbar and select the Load Log Size Target option.

If you wish to analyze the disparity of traditional morphometric measurements, you need
to load a measurement protocol. This consists of a three-column list; the first column is the
number of the measurement, the second is the number of the landmark that will serve as one
endpoint of the measurement, and the third is the number of the landmark that serves as
the other endpoint. For example, the measurement protocol for lengths measured between
landmarks 1 and 7, between landmarks 2 and 4, and between landmarks 4 and 5, is:

1 1 7
2 2 4
3 4 5

(This is the same protocol used in the program TradMorphGen, which calculates tradi-
tional morphometric measurements given the landmarks and protocol – see Chapter 13).
Load the list either by clicking on the Load Length Protocol button, or by going to the File
menu on the toolbar and selecting the Load Length Protocol option.

A variety of analyses are available, listed on the Multi-Group pull-down menu on the
toolbar. Your choice depends on whether you want to analyze geometric shape or tradi-
tional morphometric data, and on whether you wish to analyze untransformed data or
size-standardized data. Additionally, you can ask for estimates of morphological disparity
(MD) or for bothMD and partial disparity (PD) of each group. Selecting your choice starts
the program (it will take a long time).

The results will appear in theResults Boxwindow. The confidence intervals are obtained
by resampling (with replacement) within each group. To save the results to the same file
in which you listed the loaded data sets, go to the File pull-down menu and select Append
Results Box to File, then select the file in which you saved the list of loaded files. The
program will warn you that the file will be overwritten, but it won’t be. Alternatively, you
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can save them to a new file by selecting Save Results Box. Finally, you can copy the Results
Box window by selecting all the text then copying it (Ctrl-C) and pasting that text into a
text file (Ctrl-V).

In addition to the Results file you can save several others, including one that concate-
nates the separately loaded data files, a GroupList (to be used in PCAGen or CVAGen,
see Chapter 7), and the size-standardized traditional morphometric data (if you input a
protocol to obtain these measures and also a log target size list).

Multi-group nearest-neighbor analysis To do a nearest-neighbor analysis, you need to
specify both the null model (uniform or Gaussian) and the range estimator (the parame-
ters of the observed data or the Strauss–Sadler estimator). The default null is a uniform
distribution, but you can ask for a Gaussian model instead, using the radio button labeled
NNModel Gaussian. The default method for estimating the range is to use the parameters
obtained from the data, but you can select the Strauss and Sadler method instead with
the radio button labeled Sadler Style Range, just below the one for selecting the Gaussian
null model.

To run the analysis, go to the NNModel pull-down menu, select either Foote NNmodel
or Size-Standardized Foote NNModel (depending on whether you wish to size-standardize
the data). Selecting either of these starts the program running. The results will appear in
the Results window. They can be saved by going to the File pull-down menu and selecting
Append Results Box to File if you wish to save the results to the same file in which you
saved the list of loaded files and the results of the previous analysis. Again, the program
will warn you that the file will be overwritten, but it won’t be. You can save them to a
different file by selecting the Save Results window. Finally, you can also copy the Results
window (using Ctrl-C) and paste it into a text file (using Ctrl-V).

Single-group analysis of disparity/variance
To do the analysis of disparity within a single group, all specimens must be in the same
file (this file is the unit of analysis). The file may comprise multiple individuals of a single
population (in which case the analysis is of variance, not disparity), or each “individual”
could be the mean shapes of a species (in which case the analysis is of disparity, not
variance). If you plan to analyze several such files, you can load them all now, then specify
the one you wish to analyze in the Active Set window. You can move up and down in that
window, thereby progressing through a series of analyses. Before you can do an analysis,
you need to calculate the mean; click on Find the Grand ConsensusMean (Specimens). The
other option is for analyses of among-group disparity when each group is in a separate file
(comprising multiple observations of the same group). If you wish to size-standardize the
data, or to analyze the variance of traditional morphometric data, follow the procedures
for constructing and loading the target size files and length protocol files (see above).

A variety of analyses are possible; these are listed on the 1-Group Analysis pull-down
menu on the toolbar up top. You can choose to analyze the disparity of geometric shape
within the group (Bootstrap Disparity within Group), the disparity of traditional measure-
ments within the group (Trace of the Trad Measures Var/Cov Matrix) or the disparity
of size-standardized geometric shape (Bootstrap Size Corrected, Within Group Disparity).
Selecting an option starts the analysis.
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The results will appear in the Results Box window, which gives the within-group dis-
parity accompanied by the 95th percentile range. They can be saved either by going to the
File pull-down menu and selecting the Save Results Box, or you can copy the window by
selecting the text then copying it (Ctrl-C) and pasting it into a text file (Ctrl-V).

Single-group nearest-neighbor analysis As in the case of the multi-group analysis, you
first need to choose your null model and range estimator. To perform the analysis, go
to the NN Model pull-down menu on the toolbar and select Foote NN Model (within
Active Group). The results will appear in the Results window, and can be saved/copied as
described above.

SpaceAngle

This program uses the algorithm by Jason Mezey to estimate the angle between hyper-
planes. The program is not limited to analyses of geometric morphometric data, although
that is the default. When landmark coordinates are loaded, the first step is to calculate
partial warp scores; if your data are not coordinates of landmarks, you need to turn off
the option to Compute PW scores (click on the radio button). Each sample must be in a
separate file, in standard (X1, Y1, … CS) format.

Before beginning the analysis, determine how many dimensions you wish to include in
the comparison and type in that number where asked for the number of axes. To estimate
the angle (without testing it), click on Calculate Angle Between PC Planes. To estimate that
angle and test it for its statistical significance, click on Calculate Range of Angles Within
Groups. If you want to place confidence intervals on the between-group angle click on
Calculate Confidence Int. on Angle. Selecting one of these options runs the program.

The results will appear in the Results window, and can be saved/copied as described
above.

To test whether the angles between pairs of hyperplanes are significantly different, load
the first pair of data sets using the Load Data Set 1 and Load Data Set 2 buttons. Load the
second pair of data sets by going to the File pull-down menu and selecting Load Data Set 3
then Load Data Set 4 (for a three-way comparison, A-B vs A-C, load A as data sets 1 and
3, load B as 2 and load C as 4). Next, set the number of bootstraps using the bootstrap
control window. Now, start the calculation by going to the More Stats pull-down menu
and selecting Bootstrap Test of Difference in Angle.
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13
The relationship between ontogeny

and phylogeny

According to one of the best-known aphorisms in evolutionary developmental biology,
“ontogeny recapitulates phylogeny.” The statement has been discredited numerous times,
but evolutionary biologists remain intrigued by the idea that ontogeny and phylogeny might
be related. Gould proposed an alternative to the theory of recapitulation, one that allows
for the converse phenomenon: rather than a descendant completing and going beyond the
ancestral ontogeny, some fail to complete it (Gould, 1977). In those cases, descendant
adults resemble ancestral juveniles, in direct contradiction to the theory of recapitulation.
However, a broader theory encompasses both cases: parallelism between ontogeny and
phylogeny. According to the theory of parallelism, the descendant’s adult morphology can
be found either in the ancestral ontogeny or by extrapolation of it (Figure 13.1). Either
the descendant adult looks like a subadult ancestor, or it looks like an overgrown one.
Although termed parallelism, the direction of evolutionary change (Figure 13.1, the path
labeled E) actually coincides with the direction of the ancestral ontogeny (Fig. 13.1, the path
labeled O), it does not merely parallel it.

The explanation for parallelism is that species evolve in rates or timings of development,
but otherwise retain the ancestral ontogeny. If development speeds up, or lasts for longer,
the descendant will go further than the ancestor along the ancestor’s ontogeny. Conversely,
if development slows down, or lasts for less time, the descendant will not reach the ances-
tral endpoint. Such changes in developmental rate or timing are called heterochrony, and
Gould (1977) devoted his entire book to the phenomenon. His work stimulated hun-
dreds of studies of heterochrony, but Gould never claimed that heterochrony is a common
phenomenon. Rather, he characterized it as a part of a broader subject, that broader
subject being the relationships between ontogeny and phylogeny. Nevertheless, he found
heterochrony especially interesting, and thus worthy of special attention, for two major
reasons. First, it has an intriguing implication, which is that morphology evolves as an indi-
rect effect of selection on life-history parameters. Should selection favor a younger age at
sexual maturity, the ancestral ontogeny might be truncated so the descendant adult reaches
sexual maturity with a larval morphology. Even though morphology itself is not the target

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
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Figure 13.1 Parallelism. The ontogeny of the ancestor (indicated by the circles) and the descendant
(indicated by the squares) begin development having the same shape and follow the same ontogeny
of shape. They differ only in that the descendant’s ontogeny is a truncated version of the ancestral
ontogeny. Consequently, the descendant adult resembles an ancestral juvenile. In cases of parallelism,
the direction of evolutionary change in adult morphology (E) coincides with the direction of the
ancestral ontogeny (O).

of selection, it is nonetheless modified, sometimes dramatically, and those modifications
require no adaptive explanation in their own right. Recognizing that they are simply a cor-
related effect of an evolutionary change in a life-history parameter can temper an excessive
enthusiasm for adaptive explanations. Gould’s logic follows the same line taken by Huxley
(1932) in his discussion of evolutionary allometry – that shape evolves as an indirect effect
of selection on size, so the changes in shape are explained by the changes in size. This con-
nection between heterochrony and allometry is seemingly obvious, but Gould was the first
to recognize and emphasize it.

A second reason for concentrating on the phenomenon of parallelism is that Gould
sought to rehabilitate the concept of recapitulation. Even though he denied that reca-
pitulation is a general rule, he thought the idea had been dismissed unfairly, and for
reasons unrelated to the failure of the theory. Other workers had also attempted to res-
cue the idea of recapitulation, especially Cope (e.g. 1887), by applying it to individual
parts (or measurements). Unlike them, Gould took an organismal, multivariate view of
parallelism. He strongly opposed the trait-by-trait approach to morphology, whereby
each individual organ (or measurement) is accorded its own explanation. Instead of that
approach, which he called “atomistic,” he favored viewing organisms as integrated enti-
ties, bound together by developmental correlations. Accordingly, rather than analyzing
changes in growth rates of individual measurements, he modeled changes in properties of
whole organisms, such as life-history parameters. His models are admittedly informal and
verbal rather than mathematical, so they cannot be considered multivariate in a techni-
cal sense, but formalizing them requires a multivariate mathematical model. Gould did
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Figure 13.2 Changes confined to early morphogenesis. This pattern requires using two shape
axes to depict the change; one oriented in the direction of the divergence in early morphogen-
esis, the other depicting the shared direction of subsequent ontogenetic change. The ancestral
ontogeny is depicted by circles, the descendant ontogeny by squares. The two lines differ in
elevation, a difference that is constant throughout ontogeny. Consequently, the direction of evo-
lutionary change in larval morphology (El) parallels the direction of evolutionary change in adult
morphology (Ea). These evolutionary transformations do not parallel the direction of the ancestral
ontogeny.

not provide one, so the assumptions of his theory cannot be examined rigorously, but
a more rigorous model for evolutionary allometry grounded in evolutionary theory was
developed by Lande (1979) and extended to the more general multivariate case by Lande
and Arnold (1983). The important point made by these models is that selection on body
size, or any other life-history trait, will likely have indirect effects, but not necessarily in
the direction anticipated by either Gould or Huxley. Nevertheless, despite that impor-
tant flaw in Gould’s model, he offered a multivariate, organismal view of allometry and
heterochrony.

Gould acknowledged that heterochrony is just a part of a broader subject, deserving
special attention because of its intriguing implications. However, parallelism is neither the
only intriguing nor the only theoretically significant possibility. Another, which is equally
remarkable, is shown in Figure 13.2 – the descendant’s ontogeny is a vertically transposed
version of the ancestral ontogeny. This pattern differs from parallelism because the descen-
dant adult does not lie along the ancestral ontogeny – it lies above or below it. This pattern
is difficult to draw (and perhaps also to read) because we need two shape axes to represent
it: one, the X-axis, is in the direction of their shared ontogeny; the other, the Y-axis, is
in the direction of the difference arising early in development. That the two lines differ
solely in elevation means that the species diverge early in development but thereafter fol-
low the same ontogeny. Consequently, as adults they differ in precisely the same features
that distinguished them very early in development. This pattern is at least as intrigu-
ing as parallelism because of what it implies about the dynamics of evolving ontogenies.
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It means that late development is more conservative than early. Conventionally, embryos
are thought to pass through a “phylotypic period” – the stage at which embryos of all mem-
bers of a phylum look the same (Seidl, 1960; Sander, 1983; Slack et al., 1993). Several
studies have challenged this “hour-glass” model (e.g. Richardson et al., 1997; Bininda-
Emonds et al., 2003) on the grounds that the phylotypic period is not as conservative as
generally thought, but even these critiques do not go so far as to say that morphologies
are more disparate early rather than later. Yet that is precisely the expectation implied
by the two parallel lines. That is not to say that finding this pattern in morphometric
data contradicts the theory of the phylotypic period, because most morphometric studies
encompass far older stages (e.g. postnatal, postlarval). The phylotypic period begins at
onset of neurulation and ends with somitogenesis (see Kimmel et al., 1995), so that is the
phase that must be compared to later stages to test the theory. Nonetheless, it would still be
surprising to find out that all divergence occurs by changes in late embryonic/early larval
development.

Clearly, parallelism is not the only theoretically interesting or counterintuitive pattern
that can be imagined. However, rather than seeking out counterintuitive possibilities, we
might do better to look for the most general patterns. Focusing on a rare (albeit inter-
esting) pattern can foster a highly biased view of the evolution of ontogeny. If our aim
is to generalize about the evolution of ontogeny, we need to devote as much attention
to common patterns as to rare ones. Given the enormous literature on the subject, het-
erochrony might seem to be a very common phenomenon, but that impression results
partly from the broadened definition of heterochrony, which obviously increases the
number of cases that satisfy it (see, for example, McKinney and McNamara, 1991). Some-
times, heterochrony is defined so broadly that it means nothing more than that ontogeny
evolves. The theoretical significance of the concept is thereby diluted, and by classify-
ing all the possibilities into a single category we lose the ability to recognize distinctions
among them.

Our objective in this chapter is to describe a variety of patterns that can be found
in comparative studies of ontogeny. To that end, we focus on the patterns amenable
to discovery by comparative studies of ontogenetic allometry. Studies of allometry are
sometimes viewed as a poor substitute for studies of heterochrony, but allometry is not just
something we study when we have no information about age. Rather, comparative studies
of allometry allow for a richer formalism than is feasible in studies of heterochrony because
the formalisms for heterochrony were designed for cases of parallelism. They cannot be
applied more generally without sacrificing a multivariate approach to the evolution of
ontogeny.

Comparative analyses of allometry not only rely on a richer formalism; they also ana-
lyze a phenomenon that is interesting in its own right. Allometry is no less interesting
than heterochrony, an argument we develop below. After motivating the study of ontoge-
netic allometry, we introduce the formalism for analyzing it and discuss the meaning (both
formal and biological) of the coefficients obtained by that formalism. We next discuss meth-
ods for discerning patterns in the relationship between ontogeny and phylogeny, focusing
on the significance of those patterns for our understanding of the evolution of develop-
ment. The first part of this chapter focuses on traditional morphometric data because most
comparative studies of allometry have relied on them. We then briefly review the geomet-
ric analysis of ontogenetic allometry (the subject of Chapter 10) and revisit the patterns
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introduced in context of traditional allometry, describing how these would appear in
studies of geometric shape data.

Why allometry is interesting in its own right

For purely biomechanical reasons, we expect allometry because we expect organisms to
change shape as they grow. Were they to grow without changing shape, they would likely
decrease their ability to perform such vital functions as respiration, locomotion and feed-
ing. Allometric scaling maintains functional equivalence. However, only certain very basic
physical properties (such as surface area: volume relationships) might be expected to scale
predictably over an entire ontogenetic series because young (small) organisms are often
ecologically very different than older (larger) members of their own species. For that rea-
son, they do not face the same functional demands. Nonetheless, they grow allometrically.
That by itself is interesting; over an individual’s life-time, it is increasing in size, changing
shape, and also experiencing transitions in functional demands. At every age the organ-
ism must be competent, but it is continually changing. How these transformations in
size, shape and function are interrelated is a central question in studies of ontogenetic
allometry.

This focus on related transformations in size, shape and function arises from the percep-
tion that an organism’s morphology is a continuum of shapes. To understand morphology
we must not only understand the relationship between form and function at one age, we
must also understand the entire continuum. That continuum can be described by a vector
that extends from the form of the smallest to that of the largest individual. The optimal
form for any one age might not lie along that vector, because the direction in which the
vector points may represent a compromise among age-specific optima. The adult morphol-
ogy may be especially important for determining the direction of the vector; even though
ontogeny is not just the vector pointing towards an optimal adult, adult morphology could
conceivably matter as much as the pathway. That is because the adult shape may be stable
once it is attained; in organisms that have determinate morphogenesis (whether or not they
also have determinate growth) the adult form persists for much of the life cycle. Yet that
adult shape will never be reached if organisms do not first survive the especially vulnerable
pre-adult phases. Thus, the direction in which the vector points, as well as the rate at which
it develops, may be related, in part, to age-specific mortality rates and to the processes
responsible for mortality. When mortality is largely a result of predation, and predation
rates are particularly high early in life, the ontogenetic vector may be oriented towards
development of anti-predator defenses early in life, with consequences for morphology at
later ages.

Allometry is interesting not only because of its implications for form–function rela-
tionships, but also because of the insight it offers into growth and development. Those
processes cause the changes in size and shape recorded in studies of allometry. Often we
know much about the processes causing those changes, especially in studies of vertebrate
skeletal form. In this case, the processes we are studying are the spatiotemporal dynamics
of bone growth. From the coefficients we obtain in studies of allometry, we can learn about
the spatial distribution of relative growth rates. Evolutionary changes in the spatiotemporal
dynamics of growth can be discovered by comparative studies of allometry.
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Formalisms for the analysis of ontogenetic allometry: traditional
morphometric data

The traditional formalism

The traditional formalism for the study of allometry relates the increase in size of one
part (Y) to that of another (X). Often, X is intended to represent the size of the whole
organism. To make our discussion of allometry as concrete as possible, and to ease the
transition from geometric to traditional morphometric data, we will focus on the case
of the piranha, Serrasalmus gouldingi, which we used as our model for the geometric
analyses of ontogenetic allometry. To analyze its ontogenetic allometry we measure a
variety of lengths and depths (Figure 13.3). For our measure of body size we will use the
measurement extending from landmark 1 to landmark 7, which is termed standard length
(SL) and is frequently used as the measurement of body size in studies of teleosts – so,
for our example, X= SL. The other 29 measurements are the measures 2–30, which we
will represent by the vector {Y1,Y2,Y3, …Y29}. We first discuss the mathematical analysis
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Figure 13.3 Landmarks sampled on Serrasalmus gouldingi, and the traditional morphometric
measurement scheme based on those landmarks.
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of allometry, then follow this with an interpretation of the coefficients obtained by the
analysis, and then consider their developmental significance.

The mathematical analysis of allometry
The relationship between X and Y often fits a model, the power law (Huxley, 1932):

Y = bXk (13.1)

where k is the rate of growth of part Y relative to X, and b is the size of Y when X is at
unit size. To ease fitting the model to data, it is often rewritten in a linear form:

log(Y) = log(b)+ k log(X) (13.2)

Expressed in this form, we can use linear regression to estimate the parameters b and k;
they are the intercept and slope (respectively) of a linear regression of log(Y) on log(X).
Table 13.1 gives the regression coefficients, b and k, of the variables shown in Figure 13.3

Table 13.1 Allometric coefficients for Serrasalmus gouldingi;
b is the intercept term, k is the slope (measurements are shown
in Figure 13.3)

Variable b k

v2 −0.939 0.806
v3 −0.613 0.885
v4 −1.163 0.850
v5 −2.643 1.225
v6 −1.396 1.042
v7 −1.512 1.002
v8 −1.383 0.928
v9 −1.974 1.104

v10 −1.761 1.220
v11 −1.931 1.198
v12 −1.595 1.136
v13 −2.378 1.186
v14 −2.228 1.116
v15 −1.681 1.210
v16 −1.781 1.225
v17 −1.551 1.171
v18 −2.572 1.170
v19 −1.938 1.085
v20 −1.685 1.104
v21 −1.991 1.225
v22 −1.834 1.217
v23 −1.473 1.072
v24 −1.674 0.939
v25 −2.686 1.120
v26 −1.558 1.129
v27 −1.815 0.898
v28 −1.231 0.811
v29 −1.160 0.751
v30 −0.635 0.903
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Table 13.2 Allometric coefficients, k, computed by multi-
variate regression (R) and PCA (variable 1 is the independent
variable in the multivariate regression; its value of k must be
included to make these vectors comparable)

Variable R PCA

v1 1.000 0.694
v2 0.806 0.559
v3 0.885 0.614
v4 0.850 0.589
v5 1.225 0.851
v6 1.042 0.723
v7 1.002 0.696
v8 0.928 0.644
v9 1.104 0.766

v10 1.220 0.847
v11 1.198 0.832
v12 1.136 0.789
v13 1.186 0.823
v14 1.116 0.775
v15 1.210 0.840
v16 1.225 0.850
v17 1.171 0.813
v18 1.170 0.812
v19 1.085 0.753
v20 1.104 0.766
v21 1.225 0.850
v22 1.217 0.845
v23 1.072 0.744
v24 0.939 0.651
v25 1.120 0.777
v26 1.129 0.783
v27 0.898 0.623
v28 0.811 0.563
v29 0.751 0.522
v30 0.903 0.627

regressed on SL. We should note that the literature is inconsistent on the symbols used for
these two coefficients.

Usually, the coefficients are estimated by simple bivariate regression (both ordinary
least squares, OLS, and reduced major axis, RMA, regression). As shown in Chapter 10,
multivariate least squares regression yields the same estimates as obtained from bivariate
analysis so we can treat the bivariate estimates of k as components of the vector {k1,k2,
k3, …kP} (where P is the number of measurements) and those of log(b) as components of
the vector {log(b1), log(b2), log(b3), … log(bP)}. Another common multivariate approach
is principal components analysis (PCA); Jolicoeur (1963) first proposed that PC1 is a
multivariate allometry vector when PC1 is extracted from a variance–covariance matrix
of log-transformed measurements. Conceptually, multivariate regression and PCA differ
in that PCA does not single out one variable as independent. Instead of treating one of
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Table 13.3 Ratios between allometric coefficients, k, of each
variable and standard length (v1), for the coefficients computed
by multivariate regression (R) and PCA

Variable R PCA

v2 0.81 0.81
v3 0.89 0.88
v4 0.85 0.85
v5 1.23 1.23
v6 1.04 1.04
v7 1.00 1.00
v8 0.93 0.93
v9 1.10 1.10

v10 1.22 1.22
v11 1.20 1.20
v12 1.14 1.14
v13 1.19 1.19
v14 1.12 1.12
v15 1.21 1.21
v16 1.23 1.22
v17 1.17 1.17
v18 1.17 1.17
v19 1.09 1.09
v20 1.10 1.10
v21 1.23 1.22
v22 1.22 1.22
v23 1.07 1.07
v24 0.94 0.94
v25 1.12 1.12
v26 1.13 1.13
v27 0.90 0.90
v28 0.81 0.81
v29 0.75 0.75
v30 0.90 0.90

the observed variables as the measure of size, PCA constructs a multivariate size measure
from the observed variables; scores on PC1 are the measures of size. Also, OLS multivariate
regression presumes that the independent variable is measured without error, whereas PCA
does not.

Regression (both OLS and RMA) and PCA tend to give very similar results when mea-
surements are highly correlated, which they usually are in studies of ontogenetic series. For
example, Table 13.2 shows the estimates of the slope for the measurements of S. gouldingi
obtained by Model I regression (OLS) and PCA. The numbers may appear to be quite
different, but these differences disappear when the coefficients are rescaled so that each is
the ratio between the k for one variable and the k for SL. Because SL is the independent
variable, kSL=1.

Rescaling the coefficients of PC1 by dividing each coefficient by that for SL gives the
values shown in Table 13.3. The estimates obtained by multivariate regression and PCA
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are identical. Perhaps the most important distinction between regression and PCA is that
PCA does not provide estimates of b.

Interpreting allometric coefficients
The interpretation of k is straightforward – it is the growth rate of one measurement
relative to that of a standard, the growth rate of X. When k is 1.0, the growth of the part
keeps pace with that of X, which we will take as the whole body – i.e. their proportions
are constant throughout growth. Such measurements are termed “isometric.” When k
is greater than 1.0, the part increases its size relative to overall body size; these parts
are termed “positively allometric.” When k is less than 1.0, the part decreases in its size
relative to body size; these measurements are termed “negatively allometric.” Only one
measurement in Table 13.1 is isometric, but many coefficients are equal to each other, so
we could view them as isometric relative to each other. We are not constrained to think of
ki solely in terms of growth rates of each part relative to body size – all ratios among the ks

are relative growth rates as well. Several measurements are isometric relative to each other,
including the four measurements of body depth (measured from landmarks 4 and 5, which
are at the anterior and posterior bases of the dorsal fin). These four (v15, v16, v21 and
v22) grow at equal rates relative to each other, so relative to each other their proportions
do not change over ontogeny. All four are positively allometric relative to body length, so
the body (in that region) deepens relative to its length. Among the negatively allometric
measurements are the most anterior lengths (v2, v3, v4, v8, v28, v29, v30) and the two
most posterior ones (v24, v27). This means that measurements in the anterior head and
caudal regions shorten relative to the whole body (of course they do not actually shorten –
they lengthen in an absolute sense, it is just that they shorten relative to the length of the
body). Consequently, the head and caudal region form a relatively smaller fraction of body
length in adults than in juveniles.

The interpretation of b is less straightforward, and there has been some controversy
about its biological meaning. One reason for doubting that b has any general biological
significance is that its value depends on the units of measurement; unlike k, b is not a
dimensionless quantity. However, a more important one is that log(b) is the value of
log(Y) when log(X) is zero, a size at which Y might not yet exist. For example, when
the body is 1 mm long, the dorsal fin might not have developed yet so it cannot have a
meaningful size. Additionally, log(b) is estimated under the assumption that k is constant
from log(X)=0, not just that it is constant over the range of values actually sampled.

Under one condition, b does have a simple interpretation. When populations do not
differ in k, a difference in b does have a meaning because the difference in b will persist
throughout the entire ontogeny. Even if we hesitate to infer a value for log(Y) when
log(X)=0, under the condition that both species have the same value of k, the regression
lines would differ only in elevation. So at any point in ontogeny, they will differ in elevation
according to their difference in b. We might reasonably hesitate to claim that they have
diverged by the time that log(X)=0, but we could claim that the difference between the
species arose prior to the stage when we first observe them, and it is invariant throughout
the rest of ontogeny. That difference in b says how those populations will differ at any
given value of X. For example, if we are comparing the brains of several species that do
not differ in k, we can determine their relative brain size at all body sizes by comparing
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Figure 13.4 Allometric coefficients of Serrasalmus gouldingi. Coefficients significantly higher than
1.0 indicate positive allometry, coefficients significantly lower than 1.0 indicate negative allometry,
and those between that cannot be distinguished statistically from 1.0 indicate isometry.

b; in this specific context, b has been termed an “index of cephalization” (see White and
Gould, 1965). When k does not differ, b can be viewed as a scaling parameter. Under
other conditions, b is just a parameter needed to predict Y at a given value of X.

The developmental meaning of b and k
Having defined b and k mathematically, and discussed how to estimate and interpret them,
we can now consider their developmental meaning. Most of the theoretical literature has
focused on k because b is static – it is not a descriptor of development, just of where the
regression line intersects the Y-axis. At the heart of the literature is the view of growth as
a multiplicative process. This was the rationale given by Huxley (1932) for the power law,
and it is the basis for cellular models of allometric growth (e.g. Katz, 1980). Within that
context, the meaning of k has been viewed from both spatial and temporal perspectives.

Huxley (1932) emphasized the spatial interpretation of k, proposing that changes in k
over the organism indicate spatially organized “growth intensities.” He noted that values
of k tend to be spatially coherent, rising and falling in organized patterns across the body.
To help visualize spatial patterns in k, we can first put the coefficients on the organism
rather than in a table (Figure 13.4). We can see that they increase from the head to the
middle of the body, then fall towards the tail, although not to a level as low as found
in the head. This is (approximately) an inverted U-shaped gradient, which is interesting
because it is the inverse of the gradient found in several teleost larvae (Fuiman, 1983).
This suggests that the allometry of juvenile growth, in effect, compensates for that of
larval growth: the head and caudal body initially grow very rapidly, and the middle of the
body catches up during juvenile growth. Growth rates can also suggest anteroposterior
gradients, which means that they fall off linearly from the head to the tail. To analyze
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Figure 13.5 Growth profile for relative growth rates along the anteroposterior axis of S. gouldingi.
Allometric coefficients for measurements of growth along the anteroposterior axis are plotted as a
function of the ordinal position of the measurement (anterior is to the left of the plot, posterior to
the right).

these patterns more rigorously Huxley constructed “growth profiles,” which are plots of
allometric coefficients as a function of their position along body axes. Unfortunately, few
studies record the position of a measurement along a body axis (they were not recorded for
the measurements shown in Figure 13.3, for example). As a crude approximation we can
order the measurements in a linear sequence, ordered from anterior to posterior, and plot
allometric coefficients at each ordinal position (Figure 13.5). Although it would clearly be
better to have more accurate estimates of position along the body, the plot is nonetheless
intriguing because it suggests a spatial ordering to the coefficients. Remarkably few recent
studies have used growth profiles to understand developmental spatial patterning or its
evolution (one exception is the analysis by Fuiman mentioned above, another is Zelditch
et al., 2001).

Laird and colleagues have stressed the temporal significance of allometric coefficients
(e.g. Laird 1965; Laird et al., 1968). Even though time is not explicitly incorporated in
studies of allometry, it is nonetheless implicit. This becomes evident when considering
why the power law holds in the first place. As mentioned before, the primary biological
explanation for allometry is that growth is a multiplicative process. When analyzing the
relationship between size and time, the best-fitting models are usually not linear but rather
are sigmoidal in form. An important feature of these models is that growth rates decay
over time. Similarities in decay rates are interpreted by Laird (1965) as the explanation for
the linear relationship among log-transformed measurements. In effect, all measurements
follow the same growth curve; their differing values of k tell us how they are displaced
relative to each other in time – different parts of the body reach the same point on their
growth curves at different times. Laird et al. (1968) elaborated on this theory, stating the
relationship between k and lag time (�T) as:

�T = −1
α

ln(k) (13.3)

where α is the decay rate and k is an allometric coefficient.
We cannot measure decay rates without information on age, but we can use Equa-

tion 13.3 to understand the temporal relationships among growth curves so long as we are
willing to assume that decay rates are the same for all measurements whose logs are linearly
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related. Because growth rates decay over time, we would intuit that a more negatively allo-
metric part has decayed over a longer time, and that it has decayed for longer because it
began growing earlier. The increment of time by which we need to shift one curve to match
another that starts growing later is �T. Based on this interpretation of allometric coeffi-
cients, we would conclude that the head and caudal peduncle develop before the midbody,
that the eye is the first structure to develop, and that the body elongates before it deepens.

The spatial and temporal perspectives on allometric coefficients are not antagonistic.
The spatial coherence noted by Huxley, interpreted within the temporal framework of
Laird, suggests that growth is spatiotemporally organized. There is no reason to think
that either space or time is primary. We do not need to adopt one view over the other –
they are mutually consistent, and help explain each other. With increasing information
about the spatial determination of development, in conjunction with that on its tempo-
ral organization, we can relate allometric coefficients to the underlying developmental
processes that explain them. Because these theories of developmental controls over the
spatiotemporal organization of relative growth may be most easily expressed in terms
of traditional morphometric measurements, studies of allometry using traditional mor-
phometric measurements will remain an important part of evolutionary developmental
biology.

Of course, allometric coefficients are also informative about the relationship between
form and function. The literature on biomechanics is filled with theories that predict scal-
ing relationships among measurements. Applied to ontogenetic series, such theories may
explain ontogenetic allometry in terms of the ontogeny of function. For example, in many
larval teleosts the head and caudal region are highly positively allometric, which is due
to the early demands imposed by swimming, feeding and respiratory systems (see, for
example, van Snik et al., 1997). The converse allometric pattern is seen later, in juvenile
growth, as exemplified by the coefficients of S. gouldingi. These patterns are hardly surpris-
ing, which is reassuring if our aim is to make sense of ontogenetic allometry in functional
and ecological terms.

Comparative analysis of ontogenetic allometry: traditional
morphometric data

Comparative studies of ontogenetic allometries serve two primary purposes. First, they
test general theories about the relationship between form, function and development. For
example, considerations of function suggest that, generally, teleosts ought to share the pos-
itive allometry of the head and caudal body during larval growth, with postlarval growth
being characterized by positive allometry of the region between. Comparative studies can
test that general hypothesis, and pursue more refined theories of the ontogeny of func-
tion should the expected pattern be less general than anticipated. Second, comparative
studies test theories about the evolution of development and the impact of evolving devel-
opmental systems on morphological diversity (= disparity; see Chapter 12). For example,
we might anticipate that early development is more conservative than later development
because modifications of early development are likely to have dramatic consequences for
later phases. Of course, we would not anticipate that this would be the case for organisms
that have distinct metamorphic phases, because metamorphosis can decouple phases of
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development. Consequently, each could evolve independently. Therefore we could state
the theory as comprising two parts: (1) in organisms that have continuous development,
early stages are more conservative than later ones; and (2) early development is more
conservative in organisms that have continuous development than in those with distinct
metamorphoses. Testing such general theories about the evolution of growth and morpho-
genesis, including theories about heterochrony, is another major rationale for comparative
allometric studies.

Below we have classified a variety of evolutionary patterns according to the changes in
development producing them and the resultant relationship between ontogeny and phy-
logeny. We first discuss parallelism or channeling (for the remainder of this chapter we will
use the term “channeling” rather than parallelism, because we are talking about coinci-
dent rather than parallel lines). This pattern is characterized by species that have the same
shape at the outset of differential growth, as well as a common direction of allometry.
Biologically, channeling results from changes in the rates or timings of development along
a conservative ancestral ontogeny. The second class includes modifications of the onto-
genetic trajectory itself – not just its relationship to growth or age. These involve changes
in the spatiotemporal organization of development, and we can subdivide them according
to the phases affected: (1) changes confined to early morphogenesis (which we typically
infer only by their affects on proportions at the outset of allometric growth); (2) changes
in the spatiotemporal organization of growth from the outset to end of allometric growth;
and (3) changes in spatiotemporal organization of growth confined to late development.
There is an additional, heterogeneous category: complex changes in multiple processes
and stages.

Below, we describe several patterns in more detail, focusing first on the relationship
between ontogeny and phylogeny engendered by each and their consequences for disparity,
and finally on the criteria whereby they can be distinguished empirically.

Channeling

Channeling refers to the case in which the descendant adult morphology lies along the
ancestral ontogeny because the ancestral and descendant ontogenies begin at the same
starting point and proceed in the same direction. Representing this pattern in terms of
a plot of log(Y) on log(X), channeling occurs when the descendant merely extends or
truncates the ancestral ontogeny; graphically, scaling can be seen in plots of log(Y) on
log(X) – both ontogenetic series start at the same point and lie on the same line, it is just
that one species extends that line further (Figure 13.6A). Consequently, the direction of
evolutionary change lies along the vector describing the ancestral ontogeny (Figure 13.6B).
This is the pattern that Gould calls “parallelism” (Gould, 1977), and it is expected when
the species differ solely in rate or timing of either growth or development. It implies that
rate or timing evolve, but the ancestral pattern of relative growth rates (both larval and
postlarval) is conserved.

We subdivide channeling into two types because growth and development can either
be associated or decoupled. If they are associated, the descendant has the shape expected
for its size – e.g. it looks young for its age because it is small for its age. Organisms that
look young for their age are called paedomorphic (from “child-like”). Descendants might
also look old for their age because they are large (they are called peramorphic because
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Figure 13.6 Channeling by ontogenetic scaling, depicted by a bivariate plot of log(Y) on log(X).
The same pattern will be found for all the measured Y variables, thus the pattern can be represented
by a single bivariate plot. (A) Ontogenetic allometries of ancestor (circles) and descendant (squares);
(B) the directions of ontogenetic (O) and evolutionary change (E).

they go through and beyond the endpoint of the ancestral ontogeny). In the latter case,
the descendant adult morphology does not actually appear in the ancestral ontogeny, but
it results from extending it. However, it is possible to be paedomorphic and large, and
also to be peramorphic and small. These are cases in which growth and development are
decoupled – for example, developmental rates might be reduced without a corresponding
reduction in growth rates, so the descendant reaches maturity before it attains the ancestor’s
adult morphology even though it reaches the ancestor’s adult body size. The empirical
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criteria for documenting ontogenetic scaling differ in an important respect from those that
document channeling via decoupling of growth from development. For that reason, we
discuss the empirical criteria separately.

Empirical criteria for documenting ontogenetic scaling
Of all the various modifications of development, ontogenetic scaling is the easiest to detect,
at least in principle. The biological hypothesis predicts that species differ only in adult body
size, not in either {b1,b2,b3, …bP} or {k1,k2,k3, …kP}. For the remainder of this chap-
ter, we will refer to {b1,b2,b3, …bP} rather than {log(b1), log(b2), log(b3), … log(bP)} to
simplify the presentation. Given this hypothesis, we can use MANCOVA to test it. How-
ever, given our expectations of no evolutionary change in either vector, using MANCOVA
poses a problem – the substantive biological hypothesis is equivalent to the statistical null.
Normally we think of the null as the hypothesis we would like to reject, and we use various
strategies to ensure that we do not reject it too readily. However, the hypothesis of scaling
is the one we wish to accept, so we are put in an odd position. One consequence is that
all the factors that normally can prevent us from rejecting a false null hypothesis, such as
lack of statistical power/small sample size, favor accepting a false hypothesis of scaling.

A second problem that arises in many studies is that many of the variables imply scaling,
but a few others do not. Viewed from a bivariate perspective, this means that many traits
undergo scaling but a few do not. However, viewed from a multivariate perspective, it
means that the organism is not a scaled up or down version of its ancestor because not all
traits are scaled up or down. It also means that either early or late development is altered,
depending on whether the departures from scaling involve {b1,b2,b3, …bP} or {k1,k2,
k3, …kP} (and they could both be involved). Whether those modifications are trivial or
consequential depends on how far they deviate from scaling, and what their consequences
are for morphology. We therefore need measures of the deviations from the expectations
under the hypothesis, as well as measures of the impact of those deviations on {y1, y2,
y3, . . . yP}.

Because the hypothesis predicts that both species will have the same vector {k1,k2,
k3, …kP}, we would predict that the interspecific angle between those vectors will be 0.0◦;
we can test that hypothesis using the methods introduced in Chapter 10. However, we
also need to have a feel for the magnitude of the angle. In analyses based on traditional
morphometric data, angles will rarely be large, even if the vectors are no more similar
than expected by chance. Being no more similar than expected by chance does not mean
that the angle will be 90◦. To understand why that is the case, it is necessary to recall
how those angles are calculated, as well as to appreciate the meaning of k. The angles are
computed by taking the dot product between the two vectors, which means we multiply
k1 of one species by k1 of the other, and add that to the product of k2 in one species by
k2 of the other, and so forth; so we are summing products of corresponding allometric
coefficients. These coefficients are the power to which body size is raised in the power
law (Equation 13.1). So long as structures grow over ontogeny, k is invariably a positive
number. The coefficients rarely differ by much – the most extreme values for S. gouldingi
are 0.75 (for eye diameter) and 1.23 (for midbody depth and posterodorsal head length).
That difference may seem very large because one is highly negatively allometric whereas
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the other is highly positively allometric, but the difference is still numerically very small
(in this case, it is less than 0.5).

Because all the elements of both vectors are positive numbers, the sum of their products
cannot be zero – much less negative. To produce an angle of 90◦, the sum would have to be
zero (because the cosine of 90◦ is zero). The angle is necessarily smaller than that – often
very much smaller. To appreciate how small it can be when vectors are independent, we
can compare a vector of ontogenetic allometric coefficients to 400 random permutations
of it. In the case of S. gouldingi the average vector correlation over those 400 random
permutations is 0.9812 with a confidence interval of 0.9754–0.9874, corresponding to an
angle of 11.13◦ with a confidence interval of 9.10◦–12.74◦. Therefore, only correlations
higher than 0.9874 (or, equivalently, angles smaller than 9.10◦) indicate any greater sim-
ilarity than expected by chance. It may seem unreasonably strict to insist that the angle
cannot be much greater than 0◦, but in light of the large differences implied by very small
angles, we cannot document scaling if angles much exceed 0◦.

If the vectors of allometric coefficients are different, we cannot compare the vectors
of b by MANCOVA. However, we do not actually need to compare them because we
have already rejected the hypothesis of scaling by finding a significant difference in {k1,k2,
k3, …kP}.

Empirical criteria for documenting a decoupling of growth from development
When growth and development are decoupled, we anticipate changes in {k1,k2,k3, …kP},
but only those consistent with the hypothesis that development is conserved. The specific
expectations may seem strikingly counterintuitive; rather than simply stating them, we
will derive them from the meanings of paedomorphosis and peramorphosis. Paedomor-
phosis means that the descendant adult resembles the ancestral juvenile morphology – over
ontogeny it does not depart as far from the shared juvenile morphology. The extreme case
is an adult that does not depart at all from the juvenile morphology, meaning its growth
is isometric (it does not change shape as it grows). In less extreme cases, we expect the
descendant ontogeny to be more nearly isometric than the ancestor’s. Based on that rea-
soning, we can predict that positively allometric coefficients will decrease in slope whereas
negatively allometric coefficients will increase because positively and negatively allometric
coefficients approach isometry from opposing directions. An example of a pattern expected
under this hypothesis is shown in Figure 13.7.

Of course, the coefficients must all change by the appropriate amount. Considering
that paedomorphosis results from truncating the ancestral ontogeny, and peramorphosis
from extending it, we would anticipate only a change in the length of the ontogenetic
trajectory – the two vectors of allometric coefficients should otherwise be the same. Thus,
we anticipate an angle of 0.0◦ between vectors. Framing the hypothesis of a conserved
larval morphology is more complicated because we cannot test the coefficients {b1,b2,
b3, …bP} owing to the differences in {k1,k2,k3, …kP}. Above, we determined that we do
not need to test the hypothesis that {b1,b2,b3, …bP} does not differ because the differences
in {k1,k2,k3, …kP} rule out the hypothesis of scaling. However, we are no longer asking
whether size predicts shape. It is possible that species do not differ in proportions at
the smallest observed stage (even if they differ in proportions at any given size). Thus,
instead of comparing {b1,b2,b3, …bP} we compare the expected shapes at a comparable
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Figure 13.7 Channeling when growth and development are decoupled, depicted by a bivariate
plot of log(Y) on log(X). Two plots are required to depict such cases, such as that of neoteny
(a decrease in developmental rate) because positively and negatively allometric coefficients are dif-
ferently modified. The figured case is an example of neoteny; compared to the ancestor (circles),
the descendant (squares) has allometric coefficients that are closer to isometry – the descen-
dant’s adult proportions more closely resemble those of the shared juvenile morphology. Positively
allometric coefficients decrease (towards 1.0) whereas negatively allometric coefficients increase
(towards 1.0).

developmental stage, i.e. {Y1,Y2,Y3, …YP} at that stage. That comparison is made by
predicting {Y1,Y2,Y3, …YP} at the appropriate values of X for each species, using species-
specific regression equations. The residuals from each regression are then added to the
species-specific mean, and the two samples are compared. That is precisely what we did
when size-standardizing geometric data in Chapter 10.
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Figure 13.8 Gould’s (1977) clock model. The descendant’s size, shape and age at one developmental
stage are compared to the ancestor’s ontogeny of shape, size and age. The hands of the clock show
the change from ancestral to descendant values, pointing from the descendant’s age-specific shape
and size to the corresponding ancestral values (no hand is shown if there is no change). The shape
hand points to the left, so the descendant adult has the morphology of a younger stage in the ancestral
ontogeny.

When channeling is found and age data are available (or collected), it is possible to go
further and identify the changes in developmental rate and/or timing. Both Gould (1977)
and Alberch et al. (1979) provide analytic formalisms for that purpose, and it is worth
understanding them because they are so widely used in the literature.

Formalisms for heterochrony
There are two formalisms for the study of heterochrony: Gould’s (1977) “clock-model”
and Alberch et al’s. (1979) scheme. Although the clock model is rarely used in the modern
literature, understanding it is important because it supplied the context for Alberch et al.’s
scheme. Alberch et al. retained the meaning of the concepts and terms defined by Gould
(excepting those they explicitly redefined).

The face of the clock contains two arcs and one bar (Figure 13.8). One arc is a shape
axis. The values of the ancestral shape are plotted along the arc, with the values for the
youngest age on the left. The second arc is the size axis; values of the ancestral size are
plotted on this axis so that the size and shape for each age match up. Age is represented by
the bar at the bottom. Although the entire ontogeny of the ancestral shape is represented
on the clock, the descendant is analyzed at a single (static) stage. Not surprisingly, the need
to single out one stage for comparison prompted much discussion about the appropriate
standard for comparison. That standard could be a chronological age, a developmental
age, or even a size. Whatever standard is used, the objective is to find the matching ancestral
size and shape at that point. When found, the hands of the clock are arranged to point
to it; if the matching shape occurs at an earlier stage in the ancestor, the “shape hand”
of the clock will point to the left. Similarly, if the matching size occurs at an earlier stage
in the ancestor, the “size hand” also points to the left. Differences between ancestor and
descendant in chronological age at the developmentally comparable stages are indicated
by cross-hatching on the age bar.

The clock provides diagnostic tests for types of heterochrony, which Gould defines
both verbally and in terms of the patterns revealed by the clock model. For example,
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Figure 13.9 Alberch et al. formalism. The clock is redrawn by representing the ancestral shape,
size and age as three mutually orthogonal axes. Species are compared with respect to the age at
onset of development (α), rate of development (kσ ), rate of growth (ks), and age at termination of
development (β). See Table 13.4 for the names of the heterochronic perturbations defined by changes
in these three parameters.

neoteny is retardation in the development of shape, and it is evident from the shape hand
pointing to the left. However, Gould’s classification was soon replaced by the one devised
by Alberch et al., and the two schemes are not completely consistent. Thus, we will detail
the types of heterochrony based on the Alberch et al. scheme.

Alberch et al. (1979) redesigned Gould’s formalism, using a more conventional rep-
resentation of a three-dimensional space: three mutually orthogonal axes (Figure 13.9).
They also replaced Gould’s static comparative framework by a dynamic one; the descen-
dant ontogeny (not just one point along it) is analyzed in conjunction with the ancestral
ontogeny. Each ontogeny is represented as a vector in the three-dimensional space defined
by the ancestral values of size and shape. The comparisons are made with respect to four
parameters: (1) α, the age at the onset of development; (2) β, the age at offset of devel-
opment, (3) kσ , the rate of development (i.e. the rate of change in shape); and (4) ks the
rate of growth (i.e. the rate of change in size). Each parameter can differ in two directions,
yielding the eight pure heterochronic perturbations (Table 13.4). Two of them, propor-
tional giantism and dwarfism, are not usually considered to be heterochronic perturbations
because they do not yield either paedomorphic or peramorphic descendants, but they are
usually included for the sake of completeness. Of course, combinations of these pure cases
are also possible. However, if we found a combination of +ks and −kσ , for example, we
would not construct a compound name from the labels for each one – that would result
in “proportional giantism plus neoteny” when, by definition, a proportional giant is a
giant replica of the ancestral morphology, and neoteny necessarily signifies a difference
in shape.
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Table 13.4 Definitions of the eight pure heterochronic perturbations and
their morphological expression, as defined by Alberch et al. (1979)

Control Incremental Process Morphological
parameter change expression

α −δα Predisplacement Peramorphosis
+δα Postdisplacement Paedomorphosis

β −δβ Progenesis Paedomorphosis
+δβ Hypermorphosis Peramorphosis

Kσ −δkσ Neoteny Paedomorphosis
+δkσ Acceleration Peramorphosis

ks −δks Proportional giantism
+δks Proportional dwarfism

Changes in ontogenetic trajectories

Changes in ontogenetic trajectories produce novel morphologies, not just descendants
that resemble ancestors at an older or younger developmental stage. Although all involve
changes in the spatiotemporal organization of development, they produce different rela-
tionships between ontogeny and phylogeny as well as different ontogenetic patterns in
disparity.

Changes confined to early morphogenesis
When species diverge very early in development they will differ in proportions at the outset
of allometric growth, but they subsequently follow the same ontogeny. Consequently, the
descendant allometric vector parallels the ancestral one but starts at a different shape
(Figure 13.10A). This pattern is often termed “transpositional allometry” because, as is
evident in Figure 13.10A, the descendant ontogeny is merely translated up or down the
Y-axis (when reading the picture, it is important to recall that it is a log–log plot). The
evolutionary direction of change is the same whether we look at juveniles or adults (Figure
13.10B). For example, if the descendant ends larval development with a head twice as
long for its body as the ancestor’s, it will be twice as long for its body (compared to an
ancestor at the same size) throughout the whole of ontogeny. Neither the magnitude nor
the structure of disparity changes over ontogeny.

Transpositional allometry means that early development is more labile than later. It
also means that divergence occurs very early – the differences are evident at X=1 (after
which the species follow the same ontogeny).

Empirical criteria for documenting changes confined to early morphogenesis
Detecting this pattern is relatively straightforward: the expectation is that species do not dif-
fer in {k1,k2,k3, …kP} but do in {b1,b2,b3, …bP}, which is easily tested by MANCOVA.
Because the differences are in {b1,b2,b3, …bP}, which is the Y-intercept, the divergence
in shape is manifest when X=1, which is when log(X)=0. That all change must occur
prior to that point is why transpositional allometry indicates a divergence in, and solely
in, very early development.
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Figure 13.10 Changes confined to early morphogenesis, depicted by a bivariate plot of log(Y) on
log(X). Species differ in proportions early in development (shown by differences in the Y-intercept)
but subsequently follow the same allometric vector. A plot of a single measurement suffices to show
the general case, even though some might not differ in the Y-intercept. No measurements differ in
slope. (A) Ontogenetic allometries of ancestor (circles) and descendant (squares); (B) comparison of
directions of ontogenetic change (O), and evolutionary change (E), to divergence of shape during
larval (i.e. early) morphogenesis (L).

Changes in the spatiotemporal organization of development from the outset
to the end of allometric growth
If species differ in their ontogenetic allometries from the outset of larval growth, they
undergo different ontogenetic transformations in shape. Whether they diverge progres-
sively as they develop, or instead converge, is not specified by the hypothesis; it simply
claims that the difference results from a particular kind of change in development. To
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Figure 13.11 Changes in the spatiotemporal organization of development from the outset to end of
allometric growth, depicted by two bivariate plots of log(Y) on log(X). Both the ancestor (circles) and
the descendant (squares) begin development with the same shape, but undergo different changes in
proportion. To show this pattern we need at least two plots because it involves a change in the ratios
among allometric coefficients. Directions of ontogenetic change and evolutionary change cannot be
compared in either two-dimensional space; such a comparison requires a multidimensional space.

consider a simple example, we can use head length : head depth proportions in two species
(Figure 13. 11). The ancestral head is positively allometric in both length and depth, and
the two allometric coefficients are nearly equal, so head shape is isometric (but the head
enlarges relative to the body). The descendant head, like the ancestral head, is positively
allometric in length, but depth is more nearly isometric. Therefore head depth is nega-
tively allometric relative to head length, even if it is isometric relative to body length. Over
ontogeny, head length increases relative to body length, and also relative to head depth.

This hypothesis cannot be depicted by a single bivariate relationship because it concerns
a change in the ratios of two or more k’s, so we need at least two bivariate plots to represent
it graphically. Accordingly, we cannot draw the directions of ontogenetic and evolutionary
change on these plots. There are two different directions of ontogenetic change, and the
direction of evolutionary change will vary over ontogeny. Moreover, the hypothesis does
not explicitly state whether species resemble each other at the outset of the measured phase,
or at the outset of allometric growth (i.e. at log(X)=0) or at a later developmental stage
(meaning that the regression lines would intersect on the plot). To draw the plots, we have
incorporated an assumption not required by the hypothesis – that species resemble each
other when we first observe them.

Empirical criteria for documenting changes in spatiotemporal organization
of development from the outset to the end of allometric growth
The hypothesis predicts that species will differ in {k1,k2,k3, …kP} and, like the hypothesis
of transpositional allometry, this is easily tested by MANCOVA. However, channeling can
also produce changes in k, so we need to document a change in the direction of {k1,k2,
k3, …kP}, not just a change in overall rate of development. To test that hypothesis, we can
show that the interspecific angle between vectors of allometric coefficients is no larger than
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Figure 13.12 Changes in the spatiotemporal organization of development, confined to late stages of
development. The hypothesis predicts (A): ancestor (indicated by circles) and descendant (indicated
by squares) follow the same ontogeny up to the transition from one stage to the next (indicated
as a transition from larval (L) to postlarval (P) phases), after which they diverge. The similarity
in proportions at the transition point could, however, have a different explanation, shown by (B):
Ancestor (indicated by circles) and descendant (indicated by squares) follow divergent ontogenies
that intersect at the transitional point. The diagrams represent the two cases for a single measurement,
but the same explanation would have to hold for all measurements.

anticipated by chance (it is important to test them and not just measure them, because very
small angles are expected even when ontogenies differ considerably). We can also show
that species do not differ in developmental rate/timing, which means documenting that
neither extension nor truncation occurs. Both alter the length of the ontogenetic vector,
so we can compare those lengths (which are estimated by the square root of the summed
squared allometric coefficients).

Changes in spatiotemporal organization of development, confined to
late development
This hypothesis differs from the one described above because the modifications are
specific to late stages of ontogeny. Accordingly, species initially resemble each other and
diverge progressively as they grow. Figure 13.12 depicts such a case. This hypothesis tac-
itly assumes that the allometric model of constant relative growth rates does not hold for
the whole of ontogeny, because it claims that species share a common larval allometric
pattern but diverge later. This hypothesis thus predicts that species coincide in their regres-
sion lines during early development and later diverge, when the regression line for at least
one of the species changes its slope (Figure 13.12A). The alternative explanation, which
is not consistent with the biological hypothesis, is that both regression lines are straight
and extend all the way back to the Y-intercept, and happen to intersect at the youngest
observed age (Figure 13.12B).

This hypothesis of conserved early development and divergent later development is
consistent with von Baer’s second law, so we might anticipate that the pattern is common.
Although progressive divergence could occur by other kinds of modifications of ontogeny
as well (see below), it appears that progressive divergence is not common – or at least it is
rarely reported.



chap-13 4/6/2004 17: 28 page 345

THE RELATIONSHIP BETWEEN ONTOGENY AND PHYLOGENY 345

Empirical criteria for documenting changes in the spatiotemporal
organization of development, confined to late development
The hypothesis predicts that species will differ in {k1, k2, k3, . . .kP} but will not differ
in shape at the outset of the measured developmental phase. That is not equivalent to
predicting that they do not differ in {b1,b2,b3, …bP}, because b is the value for Y when
X=1, which is much smaller than a larval length. Instead, the hypothesis predicts that
species do not differ in proportions at the earliest stage observed (or at the youngest stage
relevant to the hypothesis); their divergence begins after that point. The first step in testing
the hypothesis is the same as discussed above: documenting interspecific differences in
{k1,k2,k3, …kP}, which can be done by MANCOVA and by showing that the interspecific
angles between the vectors are larger than anticipated by chance. The second step is to show
that species are very similar in shape early in development (and diverge as they grow). This
can be done by estimating the proportions expected for each species at that stage, which is
done by predicting {Y1, Y2, Y3, . . .YP} for each. Given that we find differences in {k1,k2,
k3, …kP}, we need to base these predictions on the regression models fitted separately to
each species. We can then assess whether the expected values differ significantly, which is
done by adding the residuals from the regression model to the expected value (as calculated
for each species) and then comparing the expected shapes between species statistically. We
can also compare the lengths of the ontogenetic vectors (as described above), which are
predicted not to differ.

Complex changes in multiple parameters and stages

Having considered several simple cases, we can begin to explore the more interesting
combinations of two or more modifications. We will consider four possibilities:

1. That both early and late morphogenesis are modified but developmental rate/timing
is not (Figure 13.13)

2. That one phase is modified in both morphogenesis and developmental rate, whereas
the other is not modified in either (Figure 13.14)

3. That early morphogenesis is modified but later development is modified solely in
developmental rate/timing (Figure 13.15)

4. That both stages are modified in morphogenesis and developmental rate/timing is also
altered (Figure 13.16).

Although all these cases are similar in that multiple developmental parameters differ,
and also all predict a complex relationship between ontogeny and phylogeny; they differ
considerably in their biological implications. The first implies that morphogenesis is more
labile than developmental rate/timing – rate/timing is conserved although morphogenesis
evolves. The next two imply that one developmental stage is more labile than the other
and that it is labile in both morphogenesis and developmental rate/timing. The fourth
implies that development is highly labile in general – everything that can change does. The
most interesting consequences of these complex modifications, aside from what they tell us
about the lability of development, are their potential impacts on disparity. The interactions
among the multiple novelties may result in greater disparity than expected from the impact
of each one, taken separately, or in less disparity than expected from a single modification.
Interactions among multiple novelties might either amplify or counterbalance each other.
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Figure 13.13 A complex change involving a modification of early morphogenesis combined with a
change in the spatiotemporal organization of later development. The ancestral ontogeny is indicated
by circles, descendent ontogeny by squares. Like the case shown in Figure 13.11, this one cannot be
depicted by a single bivariate plot because it involves changes in the ratios of allometric coefficients.
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Figure 13.14 A complex change involving both a modification in the spatiotemporal organization
of development late in ontogeny and a modification of developmental rate/timing. The ancestral
ontogeny is indicated by circles, the descendent ontogeny by squares. The change in late devel-
opment is evident in the translation of the descendant’s ontogeny along the Y-axis; the change in
developmental rate/timing is due to an increase in adult body size. To show a change in develop-
mental rate without concomitant change in body size, two bivariate plots would be needed to depict
the contrasting changes in positively and negatively allometric coefficients. Like all cases involving
a modification of late morphogenesis, and hence a change in direction, at least two bivariate plots
are needed to depict the pattern.

Empirical criteria for documenting changes in multiple parameters and stages
To identify the parameters that differ, we need to compare: (1) shapes at the youngest
comparable stage; (2) vectors of allometric coefficients; and (3) lengths of the ontogenetic
vectors. To determine the impact of these changes on disparity we need to measure dispar-
ity at two or more stages, and also, ideally, to measure the impact of each modification
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Figure 13.15 A complex change involving a modification of early morphogenesis and a change in
developmental rate/timing. The ancestral ontogeny is indicated by circles, the descendent ontogeny
by squares. As in Figure 13.13, the change in developmental rate/timing is due to an increase in
adult body size. To show a change in developmental rate without concomitant change in body
size, additional bivariate plots would be needed to depict the contrasting changes in positively and
negatively allometric coefficients. Like all cases involving a modification of spatiotemporal patterns
of development, at least two bivariate plots are needed to depict the pattern.

separately. In addition we can determine if ontogenies diverge over time, remain at a con-
stant distance apart, or converge towards a similar endpoint by combining the ontogenetic
series of multiple species and analyzing them by PCA.

Applying these criteria to an empirical case: comparing ontogenies of
S. gouldingi and S. manueli

To conclude our discussion of comparing ontogenetic allometries based on traditional
morphometric data, we will compare the ontogenetic allometries of two sister species –
S. gouldingi and S. manueli. The allometric coefficients b and k are given in Table 13.5, and
the ks are plotted on the measurements to give a better appreciation of where the species
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Figure 13.16 A complex change in three parameters: early morphogenesis; modification of later
morphogenesis; and change in developmental rate and timing (due to increased body size). The
ancestor ontogeny is indicated by circles, the descendent ontogeny by squares.

Table 13.5 Allometric coefficients b and k and their standard errors for
S. gouldingi and S. manueli (see Figure 13.1 for the definition of the variables)

Variable S. gouldingi S. manueli

b (std error) k (std error) b (std error) k (std error)

v2 −0.94 (0.13) 0.81 (0.03) −1.81 (0.09) 1.03 (0.02)
v3 −0.61 (0.05) 0.89 (0.01) −0.47 (0.06) 0.87 (0.01)
v4 −1.16 (0.07) 0.85 (0.01) −1.27 (0.07) 0.90 (0.02)
v5 −2.64 (0.13) 1.23 (0.03) −1.45 (0.11) 0.96 (0.03)
v6 −1.40 (0.04) 1.04 (0.01) −1.14 (0.05) 1.00 (0.01)
v7 −1.51 (0.06) 1.00 (0.01) −1.80 (0.05) 1.09 (0.01)
v8 −1.38 (0.09) 0.93 (0.02) −1.00 (0.11) 0.85 (0.03)
v9 −1.97 (0.08) 1.10 (0.02) −1.81 (0.08) 1.06 (0.02)

v10 −1.76 (0.04) 1.22 (0.01) −1.56 (0.04) 1.17 (0.01)
v11 −1.93 (0.04) 1.20 (0.01) −1.59 (0.04) 1.13 (0.01)
v12 −1.60 (0.04) 1.14 (0.01) −1.32 (0.04) 1.08 (0.01)
v13 −2.38 (0.09) 1.19 (0.02) −2.27 (0.07) 1.15 (0.02)
v14 −2.23 (0.07) 1.12 (0.02) −2.10 (0.09) 1.08 (0.02)
v15 −1.68 (0.04) 1.21 (0.01) −1.41 (0.05) 1.15 (0.01)
v16 −1.78 (0.04) 1.23 (0.01) −1.52 (0.05) 1.17 (0.01)
v17 −1.55 (0.03) 1.17 (0.01) −1.24 (0.05) 1.10 (0.01)
v18 −2.57 (0.08) 1.17 (0.02) −1.98 (0.10) 1.05 (0.02)
v19 −1.94 (0.05) 1.09 (0.01) −1.62 (0.06) 1.02 (0.02)
v20 −1.69 (0.05) 1.10 (0.01) −1.40 (0.04) 1.04 (0.01)
v21 −1.99 (0.04) 1.23 (0.01) −1.74 (0.05) 1.17 (0.01)
v22 −1.83 (0.04) 1.22 (0.01) −1.56 (0.05) 1.16 (0.01)
v23 −1.47 (0.04) 1.07 (0.01) −1.30 (0.05) 1.03 (0.01)
v24 −1.67 (0.08) 0.94 (0.02) −2.70 (0.13) 1.13 (0.03)
v25 −2.69 (0.07) 1.12 (0.01) −2.57 (0.06) 1.09 (0.01)
v26 −1.56 (0.03) 1.13 (0.01) −1.37 (0.04) 1.09 (0.01)
v27 −1.82 (0.11) 0.90 (0.02) −3.41 (0.16) 1.23 (0.04)
v28 −1.23 (0.09) 0.81 (0.02) −1.89 (0.10) 0.97 (0.02)
v29 −1.16 (0.08) 0.75 (0.02) −1.50 (0.08) 0.82 (0.02)
v30 −0.64 (0.04) 0.90 (0.01) −0.51 (0.04) 0.89 (0.01)
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Figure 13.17 Allometric coefficients of S. gouldingi and S. manueli.

differ (Figure 13.17). Statistically, they differ in k for nearly all variables; the exceptions
are two in the head (v3 and v30), two anterior postcranial measurement (v9 and v13)
and the depth measurement of the caudal peduncle (v25). The angle between the vectors is
small (6.27◦), but is nonetheless significantly greater than 0.0◦ (p<0.05). Considering that
an angle of only just over 12.74◦ indicates greater dissimilarity than expected by chance,
6.27◦ does not seem so modest. There is some evidence, albeit slight, for an interaction
between modifications of early and late ontogeny that reduce disparity over ontogeny;
this pattern of counterbalancing modifications is suggested by the plot of PC2 on PC1
(Figure 13.18). Scores on PC1 increase with age, it also looks as though they are more
differentiated on PC2 earlier rather than later, and that they gradually reach a more similar
form. Yet the scale of PC2 is tremendously exaggerated in the plot; that axis accounts for
only 0.4% of the variance (PC1 accounts for 98.9%). So it is not clear whether this really
is a case of counterbalancing, an issue we will return to in the analysis of these species
using a geometric approach.
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Figure 13.18 PCA of the pooled ontogenetic data of S. gouldingi and S. manueli. The scale of
the Y-axis (PC2) is greatly exaggerated to make the separation between species more visible; older
specimens are to the right of the plot. The two species appear to differ, albeit subtly, in shape at the
outset of the measured stage and in their ontogenies. The modification of juvenile growth appears to
counterbalance the change in larval morphogenesis such that adults are more similar than juveniles.

Exploring evolutionary patterns of evolving ontogenies: geometric
morphometric analyses

Geometric studies of ontogenetic allometry are formally similar to traditional morphome-
tric ones, but there are important differences in the meanings of the parameters. Revisiting
the regression of geometric shape on size (covered in Chapter 10), the general bivariate
linear regression model is:

Yi = mXi + bi + εi (13.4)

where Y is a shape variable, X is body size (measured by centroid size), b is the Y-intercept
and ε is the error term. Because we invariably analyze shape data multivariately, the model
we actually use is:

{Y1, Y2, Y3, . . . YP} = {m1,m2, m3, . . .mP}X + {b1, b2, b3, . . .bP} + {ε1, ε2, ε3, . . . εP}
(13.5)

where {Y1,Y2,Y3 . . .YP} is the vector of shape variables (i.e. landmark coordinates
obtained by GLS, or partial warp scores including the uniform component), X is cen-
troid size, and {m1, m2, m3, . . .mP}, {b1, b2, b3, . . .bP} and {ε1, ε2, ε3, . . . εP} are vectors
of slope coefficients, intercepts and residuals, respectively.

One consequence of analyzing allometry using geometric data instead of traditional data
is that the allometric coefficients are no longer meaningful in terms of a specific growth
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model – either a power law (Equation 13.1) or a sigmoidal curve of size or shape relative
to time. Instead, they indicate that shape changes with size. The underlying causes of those
changes are the same ones that account for allometric coefficients of traditional measure-
ments, but we cannot treat the coefficients as if they were rates of growth of individually
meaningful variables, nor can we use them to estimate time-lags between growth curves of
organs. Unlike the allometric coefficients of traditional measurements, those of geometric
shape variables have no individual biological meaning. For that reason, comparisons of
ontogenetic allometries using geometric variables are rarely (if ever) done bivariately. We
would not plot one shape variable at a time on size, except to check for linearity. In a geo-
metric analysis we are not comparing coefficients measurement-by-measurement; rather,
we are comparing whole sets of coefficients describing the ontogeny of an entire landmark
configuration. However, the difference in the meanings of the coefficients does not impede
our ability to recognize the patterns discussed above in the context of traditional measure-
ments. None of these patterns were defined in terms of particular coefficients; hence they
are not functions of a particular measurement scheme. We can thus examine the evidence
for them in geometric as well as traditional data.

Channeling

To depict the pattern of channeling, we can consider a hypothetical case in which species
have the same shape at the outset of development and follow the same ontogeny of shape,
but differ in the overall rate or timing of development. Graphical evidence of channeling is
shown in Figure 13.19, where we see that the coordinates of the juveniles of the two species
are the same (Figure 13.19A), as are the two ontogenies of shape (Figure 13.19B), but the
trajectories differ in length (Figure 13.19C). Perhaps the most compelling visual evidence
is shown in Figure 13.20 – the descendant adult morphology lies at a subadult position on
the ancestral ontogeny. We can see the coordinates for the descendant’s landmarks in an
intermediate position along the ancestral ontogeny.

The graphical evidence is corroborated by statistical analysis. In a statistical test of
channeling, we would not expect to find a significant difference between the two ontogenies
of shape or in the shape at the youngest comparable phase but we would anticipate a
difference in the length of the ontogenetic vector (the parameter that measures the total
amount of change undergone in each ontogeny over the observed phase). Carrying out these
tests for the hypothetical species depicted in Figure 13.18, we would measure the similarity
between ontogenies of shape by the angle between the (normalized) vector of allometric
coefficients {m1, m2, m3, . . .mP}. We find no significant difference between them; the
tiny angle of only 1.8◦ is not significant compared to the ranges that can be obtained by
resampling within them (4.2◦, 7.5◦). We also find no significant interspecific difference
between shapes at the outset of the measured phase of development using Goodall’s F-test
(p>0.999); and the magnitude of the difference between them is a Procrustes distance of
0.0. We do, however, find a significant difference in the length of their ontogenetic vectors
as estimated by the Procrustes distance between youngest and oldest comparable stages; for
the ancestral species that distance is 0.1999 (0.1961–0.2030), whereas for the descendant
it is only 0.109 (0.1055–0.1129). Thus, the descendant’s ontogeny is a truncated version
of the ancestor’s.
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Figure 13.19 Channeling, depicted geometrically (see Figure 13.1 for the same pattern depicted
for traditional measurement data). (A) Superimposed coordinates of juvenile shapes; (B) ontogenies
of shape; (C) lengths of ontogenetic vectors of shape. The two species have the same shape at the
outset of the measured phase, follow the same ontogeny of shape, but differ in the length of their
ontogenetic vectors; the descendant has a truncated version of the ancestral ontogeny.

Figure 13.20 Superimposed coordinates for showing the ontogenetic transformation of ancestral
shape (black circles) and the descendant adult shape (gray squares). The descendant adult shape is
at an intermediate position along the ancestral ontogeny.
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Changes in the ontogenetic trajectory

Changes confined to early morphogenesis
If changes occur solely in early morphogenesis, we would expect that species would be
shaped differently at the youngest comparable stage (Figure 13.21A) but would subse-
quently follow the same ontogeny of form (Figure 13.21B), and to the same extent (Figure
13.21C). To test the hypothesis that only early development is labile, we can show that
there is a significant difference in shape at the outset of the measured phase, but that
any differences in later development are neither significant nor large. For the hypothet-
ical species shown in Figure 13.21, the difference between their shapes at the transition
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Figure 13.21 Change confined to early morphogenesis, depicted geometrically (see Figure 13.2
for the same pattern depicted for traditional measurement data). (A) Superimposed coordinates of
juvenile shapes; (B) ontogenies of shape; (C) lengths of ontogenetic vectors of shape. The two species
differ in shape at the outset of the measured phase, but subsequently follow the same ontogeny of
shape and do not differ in the length of their ontogenetic vectors.
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from larval to juvenile phases is highly significant (p<0.0001) and the Procrustes distance
between their means is large: 0.1247 (0.1196–0.1317). The contrast may seem particularly
striking when we look at the superimposed coordinates and find so little overlap between
species in several of them (Figure 13.21A). As anticipated, there is no significant difference
in their ontogenies of form; the angle between the two vectors is a tiny 1.9◦ (compared to
the within-species angles of 4.0◦ and 3.7◦). Also as anticipated, the lengths of the ontoge-
netic vectors are the same for both species: 0.1999 (0.1961–0.2030) for the ancestor, and
0.2040 (0.1978–0.2095) for the descendant.

Changes in the spatiotemporal organization of development from the outset
to the end of allometric growth
Should species differ in the spatiotemporal organization of morphogenesis, their ontoge-
netic vectors of shape will differ. It says nothing about shape at the youngest comparable
stage, so the only expectation is that the ontogenies of shape will differ. Rather than dis-
cussing this simple case any further, we will consider the more complex hypotheses that
include it.

Changes in the spatiotemporal organization of development, confined to
late development
Should all change be confined to late morphogenesis, we would expect to see no difference
between the species at the youngest comparable developmental stage (Figure 13.22A),
and a visible difference in their ontogenies of shape (Figure 13.22B). This hypothesis says
nothing about the length of the trajectory of late development; however, changes in length
are due to differences in rate/timing and not to differences in morphogenesis, so we have
drawn trajectories of the same length (Figure 13.22C). For this hypothetical case, juvenile
shapes do not differ (p>0.999, Procrustes distance=0.0) and neither do the lengths of
the ontogenetic vector: that of the ancestor is 0.1999 (0.1961–0.2030) and that of the
descendant is 0.2011 (0.1977–0.2046). However, as anticipated, the ontogenies of shape
differ significantly; the angle between the two vectors is 32◦ compared to the range of
within-species angles that can be obtained by resampling (3.7◦ for both).

Complex changes in multiple parameters and stages

It is difficult to construct hypothetical ontogenies to demonstrate interactions among mul-
tiple parameters, because that requires modeling perturbations of the ontogeny of entire
landmark configurations. Also, the most interesting distinctions among the possibilities
lies in their conflicting predictions about the ontogenetic dynamics of disparity. In par-
ticular, we would wish to distinguish between amplification (which predicts increasing
disparity over ontogenetic time) and counterbalancing (which predicts decreasing dispar-
ity over ontogenetic time). The contrasting patterns are not self-evident in the regression
parameters; distinguishing them requires measuring disparity. Rather than considering
another hypothetical case we will return to the analysis of an empirical case, S. gouldingi
and S. manueli, because our earlier analysis suggested that these species might exemplify
counterbalancing.
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Figure 13.22 Change in the spatiotemporal pattern of development confined to late development,
depicted geometrically. (A) Superimposed coordinates of juvenile shapes; (B) ontogenies of shape;
(C) lengths of ontogenetic vectors of shape. The two species have the same shape at the outset of
the measured phase, but subsequently follow different ontogenies of shape; they do not differ in the
length of their ontogenetic vectors.

An empirical case: comparing ontogenies of S. gouldingi and S. manueli

Comparing these two species using geometric methods provides compelling graphical
evidence that the species differ in morphology at the transition from larval to juvenile
development (Figure 13.23A), in juvenile morphogenesis (Figure 13.23B), and in length of
their ontogenetic trajectories (Figure 13.23C). The difference in shape at the transition from
larval to juvenile development is statistically significant (p<0.0001). Moreover, this differ-
ence is not just significant, it is large; the Procrustes distance between mean shapes at that
stage is 0.080 (0.077–0.084). Ontogenies of shape are visibly different and the difference
is statistically significant; the angle between their ontogenetic vectors is 34.9◦ (compared
to the within-species ranges of 11.0◦ and 16.6◦ for S. gouldingi and S. manueli, respec-
tively). The ontogenetic trajectories also differ significantly in length; that of S. gouldingi
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Figure 13.23 Ontogenies of S. gouldingi and S. manueli, depicted geometrically. (A) Superimposed
coordinates of juvenile shapes; (B) ontogenies of shape; (C) lengths of ontogenetic vectors of shape.
The two species differ in shape at the outset of the measured phase (the transition from larval to
juvenile phases), subsequently follow different ontogenies of shape and differ in the length of their
ontogenetic vectors.

is 0.2095 (0.2065–0.2128) and that of S. manueli is 0.1864 (0.01823–0.1906). Therefore,
these two species differ in all three parameters. However, the adults are far less different
than the young juveniles. The Procrustes distance between mean adult shapes is 0.051
(0.047–0.054) – a substantial drop from 0.080. That decrease can be seen in the analysis
of the pooled ontogenies of shape by PCA (Figure 13.24); with increasing age, scores on
PC1 increase, and the two species more closely resemble each other. We can now clearly
see the pattern hinted at in the analysis of traditional morphometric data. The evidence
based on geometric data is stronger, because now there are two distinct eigenvalues, and
PC2 explains 9.5% rather than 0.4% of the variance. Taken together, these results all
demonstrate that the modifications of juvenile development counterbalance those of larval
development, thereby stabilizing adult morphology.
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Figure 13.24 PCA of the pooled ontogenetic data of S. gouldingi and S. manueli. The two species
differ in shape at the outset of the measured stage (the transition from larval to juvenile phases) and
also in their ontogenies; older specimens are to the right of the plot. The modifications of juvenile
growth appear to counterbalance the change in larval morphogenesis such that the adults are more
similar than the juveniles.

Open questions

Having characterized a variety of evolutionary transformations of ontogeny, obvious
questions are:

1. Which is (are) most likely?
2. Which occur(s) most often?

To answer the first question, we can derive expectations from developmental theory or
functional morphology, or we can even turn to the empirical literature for insights into what
expectations are biologically reasonable. Developmental biology offers few general theo-
ries, but there is a general set of principles that can be useful for framing hypotheses. One
such general principle is that development is likely to be conservative when modifications
disrupt the sequence of epigenetic interactions on which later development depends. Hall
(1992) discusses the importance of epigenetic cascades, and these may resist modification
either because modifications are lethal or because the cascades are internally stabilized.
Stabilizing selection may play an important role in both cases, not only by eliminating
deviants but also by building internal mechanisms that resist such disruptions (internal
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stabilizing selection, see Cheverud, 1984). A related general principle is that development
is likely to be conservative when multiple (contemporaneous) processes are interdependent.
An argument for the relative stability of embryogenesis around the time of neurulation is
that this phase is the most highly integrated (Raff, 1992; Galis and Metz, 2001; Galis et
al., 2001). A similar argument has been used to predict which types of transformations in
ontogenetic allometries are most likely, based on the number of dissociations each requires
(e.g. Shea, 2002).

Applying such general theories can be difficult in light of how little we know about devel-
opment and its integration. Therefore, we might prefer to rely on the empirical literature,
basing our expectations on the patterns most often reported. Klingenberg (1998) reviews
the literatures on allometry and heterochrony, concluding that studies having enough sta-
tistical power to compare ontogenetic allometries statistically find significant differences
in all allometric parameters, but changes in directions of allometry are subtle. The most
common patterns detected in studies of vertebrates are (1) channeling (e.g. Gould, 1984;
Strauss, 1984; Wayne, 1986; Shea, 1992); and (2) changes confined to early morphogen-
esis (e.g. Falsetti and Cole, 1992; Voss and Marcus, 1992; Klingenberg and Ekau, 1996).
Apparently, early development is more labile than later (and changes in it are frequently
responsible for adult disparity); and to the extent that later development evolves, it does
so by channeling.

One notable exception to that pattern has been found in a study of (distantly related)
sculpins: species diverge during larval development, and some continue to diverge further
during postlarval development whereas others converge towards a similar adult shape
(Strauss and Fuiman, 1985). Another exception is the group of piranhas that have served
as the running example throughout this book. It is not known whether piranhas are at all
exceptional. Their ontogenies do not seem to be exceptionally diverse; the angles between
allometric vectors based on traditional measurement data do not indicate an exceptional
degree of diversification. However, they may be unusual in that the modifications of
postlarval development reduce the disparity generated during larval development. In this
group, it appears that adult morphology is actively stabilized by modifications of postlarval
ontogeny that compensate for modifications of larval ontogeny (Zelditch et al., 2003).
Whether counterbalancing is a common phenomenon is another open question.

Some subjects in evolutionary developmental biology are not open to morphometric
investigations, but many are. In addition to the relationship between ontogeny and phy-
logeny, many other subjects would benefit from morphometric studies. Among these are
the causes of developmental integration, how integration evolves along with changes in
ontogeny, the dynamics and causes of developmental regulation and its relationship to
developmental buffering against random departures from bilateral symmetry, and the
impact of mutants (or experimental treatments) on developmental pathways. All these
are potentially rich subjects for morphometric studies.

Software

All the software required to implement the geometric analyses discussed in this chapter has
been introduced in earlier chapters (see Chapter 10 for the software used to estimate regres-
sion coefficients, standardize shapes and compare ontogenies of shape, and Chapter 12
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for software to analyze disparity). Thus, in this chapter we discuss only the software
required by analyses of traditional morphometric data. One program in the IMP series,
TradMorphGen, calculates traditional morphometric variables from a file of shape coor-
dinates (in either X1,Y1, … CS or TPS format). Another program, VecCompare, measures
the angles between vectors of traditional (as well as geometric) measurements. For all the
other analyses using traditional morphometric data, analyses can be done in commer-
cially available software. Instructions for running VecCompare were given in Chapter 10;
the only difference between using this program for the analysis of vectors of traditional
measurements is that the input data file comprises (log-transformed) traditional measure-
ments. Thus, to prepare a file of traditional measurements for analysis by VecCompare,
use TradMorphGen and save the file of log-transformed traditional measurements.

Running TradMorphGen

To run TradMorphGen, you need a data file of landmark coordinates and a measurement
protocol. You can load a file of shape coordinates (in any superimposition) produced
by CoordGen, or you can load a file in TPS format, such as your file of digitized coor-
dinates produced by TPSDig.exe. In addition to this file, you will need a measurement
protocol file that gives the list of measurements you want to have calculated. This pro-
tocol is a three-column list; the first is the number of the measurement, the second is
the number of the landmark at one endpoint of the measurement, and the third is the
number of the landmark at the other endpoint. For example, the measurement protocol
for lengths measured between landmarks 1 and 7, landmarks 2 and 4, and landmarks
4 and 5 is:

1 1 7
2 2 4
3 4 5

If you are loading a file in X1,Y1, . . .CS format, or a TPS file that includes a scale factor,
TradMorphGen will have enough information to calculate the absolute distances between
landmarks. If your file is a TPS file without a scale factor, your lengths will be calculated
in terms of pixels, and you will need to convert them to your desired units. To do that,
include the endpoints of your ruler in your protocol file, then divide the length of the ruler
measurement by its absolute length (e.g. 10 mm); that quotient is the scaling factor you
will need to rescale all the other measurements in your file. It is easier to produce a file of
shape coordinates using CoordGen, which does the rescaling for you.

To load a file, click on the Load button for your file type. For example, if you are loading
a file of shape coordinates in IMP format (X1,Y1, . . .CS), click the button that says Load
Data Set(XY . . .CS format). The landmarks will appear in the visualization window. Then
load the measurement protocol by clicking on Load Measurement Protocol. The protocol
will now appear in the visualization window, along with the landmarks, so you can make
sure it’s correct. You can copy that picture to the clipboard by clicking on Copy Image
to Clipboard. If you want to remove the landmarks from the picture so you see only the
protocol, click on Show Protocol Only. Then click on Calculate Traditional Length Set.

You can save three output files: (1) the traditional length set; (2) geometrically scaled
traditional measurements (=“Constrained Length Set”); or (3) log-transformed traditional
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measurements (they are transformed to natural logarithms). Click on the button(s) for the
files you wish to save.

You can now load another data file without reloading the protocol by clicking on Clear
Input Data, Retain Protocol.
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14
Morphometrics and systematics

Systematists use morphometrics to answer three types of questions. The first, which we
label “taxonomic,” asks whether populations are drawn from multiple species, and, if so,
by what variable(s) they are most effectively discriminated. The second, which we label
“phylogenetic,” asks about phylogenetic relationships among taxa. Although they cannot
be used to construct cladograms, morphometric analyses might nonetheless be useful for
finding informative characters (for a more detailed discussion of characters, see below).
The third, which we label “evolutionary,” asks about the evolutionary history of the fea-
ture of interest – which, for our purposes, is shape. These are all interrelated issues, but
there are important distinctions that bear on choosing the appropriate analytic method.
Most importantly, taxonomic discriminators are often not equivalent to phylogenetically
informative characters, so finding discriminators is not equivalent to finding characters.
Also, characters usually comprise a subset of features that evolve, so tracing characters
on a cladogram does not fully reconstruct the evolution of shape. Unfortunately, of the
three types of questions, only those relating to taxonomic discrimination are so straight-
forward that they require nothing more than standard morphometric tools. This does not
mean taxonomic discrimination is easy; on the contrary, it can be very difficult. However,
compared to finding characters, or reconstructing the evolution of shape, the difficulties
of taxonomic discrimination pale. At present we have no generally accepted method for
finding characters, and it is not even clear what a method of character discovery would
look like.
It might seem obvious that taxonomic discriminators are potential characters because

there are differences among taxa, and characters are also features that differ among taxa.
However, taxonomic discriminators are not characters because they describe the net dif-
ference between taxa; they are vectors extending between (or among) terminal taxa. The
vector describes the direction in which the taxa can be distinguished from each other,
regardless of whether the features distinguishing them are unique to one species, are shared
by a group containing two species in the analysis, or are more broadly shared (with taxa
not included in the analysis). All that matters is that the discriminator exists (telling us
that the taxa are indeed different) and is successful (allowing us to identify unknowns
correctly). In contrast to a discriminator, a character is a feature shared by members of a

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
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monophyletic group. In principle, a character is a feature that we place at the node of a
cladogram. If we could measure shapes at successive nodes we could find a character by
a simple pairwise comparison between them, but usually we do not have samples of taxa
at successive nodes, and even if we did we would not know where to place them before
reconstructing the cladogram.
It might also seem obvious that changes in shape characters, traced on a cladogram,

reconstruct evolutionary transformations in shape. However, finding (and tracking) char-
acters, and reconstructing the evolution of shape, are different exercises. When looking
for characters we select particular features as informative, making no effort to provide a
complete description of the changes in shape (or of the ancestral shape). For example, we
might say that all members of a particular group have a shallow body compared to the
other species, and “shallow body” is then selected as a character. However, we would not
try to infer how much change occurred in body depth or how shallow their ancestor was,
or to describe the ancestor’s head shape. In contrast, when reconstructing the evolution
of shape we need to infer the ancestral configuration of landmarks and the direction and
magnitude of change along each branch.
Because taxonomic discrimination is a straightforward problem, we say little about it

in this chapter, merely mentioning some conceptual issues that might arise before applying
conventional morphometric methods to the data. We also say little about the third type of
question, because the methods usually used to answer these questions raise issues that are
outside the scope of morphometric theory. Those methods either (1) minimize a distance
or squared distance over the cladogram (which in our case would be a Procrustes distance);
or (2) use an explicit model of the evolutionary process and estimate values of the model’s
parameters thatmaximize the likelihood of the data, given themodel (an accessible, general
overview of these approaches can be found in Felsenstein, 2002, and a discussion of
them in context of geometric shape data can be found in Rohlf, 2002). Although these
procedures could be used to infer the cladogram, they have rarely been used for that
purpose. The primary issue facing users of these methods is to choose (or develop) a
realistic, justifiable model – a matter that involves considerations of evolutionary biology
rather than morphometrics. Accordingly, we do not discuss this topic beyond listing the
range of models that could be used and sources of information about them. In contrast,
the second problem, that of finding characters in morphometric data that can be used
to infer a cladogram (by standard cladistic approaches), raises profound methodological
questions, with no satisfying answers.
For systematists, the lack of recommended methods for finding characters will make

this a disappointing chapter. We had seriously considered the possibility of leaving out
a chapter on systematics, but chose to include one for two major reasons. The first, and
most important, is that we will never have a satisfactory method until we can tailor it to
the question(s) at hand. Doing so requires stating the question(s) precisely enough to find
a mathematical method for answering it. At present this is difficult, partly because some
concepts (especially that of a “character”) are so basic that they are difficult to articulate
clearly. Systematists might not see any need to define that term because we all know, at
least tacitly, what it means. However, we cannot tailor a method to find characters when
we cannot say what the method should find – we need to define the problem before we can
look for solutions. It is likely that this will be an iterative procedure – starting by stating
one specific problem, proposing a method for solving it, realizing that a method is flawed
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(and why) and, based on that realization, revising the statement of the problem and then
attempting another solution that may also fail, but for different reasons. In this chapter,
we discuss one statement of the problem and one failed solution previously offered by us
(Fink and Zelditch, 1995; Zelditch et al., 1995). Understandingwhy it fails is as important
as realizing that it does when the aim is to avoid making the same kind of mistake again.
Our second reason for including a chapter on systematics is to discourage readers from
applying the method we previously suggested, giving two reasons why it should not be
used (see also Adams and Rosenberg, 1998 and Rohlf, 1998).
We begin by discussing some issues that arise in taxonomic studies, then turn to the

more difficult problem of finding characters in morphometric data.

Taxonomic discrimination

The taxonomic question can be divided into two parts:

1. Are the samples different enough to warrant judging them to be different species?
2. In what do they differ?

To answer the first, we must decide what would be “different enough.” Once we state that
criterion, we can askwhether the datameet it. Wemight say that “different enough”means
that no more than 2% of the specimens are misclassified, or that the means of the samples
differ statistically significantly, or even that the Procrustes distance between the means is
minimally 0.03 (or any other favored value). Once we have chosen our criterion, which
might be a combination of those, we can easily determine whether the data meet it. To
that end, we could use CVA, or measure the Procrustes distances among means, or both.
Before applying either method, we need to consider what to do about geographic varia-

tion, ontogeny, sexual dimorphism and other factors that might complicate distinguishing
species. Obviously, we do not want to claim that we have evidence for two species when the
samples differ only in average developmental age or body size. If that might be the case, it
would be useful to design the sampling scheme to ensure that the samples are homogenous
and comparable, or else to standardize the data to a common age or size (using techniques
discussed in Chapter 10). The results can be very different. For example, Figure 14.1 shows
results from three analyses: (1) samples are compared without standardizing by ontoge-
netic stage (Figure 14.1A), (2) samples are compared at a common juvenile stage (Figure
14.1B), and (3) samples are compared at a common adult stage (Figure 14.1C). In all
three analyses, all eight CVs are significant, and, with one exception (the unstandardized
data), the misclassification rate is extremely low. For the unstandardized data, out of 390
specimens as many as 12 are misclassified, all of which are Pygocentrus nattereri that are
classified either as P. cariba or P. piraya. However, for both standardized data sets nomore
than four individuals are misclassified (also P. nattereri). Not surprisingly, all species differ
from all others significantly (in all pairwise comparisons, p<0.002). In general, species
differ by a Procrustes distance of more than 0.030, except for the three Pygocentrus, whose
adults differ from each other by Procrustes distances as small as 0.027–0.028 (and by even
less in comparisons of unstandardized specimens). Thus we would draw the same conclu-
sion about the taxonomic status of these samples from all three analyses, but the results
still differ because the variables discriminating among the species are different.
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Figure 14.1 CVA of body shape of nine species of piranhas: (A) unstandardized data; (B) data
are standardized and comparisons are made among juvenile shapes (at the transition from larval to
juvenile phases); (C) data are standardized and comparisons are made among adult shapes (at the
maximum body size regularly attained by each species).
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After applying morphometric techniques to the data, we are still left with the problem
of interpretation. Even if the data meet our criteria, the samples might not come from
different species – they could come from geographically differentiated populations that
were sampled only at the extremes of their range (e.g. the most northern and the most
southern localities). Had they been sampled throughout the entire range, wemight find that
there is no statistically significant difference between geographically adjacent populations.
Conversely, they might not meet our criterion but nonetheless be distinct species; it is just
that the distinguishing features do not lie in shape. CVA provides a useful method for
discrimination, but finding that samples can be discriminated is only part of the answer to
the first taxonomic question.
The second taxonomic question (in what do they differ?) is also answered by CVA,

which finds a mathematically optimal discriminator. That discriminator, however, might
not be optimal for a biologist in the field. If it is intended to be useful for field biologists, no
purpose is served bywriting a key that requires digitizing specimens, entering their data in a
CVA, and allocating them to species according to the discriminant function. Although that
could be considered a merely technological limitation, a taxonomic key serves a pragmatic
purpose and therefore must be useful. The key must be applicable to the specimens in
hand, under the conditions when they are in hand. However, there are other matters that
must also be considered when writing a key. In particular, the key characters that would
allow a specimen to be identified correctly may depend both on the age (or size) of the
specimen and on the age (or size) of those used in preparing the key. If the CVA is based
on age- or size-standardized data but the specimen is not at the stage to which the data
were standardized, it might not have the key characters. Conversely, if the key is based on
ontogenetic series, the key characters might show enormous ranges within species.
Writing a useful key can be a challenging problem, but turning a geometric analysis into a

useful key adds no further difficulties. That can be done by using geometric morphometrics
to determine the shape variables that best discriminate, then translating them into terms
of traditional morphometric variables that can be measured with calipers or rulers. If we
find, for example, that relative body depth discriminates between species, we can calculate
two lengths; one for the depth measured between two landmarks (such as anterior bases of
the dorsal and anal fin), and standard length. That ratio does not fully describe the shape
differences among species, but it suffices to identify unknown specimens.

Finding characters

The use of morphometric data in phylogenetic studies has long been controversial. Most
often, debates among phylogenetic systematists have focused on two issues: (1) methods
for coding variables that overlap, sometimes considerably; and (2) the reliability of the
information obtained from the data for inferring phylogenies. Morphometric data have
been viewed with suspicion partly because it is difficult to determine where to draw the line
when there are no distinct gaps between the observed values. A wide variety of techniques
have been proposed and debated heatedly (see, for example, Colless, 1980; Simon, 1983;
Archie, 1985; Goldman, 1988; Chappill, 1989; Thiele, 1993; Swiderski et al., 1998). Only
very recently has the discussion begun to focus on a more fundamental problem: what to
code? What is it that we are extracting from the data and treating as a character? Clearly,
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this issue must be addressed before the first one is even relevant; coding becomes a moot
issue if there are no characters to code, and if there are no characters, we cannot test the
hypothesis that they are especially homoplastic.
It is clear that partial warps should not be used as characters (for the reasons discussed

below), but it is not clear what ought to be used instead. It is not even clear that the
problem has a solution. The major objective of the first part of this section is to define the
problem we had hoped to solve using partial warps, then to explain why our approach was
flawed. In the next section we discuss two alternatives, both of which rely on conventional
multivariate methods, but neither is precisely tailored to the problem.

Defining the problem

The general problem we face is to find features that differ among taxa and are shared by a
subset of them. The differences indicate evolutionary novelties and the similarities indicate
common ancestry, although we will not be able to determine which are novelties until we
have completed the phylogenetic analysis. We would not expect that an entire shape is a
character because species rarely have exactly the same shape (whether we are comparing
whole bodies or parts of them). If we think of the problem from the perspective of whole
landmark configurations, we will not make any progress. On the other hand, if we do
not think of the problem in terms of whole landmark configurations, we may be led to
theoretically invalid solutions. Therefore the problem is to analyze entire configurations of
landmarks, and find features that differ among taxa and are similar among a subset of taxa.
Additionally, to say that we have a character we must be able to say where it is, and over
how large a spatial expanse it extends. A primary objection to traditional morphometric
variables is that they are lines, having no spatial extent as individual variables. As soon
as we try to determine their spatial location and extent, even by multivariate analyses,
we face one of the most severe limitations of traditional morphometric data – their poor
ability to localize morphological differences.
When looking for these similarities and differences, we are not concerned with the

magnitude of the difference, nor its degree of localization. Small differences (so long as
they are large enough to be considered a difference at all) count as much as large ones, and
spatially large-scale differences count as much as localized ones. Consequently, neither the
Procrustes distance between taxa nor the bending energy of the transformation has any
relevance to the problem. This is one of the reasons why it is so difficult to solve – neither
of the metrics used in geometric morphometrics is germane to the problem, and if there is
a relevant metric, it has yet to be defined.
When we first approached this problem, we focused on one major limitation of conven-

tional (qualitative) approaches: that organisms are often dissected arbitrarily, along lines
of convention. Conventional anatomical subdivisions are often not biologically meaningful
except in the context of a particular problem. For example, if we are interested in locomo-
tion and foraging, we can subdivide an organism into parts that are used in locomotion and
parts that are used in foraging. Alternatively, if we are interested in development, we can
subdivide the organism into parts that have a common germ-layer origin, or that develop
from the same type of bone, or that undergo the same kinds of epigenetic interactions,
etc. These subdivisions have long been regarded as arbitrary, except to the extent that
they are useful in a particular investigation. These subunits are not suitable for dissecting
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an organism in systematic studies when a single character crosses several such divisions,
or is partly within and partly without them. Our goal in using partial warps was to find
a more objective basis for dissection. We did not succeed (for reasons discussed below)
but the problem we defined remains a fundamental and unresolved difficulty for character
analysis. Our method had fatal flaws, but so do others that require us to decompose the
organism prior to measurement.
The approach we took is similar to one that is standard in cladistic studies using mor-

phometric data. We defined a set of variables a priori, and compared taxa with respect
to them. A similar tactic is applied to conventional morphometric variables, when a set
of lengths or ratios is defined and measured on taxa, then the values of those lengths or
ratios is compared among them. Most attention has focused on the problem of coding
those variables, but coding is the least of the problems. Such variables do not solve the
problems we had hoped to address, but share with them the flaw that we inadvertently
introduced: they compare arbitrarily selected components of shape one at a time.

Why not to use partial warps as characters

Even though partialwarps have a geometric scale, are a function of homologous landmarks,
and do not emphasize differences of large magnitude at the expense of small ones, they
cannot be used as characters for at least two reasons. The first is obvious (in hindsight at
least): partial warps have a spatial scale, but an individual partial warp (PW) describes
only part of a small-scale anatomical feature. Partitioning a change by PWs does not
correspond to partitioning it by anatomy or by characters, because a single PW does
not describe a single, spatially coherent change (although several, taken together, might).
When comparing multiple taxa, a combination of several PWs taken together is usually
needed to describe any change, even one that is anatomically local. Additionally, having a
high score on a localized PW does not mean that there is a localized change. Instead, the
change within that region may be partly described by a PW at a higher spatial scale, and
the localized PW supplements that description. Taken out of context of the larger-scale
PW, we cannot make anatomical sense of the one at smaller scale. Two taxa that have
identical values for a small-scale PW might differ anatomically – differences that cannot
be seen without looking at all PWs.
All that may be obvious to readers who have reached this chapter, but to clarify the

point we can re-examine the example that we found most promising at the time – the
ontogenetic change in scores on one PW (Figure 14.2). Two of the taxa, which were
used as outgroups (Pygopristis denticulata and Serrasalmus gouldingi), have statistically
significant ontogenetic change on that PW (in both X and Y directions), whereas the
three Pygocentrus do not. We would not normally be concerned about similarities among
outgroups, but this example shows that similarities implied by individual PWs are not
found in complete descriptions. That P. denticulata and S. gouldingi have anything in
common in their development of that region is not at all obvious when looking at more
complete descriptions of the five ontogenies (Figure 14.3). They are similar to each other,
and differ from the three Pygocentrus, only in that they undergo an ontogenetic change
in the caudal peduncle region that is not fully described by PWs at higher spatial scales.
However, P. denticulata and S. gouldingi are not similar to each other in the changes
described by the higher spatial scales (and neither are the three Pygocentrus). Being similar
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Figure 14.2 A single PW used to exemplify the procedure for finding systematic characters in
ontogenies of shape in Fink and Zelditch, 1995.

in one PW does not mean being similar in shape (or ontogeny of shape) in a particular
anatomical region. When looking at one PWwe lose the context supplied by all the others,
and PWs are all context-dependent. Therefore, we cannot describe what happens within
any one region of the body without placing every PW in context of every other. Even
judged by what the method was supposed to do, it fails; it does not provide an objective,
non-arbitrary method for decomposing changes (except in a purely geometric sense).
The second issue, related to the one above but important in a broader context, is that

interpretations based on individual variables violate the fundamental principles of geo-
metric shape analysis – that results be invariant to the selection of variables. Obviously,
a result that depends on using partial warps is invalid (even if the phylogenetic inference
based on it happens to be valid). A partial warp score is a single variable, a one-dimensional
projection onto a particular basis, and our results cannot depend on that choice. Adhering
to that basic principle does not mean that our phylogenetic results will be invariant to our
choice of characters – the results of a phylogenetic analysis always depend on the charac-
ters. Rather, it means that our recognition of characters must be invariant to the selection
of variables – and for that reason, a morphometric variable cannot be a character in its
own right.
The obvious question is: how can we discover characters when we cannot look at

individual variables? If variables do not provide a legitimate basis for subdividing the
organism, and if conventional anatomical lines of dissection are also viewed as biologically
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Figure 14.3 Ontogenies of shape for the species analyzed in Fink and Zelditch, 1995. The inference
drawn from the PW shown in Figure 14.2 is that the outgroup species P. denticulata and S. gouldingi
have a localized ontogenetic change in the length and depth of the caudal peduncle relative to the
region between dorsal and adipose fins, whereas the three Pygocentrus do not.
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arbitrary, then where can we look for characters? We end this section with that question
because we have no satisfying answer. In the next section, we discuss two possible lines
of attack. One uses a standard multivariate ordination method, principal components
analysis (PCA), to explore similarities and differences, the other uses pairwise contrasts to
find differences, which are then compared to find similarities among taxa in their differ-
ences from others. Neither method is tailored to the problem, but both represent feasible
approaches that can be used in the interim, until we have a more satisfying method.

Using PCA to find characters

PCA provides a coordinate system for shape analysis, and may be useful for finding char-
acters, but individual PCs (like individual PWs) cannot be viewed as characters in their
own right. Just as a partial warp score is a projection onto a single axis, so is a princi-
pal component score, and just as a similarity on one PW does not indicate a similarity in
shape, similarity on a single PC might not demonstrate a sufficiently general (or detailed)
similarity.
Like PWs, PCs are context-dependent, and thus we would not expect a PC to be a

character any more than a partial warp is. That is not to say that the two methods are
strictly comparable – there is a major difference between them. Principal components are
orthogonal directions of variation rather than orthogonal components of bending energy,
and variation is biologically relevant to the problem at hand while bending energy is useful
only in that it is used by themethod for depicting the results. PCs have a biological meaning,
as orthogonal dimensions of variance, even though that is not equivalent to the meaning
of a character. They are not likely to be characters in their own right because they are
directions of variation that are constrained to be orthogonal (by definition), not directions
of evolutionary change. Directions of evolutionary change are likely to be oblique to the
PCs – they are within the space spanned by the PCs, but they need not lie along an axis
nor must they be orthogonal.
Although PCs are not likely to be characters, we may still find PCA useful for exploring

similarities and differences. The scatter plots allow us to see the variation among taxa, and
their overlap, and both are important for finding characters. However, just as we need to
interpret partial warps in combination, so we also need to interpret PCs in combination.
Just because two or more species overlap in their PC1 scores does not mean that they
are similar with respect to all features described by PC1. They may differ in some, so
that PC1 splits the difference between them and the other PCs describe what is specific
to their deviations from PC1. Taxa located in different quadrants of a scatter plot may
differ considerably in shape, depending on the proportion of the variance described by
each PC and on how the PCs overlap in their descriptions of variation within the same
regions. For example, we can look at a case that should be familiar by this point – the
first two PCs of piranha juvenile body shape. The first, which accounts for 62% of the
variance, clearly distinguishes three species (S. manueli, S. elongatus and S. gouldingi)
from all others (Figure 14.4). Looking at the deformation that depicts the direction of
greatest variance, we can see that body depth contributes heavily to it. However, PC1
is not only body depth; it also describes differences in proportions of the posterior body
correlated with body depth. Species with high scores on this axis have relatively long
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Figure 14.4 Principal components of body shape of nine species of piranhas; data were standardized
and variation is examined among juvenile shapes (at the transition from larval to juvenile phases).

caudal peduncles compared to the region between dorsal and adipose fins, as well as deep
bodies, but we cannot necessarily say that species with high scores on PC1 have long caudal
peduncles if other PCs also describe variation in posterior body proportions and scores
on those PCs differ among species with similar scores on PC1. PC2, which accounts for
only 8.3% of the variance, also describes variation in caudal body proportions and, on
this component, species with high scores have very short caudal peduncles relative to more
anterior region. Consequently, species with high scores on both components have a short
caudal peduncle relative to other species with equally high scores on PC1. In effect, PC2
partially “compensates” for PC1.
When interpreting PCs, it is also important to consider that they describe variation

around an average shape. However, the average is not a “typical” piranha; rather, it is
the shape of the consensus, the point having the coordinates 0, 0 (on all PCs). Obviously,
the consensus is not a typical piranha since there are no specimens at the 0, 0 point. The
outgroup (P. denticulata) is fairly near it, but if we want to describe differences between
P. denticulata and other species (or to make any other comparisons among species) we
cannot describe changes along one PC, then along another. The direction of the difference
between particular species is often oblique to several PCs.
The importance of considering scores on several PCs becomes evident when comparing

the three shallow-bodied species. All three have high scores on PC1, but they differ in
scores on PC2. One of the three, S. manueli, has high scores on PC2 (as do S. altuvei and
S. spilopleura). To see how S. manueli differs from S. gouldingi and S. elongatus with
respect to their differences from other taxa, we can draw the vector extending from
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Figure 14.5 Analyzing direction in which species differ from P. denticulata in juvenile shape, to
determine whether species with overlapping scores on PC1, but different scores on PC2, are similar
with respect to features varying along PC1. (A) The direction of difference from P. denticulata to
S. manueli; (B) the direction of difference from P. denticulata to S. gouldingi and S. elongatus.

those other taxa, e.g. P. denticulata to S. manueli (Figure 14.5A) and to S. elongatus
and S. gouldingi (Figure 14.5B). The reason for doing this is to determine what differences
from other taxa are shared by S. elongatus, S. gouldingi and S. manueli. We will then
eliminate from the character the features peculiar to one species. Although we are making
this comparison to the outgroup, we are not assuming that it has the primitive body shape.
Comparisons to other species will also be necessary, and no decisions about polarity are
made at this point. Based upon the similarities between the two vectors (Figures 14.5A,
14.5B), what all three taxa share is their shallow body. There also may be a second similar-
ity not described by either PC – a shortening of the midbody relative to the head and poste-
rior body. We could include that in the description of the character, but we would exclude
the proportions of the caudal peduncle from that character description because S. manueli
differs from the other two species in that. Clearly, the character is not equivalent to a PC.
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Figure 14.6 Scatter plot of PC3 on PC2, and the deformations depicting these two dimensions of
variation.

The reason for not treating PC2 as a character in its own right is the same as the one
we used to rule out treating individual PWs as characters. S. manueli, S. altuvei and also
S. spilopleura have high scores on this one, which primarily describes a displacement of
the opercle landmark towards the pectoral fin and a shortening of the caudal peduncle
relative to the anal fin. However, S. manueli and S. altuvei differ along PC1 and are not
similar in caudal peduncle proportions; they also differ along PC3 (Figure 14.6). Differ-
ences along PC3, as well as those along PC1, might belie the inference of morphological
similarity implied by similar PC2 scores. Like PC2, PC3 accounts for only a small portion
of the variance (5.6%), but like PC2 it describes a change in location of the pectoral fin
relative to the opercle. S. manueli and S. altuvei have the highest and lowest scores on
PC3, respectively, which means that their pectoral fins are displaced in opposite directions
relative to the opercle, which needs to be taken into account when assessing their similar-
ity on PC2. Despite their similar scores on PC2, a feature that might have been judged a
morphological similarity might not be similar, by virtue of the differences along PC1 and
PC3. Because of their different scores on PC1, we would also avoid construing their caudal
peduncle proportions as similar, despite their similar values on PC2. Because species can
be similar along one component and differ substantially along others, we cannot interpret
one component at a time.
The strategy for combining PCs, outlined above, is undeniably tedious, but it might be

successful at finding the features shared by two or more taxa. In cases like our example,
when over 60% of the variation is along a single PC, two or more taxa have high scores
and two or more have low ones, and there is virtually no overlap among the low and high
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scores, PC1 points to a character. When the variation is more evenly spread out across
components, it will be necessary to combine many more of them because similarities on
one may be outweighed by differences on the others. An obvious problem is that the
comparison of the vectors in a single plane, such as we used to compare the similarities
among the three shallow-bodied species with respect to their difference from the outgroup,
examines only some of the differences among them in a single plane. We might prefer to
look at all the differences between each species and the outgroup (or any other species
taken as a standard), comparing those vectors among taxa.

Using comparisons between interspecific vectors to find characters

The basic idea of this approach is to compare all species to one other species (which is held
constant). These pairwise contrasts can then be examined for similarities. By comparing the
differences between one species and each of the others, we can then inspect the differences
for similarities. The logic of the method is that we are looking for similarities in the
differences – i.e. similarities among taxa in features specific to them. To exemplify this
approach, we will continue the analysis of piranha juvenile body shape, comparing each
species to the outgroup (Figure 14.7). Of course it is not necessary to use the outgroup in
these comparisons; any species could be used as that “other,” and it may be useful to use
more than one before drawing conclusions.
From these comparisons, it is obvious that S. elongatus, S. gouldingi and S. manueli are

shallow-bodied compared to all other piranhas. They differ profoundly from P. denticulata
in this, whereas none of the other species do. This is the feature that dominated the PCA
(and it is obvious by qualitative visual inspection as well). Additionally, these three species
have a relatively short mid-body relative to the more posterior body, a feature hinted
at but not so clearly presented when the vectors were drawn from P. denticulata to the
species in the PC1–PC2 plane (Figure 14.5). This particular feature might reflect a decrease
in the length of the dorsal fin relative to the posterior body (dorsally) and the posterior
displacement of the pectoral fin and pelvic fins (rather than changes in proportions of body
between them). The three shallow-bodied species appear to vary in the degree of “midbody
contraction,” but they appear to be consistently more contracted than the others. The
possibility that these three species are similar in having a relatively shortened midbody
is worth examining further because, unlike their shallow body, it is not obvious from a
purely qualitative analysis.
To pursue that possibility further, we can compare the vectors of pairwise contrasts to

each other, asking if a more contracted midbody (compared to that of P. denticulata) is
characteristic of the shallow-bodied species but not of the others. This is done by subtract-
ing one of the pairwise vectors from another; where species are identical to S. gouldingi (in
the differences from P. denticulata) the grid is square (Figure 14.8). Large differences indi-
cate that the direction of change from P. denticulata to S. gouldingi is not shared by another
taxon. Subtracting each contrast from the contrast between P. denticulata to S. gouldingi
shows that S. gouldingi is not much shallower or deeper than either S. elongatus or
S. manueli. All three differ from P. denticulata by nearly the same degree, and in that
same direction. Some differences are evident in the relative length of the midbody, how-
ever. The grid is slightly more contracted in that region, indicating that S. gouldingi is
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P. denticulata vs P. piraya

Figure 14.7 Pairwise comparisons between mean juvenile body shapes of P. denticulata and six
other species. Comparisons to P. nattereri and P. cariba are not distinct from the comparison to
P. piraya.

more extreme than the others in that feature. However, the differences are slight. In strik-
ing contrast, the comparisons to the other species indicate not only that S. gouldingi is far
shallower than the others, but also that all differ from S. gouldingi in either the degree
or the location of midbody contraction. We could either take these results to mean that
S. elongatus, S. gouldingi and S. manueli are all shallow-bodied and contracted in the mid-
body compared to the other species, or we could continue the analysis, doing additional
pairwise contrasts – this time between P. denticulata and S. elongatus, and also between
P. denticulata and S. manueli – to determine that all three species are similarly different
from the others. Of course we would need additional comparisons to find features that are
more widely shared, or specific to some of the deeper-bodied species.
Unlike the shallow body, which is so evident visually that it requires no detailed quanti-

tative study, the midbody contraction discerned in these comparisons is the kind of subtle
feature that justifies the effort of a morphometric analysis.
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P. denticulata vs S. gouldingi –
P. denticulata vs S. altuvei

P. denticulata vs S. gouldingi –
P. denticulata vs S. spilopleura

P. denticulata vs S. gouldingi –
P. denticulata vs P. piraya

P. denticulata vs S. gouldingi –
P. denticulata vs S. elongatus

P. denticulata vs S. gouldingi –
P. denticulata vs S. manueli

Figure 14.8 Comparisons among vectors describing the difference between P. denticulata and
S. gouldingi, and the vector describing the difference between P. denticulata and each of the other
six species shown in Figure 14.7. Each frame shows the contrast between the two vectors: where
the squares of the grid are square, the two vectors are the same; where the grid shows large differ-
ences, the difference between that species and P. denticulata does not resemble the difference between
P. denticulata and S. gouldingi.

Coding

Having found a character, we can treat it like any other. That is, if using conventional
cladistic methods, we code the characters according to our preliminary judgments of
homology, include it in the data matrix, and analyze that matrix by parsimony. Coding
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methods are a contentious subject; systematists vary considerably in their preferred criteria
for coding. The debates have nothing to do with morphometrics except to the extent that
the methods are applied to quantitative data, and that statistical methods are sometimes
favored to decide whether species are different (and should therefore not be coded as hav-
ing a homologous character). The literature on coding is large; interested readers can find
general critiques of coding methods in several papers (e.g. Farris, 1990; Thiele, 1993; Gift
and Stevens, 1997; Swiderski et al., 1998).
Any favored method can be applied to a variable that represents a character. In the

case of “shallow body,” PC1 is a reasonable proxy for the character, so we can apply our
favored method to scores on PC1. It is not so easy to make decisions about characters that
are combinations of several variables becausewe cannot easily examine the variationwithin
species in more than two or three dimensions at a time, but doing so may be important
for deciding whether species are similar enough to code their features as homologous.
Coding itself is a subject of debate. Not only are methods for coding controversial, even

the idea of coding is. As mentioned earlier in this chapter, there are methods for inferring
the evolution of shape that do not require coding characters. These methods use a very
different approach to the problem. In particular, they do not make preliminary hypotheses
of homology, then formalize them by codes, then infer the phylogeny that minimizes the net
number of extra steps (a step is considered “extra” if it means that a putatively homologous
character is reinterpreted as arising more than once). Instead, they use explicit models of
the evolutionary process, among which are:

1. Randomly varying directions of natural selection in different lineages
2. Random genetic drift of species around a single, stable optimum
3. Randomly wandering optima
4. Constrained wandering of optima
5. Wandering optima whose paths are correlated, a correlation that diminishes over time
6. Bursts of change around the time of speciation with little or no change thereafter.

(For a more detailed synopsis of the models, see Felsenstein, 2002.) By using one of these
approaches we could avoid the whole issue of coding, but we then have to confront the
problem of deciding which model is reasonable and justifiable. Such models have not
been widely used to infer cladograms from morphological data and, like the methods
which minimize a net morphometric distance (linear or squared) over a tree, model-based
methods might best be considered as methods for reconstructing the evolution of shape
given a cladogram.

Summary

At present, no method is tailored to the problem of finding characters in morphometric
data, and the available methods are cumbersome and involve an uncomfortable degree of
subjectivity. Each could be improved by refining the part of the procedure that involves
making linear combinations of variables, such as combining PC1, PC2 and PC3 to see
whether similarities inferred from scores on one component are belied by scores on others.
However, rather than improving methods that were devised to use standard morphometric
techniques, it might be better to start at the beginning and develop a method tailored to
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our purposes. Doing so will require refining the statement of the problem. Currently we
cannot state the problem in mathematical terms, and that is necessary before we can find
a mathematical solution. Our original statement of the problem focused on one particular
element of it: finding characters without having to dissect organisms arbitrarily into parts
prior to the phylogenetic analysis. However, that dissection need not be an integral part
of a method for finding characters. We could instead use partial least squares analysis
(Chapter 11) to test the hypothesis that the blocks of landmarks do not covary; if they do
not, we can analyze them separately. Even though PLS does not test the hypothesis that a
block constitutes an integrated unit, it may provide a more informed dissection than one
based purely on anatomical conventions.
Clearly, we need additional methodological research – we should not be limited to

the methods currently available when others are feasible. We also need to complement the
methodological investigations by a discussion of what our concepts mean. If we do not, we
may find that we have a rich array of methods that all do something interesting, but none
that do what we intended. It can be bewildering to read discussions about morphometric
characters, because it sometimes appears that nearly every author has a different idea of
the meaning of “character” (as well of “morphometric”). Until we can define “character”
precisely, in terms just as comprehensible to mathematicians as to systematists, we will
not make further progress towards a mathematical solution. We also need more than a
definition of the term; we need to articulate more fully the process by which we find
characters, in general. Most discussions of systematic methods focus on how to analyze
the data, given the data matrix. Our problem is to get that matrix in the first place. One
value of morphometric data is that we find them using mathematical methods, and these
are necessarily explicit. By making our methods of character analysis explicit, just like our
methods of phylogenetic inference, we will enhance the rigor of morphological systematics
in general.

Software

None of the analyses used in this chapter require software beyond that introduced in earlier
chapters. The CVA of the unstandardized data used CVAGen (introduced in Chapter 7);
the analyses of the standardized data used Standard6 to standardize specimens to a com-
mon developmental stage comparable across all taxa (introduced in Chapter 10); then
CVAGen was used to analyze the standardized data. The PCA (of the standardized data)
used PCAGen (also introduced in Chapter 7); to depict changes from one taxon to another
within the plane of two PCs (rather than to depict the directions along the PCs) we placed a
marker on each endpoint of the desired vector, using the Place M1 and Place M2 options,
and depicted the difference between the two endpoints using the Show M2-M1 option.
To describe the differences between each species and another, we first combined the two
files into one, replaced the centroid size by 0 for one species and 1 for the other, then
regressed shape on those codes using Regress6 (introduced in Chapter 10). To compare
the regressions, we saved the vectors, using the option to save the deformation vector
on the File pull-down menu, then input the vectors into VecDisplay (also introduced in
Chapter 10).
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15
Beyond two-dimensional configurations

of landmarks

The focus of most of this book has been on the tools for comparing two-dimensional
configurations of landmarks. However, many structures of interest to biologists are three-
dimensional, or have few landmarks, or both. The skull of a marmot (Figure 15.1), like
that of most mammals, is an example of “both.” The marmot skull is strongly curved
anteroposteriorly and mediolaterally, making it highly three-dimensional (features on the
same bone may be as far apart in the dorsoventral dimension as they are in the mediolateral
or anteroposterior dimensions). In addition, the skull is composed of a small number of rel-
atively large bony plates, so points that can be used as landmarks are sparsely distributed,
occurring primarily at locations where at least three bones meet. In the first part of this
chapter we examine methods that have been devised to analyze three-dimensional con-
figurations of landmarks, and in the second we examine methods that have been devised
to analyze curves and surfaces that lack landmarks. The methods discussed in both parts

Figure 15.1 Skull of a yellow-bellied marmot (Marmota flaviventris), in dorsolateral view,
illustrating curvature of the rostrum, braincase and zygomatic arch.

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
ISBN 0–12–77846–08 All rights of reproduction in any form reserved
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of this chapter have been presented and discussed elsewhere (Bookstein, 1996a, 1996b,
1997a, 1997b; Green, 1996; Sampson et al., 1996; Rohlf and Slice, 1990; Rohlf and
Corti, 2000; Rohlf and Bookstein, 2003). Below, we discuss the general problems and
the advantages and disadvantages of particular approaches. Because most of the software
tools for applying these methods are in the early stages of development, we do not give
detailed instructions for performing particular analyses.

Landmarks in three dimensions

Biological objects (organisms or parts of organisms) are inherently three-dimensional.
Sometimes the third dimension can be ignored as a reasonable simplification – this is
valid if the third dimension is unimportant relative to the other two. For example, dis-
tances between landmarks might be much smaller in the third dimension than in the other
two, so that variation in this dimension contributes little to the description of overall shape
variation (examples include the leaves of many plants, and the bodies of some fish). It is
also possible that the third dimension simply is not relevant to the focus of a particular
analysis. For example, studies of the shape of the lower jaw might focus on the propor-
tions of lever arms associated with various muscles and teeth, and not be concerned with
projections out of the plane of jaw action. However, there are also times when variation
in the third dimension cannot be ignored without losing important information about the
overall pattern of shape variation. As illustrated below, the analysis of landmarks digitized
in three dimensions (X, Y and Z) only requires very simple extensions of the mathematics
principles discussed in previous chapters of this book – there are no new concepts.

The principal obstacles to executing a complete three-dimensional study, from data
collection to publication, are two problems that cannot be solved withmathematics: (1) the
cost of the equipment needed to collect the data, and (2) the difficulty of illustrating three-
dimensional shape differences on static two-dimensional media like the pages of this book.
The solutions to these problems lie in the arts of grant-writing and illustration, so we do
not address them in this book.

Some researchers have proposed clever alternatives to buying expensive equipment for
three-dimensional digitizing (e.g. Spencer and Spencer, 1995; Fadda et al., 1997). Most
of these alternatives involve collecting a series of overlapping images at different angles;
some use mirrors, others rotate the specimen as if it were on a rotisserie. Landmarks are
digitized in each two-dimensional image, and then the angle between two images is used
to compute a set of three-dimensional coordinates from the two sets of two-dimensional
coordinates for the landmarks present in both images. Similar triangulation schemes are
used in some commercial digitizers.

The problem with a triangulation technique is that the uncertainty of the third coordi-
nate (Z) is produced by a combination of three different potential errors: (1) error in digiti-
zing the first two coordinates (X,Y) of the landmarks in the overlapping views; (2) error
in measuring the angle between images; and (3) error in measuring the distance from the
specimen to the camera lens. The compounding of these errors means that the computed
third coordinate is likely to have a much larger error than the two directly observed coor-
dinates; it also means that the error in the third coordinate is not independent of the errors
in the first two coordinates. In commercially produced digitizers the confidence interval
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for the Z-coordinate is about twice as large as those for the X- and Y-coordinates, which
is tolerable only because all of the confidence intervals are extremely small. In home-made
equipment the difference between confidence intervals is likely to be larger, because the
angle and distance cannot be controlled or measured with the same precision. These prob-
lems are exacerbated when more than two images are chained together to expand the
coverage of the object. The progressive change in the orientation of the object (or camera)
relative to a fixed coordinate system causes a progressive shift in the relative uncertain-
ties of the coordinates. For example, the first pair of images might be used to infer the
Z-coordinates of the landmarks from theX- and Y-coordinates, but the last pair of images
might be used to estimate the Y-coordinates of the landmarks in those images from X-
and Z-coordinates. Consequently, different landmarks will have different combinations of
errors affecting estimation of coordinates on the same axis. For these reasons, we strongly
recommend that you buy reliable commercial equipment designed for three-dimensional
analysis if you think that such analyses will be necessary to fully describe shape variation
in your data.

If the cost of equipment is absolutely out of reach, or you want to conduct a pilot
project to investigate the need for such expenditure, we recommend using partial least
squares (PLS). We have already presented a detailed discussion of PLS and illustrated its
use to analyze the covariance of shape changes seen in different regions of the same lateral
view of piranhas (Chapter 12). Rohlf and Corti (2000) present an example in which PLS
is used to analyze the covariance of shape changes seen in dorsal and ventral views of
skulls of the house mouse (Mus musculus). When the same procedure is used to analyze
the covariance of shape changes seen in less divergent views (e.g. dorsal and lateral), the
pictures of the correlated shape changes will be pictures of a three-dimensional change.

Superimposing configurations of landmarks

As in two-dimensional shape analyses, the first step after collecting the data is a general-
ized least squares Procrustes superimposition (GLS) to remove those differences between
configurations that are not differences in shape. Differences in location, scale and orien-
tation of three-dimensional configurations are removed by exactly the same operations
that are used to superimpose two-dimensional configurations (translation, scaling and
rotation); the only substantive difference is that superimposing three-dimensional config-
urations forces us to work with larger matrices. Just as the coordinates of K landmarks
in two dimensions are represented as a K×2 matrix, the coordinates of K landmarks in
three dimensions are represented as a K×3 matrix:

A =




X1 Y1 Z1
X2 Y2 Z2
X3 Y3 Z3
...

...
...

XK YK ZK




(15.1)

The same operations will be performed on these matrices of three-dimensional landmarks
as are performed on matrices of two-dimensional landmarks. In addition, most formulae
used to perform these operations will have the same general form as those used in analyses
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of two-dimensional landmarks. The main consequence of having an extra column is that
the computations are more tedious (especially for the programmer).

Below, we briefly review the operation (translation, scaling or rotation) that is per-
formed to superimpose configurations of two-dimensional landmarks, then present the
expanded form of the operation that applies to three-dimensional landmarks.

Centering
The first step of the superimposition is centering – translation of each configuration so
that its centroid is located at the origin of the coordinate space. In two dimensions, the
centroid (like the landmarks) has two original coordinates (X and Y). Each coordinate of
the centroid is the average of the corresponding coordinates of the landmarks. Centering
is accomplished by subtracting the coordinates of the centroid from the corresponding
coordinates of each landmark, yielding new centroid coordinates of (0, 0). To superimpose
three-dimensional configurations, we simply include the third (Z) coordinate in the same
series of calculations. Thus, the original coordinates of the centroid are the averages of the
corresponding coordinates of the landmarks:

XC = 1
K
(X1 + X2 + X3 + · · · + XK)

YC = 1
K
(Y1 + Y2 + Y3 + · · · + YK)

ZC = 1
K
(Z1 + Z2 + Z3 + · · · + ZK) (15.2)

To center the configuration we again subtract the values of the centroid coordinates from
the corresponding values of the landmark coordinates, but there are now three sets of
subtractions:

Acentered =




(X1 −XC) (Y1 − YC) (Z1 − ZC)
(X2 −XC) (Y2 − YC) (Z2 − ZC)
(X3 −XC) (Y3 − YC) (Z3 − ZC)

...
...

...

(XK −XC) (YK − YC) (ZK − ZC)




(15.3)

When the operation is complete, the new coordinates of the centroid will be (0, 0, 0).

Scaling
The next step of the superimposition is scaling each centered configuration to unit centroid
size. In three dimensions, as in two, centroid size is defined as the square root of the sum of
the squared distances of the landmarks from the centroid. To compute the distance between
two points in three dimensions, we simply include the difference in theZ-coordinates along
with the differences in the X- and Y-coordinates:

D =
√
(X1 −XC)2 + (Y1 − YC)2 + (Z1 − ZC)2 (15.4)

Thus centroid sizewould be the square root of the sumof these squared distances. However,
after centering the configuration (XC =YC =ZC =0), we can simplify the computation to
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the square root of the sum of the squared coordinates:

CS =
√√√√ K∑
i=1
X2
i + Y2i + Z2i (15.5)

Then, to rescale the entire configuration to a centroid size of one, every coordinate in
Acentered is divided by CS.

Rotation
As in the two-dimensional case, we are going to rotate the three-dimensional configuration
to the orientation that minimizes its partial Procrustes distance from a reference. At first
glance this might seem to be a simple extension of what we have done before – we just
include the third dimension in the calculations of the partial Procrustes distance and the
angle that minimizes that distance. As explained in Chapter 4 (Equation 4.12), the partial
Procrustes distance between two-dimensional configurations of K landmarks is:

D2 =
k∑
j=1

(XRj − (XTj cos θ − YTj sin θ))2 + (YRj − (XTj sin θ + YTj cos θ))2 (15.6)

in which the coordinates of the target (XTj,YTj) are related to the coordinates of the
reference (XRj,YRj) by the angle θ. On closer inspection the problem turns out to be a
little more complex than just adding the difference in Z-coordinates to Equation 15.6,
due to the fact that a three-dimensional object like the marmot skull can be rotated on
three orthogonal axes (Figure 15.2). This means there are three angles involved in the
computation of the partial Procrustes distance, and we have to solve for the particular
combination of angles that minimizes that distance. Still, the solution remains conceptually
simple, a singular value decomposition (SVD) of the matrix XtRXT in which XR and XT
are the centered and scaled configuration matrices of the reference and target, respectively
(Rohlf, 1990). As Rohlf points out, this is just one example of the general utility of SVD
for finding the angular relationship between two matrices.

Figure 15.2 Three orthogonal axes of rotation for a three-dimensional shape.
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The spaces of three-dimensional configurations

As discussed in Chapter 4, the set of all possible configurations of K landmarks with M
coordinates is called a configuration space, and this space has K×M dimensions. Center-
ing, scaling and rotating to a specific alignment all select subspaces with fewer dimensions.
Because the same operations were used to select these subspaces, the same formulae can
be used to determine their dimensions. Centering removesM dimensions because the cen-
troid has M coordinates, so the space of centered coordinates has KM –M dimensions,
which is 3K−3 when M=3. Scaling removes one dimension because we are still using
centroid size, which is a one-dimensional scalar. Consequently, the space of centered and
scaled configurations (pre-shapes) has KM –M−1 dimensions (Equation 4.9), which is
3K−4 when M=3. Rotation to a standard orientation removes M(M−1)/2 dimensions
(Equation 4.10), which are the number of orthogonal axes on which an M-dimensional
configuration can be rotated. When M=3 there are three axes, and the space of aligned
configurations (a shape space) has 3K−7 dimensions.

When we impose on two-dimensional configurations of landmarks (K×2 matrices) the
requirements of centering at the origin and scaling to unit centroid size, we generate a
pre-shape space that has the form of the surface of a hypersphere with a radius of one,
centered on the origin. When we impose the same requirements on three-dimensional
configurations, we again get a pre-shape space that is the surface of a hypersphere with
a radius of one, centered on the origin. Pre-shape spaces generated by these operations
have the same general shape (differing only in the number of dimensions), regardless of
the values of K andM.

The pre-shape spaces described above contain every possible rotation of every possible
M-dimensional shape that can be formed of K landmarks. Each shape is represented by the
set of all possible rotations of that shape, and the distance between shapes is the minimum
distance between these sets. As mentioned in Chapter 4, the set of all possible rotations of a
shape is called a fiber. This name seems apt whenM=2; there is only one axis of rotation,
so we can visualize a one-dimensional string lying in the pre-shape space. When M=3,
calling the set of rotations a fiber may seem less appropriate because there are now three
orthogonal axes of rotation, which does not fit our mental image of a one-dimensional
string. However, the actual concept is still the same (the set of all possible rotations), and
it is just as useful. Because different fibers represent different shapes, they do not intersect;
and if they do not intersect, we can find the shortest distance between them. That distance
is the difference between centered and rescaled configurations that is not due to the rotation
of one relative to the other. Therefore, regardless of the values of K and M, the distance
between two shapes in the same pre-shape space is the distance between two points on the
surface of a hypersphere. Now that we are again on (relatively) familiar ground, we can see
that we must solve for the rotation of the target that minimizes the partial Procrustes dis-
tance (the chord length), which can then be converted to the Procrustes distance (arc length)
or the full Procrustes distance (the cosine of the angle subtended by the arc). Having a third
set of coordinates makes the computation more tedious, but the procedure is the same.

The shape spaces we generate by the operations described above are hyperspheres tan-
gent to their respective pre-shape spaces at the location of the reference shape. If centroid
size is fixed at one, the space is the surface of a hypersphere of radius one. If centroid size
is scaled to the cosine of the Procrustes distance, the space is Kendall’s shape space, the
surface of a hypersphere of radius one-half.
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Figure 15.3 The simplest three-dimensional configuration of landmarks: a tetrahedron.

Decomposing the deformation

As in the two-dimensional case, the difference between three-dimensional configurations
of landmarks can be described as a deformation of one shape (reference) into the other
(target). This deformation can be decomposed into uniform and non-uniform parts (or
affine and non-affine). The non-uniform part can be further decomposed into 3(K−4)
independent components. The uniform part can be further decomposed into twelve
independent components; but only five of these change shape.

The numbers of uniform and non-uniform components can be explained if we consider
the possible deformations of the simplest three-dimensional shape, a tetrahedron of four
landmarks (Figure 15.3). All deformations of a tetrahedron, like all deformations of a
triangle, must be uniform; only when a fifth point is added can we detect non-uniform
transformations (i.e. transformations that differ between regions of the tetrahedron). With
just four landmarks a deformation can have twelve components, all of them uniform.
Seven of the uniform components do not change shape – they are the ones removed by
superimposition – which leaves five uniform components that do change shape. With each
additional landmark beyond the fourth, there are three possible non-uniform components
of deformation (because there are three directions in which that point might move relative
to the others), hence 3(K−4).

The components of the non-uniformpart of a three-dimensional deformation are defined
in nearly the same terms as the components of the non-uniform part of a two-dimensional
deformation. Again, we use the thin-plate spline model to describe the deformation at
any point in space as fX, fY and fZ, which describe the X-, Y- and Z-components of the
deformation:

fX(X,Y,Z) = AX1 + AXXX + AXYY + AXZZ+
K∑
i=1
WXiU(X −Xi,Y − Yi,Z− Zi)

fY (X,Y,Z) = AY1 + AYXX + AYYY + AYZZ+
K∑
i=1
WYiU(X −Xi,Y − Yi,Z− Zi)

fZ(X,Y,Z) = AZ1 + AZXX + AZYY + AZZZ+
K∑
i=1
WZiU(X −Xi,Y − Yi,Z− Zi)

(15.7)
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where U(X−Xi, Y −Yi, Z−Zi) is a function of the interlandmark distances given by:

Ri =
√
(X −Xi)2 + (Y − Yi)2 + (Z− Zi)2 (15.8)

Again, we have more columns to accommodate the third dimension. The more substantive
difference is that U=R, in contrast to the two-dimensional case in which U=R2 lnR2.
As in the two-dimensional case (see Chapter 6), the next steps are to solve for the spline
coefficients (the values of A andW) and the eigenvectors of the bending energy matrix (the
partial warps).

In both the two-dimensional and three-dimensional cases, the thin-plate spline is
only used to solve for the non-uniform components of the deformation; a different
approach is taken to solve for the uniform components. Bookstein (1996b) shows that
the approach he developed to construct a pair of basis vectors for the uniform part
of a two-dimensional deformation can be extended to the three-dimensional case. This
approach yields three pairs of vectors describing shear and compression/dilation in each
of the three two-dimensional planes (XY, YZ and XZ). But remember, there are only
five possible shape variables for the uniform part; therefore, the six vectors are not all
completely independent. In fact, the problem lies in the three compression/dilation vec-
tors; these three vectors actually describe a two-dimensional space. Bookstein suggests
several methods to rectify this problem by constructing an orthonormal basis for this
subspace (the current IMP software uses the Gram-Schmidt technique – cf. Axler 1996).
These two vectors, combined with the three shear vectors, provide an orthonormal basis
for the entire uniform subspace. More recently, Rohlf and Bookstein (2003) have pre-
sented two other methods, both using an SVD to compute an orthonormal basis for the
entire uniform subspace (without dividing it into shear and compression/dilation sub-
spaces). The methods differ in how they extract the uniform variation from the total
variation. In one, a technique used to compute residuals from a regression is used to
compute the uniform component as the residuals from the non-uniform (as the differ-
ence between the total deformation and the non-uniform part). In the other, a technique
used by Rohlf and Slice (1990) to compute the uniform component directly from super-
imposed two-dimensional coordinates is extended to three-dimensional coordinates. The
new methods differ from that proposed by Bookstein (1996b) only in the simplicity of the
algorithms; all lead to the same conclusions regarding the differences among populations
of shapes.

The result of the completed decomposition (of both uniform and non-uniform
components) is an orthonormal basis for the Euclidean space that is tangent to the
shape space at the location of the reference shape. Every configuration of land-
marks in a data set can be described as a deformation of the reference shape; and
that deformation is represented by the full set of scores on the five uniform compo-
nents and 3(K−4) non-uniform components. These scores preserve Procrustes distances
and express shape differences as scores on the same number of orthogonal axes as
there are dimensions of the shape space (which is equal to the number of statistical
degrees of freedom). Consequently, these scores can be used in standard multivariate
analyses.
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Ordinations and statistics

All of the analytic techniques discussed in Chapters 7–12 can be performed on data from
three-dimensional landmarks. This includes analyses performed on the partial Procrustes
distances of individual specimens from a reference shape (e.g. Goodall’s F-test) and anal-
yses performed on the full set of scores over all of the axes of the tangent space (e.g.
principal components analysis). None of these analyses is materially altered by the use of
three-dimensional coordinates. The transition from univariate to multivariate requires
changes in analytic tools, but after this transition has been made, no further methodolog-
ical changes are required to accommodate further increases in the number of variables.
The crucial thing to remember is that an analysis of three-dimensional shapes will have
more shape variables than an analysis of two-dimensional shapes with the same number
of landmarks. You will need larger sample sizes to perform comparable tests.

Illustrating shape differences

Although the mathematics of comparing three-dimensional shapes is well established, the
difficulties of illustrating those comparisons on static two-dimensional media (like the
pages of this book) have not been resolved to our satisfaction. The problem is not one of
illustrating a single, solid three-dimensional object – a skilled artist or photographer can
produce very convincing two-dimensional images. Instead, the problem is that the process
of creating the illusion of three dimensions necessarily entails omission or distortion of
some information. For example, lengths and angles are distorted (by foreshortening) to
create the illusion of depth, and illustration of a fully rendered surface precludes illustration
of internal details or the other side of the object.

The problems of illustrating three-dimensional objects are exacerbated when the objects
are superimposed. If the surfaces are rendered, they will interpenetrate (i.e. only parts of
each will be shown – the parts that are “in front”); consequently, the viewer does not
see all of either object, and so cannot fully appreciate the shape difference. To illustrate
differences at all landmarks, the images of the objects must be simplified in some way.
Figure 15.4A shows a photograph of a skull with a selection of landmarks. In Figure 15.4B,
the landmarks are projected onto the plane of the page and are connected by a wireframe,
a set of straight lines chosen to approximate salient features of the skull. With judicious
selection of line weights or colors, wireframes can be used to illustrate two superimposed
configurations of landmarks (Figure 15.4C), but even with the most lurid color scheme
a wireframe illustration of more than two configurations would be too confusing to be
useful. Furthermore, a single view of the wireframe cannot convey differences in depth; at
least one other view is needed, as in Figure 15.4D.

Illustrating a three-dimensional deformation on static two-dimensional media is even
more difficult than illustrating two superimposed objects. A variety of devices can be used
to draw the three-dimensional spline interpolation (e.g. the deformed grid or a series of
arrows on the nodes of an undeformed grid), but all have the same limitation – any dia-
gram displaying enough data to be useful contains too many data to be interpretable. The
simplest useful approach appears to be placing arrows on the wireframe of the reference
form (in two views) to indicate directions of relative landmark displacement (Figure 15.5).
Although this approach requires viewers to do the interpolation in their heads it does
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Figure 15.4 Illustration of three-dimensional shapes using wireframes: (A) lateral view of a mar-
mot skull, with some possible landmarks; (B) the same landmarks in lateral view connected by a
wireframe; (C) two superimposed configurations and their wireframes, in lateral view; (D) the same
two configurations in dorsal view.
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(A)

(B)

Figure 15.5 Illustration of a deformation of a three-dimensional shape, using vectors at landmarks
connected by a wireframe: (A) lateral view; (B) dorsal view.

convey the localization of shape change, which may be the most important information
that can be gleaned from the spline.

Curves without landmarks

Many features of interest to biologists are curves that lack landmarks, such as short seg-
ments of edges or ridges between landmarks, or outlines encompassing whole organisms.
(Similar problems andmethods apply to comparisons of three-dimensional surfaces like the
cranial vault, but for the sake of simplicity we return here to two-dimensional shapes.) The
lack of landmarks is a problem because the entire mathematical framework of geometric
morphometrics rests on the comparability of landmarks from specimen to specimen. With-
out comparable landmarks there is no justification for the Procrustes distance metric, or
for the superimpositions and shape spaces founded on that distance. Without landmarks,
we cannot apply the mathematical theory of shape spaces.

There are methods of analysis that do not require comparable points along the curve
of interest (Rohlf and Archie, 1984; Ferson et al., 1985; Lohman and Schweitzer, 1990;
MacLeod and Rose, 1993). In these approaches, points digitized along the curve serve only
as local estimates of the location of the curve. A function is fitted to the digitized points,
producing a set of coefficients representing the shape of that curve, and these coefficients
are used as variables in any subsequent comparative analysis. Although this appears to
be a clever way to circumvent the lack of landmarks, it is important to remember that
the configurations represented by the coefficients are not shapes as defined by Kendall.
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The configurations may have been aligned and scaled by precise and rigorous methods (cf.
Ferson et al., 1985), but a Procrustes superimposition is precluded by the lack of corre-
sponding points, and perhaps by the nature of the curve-fitting algorithm. Consequently,
the spaces occupied by these configurations are not the spaces covered by the theory of
geometric morphometrics. In addition, the descriptions of curves produced by these meth-
ods are incommensurate with descriptions of shapes based on configurations of landmarks.
This means that the coefficients of the curve-fitting function and shape variables computed
from Procrustes superimposed landmarks cannot be combined into a single shape analysis.
The best that can be done is to use PLS to look for correlations between the two sets of data.

Defining comparable points along a curve

To analyze curves in the same analytical framework as landmarks, and especially in a study
simultaneously with landmarks, we need a way to identify points on the curve that can
be treated as though they were landmarks. This means that we need to supply criteria for
recognizing or selecting points that are not specific to the region immediately surrounding
the curve (otherwise we would have landmarks). One such criterion would be to select
points that are at equal intervals along the curve (e.g. 10% of the length of the curve). In
Bookstein’s (1991) typology of landmarks, Type 3 encompasses points that are defined
by these sorts of extrinsic criteria. Subsequently, the term semilandmarks was used by
Bookstein (1997a, 1997b) to refer to a series of points that are located along a curve using
these kinds of criteria to define their positions along the curve. As Bookstein points out in
all three cited references, semilandmarks and similarly defined points do not have as many
degrees of freedom as the number of coordinates describing their location. The reduced
degrees of freedom are a consequence of defining the semilandmark in terms of its position
relative to other features. For example, a semilandmark defined to be halfway between the
ends of a curve that connects two landmarks can only tell us one thing about the curve that
we could not have inferred from the coordinates of the landmarks: the bowing of the curve
(i.e. the amplitude of its deviation from a straight line). Consequently, the semilandmark
has only one degree of freedom even though it has two coordinates.

There are a number of ways to delimit segments of the curve under analysis, and
Figure 15.6 shows three possibilities: by increments along the length of the curve (Fig-
ure 15.6A); by increments along the length of a chord connecting the ends of the curve
(Figure 15.6B); or by increments of an angle subtended by the curve (Figure 15.6C). In
addition, the increments might all be equal, or they might vary in a way that reflects the
complexity of the curve they are sampling. The combination of choices that produces the
most satisfactory sampling of the curve will depend on the geometry of the curve and its
relationship to other features represented by landmarks. This is not just a matter of aes-
thetics; the results of subsequent analyses can depend on the sampling of the curve, just as
the results of landmark-based studies can depend on the selection of landmarks.

Superimposing configurations with semilandmarks

Choosing a general approach to selecting semilandmarks is only one of the decisions that
must be made. Because semilandmarks are not locally defined and have reduced degrees
of freedom, users must also decide how to adjust several steps in the analysis of shape
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(C)(B)(A)

Figure 15.6 Some general approaches to selecting semilandmarks on a curve, illustrated on the
anterior edge of a tree squirrel scapula: (A) increments of curve length; (B) increments of the chord;
(C) increments of an angle subtended by the curve.

differences. In this sectionwe discuss possible adjustments to the process of computingGLS
Procrustes superimpositions of configurations of landmarks and semilandmarks (including
the option of making no adjustment); in the next section we discuss possible adjustments
to methods of ordination and statistical analysis. All of these issues are illustrated using
an artificial data set designed to represent a hypothetical pattern of shape variation in the
scapula of a tree squirrel (Figure 15.7).

No adjustment or weighting
In this simplistic approach, the semilandmarks are treated as equivalent to landmarks for
the purpose of computing superimpositions. (Treating the two as equivalent at this point is
independent of any differential weighting thatmight be applied subsequently in ordinations
or statistical tests, and does not preclude such weighting.) In this superimposition, the
semilandmarks of each specimen remain in the same positions relative to the landmarks
of that specimen. Figure 15.8A shows a GLS superimposition of the artificial scapula
data using this simplistic approach. The first principal component of variation (PC1) for
these data is primarily a change in the curvature of the anterior edge (Figure 15.8B): as
the anterodorsal corner becomes more squared, the ventral end becomes narrower. This
change in the anterior edge is correlated with a general change in the relative height of
the scapula and a rather small change in the anteroposterior lengths of the acromion and
metacromion (landmarks 2–5).

Because landmarks and semilandmarks are treated as equivalent, the configurations that
come out of the superimposition have the same shapes as the configurations that went into
the superimposition (which is not true of some alternative methods). In addition, the con-
figurations that come out represent shapes in Kendall’s shape space. At first glance these
appear to be clear advantages over any possible alternative method, but they could also be
considered disadvantages because they reflect a disregard for the fact that semilandmarks
are not equivalent to landmarks. Because landmarks and semilandmarks are treated as
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Figure 15.7 Points digitized for an analysis of squirrel scapula shape. Landmarks are indicated
by black circles and semilandmarks by white circles. Semilandmarks are digitized in equal angular
increments, as shown in Figure 15.6C.

(A) (B)

Figure 15.8 Analysis of scapula shape variation with semilandmarks treated as equivalent to land-
marks: (A) GLS superimposition of all specimens; (B) shape change associated with positive scores
on PC1.
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equivalent, the semilandmarks have more influence on the result than is justified by the
number of degrees of freedom they represent. In our example, each semilandmark on the
anterodorsal corner plays as large a role in determining the optimal alignment as the land-
mark on the posterodorsal corner, which seems inappropriate because the semilandmarks
represent less information than the landmarks. This raises the question: would the changes
in curvature of the anterior edge be regarded as the dominant feature of variation if the
semilandmarks had less influence on the result?

Differential weighting of landmarks and semilandmarks
One approach to reducing the influence of semilandmarks on the superimposition is to
downweight them – i.e. construct a weighted Procrustes distance and use it as the criterion
for optimal superimposition. This superimposition would be computed using essentially
the same mathematics as the conventional superimposition, but applying scalar multiples
to reduce the influence of semilandmarks on the computations of the superimposition and
the shape differences.

This approach has the advantage of recognizing that there is a difference between
landmarks and semilandmarks, but it also has the disadvantage that the steps of the super-
imposition do not lead to configurations in Kendall’s shape space. At first this might not
seem like such a bad thing. We do not want to ignore the semilandmarks, and we do not
want to ignore the difference between landmarks and semilandmarks. This would sug-
gest that we do not want the Kendall’s shape space for just the landmarks, and we do
not want the Kendall’s shape space for configurations of landmarks plus semilandmarks.
The disadvantage lies in the consequences of not having configurations in Kendall’s shape
space – namely a lack of information about the shape of the space that the configurations
occupy or the properties of the distance metric for that space. An additional implication
of these uncertainties is that statistical analysis cannot employ conventional parametric
models; resampling-based methods must be used.

Another disadvantage of this approach is the lack of clear criteria for determining the
appropriate weighting of semilandmarks. We can be fairly confident that semilandmarks
represent less information than landmarks, especially if we know the rule used to select
the semilandmarks. Rules like those described earlier imply that each semilandmark has
only one degree of freedom. This may serve as a reasonable estimate of the information
represented by each semilandmark, but it should be regarded as an estimate with a high
degree of uncertainty. If curvature is simple (few reversals, as in the squirrel scapula exam-
ple), a small subset of semilandmarks may be sufficient to characterize the curve, which
implies that most of the semilandmarks do not contribute additional information. On the
other hand, if the curvature has a high but consistent complexity (like an oak leaf with a
fixed number of lobes), the information provided by landmarks and some semilandmarks
might be nearly equivalent. Should you decide to take this approach, we recommend you
try several different weighting schemes to insure that your conclusions are robust (i.e. not
dependent on a particular scheme).

Sliding semilandmarks to minimize bending energy
In this approach, developed by Green (1996) and Bookstein (1997a), the first step is
a conventional Procrustes superimposition (treating landmarks and semilandmarks as
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Figure 15.9 Tangents to the anterior edge at the locations of semilandmarks: (A) idealized esti-
mates based on the curvature of the edge at the semilandmark; (B) enlarged view of part of the edge,
showing estimation of the tangents at the semilandmarks from segments connecting adjacent semi-
landmarks. The line through the semilandmark is parallel to the line connecting the adjacent
semilandmarks.

equivalent) to compute a mean configuration and align the targets to it. This is followed by
moving the semilandmarks of each target to minimize the bending energy of the thin-plate
spline describing the deformation of the reference to that target. The semilandmarks are
not free to move in any direction; each is confined to “slide” along the line tangent to the
curve at that semilandmark (Figure 15.9A). The shape of the curve is not actually known,
so the tangent is estimated as the line parallel to the segment connecting adjacent landmarks
or semilandmarks (Figure 15.9B). After sliding, the superimposition is recomputed; if the
new mean configuration differs from the previous mean, the sliding and superimposition
are reiterated until they converge on a solution. The justification for this sliding tech-
nique is that differences in relative positions of semilandmarks along the curve cannot be
informative because this spacingwas defined arbitrarily (that is, extrinsically). Thus, sliding
to minimize the bending energy of the deformation adjusts the spacing of the semiland-
marks to minimize the implication that there are shape changes due to differences in that
spacing.

Figure 15.10A shows the same data set used earlier, superimposed after sliding to
minimize bending energy. Several semilandmarks have ellipses of variation that imply
displacements along the anterior edge, particularly the ones in the ventral half. PC1 indi-
cates that these semilandmarks undergo correlated displacements toward the dorsal end
as the anterodorsal corner is squared out (Figure 15.10B). Thus there is little change in
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(A) (B)

Figure 15.10 Analysis of scapula shape variation after sliding semilandmarks to minimize bending
energy: (A) superimposition of all specimens; (B) shape change associatedwith positive scores on PC1.

the positions of these semilandmarks relative to each other, and therefore little localized
change along the anterior edge. Most of the localized change in the anterior edge occurs at
the corner. As before, the change in shape of the anterior edge is inferred to be the domi-
nant component of shape change. Displacements of the landmarks are generally slight; the
exceptions are the ventral displacements of the most dorsal landmarks, which are involved
in the general flattening of the dorsal edge and squaring of the anterodorsal corner.

Compared to both options discussed above, sliding semilandmarks to minimize bend-
ing energy has the advantage that it does not ignore the difference between landmarks and
semilandmarks. Compared to weighting, this sliding technique has the further advantage
of having a clear criterion for the optimal superimposition. The principal disadvantage of
this approach is that the semilandmarks are in new positions relative to the landmarks and
the other semilandmarks. However, this may not be the devastating flaw that it seems to
be. The underlying premise of sliding is that semilandmarks are not equal to landmarks.
As pointed out above, semilandmarks do not represent the same amount of independent
information as landmarks because semilandmarks are constrained to lie along the curve at
arbitrary intervals. Put another way, if moving semilandmarks does not alter the informa-
tion about the shape of the curve, then the configuration of landmarks and semilandmarks
after slidingmight be considered to have the same shape as the configuration before sliding.

Sliding semilandmarks to perpendicular alignment on the reference
This approach, suggested by Sampson et al. (1996), differs from the previous one only
in the criterion used to determine how far the semilandmarks slide. The normal to the
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Figure 15.11 Perpendicular alignment sliding. This enlarged view of part of the anterior edge of
the scapula shows the semilandmarks for a reference (white circles) and a target (gray circles) before
sliding. The semilandmarks of the target are slid toward the lines that are perpendicular to the edge
at the corresponding semilandmark of the reference.

curve (perpendicular to the tangent) is estimated for each semilandmark of the reference
configuration (Figure 15.11). Each semilandmark of the target slides along its tangent to
align with the perpendicular of the corresponding semilandmark of the reference. As in the
other method, sliding is justified by the argument that positions of semilandmarks along
the curve are uninformative because they are arbitrary, but here the conclusion from that
argument is that semilandmarks can be informative only about the bowing of the curve.
Sliding to perpendicular alignment extracts the information about bowing (displacement
perpendicular to the tangent) and minimizes the inference that the semilandmarks moved
along the curve (along the tangent).

Compared to the first two options discussed above (no adjustment and weighting),
sliding to perpendicular alignment has the same advantages and disadvantages as sliding
to minimize bending energy. In both cases, the final configurations do not have the same
shapes as the original configurations, but they are in Kendall’s shape space. Both sliding
methods recognize the difference between landmarks and semilandmarks, and both imply
that some displacements of semilandmarks do not constitute changes in shape. Because
the two sliding methods have not been subject to extensive evaluation, it is not clear if one
is better than the other.
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Ordinations and statistical analyses

Regardless of the methods of selecting and superimposing semilandmarks, a curve will be
represented by a large number of semilandmarks better than it will be by a smaller number
(at least until the density of semilandmarks exceeds the resolution permitted by digitizing
error). If either sliding method is used, it will also be improved by increasing the number
of landmarks because that will tend to produce more accurate estimates of the tangents at
the semilandmarks. However, increasing the number of semilandmarks on a curve means
it will play a larger role in superimposition and comparison. In fact, it is easy to imagine
cases in which the curve will exert a stronger influence on the results than all the features
represented by landmarks. In addition, increasing the number of semilandmarks increases
the number of coordinates in the data set, the number of spline coefficients computed from
those coordinates, and the discrepancy between these numbers and the number of degrees
of freedom.

One possible way to address the unbalanced representation of the curve and the other
features is to reduce the number of points representing the curve. This will also reduce
discrepancy in the number of degrees of freedom. Unfortunately, it is not clear how far
to reduce the number of semilandmarks or what criteria might be used to select which
semilandmarks to eliminate. In any event, the attendant reduction of the accuracy of the
reconstructionmakes the idea of cutting semilandmarks unpalatable. Making the density of
semilandmarks inversely proportional to the general complexity of the curve can moderate
the loss of accuracy. Tangents estimated from chords connecting adjacent points will
deviate most from the true tangent in regions where the curvature changes most rapidly;
closer spacing of semilandmarks will more accurately estimate the spatial extent of a sharp
bend (Figure 15.12). Changes in the shape of the curvemay include changes in the locations
of sharp bends (as in the squirrel scapulae), so variability of the curvature should also be
a consideration in determining the number of semilandmarks to digitize.

Another possible solution to unbalanced representation of curves and other features
is downweighting the semilandmarks, as discussed above. This approach would reduce
the influence of semilandmarks on computation of distances between shapes, so they
would play a smaller role in testing for patterns of shape variation within groups, or
differences in mean shape between groups. There would still be more coordinates and
shape variables than degrees of freedom (for K landmarks and H semilandmarks there
would still be 2(K+H) coordinates and 2(K+H)−4 shape variables, but only about
2K−4+H degrees of freedom – depending on how degrees of freedom are attributed to
semilandmarks).

A compromise between removing some semilandmarks and downweighting them is
to use a large number of semilandmarks in the superimposition and sliding, then cull
semilandmarks before performing ordinations or statistical tests. Having a large number
of semilandmarks at the beginning maintains the accuracy of tangents and sliding; culling
several of them after the final superimposition reduces discrepancies in weighting and
degrees of freedom. Of course, the problem of choosing which points to cull is the same
as the problem of selecting which points to exclude from the beginning.

Regardless of which approach you select, it is always possible to perform a sensitivity
analysis to determine the effects of these choices. By comparing results obtained with
different combinations of semilandmarks, you can determine whether the choices influence
the conclusion. At the very least, this would provide reassuring information about the
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(A)

(B)

Figure 15.12 Effect of semilandmark density on estimation of tangents: (A) wide spacing; (B) closer
spacing.

robustness of the conclusion. In addition, it may also reveal which parts of the curve are
most relevant to the conclusion (for example, which semilandmarks covary with each other
but are independent of the major pattern of landmark covariation).

Whatever method you use to evaluate or moderate the influence of semilandmarks on
the results of an analysis, there remains the problem of determining the correct number of
statistical degrees of freedom for conventional statistical tests and making the appropriate
adjustments in sample size and criterion for rejecting the null hypothesis (α-level). If you
digitize more points, you will have more coordinates and will need more specimens to
maintain the same α-level. If you need to digitize a lot of semilandmarks to characterize a
curve, you may need an unobtainable number of specimens just to have more individuals
than coordinates (which is required for a conventional statistical analysis). Even if you
can correct the p-value to reflect the correct number of degrees of freedom for a given
combination of landmarks and semilandmarks, it may still be difficult to acquire enough
specimens to permit as many semilandmarks as you might like. Furthermore, determining
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the correct number of degrees of freedom may not be as simple as adding the number of
semilandmarks to twice the number of landmarks and subtracting the four degrees of free-
dom lost in the Procrustes superimposition; sliding may further reduce the independence of
semilandmarks. Fortunately, all of these problems can be avoided by using the resampling
methods discussed in Chapter 8. More specimens would still be better (as always), but
the criteria for “enough” would no longer depend on the number of coordinates; more
importantly, the risk of an erroneous conclusion due to a mistaken estimate of the number
of degrees of freedom would be eliminated.

Summary

Analysis of three-dimensional configurations of landmarks can be performed within the
same theoretical framework as analysis of two-dimensional configurations. The mathe-
matics has been worked out and published. There is only a limited amount of readily
available software, mostly due to lack of demand. The main obstacle to analyzing three-
dimensional shapes is the difficulty of displaying the results on static two-dimensional
media like journal and book pages.

Some techniques for analyzing objects without landmarks lie completely outside the
theoretical framework used to analyze configurations of landmarks. These techniques do
not employ the definitions of size and shape used in landmark-based analyses, so the
configurations described by these methods do not lie in the shape space described by that
theory. In addition, these descriptions of curves are incommensurate with shape variables
computed from Procrustes superimposed landmarks. Therefore, PLS can be used to test
for correlations, but the two kinds of description cannot be combined into a single shape
analysis.

Techniques for analyzing features without landmarks in the same theoretical framework
as configurations of landmarks are not fully developed. Methods have been developed to
use extrinsic criteria to locate comparable points along a curve (semilandmarks) and then
analyze the semilandmarks simultaneously with landmarks in the theoretical framework
for landmarks. Criteria for choosing among these methods are not well established, so we
recommend that prospective users try multiple methods and several options within those
methods (including different combinations of points on the curve). The number of degrees
of freedom associated with the semilandmarks is also not well established, although it is
clear that each semilandmark can contribute no more than one additional degree of free-
dom (in contrast to two additional degrees of freedom for a landmark). Consequently,
the number of degrees of freedom contributed by semilandmarks cannot be more than the
number of semilandmarks. Because the number of degrees of freedom is unclear, but defi-
nitely much less than the number of coordinates, we recommend that resampling methods
be used in statistical tests. This will alleviate demands for excessively large samples and
avoid errors due to mistaken estimates of the number of degrees of freedom.

Software

As mentioned above, software tools for performing the analyses discussed in this chapter
are not as well developed as the other software tools we have presented. Accordingly, we
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briefly review some of the tools that are available for three-dimensional configurations of
landmarks and for semilandmarks, but do not discuss their operational details in depth.

Three-dimensional configurations of landmarks

The IMP package currently offers three programs for analysis of three-dimensional con-
figurations of landmarks. The program simple3D takes raw data from a TPS-like format
(one landmark per row), performs Procrustes superimposition, computes centroid size and
produces output files in a more conventional datafile format (one specimen per row –
X1,Y1,Z1 . . .CS); it can also perform Goodall’s F-test and a bootstrapped F-test for sig-
nificant differences between two groups. The other two programs perform regression
(ThreeDRegress6) and principal components analysis (ThreeDPCA6) on files that have
been processed by simple3D; both are modeled on the programs used for analyses of two-
dimensional configuration. All three programs require a textfile describing a wireframe
that will be used in illustrations (data analyses can proceed without the wireframe, but the
only graphics that will function are the displays of the sample mean and the superimposed
specimens). The wireframe file is simply a list of landmarks to be connected by each seg-
ment (e.g. 1 2 3, indicating that the first segment connects landmarks 2 and 3 with one
row for each segment).

Semilandmarks

In the IMP package, two programs,MakeFan and SemiLand, have been designed for semi-
landmark processing. MakeFan provides several options for drawing fans (rays at equal
angular intervals) or combs (perpendiculars from a reference line) that can be used as guides
for digitizing semilandmarks. Pictures with fans can be digitized inMakeFan, or saved and
opened for digitizing in TPSDig. MakeFan saves coordinates in the TPS format, so they
must be converted in CoordGen before further processing. SemiLand takes the converted
files, slides the semilandmarks to perpendicular alignment on the reference configuration,
and then deletes the semilandmarks selected for culling (called helpers). Output from this
program (superimposed configurations of landmarks and retained semilandmarks) can be
input into any of the analytic programs in the IMP package.

In the TPS package, tpsrelw has been modified to permit analyses of semilandmarks
and landmarks. This requires a “sliders” file in NTS format that identifies which points
in the data file are semilandmarks. After loading both the data file and the sliders file, the
option Relax semilandmarks will be available in the Options pull-down menu. Selecting
Relax semilandmarks will invoke sliding to minimize bending energy.
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Affine transformation (Also called “uniform”). Transformation (or mapping) that leaves
parallel lines parallel. The possible affine transformations include those that do not alter
shape (scaling, translation, rotation) and those that do (shear and contraction/dilation).
See also Explicit uniform terms, Implicit uniform terms (Chapter 6).

Allometry Shape change correlated with size change, sometimes more narrowly defined
as a change in the size of a part according to the power law Y =bXk, where Y is the
size of the part, X is either the size of another part or overall body size, and k and b
are constants. There are three distinct types of allometry: (1) ontogenetic, an ontoge-
netic change in shape correlated with an ontogenetic increase in size; (2) static, variation
in shape correlated with variation size among individuals at a common developmental
stage; and (3) evolutionary, an evolutionary change in shape correlated with evolutionary
changes in size (Chapters 10, 13).

Alpha (α) (1) The acceptable Type I error rate, typically 5%; (2) a factor multiplying par-
tial warps before computing principal components of them; if α=0, principal components
of partial warps are conventional principal components; when α �=0, the partial warps are
differentially weighted. Either those with lower bending energy are weighted more highly
(α>0) or those with greater bending energy are weighted more highly (α<0). Typically,
values of +1 or −1 are used. See also Relative warps.

ANCOVA Analysis of covariance. A method for testing the hypothesis that samples do
not differ in their means when the effects of a covariate are taken into account. See also
ANOVA, MANOVA and MANCOVA (Chapters 9, 10).

Anisotropic Not isotropic, having a preferred direction. In general, anisotropy is a mea-
sure of the degree to which variation in some parameter is a function of its direction relative
to some axis. In geometric morphometrics, anisotropy usually refers to a measure of an
affine transformation – either the ratio between principal strains, or a ratio of variances
along principal axes. See also Isotropic (Chapter 3).

ANOVA Analysis of variance. A method for testing the hypothesis that samples do not
differ in their means. ANOVA differs from MANOVA in that the means are unidimensional
scalars. See also ANCOVA, MANOVA and MANCOVA (Chapter 9).

Baseline A line joining two landmarks, used in some superimposition methods to
register shapes by assigning fixed values to one or more coordinates of those land-
marks. See also Baseline registration, Bookstein coordinates, Sliding baseline registration
(Chapters 3, 5).

Geometric Morphometrics for Biologists Copyright © 2004 Elsevier Ltd
ISBN 0–12–77846–08 All rights of reproduction in any form reserved
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Baseline registration A method of superimposing landmark configurations by assigning
two landmarks fixed values (the two landmarks are the endpoints of the baseline). The
most common method of baseline registration is the two-point registration developed by
Bookstein, in which the ends of the baseline are fixed at (0, 0) and (1, 0), yielding Bookstein
coordinates. Other methods of baseline registration fix the endpoints at different values
(see Dryden and Mardia, 1998) or only fix one coordinate of each baseline point (see
Sliding baseline registration) (Chapters 3, 5).

Basis A set of linearly independent vectors that span the entire vector space, also the
smallest necessary set of vectors that span the space. The basis can serve as a coordinate
system for the space because every vector in that space is a unique linear combination of the
basis vectors. However, the basis itself is not unique; any vector space has infinitely many
bases that differ by a rotation. An orthonormal basis is a set of mutually orthogonal axes,
all of unit length. Partial warps and principal components are two common orthonormal
bases used in shape analysis. See also Eigenvectors (Chapters 6, 7).

Bending energy (1) A measure of the amount of non-uniform shape difference based on
the thin-plate spline metaphor. In this metaphor, bending energy is the amount of energy
required to bend an ideal, infinite and infinitely thin steel plate by a given amplitude
between chosen points. Applying this concept to the deformation of a two-dimensional
configuration of landmarks involves modeling the displacements of landmarks in the X, Y
plane as if they were displacements above or below the plane (± Z). (2) Eigenvalues of the
bending-energy matrix, representing the amount of bending energy per unit deformation
along a single principal warp (eigenvector of the bending-energy matrix ). This concept of
bending energy is useful because it provides a measure of spatial scale; it takes more energy
to bend the plate by a given amount between closely spaced landmarks than between more
distantly spaced landmarks. Thus, principal warps with large eigenvalues represent more
localized components of deformation than principal warps with smaller eigenvalues. The
total bending energy (definition 1) of an observed deformation is a sum of multiples of
the eigenvalues, and accounts for the non-uniform deformation of the reference shape into
the target shape. See also Thin-plate spline, Principal warps, Partial warps (Chapter 6).

Bending-energy matrix The matrix used to compute principal warps and their bending
energies (eigenvectors and eigenvalues, respectively). This matrix is a function of the dis-
tances between landmarks in the reference shape. See also Principal warps, Partial warps
(Chapter 6).

Biorthogonal directions Principal axes of a deformation; the term was used in Bookstein
et al., 1985; more recently, workers refer to principal axes (Chapter 3).

BlackBook Marcus, L. F., Bello, E. and Garcia-Valdcasas, A. (eds) (1993).Contributions
to Morphometrics. Madrid, Monografias del Museo Nacional de Ciencias Naturales 8.
(See also Blue Book, Orange Book, Red Book and White Book.)

Blue Book: Rohlf, F. J. and Bookstein, F. L. (eds) (1990). Proceedings of the Michigan
Morphometrics Workshop. University of Michigan Museum of Zoology, Special Publica-
tion No. 2 (See also Black Book, Orange Book, Red Book and White Book.)
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Bonferroni correction, Bonferroni adjustment An adjustment of the α-value to protect
against inflating Type I error rate when testing multiple a posteriori hypotheses. The adjust-
ment is done by dividing the acceptable Type I error rate (α) by the number of tests. That
quotient is the adjusted α-value for each of the a posteriori hypotheses. For example,
if the desired Type I error rate is 5%, and there are 10 a posteriori hypotheses to test,
0.05/10=0.005 is the α-value for each of those 10 tests. A less conservative approach
uses a sequential Bonferroni adjustment in which the desired α-value is divided by the
number of remaining tests. Thus, the adjusted α for the first test would be 0.05/10; for the
second it would be 0.05/9; for the third it would be 0.05/8, etc. To apply this sequential
adjustment, hypotheses are ordered from lowest to highest p-value; the null hypothesis is
rejected for each in turn until reaching one that cannot be rejected (the analysis stops at that
point).

Bookstein coordinates (BC) The shape variables produced by the two-point registration,
in which the configuration is translated to fix one end of the baseline at (0, 0), and then
rescaled and rigidly rotated to fix the other end of the baseline at (1, 0). See also Baseline
registration (Chapter 3).

Bookstein two-point registration (BTR) See Two-point registration, Bookstein
coordinates.

Bootstrap test A statistical test based on random resampling (with replacement) of the
data. Usually, the method is used to simulate the null model that one wishes to test. For
example, if using a bootstrap test of the difference between means, the null hypothesis of
no difference is simulated. Bootstrap tests are used when the data are expected to violate
distributional assumptions of conventional analytic statistical tests. Rather than assuming
that the data meet the distributional assumptions, bootstrapping produces an empirical
distribution that can be used either for hypothesis testing or for generating confidence
intervals. See also Jackknife test, Permutation test (Chapter 8).

Canonical variates analysis (CVA) A method for finding the axes along which groups are
best discriminated. These axes (canonical variates) maximize the between-group variance
relative to the within-group variance. Scores for individuals along these axes can be used
to assign specimens (including unknowns) to the groups, and can be plotted to depict
the distribution of specimens along the axes. CVA is an ordination rather than statistical
method. See also Ordination methods, Principal components analysis (Chapter 7).

Cartesian coordinates Coordinates that specify the location of a point as displacements
along fixed, mutually perpendicular axes. The axes intersect at the origin, or zero point, of
all axes. Two Cartesian coordinates are needed to specify positions in a plane (flat surface);
three are required to specify positions in a three-dimensional space. These coordinates
are called “Cartesian” after the philosopher Descartes, a pioneer in the field of analytic
geometry.

Centered A matrix is centered when its centroid is at the origin of a Cartesian coordinate
system; i.e. at (0, 0) of a two-dimensional system or at (0, 0, 0) of a three-dimensional
system (Chapter 6).
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Centroid See Centroid position.

Centroid position The position of the averaged coordinates of a configuration of land-
marks. The centroid position has the same number of coordinates as the landmarks. The
X-component of the centroid position is the average of the X-coordinates of all land-
marks of an individual configuration. Similarly, the Y-component is the average of the
Y-coordinates of all landmarks of an individual configuration. It is common to place the
centroid position at (0, 0), because this often simplifies other computations (Chapter 6).

Centroid size (CS) A measure of geometric scale, calculated as the square root of the
summed squared distances of each landmark from the centroid of the landmark config-
uration. This is the size measure used in geometric morphometrics. It is favored because
centroid size is uncorrelated with shape in the absence of allometry, and also because
centroid size is used in the definition of the Procrustes distance (Chapters 3, 4, 5).

Coefficient A number multiplying a function. For example, in the equation Y =mX, m
is the coefficient for the slope, which is the function that relates X and Y.

Column vector A vector whose entries are arranged in a column. Contrast to a Row
vector.

Complex numbers A number consisting of both a real and an imaginary part. An imagi-
nary number is a real number multiplied by i, where i is

√−1. A complex number is written
as Z=X+ iY, where X and Y are real numbers. In that notation, X is said to be the real
part ofZ and Y is the imaginary part. A complex number is often used to represent a vector
in two dimensions. The mathematics of two-dimensional vectors and complex numbers
are similar, so it is sometimes useful to perform calculations or derivations in complex
number form.

Configuration see Landmark configuration.

Configuration matrix A matrix representing the configuration of K landmarks, each
of which has M dimensions. A configuration matrix is a K×M matrix in which each
row represents a landmark and each column represents one Cartesian coordinate of that
landmark; M=2 for landmarks of two-dimensional configurations (planar shapes), and
M=3 for landmarks of three-dimensional configurations. Two configuration matrices can
differ in location, size and orientation, as well as shape (Chapter 4).

Configuration space The set of all possible configuration matrices describing all possible
configurations of K landmarks with M coordinates (all with the same values of K and M).
Because there are K×M elements in the configuration matrices, there are K×M dimen-
sions in the configuration space. In statistical analyses, the configuration space accounts for
K×M degrees of freedom because that is the number of independent pieces of information
(e.g. landmark coordinates) needed to specify a particular configuration (Chapter 4).

Consensus configuration The mean (average) configuration of landmarks in a sample
of configurations. Usually, this is calculated after superimposing coordinates. See also
Generalized Procrustes superimposition, Reference form (Chapters 4, 5).
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Contraction A mathematical mapping that “shrinks” a configuration along one axis. A
contraction along the X-axis would map the point (X,Y) to the point (AX, Y), where A
is less than one. A contraction along the Y-axis would map (X,Y) to (X,AY). Expansion
or dilation is the opposite of contraction (A>1).

Coordinates The set of values that specify the location of a point along a set of axes (see
Cartesian coordinates).

Correlation A measure of the association between two or more variables. In morpho-
metrics, correlation is most often measured using Pearson’s product-moment correlation,
which is the covariance divided by the product of the variances:

RXY =
∑

(X −Xmean)(Y − Ymean)√∑
(X −Xmean)2

∑
(Y − Ymean)2

where the sums are taken over all specimens. When variables are highly correlated we can
predict one from the other (e.g. Y from X), and the more highly correlated they are, the
better our predictions will be. Uncorrelated variables are considered independent. See also
Covariance.

Covariance Like correlation, a measure of the association between variables. The sample
estimate of the covariance between X and Y is:

SXY =
(

1
N − 1

)∑
(X −Xmean)(Y − Ymean)

where the summation is over all N specimens.

Curved space A metric space in which the distance measure is not linear. The ordinary
rules of Euclidean geometry do not apply in such spaces. The consequences of the curvature
depend upon the distance between points; we can treat the surface of the earth as flat as
long as the maps cover only small areas, but in long-distance navigation the curvature must
be taken into account. Shape space is curved, so the rules of Euclidean geometry do not
apply, which is why shapes are mapped onto a Euclidean space tangent to shape space.

D A generalized statistical distance between means of two groups (X1 and X2) relative
to the variance within the groups:

D =
√

(X1−X2)TS−1
p (X1−X2)

where ( )T refers to the transpose of the enclosed matrix, and S−1p is the inverse of the
pooled variance–covariance matrix. This distance takes into account the correlations
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among variables when computing the distance between means. The generalized distance
is used in Hotelling’s T2-test. Also known as the Mahalanobis’ distance.

D2 The squared generalized distance, D. See D.

Deformation A smooth, continuous mapping or transformation; in morphometrics, it is
usually the transformation of one shape into another. The deformation refers not only to
the change in positions of landmarks, but also to the interpolated changes in locations of
unanalyzed points between landmarks (Chapter 6).

Degrees of freedom In general, the number of independent pieces of information. In
statistical analyses, the total degrees of freedom are approximately the product of the
number of variables and the number of individuals (the total may be partitioned into sepa-
rate components for some tests). If every measurement on every individual were completely
independent, the degrees of freedom would be the product of the number of variables and
the number of individuals, but if one statistic is known (or estimated), the number of
degrees of freedom that remain to estimate a second statistic will be reduced. For exam-
ple, the estimate of the mean height of N individuals in a sample will have N×1=N
degrees of freedom, because all N measurements are needed and there is only one mea-
sured variable. In contrast, the estimate of the variance in height will have N – 1 degrees
of freedom because only N – 1 deviations from mean height are independent (the devia-
tion of the Nth individual can be calculated from the mean and the other N – 1 observed
heights). In geometric morphometrics, when configurations of landmarks are superim-
posed, degrees of freedom are lost for a different reason; namely, information that is
not relevant to comparison of shapes (location, scale and rotation) is removed from the
coordinates.

Dilation Opposite of Contraction.

Discriminant function The linear combination of variables optimally discriminating
between two groups. It is produced by discriminant function analysis. Scores on the
discriminant function can be used to identify members of the groups (Chapter 7).

Discriminant function analysis A two-group canonical variates analysis. See Canonical
variates analysis (Chapter 7).

Disparity, morphological disparity (MD) Phenotypic variety, usually morphological.
Several metrics can be used to measure disparity, but the one most commonly used in
studies of continuous variables is:

MD =
∑N

j=1D
2
j

(N − 1)

whereDj is the distance of species j from the overall centroid (i.e. the grand mean calculated
over N groups, e.g. species) (Chapter 12).
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Distance A function measuring the separation between points. Within any space there
are multiple possible distances. For this reason, it is necessary to specify the type of distance
used. See also D, D2, Euclidean distance, Generalized distance, Geodesic distance, Great
circle distance, Partial Procrustes distance, Full Procrustes distance, Mahalanobis’ distance
(Chapter 4).

Dot product (Also called inner product.) Given two vectors A= {A1,A2,A3 …AN},
B= {B1,B2,B3 …BN}, the dot product of A and B is:

A ·B=A1B1 + A2B2 + A3B3 + . . . .+ ANBN
and

A ·B= |A||B| cos (θ)

where |A| is the magnitude ofA, |B| is the magnitude of B, and θ is the angle betweenA and
B. If the magnitude of A is 1, then A ·B= |B| cos(θ), which is the component of B along the
direction specified by A. The dot product is used to calculate scores on coordinate axes, by
projecting the data onto those axes (this is how partial warp scores and scores on principal
components are calculated). It is also used to find the vector correlation, RV , between two
vectors (that correlation is the cosine of the angle between vectors).

Edge registration See Baseline registration.

Eigenvalues See eigenvectors.

Eigenvectors Eigenvectors are the non-zero vectors, A, satisfying the eigenvector
equation:

(X − λI)A=0

The values of λ that satisfy this equation are eigenvalues of X. Eigenvectors are orthogonal
to one another, and provide the smallest necessary set of axes for a vector space (i.e.
they provide a basis for that space). The eigenvectors of a variance–covariance matrix are
called principal components; the eigenvalue corresponding to each axis gives the variance
associated with it. The eigenvectors of the bending-energy matrix are the principal warps;
the eigenvalue corresponding to each axis gives the bending energy associated with it. See
also Basis (Chapters 4, 6, 7).

Element of a matrix A number in a matrix, typically referenced by the symbol designating
the matrix with subscripts indicating its row and column; for example, X4,5 refers to the
element on the fourth row and fifth column of the matrix X.

Euclidean distance The square root of the summed squared distances along all orthogonal
axes. A Euclidean distance does not change when the axes of the space are rotated (in
contrast to a Manhattan distance, which is simply the sum of the distances). See also D,
D2, Distance, Generalized distance, Geodesic distance, Great circle distance, Procrustes
distance, Full Procrustes distance, Partial Procrustes distance (Chapter 4).



Glossary 4/6/2004 17: 31 page 416

416 GEOMETRIC MORPHOMETRICS FOR BIOLOGISTS

Euclidean space A coordinate space in which the metric is a Euclidean distance.

Explicit uniform term, explicit uniform component A uniform component describes
affine or uniform deformations. Some of these do not alter shape (i.e. rotation, trans-
lation and rescaling) whereas others do (i.e. shear and dilation). Accordingly, we divide
affine deformations into two sets: (1) implicit uniform terms, which do not alter shape
and are used in superimposing forms but are not explicitly recorded; and (2) explicit uni-
form terms, which do alter shape and therefore are typically reported as components of
the deformation. All uniform terms must be known to model a deformation correctly
(Chapter 4).

Fiber In geometric morphometrics, the set of all points in pre-shape space representing
all possible rigid rotations of a landmark configuration that has been centered and scaled
to unit centroid size; in other words, the set of pre-shapes that have the same shape. Fibers
are collapsed to a point in shape space (Chapter 4).

Form Size-plus-shape of an object; form includes all the geometric information not
removed by rotation and translation. Form is also called Size-and-shape.

Full Procrustes distance (DF) The distance between two landmark configurations in the
linear space tangent to Kendall’s shape space (i.e. the tangent space) when centroid size of
one is allowed to vary to minimize the distance between the shapes rather than fixed to
unit size. See also Partial Procrustes distance (Chapters 4, 5).

Full Procrustes superimposition A superimposition minimizing the full Procrustes dis-
tance. See also Partial Procrustes distance (Chapters 4, 5).

Generalized distance See D.

Generalized least squares superimposition A generalized superimposition method that
uses a least squares fitting criterion, meaning that the parameters are estimated to min-
imize the sum of squared distances over all landmarks over all specimens. Usually, in
geometric morphometrics, GLS refers specifically to a generalized least squares Pro-
crustes superimposition – a different approach is used in generalized resistant-fit methods
(Chapter 5).

Generalized least squares Procrustes superimposition (GLS) A generalized superimpo-
sition minimizing the partial Procrustes distance over all shapes in the sample, using a
least squares fitting function. This is the method usually used in geometric morphometrics
(Chapters 4, 5).

Generalized superimposition The superimposition of a set of specimens onto their mean.
This involves an iterative approach because the mean cannot be calculated without super-
imposing specimens, which cannot be superimposed on the mean before the mean is
calculated (an alternative approach is used in ordinary Procrustes analysis). See also
Consensus configuration (Chapters 4, 5).
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Geodesic distance The shortest distance between points in a space. On a flat planar
surface, this is the length of the straight line joining the points – i.e. the Euclidean distance.
On curved surfaces, this distance is the length of an arc.

Great circle The intersection of the surface of a sphere and a plane passing through its
center. A great circle divides the surface of the sphere in half. On the surface of the sphere,
the shortest distance between two points lies along the great circle that passes through
those points. If the Earth were perfectly spherical, the equator and all lines of latitude
would be great circles.

Great circle distance The arc length of the segment of the great circle connecting two
points on the surface of a sphere; this is the geodesic distance between those points, the
shortest distance between the points in the space of the surface of the sphere.

Homology (1) Similarity due to common evolutionary origin. In morphometrics, land-
marks are considered homologous by virtue of the homology of the structures defining
their locations. (2) Some morphometricians use the term for the correspondences between
points that are imputed by a mathematical function, called a “homology function” (e.g.
see Bookstein et al., 1985). Homology is the primary criterion for selecting landmarks
(Chapter 2).

Hypersphere The generalization of a three-dimensional sphere to more than three dimen-
sions. In three dimensions, points on the surface of a sphere of radius R that is centered at
the origin satisfy the equation X2+Y2+Z2=R2.

Implicit uniform terms See Explicit uniform terms.

Induced correlation A correlation induced by dividing two values by a third which is
common to both. The induced correlation between the (rescaled) variable is not present in
the original variables.

Inner product See Dot product.

Invariant A quantity is invariant under a mathematical operation or transformation
when it is not changed by that operation. For example, centroid size is invariant under
translation, centroid position is not.

Isometric In general, a transformation that leaves distances between points unaltered. In
morphometrics, isometry usually means that shape is uncorrelated with size. In statistical
tests of allometry, isometry is the null hypothesis (Chapters 10, 13).

Isotropic A property is said to be isotropic if it is uniform in all directions, i.e. if it does
not differ as a function of direction. When an error is isotropic, it is equal in all directions,
and there is no correlation among errors. Isotropic is the opposite of anisotropic.

Jackknife test An approach to statistical testing that involves resampling the original
observations to generate an empirical distribution. Jackknifing is carried out by omitting
one specimen at a time. See also Bootstrap test, Permutation test (Chapter 8).
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Kendall’s shape space The space in which the distance between landmark configura-
tions is the Procrustes distance. This space is constructed by using operations that do not
alter shape to minimize differences between all configurations of landmarks that have the
same values of K (number of landmarks) and M (number of coordinates of a landmark).
Kendall’s shape space is the curved surface of a hypersphere, so conventional statistical
analyses are conducted in a Euclidean tangent space (Chapter 4).

Landmark Biologically, landmarks are discrete, homologous anatomical loci; mathemat-
ically, landmarks are points of correspondence, matching within and between populations
(Chapter 2).

Landmark configuration The positions (coordinates) of a set of landmarks representing
a single object, containing information about size, shape, location and orientation. The
number of landmarks is typically represented by K, and the dimensionality of the land-
marks (number of coordinates) is typically represented by M. Therefore, if there are 16
landmarks, each with an X- and Y-coordinate, then K=16 and M=2 (Chapter 4).

Least squares A method of choosing parameters that minimizes the summed square
differences over all individuals (and variables) (Chapter 10).

Linear A function f(X) is linear if it depends only on the first power ofX; e.g. f(X)=2(X)
is linear, but f(X)=2(X)2 is not.

Linear combination A vector produced by multiplying and summing coefficients of one or
more vectors. For example, given the vectorXT= {X1,X2 …XN} andAT= {A1,A2 …AN},
then Y=A1X1+A2X2+ · · ·ANXN is a linear combination of the vectors. We can write
this as Y=ATX.

Linear transformation A transformation producing a set of new vectors that are linear
combinations of the original variables. See Linear combination.

Linear vector space The set of all linear combinations of a set of vectors. The space spans
all possible linear combinations of the basis vectors, as well as all sums or differences of
any linear combination of those basis vectors. The two-dimensional Cartesian plane is the
linear vector space formed by the linear combinations of two vectors of unit length, one
along the X-axis, the other along the Y-axis.

Mahalanobis’ distance (D) The squared distance between two means divided by the
pooled sample variance–covariance matrices. This is a generalized statistical distance,
adjusting for correlations among variables. See also D, Generalized distance.

MANCOVA Multivariate analysis of covariance. A method for testing the hypothesis
that samples do not differ in their means when the effects of a covariate are taken into
account. See also ANOVA, ANCOVA and MANOVA (Chapters 9, 10).

MANOVA Multivariate analysis of variance. A method for testing the hypothesis that
samples do not differ in their means; MANOVA differs from ANOVA in that the
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means are multidimensional vectors. See also ANOVA, ANCOVA and MANCOVA
(Chapter 9).

Map A mathematical function relating X to Y by stating the correspondence between
elements in X and Y. Each element in X is placed in correspondence with one element in
Y. Multiple elements in X may map to the same element in Y (landmark configurations
differing only in rotation for example would all map to the same shape). A map is written
as: f : X→Y where f is the map from the set X to the set Y.

Matrix A rectangular array of numbers (real or complex). The numbers in a matrix are
referred to as elements of the matrix. The size of a matrix is always given as the number
of rows followed by the number of columns; e.g. a 4×2 matrix has four rows and two
columns.

Mean Also known as the average; an estimate of the center of the distribution calculated
by summing all observations and dividing by the sample size.

Median An estimate of the center of a distribution calculated such that half the observed
values are above and the other half are below.

Metric A non-negative real-valued function, D(X, Y), of the points X and Y in a space
such that:

1. The only time that the function is zero is when X and Y are the same point, i.e.
D(X, Y)=0, if and only if X=Y

2. If we measure from X to Y, we get the same distance as when we measure from Y to
X, so D(X, Y)=D(Y, X) for all X and Y

3. The triangle inequality holds true. The triangle inequality states the distance between
any two points, X and Y, is less than or equal to the sum of distances from each to a
third point, Z, so D(X, Y)≤D(X, Z)+D(Y, Z), for all X, Y and Z.

Multiple regression Regression of a single (univariate) dependent variable on more than
one independent variable. See also Multivariate regression, Regression.

Multivariate analysis of variance See MANOVA.

Multivariate multiple regression Regression of several dependent variables on more than
one independent variable. In morphometrics, this method is used to regress shape (the
dependent variables) onto multiple independent variables. See also Multiple regression,
Multivariate regression, Regression.

Multivariate regression Regression of several dependent variables onto one independent
variable. In morphometrics, this method is used to regress shape onto a single independent
variable, such as size. The coefficients obtained by multivariate regression are the same as
those estimated by simple bivariate regression of each dependent variable on the indepen-
dent variable. However, the statistical test of the null hypothesis differs. See also Multiple
regression, Multivariate multiple regression, Regression (Chapters 10, 13).
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Non-uniform Not Uniform; Non-affine. See Non-uniform deformation.

Non-uniform deformation The component of a deformation that is not uniform. In con-
trast to a uniform deformation, which leaves parallel lines parallel and has the same effect
everywhere across a form, a non-uniform deformation turns squares into trapezoids or
diamonds (shapes that do not have parallel sides) and has different effects over different
regions of the form. Most deformations comprise both uniform and non-uniform parts.
The non-uniform component can be further subdivided, see Partial warps (Chapter 6).

Normalize To set the magnitude to one. Normalizing a vector sets the length of the vector
to one; this is done by dividing each component of the vector by the length of the vector,
calculated by taking the square root of the summed squared coefficients.

Null hypothesis, or null model Usually, the hypothesis that the factor of interest has no
effect beyond that expected by chance. For example, in an analysis of allometry, the null
hypothesis being tested by regression of shape on size is that shape does not depend on
size (i.e. isometry). Similarly, in a comparison of two means using Hotelling’s T2-test, the
null hypothesis is that the two groups do not differ beyond what is expected by chance.

Orange Book Bookstein, F. L. (1991).Morphometric Tools for Landmark Data. Geom-
etry and Biology. Cambridge University Press. (See also Black Book, Blue Book, Red Book
and White Book.)

Ordinary Procrustes analysis (OPA) An approach to superimposition in which one land-
mark configuration is fitted to another, differing from a Generalized superimposition in
that it involves only two forms. This approach has rarely been used since iterative methods
became available for generalized superimpositions. See also Generalized superimposition,
Consensus form (Chapter 5).

Ordination Ordering specimens along one or more axes based on some criterion (e.g.
from youngest to oldest, or shortest to tallest). Ordination methods include principal
components analysis and canonical variates analysis; the scores on the axes provide a
basis for ordering specimens (Chapter 7).

Orthogonal Perpendicular (at right angles to each other). Two vectors are orthogonal if
the angle between them is 90◦; when they are, their dot product is zero.

Orthonormal Perpendicular and of unit length; vectors are orthonormal if they are
mutually orthogonal and of unit length.

Orthonormal basis See Basis.

Population The set of all possible individuals of a specific type, such as all members of a
species, or all leaves on a particular kind of tree. See also Sample (Chapter 8).

Outline A curve around the perimeter of an object (or around a distinct part of it).
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Partial least squares analysis A method of exploring patterns of covariance or correla-
tion between two blocks of variables measured on the same set of specimens. A singular
value decomposition is used to determine the pair of vectors (each a linear combination of
variables within one of the blocks) that expresses the greatest proportion of the covariance
between blocks. See also Singular value decomposition, Singular warps (Chapter 11).

Partial Procrustes distance (Dp) The distance between two landmark configurations in
the linear tangent space to Kendall’s shape space when both shapes are centered, fixed
to unit centroid size, and rotated to minimize the sum of squared distances between
their corresponding landmarks. See also Full Procrustes distance, Procrustes distance
(Chapters 4, 5).

Partial Procrustes superimposition A superimposition that minimizes the partial
Procrustes distance between shapes. See also Full Procrustes distance, Procrustes distance
(Chapters 4, 5).

Partial warps The term partial warps sometimes refers solely to the components of the
non-uniform deformation, which are computed as eigenvectors of the bending-energy
matrix projected onto the X, Y-plane of the data (they are projections of principal warps),
ordered from least to most bending energy. These eigenvectors provide an orthonormal
basis for the non-uniform part of a deformation. Sometimes “partial warps” also includes
the components of the uniform deformation, as the zeroth partial warp – in which case the
scores on this component are included among the partial warp scores (Chapter 6).

Partial warp scores Coefficients indicating the position of an individual, relative to the
reference, along partial warps. They are calculated by taking the dot product between
the partial warps and the data for a specimen. When appropriate scores on the uniform
component are also included among the partial warps scores, the sum of the squared scores
equals the squared partial Procrustes distance of that specimen from the reference. This
full set of scores can be used as shape variables in any conventional statistical analysis
because they are based on the appropriate distance measure and have the same number
of coordinates as degrees of freedom. See also Non-uniform deformation, Partial warps,
Principal warps, Uniform deformation (Chapter 6).

Permutation test An approach to statistical testing that involves permuting (rather than
randomly sampling) observed values. See also Bootstrap test, Jackknife test, Monte Carlo
simulations (Chapter 8).

Pinocchio effect A large change concentrated at one landmark, with little or none at
others; a highly localized change. In the presence of the Pinocchio effect, Procrustes super-
impositions imply that the shape difference is distributed over all landmarks. Resistant-fit
methods, such as RFTRA, were devised to avoid that implication (Chapter 5).

Position See Centroid position.

Pre-shape A centered landmark configuration, scaled to unit centroid size (Chapter 4).
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Pre-shape space The set of all possible pre-shapes for a given number of landmarks with
a given number of dimensions. This is the surface of a sphere of KM – M – 1 dimensions,
where K is the number of landmarks andM is the number of dimensions of each landmark
(Chapter 4).

Principal axes The set of orthogonal axes used in modeling the change of one shape
into another as an affine transformation. This transformation can be parameterized by
its effect on a circle or sphere (for two or three dimensional shapes, respectively). In two
dimensions, an affine transformation takes a circle into an ellipse and the principal axes
are the directions of the circle that undergo the greatest relative elongation or shortening
mapped onto the major and minor axes of the ellipse. The ratio of the lengths of these
axes is the anisotropy, a measure of the amount of affine shape change. Principal axes are
invariant under a change in the coordinate system. See also Principal strains (Chapter 3).

Principal components analysis (PCA) A method for reducing the dimensionality of multi-
variate data, performed by extracting the eigenvectors of the variance–covariance matrix.
These eigenvectors are called principal components. Their associated eigenvalues are the
variance explained by each axis. Principal components provide an orthonormal basis. The
position of a specimen along a principal component is represented as its principal compo-
nent score, calculated by taking the dot product between that principal component and
the data for that specimen (Chapter 7).

Principal strain In an affine deformation, the ratio of the length of a principal axis in the
ellipse to the original diameter of the circle. See also Principal axes (Chapter 3).

Principal warp An eigenvector of the bending-energy matrix interpreted as a warped
surface over the surface of the X, Y-plane of the landmark coordinates. Principal warps
are ordered from least to most bending energy (smallest to largest eigenvalue), which
corresponds to the least to most spatially localized deformation. Principal warps differ
from partial warps in that partial warps are projections of principal warps onto the X,
Y-plane of the data. See also Bending energy, Bending-energy matrix, Orthonormal basis,
Partial warp, Thin-plate spline (Chapter 6).

Probability distribution A mathematical function that describes the probability of a mea-
surement taking on either a particular value or a range of values, depending on whether
the variable is discrete or continuous, respectively (Chapter 8).

Procrustes distance The distance between two landmark configurations in Kendall’s
shape space. It is approximately the square root of the summed squared distances between
homologous landmarks when the configurations are in Procrustes superimposition. This
distance is measured in the curved shape space (Chapter 4).

Procrustes methods A general term referring to the superimposition of matrices based
on a least squares criterion. The term comes from the Greek mythological figure,
Procrustes, who fitted visitors to a bed by stretching them or amputating overhanging
parts (Chapter 5).
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Procrustes residuals Coordinates of a landmark configuration obtained by a Procrustes
superimposition. They are residuals in the sense that they indicate the deviation of each
specimen from the mean (i.e. the consensus configuration) or other reference. See also
Consensus configuration, Procrustes superimposition, Reference (Chapter 5).

Procrustes superimposition A superimposition of shapes that minimizes the Procrustes
distances over the sample. The term is used whether the distance being minimized is the
full or the partial Procrustes distance (Chapters 4, 5).

Red Book Bookstein, F. L., Chernoff, B., Elder, R. L. et al. (eds) (1985). Morphometrics
in Evolutionary Biology: The Geometry of Size and Shape Change, with Examples from
Fishes. Academy of Natural Sciences of Philadelphia, Special Publication No. 15. (See also
Black Book, Blue Book, Orange Book and White Book.)

Reference, Reference form The shape to which all others are compared. It is the point of
tangency between Kendall’s shape space and the tangent space. Because the linear approx-
imation to Kendall’s shape space may be inaccurate when the point of tangency is far from
the center of the distribution of specimens, the reference is usually chosen to minimize the
distances between it and the other specimens – i.e. it is chosen to be the consensus shape
(Chapters 4, 5).

Regression An analytic procedure for fitting a predictive model to data and assessing the
validity of that model. One variable is expressed as a function of the other, e.g. Y =mX+b
expresses Y as a linear function of X. The predictor variable(s) are the independent vari-
able(s), and those variables predicted by the model are the dependent variable(s). In the
linear model above, X is the independent variable that predicts the dependent variable, Y.
The term “regression” comes from Francis Galton (1889), who concluded that offspring
tend towards (regress towards) the mean of the population. As stated by Galton in his law
of universal regression, “each peculiarity in a man is shared by his kinsman, but on the
average, in a less degree.” Thus, the offspring of unusually tall fathers regress towards the
mean height of the population (Chapters 10, 13).

Relative warps Principal components of partial warp scores, sometimes weighted to
emphasize components of low or high bending energy (that weighting is done by setting
the parameter α to a value other than 0). Originally, the term referred to an eigenanalysis
of the variance–covariance matrix relative to the bending-energy matrix, hence a new term
was coined for these components (Bookstein, 1991). Currently, the term usually refers to
a conventional principal components analysis of partial warp scores. See also Alpha (α),
Bending energy, Partial warp scores, Principal components analysis (Chapter 7).

Repeated median The median of medians, used in estimating the scaling factor and rota-
tion angle by resistant-fit superimposition methods such as RFTRA. The repeated median
is more robust to large deviations than the median or a least squares estimator. See also
Resistant-fit superimposition, RFTRA (Chapter 5).

Resampling A method whereby a new data set is constructed by randomly selecting
from the original data (either values recorded on specimens or residuals from a model).
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Construction of a large series of resampled data sets can be used to simulate either the
distribution of measured values or the distribution of a test statistic under the null model.
Under some conditions, resampling can also be used to produce confidence intervals around
the statistic. This approach permits hypothesis tests when the data are expected to deviate
from the distributional assumptions of conventional analytic tests. Resampling may be
done with replacement, meaning that each observation can appear more than once in a
resampled data set; resampling without replacement means each observation appears only
once in a set. See also Bootstrap test, Jackknife test, Permutation test (Chapter 8).

Rescale Multiply or divide by a scalar value; used in geometric morphometrics to change
the centroid size of a configuration (Chapters 3, 4).

Residual Deviation of an observation from the expected value under a model. For exam-
ple, a residual from a regression is the deviation between the observed and expected values
of the dependent variable at a given value of the independent variable. The term is also
used for the coordinates obtained by a Procrustes superimposition, the Procrustes residuals,
which are deviations between individual specimens and the reference.

Resistant-fit superimposition A superimposition method that uses medians or repeated
medians (rather than a least squares error criterion) to superimpose forms. The method is
intended to be resistant to large localized shape differences, such as those produced by the
Pinocchio effect. RFTRA is an example of this type of method. See also Repeated medians,
RFTRA (Chapter 5).

RFTRA (Resistant fit theta-rho analysis) A resistant-fit superimposition method using
the method of repeated medians to determine the scaling factor and rotational angle. See
also Resistant fit and Repeated median (Chapter 5).

Rigid rotation A rotation of an entire vector or matrix by a single angle. Rigid rotations
do not alter the size, shape or location of the object. Rotations are often represented by
square matrices. The rotation matrix:

R =
∣∣∣∣cos θ −sin θ
sin θ cos θ

∣∣∣∣
rotates a 2×N matrix through an angle θ. When different vectors are multiplied by
different angles, the rotation is oblique, not rigid.

Row vector A vector with coefficients in a row. Contrast to a Column vector.

Sample The collection of observed individuals representing members of a population.
An individual observation is the smallest sampling unit in the study, which might be an
individual organism or one of its parts, or a collection of organisms such as a species or a
bacterial colony (Chapter 8).

Scalar A real or complex number.
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Scale (1) Noun – size of an object (given some definition of size); (2) verb – to change
the size of an object (equivalent to rescale).

Scaling factor A constant which is used to change the scale or size of a matrix or vector.
This is done by multiplying or dividing the matrix or vector by the constant.

Score In morphometrics, a coefficient locating a specimen along a vector, calculated by
projecting the specimen onto an axis. Usually, scores locate the position of a specimen
relative to the axes of a coordinate system. They are calculated by taking the dot product
between an axis of the coordinate system and the data of a specimen. The scores are
linear combinations of the original variables. Partial warp scores locate the position of
an individual specimen relative to the coordinate system provided by the partial warps.
Similarly, principal component scores locate the position of an individual specimen relative
to the coordinate system provided by the principal components. Scores can be calculated
relative to any basis of a vector space because each basis provides a coordinate system for
that space. See Dot product.

Semilandmark A point on a geometric feature (curve, edge or surface) defined in terms
of its position on that feature (e.g. at 10% of the length of the curve from one end).
Semilandmarks are used to incorporate information about curvature in a geometric shape
analysis. Because semilandmarks are defined in terms of other features, they represent less
information (fewer degrees of freedom) than landmarks (Chapter 15).

Shape Shape has a variety of inconsistent definitions. In geometric morphometrics, the
definition of shape is Kendall’s: all the geometric information remaining in an object (such
as a landmark configuration) after differences in location, scale and rotational effects are
removed (Chapters 1, 4, 5).

Shape coordinates Within geometric morphometrics, coordinates of landmarks after
superimposition, whether by a two-point registration (which yields Bookstein shape coor-
dinates), or Procrustes superimposition (which yields Procrustes residuals) (Chapters 3, 5).

Shape space Within geometric morphometrics, shape space refers to Kendall’s shape
space. The term is more general, however, as it can apply to any space defined by a partic-
ular mathematical definition of shape. There are shape spaces for outline measurements,
for example. There are also shape spaces based on different definitions of size. The char-
acteristics of these various shape spaces are not necessarily the same as those of Kendall’s
shape space (Chapter 4).

Shape variable A general term for any variable expressing the shape of an object,
including ratios, angles, shape coordinates obtained by a superimposition method, or
vectors of coefficients obtained from partial warp analysis, principal components analysis,
regression, etc. Shape variables are invariant under translation, scaling and rotation.

Shear An affine or uniform deformation that leaves the Y-coordinate fixed while the
X-coordinate is displaced along the X-axis by a multiple of Y. Under a shear, the point
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(X, Y) maps to (X+AY, Y), where A is the magnitude of the shear. Visually, this looks
like altering a square by sliding the top side to the left or right, without altering its height
or the lengths of the top and bottom (Chapter 5, 6).

Singular axes Orthonormal vectors produced by singular value decomposition. See
Singular value decomposition (Chapter 11).

Singular value In a singular value decomposition, a quantity expressing a relationship
between two singular axes; an element λi of the diagonal matrix S. In partial least squares
analysis, each singular value represents the covariance explained by the corresponding pair
of singular axes. See Singular value decomposition (Chapter 11).

Singular value decomposition (SVD) A mathematical technique for taking an M×N
matrix A (where N is greater than or equal to M) and decomposing it into three matrices:

A = USVT

where U is an M×N matrix whose columns are orthonormal vectors, S is an N×N
diagonal matrix with on-diagonal elements λi, and V is an N×N matrix whose columns
are orthonormal vectors. The values λi are called the singular values of the decomposition,
and the columns of U and V are called the singular vectors or singular axes corresponding
to a given singular value. In partial least squares analysis, A is the matrix of covariances
between the two blocks, the columns of U are linear combinations of the variables in one
of the two data sets, the columns of V are linear combinations of the variables in the other
data set, and each λi is the portion of the total covariance explained by the corresponding
pair of singular axes (Chapter 11).

Singular warps Singular axes computed from shape data (partial warp scores or residuals
of a Procrustes superimposition), so that the singular axes describe patterns of differences
in shape. See Singular value decomposition (Chapter 11).

Size Any positive real valued function g(X), where X is a configuration or set of points,
such that g(AX)=Ag(X), where A is any positive, real scalar value. In other words, multi-
plying every element inX byAmultiplies g(X) byA. There are a wide variety of measures of
size, including lengths measured between landmarks, sums or differences of interlandmark
distances, square roots of area, etc. The size measure used in geometric morphometrics is
centroid size. See also Centroid size (Chapters 3, 4).

Size-and-shape All the geometric information remaining in an object (such as a landmark
configuration) after differences in location and rotational effects are removed. See Form.

Space A set of objects (or measurements thereof) that satisfies some definition. For exam-
ple, a space might be defined as the set of all four-landmark configurations measured in
two dimensions.

Statistic Any mathematical function based on an analysis of all measured individuals, e.g.
the mean, standard deviation, variance, maximum, minimum, and range. The true value
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of the statistic in the population is called the parameter, which we are trying to estimate
from our sample (Chapter 8).

Superimposition A method for matching two landmark configurations (or matrices)
prior to further analysis. A number of different optimality criterion may be used.
See also Bookstein coordinates, Procrustes superimposition (also Full Procrustes super-
imposition and Partial Procrustes superimposition, RFTRA, Sliding baseline registration
(Chapters 3, 5).

Strain See Principal strain.

Tangent space The linear vector space tangent to a curved space. In geometric mor-
phometrics, the Euclidean space tangent to Kendall’s shape space. In the tangent space,
distances between shapes are linear functions, which allows for analysis of shape varia-
tion by ordinary multivariate statistical methods. When the linear approximation to the
curved surface is accurate (when all shapes in a study are close to the point of tangency),
distances in the tangent space approximate distances in the curved space. The point of
tangency between Kendall’s shape space and the tangent space is the reference form. See
also Kendall’s shape space, Reference form (Chapter 4).

Target shape A shape being compared to the reference shape. See Reference.

Thin-plate spline An interpolation function used to predict the difference in shape
between a reference and another shape over all points on the form, not just at land-
marks. This interpolation function minimizes the bending energy of the deformation, which
is equivalent to modeling that deformation as smoothly as possible given the observed
landmarks (thus taking a parsimonious approach to interpolation). Thin-plate spline anal-
ysis produces scores for the non-uniform component of the deformation – scores for the
uniform component are produced by a different analysis (Chapter 6).

Transformation See Map.

Two-point shape coordinates See Bookstein coordinates.

Type I, Type II error Type I error is invalidly rejecting a true null hypothesis. Type II
error is failing to reject a false null hypothesis.

Type 1 landmark A landmark that can be defined in terms of local information, such
as a landmark located at the junction of three bones or two bones and a muscle (i.e.
anatomical features that meet at a point). There is no need to refer to any distant structures
or maxima/minima of curvature. The typology of landmarks is based on Bookstein, 1991.
See also Type 2 and Type 3 landmarks (Chapter 2).

Type 2 landmark A landmark defined by a relatively local property, such as the maxi-
mum or minimum of curvature of a small bulge or at the endpoint of a structure. These
are considered less useful than Type 1 landmarks because their evidence of homology is at
least partly geometric rather than purely histological or osteological. See also Type 1 and
Type 3 landmarks (Chapter 2).
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Type 3 landmark A landmark defined in terms of extremal points, such as the landmark
on the rostrum furthest away from the foramen magnum. Such landmarks are regarded as
deficient because they have one less degree of freedom than they have coordinates (the other
degree of freedom is lost when specifying how to locate the landmark). Such landmarks
can be used in geometric morphometric studies, but the loss of a degree of freedom must be
taken into account when conducting statistical tests. See alsoType 1 andType 2 landmarks
(Chapter 2).

Uniform components The components describing the uniform deformation. For two-
dimensional configurations, the uniform deformation is described by two components:
compression/dilation and shear. The uniform deformation is sometimes considered the
zeroth partial warp (Chapter 6).

Uniform deformation A deformation that is purely uniform (or affine), or the purely
uniform component of a deformation. The uniform deformations include only the uni-
form transformations that alter shape (compression/dilation and shear). They do not
include transformations that do not alter shape (translation, scaling and rotation). See
also Uniform shape component (Chapters 5, 6).

Uniform component scores Scores locating a specimen, relative to the reference, along
the uniform components. The summed squared scores on the uniform components and
partial warps equal the Procrustes distance between each specimen and the reference.
Taken together, the uniform and non-uniform scores fully describe the shape difference
between the reference and that specimen (Chapter 6).

Vector A set of P coordinates that specify the location of a point in P dimensions.

Vector space A set of vectors, together with rules for adding and multiplying them
(thereby obtaining all permissible linear combinations of them). Addition and scalar
multiplication are required to meet eight rules:

1. X+Y=Y+X
2. X+ (Y+Z)= (X+Y)+Z
3. A unique zero vector exists such that X+0=X, for all X
4. For each X there exists a unique vector −X such that X+ (−X)=0
5. 1X=X
6. (C1C2)X=C1(C2X)
7. C(X+Y)=CX+CY
8. (C1+C2)X=C1X+C2X.

White Book Marcus, L. F., Corti, M., Loy, A. et al. (1996). Advances in Morphometrics.
Plenum Press. (See also Black Book, Blue Book, Orange Book and Red Book.)
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Affine transformations, see Uniform
transformations

Allometry, 56, 58, 322, 324, 325–58
allometric scaling, 325
coefficients

estimation of, from traditional
morphometric data, 326–9

estimation of, from geometric
data, 350–1

interpretation of, 330–3, 350–1
comparing ontogenetic allometries

traditional morphometric data, 333–347
geometric data, 350–5

evolutionary, 322, 323
ontogenetic, 325, 326–33
software, 255–6
standardizing to remove effects of, see

Standardization by regression
transpositional, 341
see also Regression

ANCOVA, 217
Anisotropy, 61, 62
ANOVA, 212–17

graphic representation, 213
Aspect ratio of triangle, 59

Bartlett’s test for differences in Wilk’s
lambda, 178

Baseline, 54–5, 55–7
choice of, 56–7
interpreting shape variables relative to,

58–60
sliding, 109–113

Baseline registration, see Bookstein shape
coordinates; sliding baseline registration

Basis of a vector space, 125
orthonormal basis, 163–4
see also Eigenanalysis

Bending energy, 133–4, 146–9, see also
Non-uniform transformations,
partial warps

Bending energy matrix, see Bending energy
BigFix program, 69, 71
Biorthogonal directions, 61
Bivariate analysis, 190, 232–4
BMP format for image files, 45
Bonferroni adjustment, 65, 215
Bookstein shape coordinates, 31, 51–72

alternatives to, 105–9
as shape variables, 51–5
choice of baseline, 56–7
for multiple landmarks, 65–8
principal axes, 61
shape variables from, 51–5
shape differences described by, 58–60
software, 69
statistics, 57–8
variables implied by principal axes, 62–5

Bootstrap estimate, 196
Bootstrapping, 195–9, 223, 225
Box truss, 3–5
Brightness, image, 47

Canonical correlation analysis, 264–5
Canonical variates analysis, 15, 155, 170–80

algebraic description, 174–6
classification of groups by, 179
geometric description, 171–4
groups and grouping variables, 170
interpretation of results, 176–80
relationship to principal components

analysis, 155, 170–1
testing the statistical significance of canonical

variates, 178–9
software, 184–6, 224
using for taxonomic discrimination, 365–7

Cartesian coordinates, 76
CCA, see Canonical correlation analysis
CCoder program, 186–7
Centered configuration matrix, 77, 79–80, 83,

84, 86, 89, 90, 91, 93, 95, 98, 388, 390
Centering a configuration matrix, 89
Centroid position, 77, 109
Centroid size, 11, 13, 56, 78

calculating, 56
geometric depiction of the calculation, 56
radial notion of scale, 56
as uncorrelated with shape, 56
as the independent variable in studies of

allometry, 236–237, 240, 254
Characteristic equation, 163–4, 176, see also

Eigenvalue
Characters (Phylogenetic), 367–8

unsuitability of partial warps for, 369–72
using comparisons between vectors to find,

376–8
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Characters (contd)
using PCA to find, 372–6

Circle construction of principal axes, 61–2
Clock model, Gould’s for analysis of

heterochrony, 339
Clustering, 307
Coding phylogenetic characters, 378–9
Comparing means, see ANOVA, MANOVA

and specific test statistics
Comparing patterns of (co)variance, 308–14
Complex numbers, 137–8
Compression/dilation, 137–42
Computer-based statistical methods, 189–208

basic statistical concepts, 190–1
constructing confidence intervals, 191–2
hypothesis testing, 193–4
number of repetitions, 205–6
power, 205
resampling-based methods

bootstrap, 195–9
jackknife, 200–1
Monte Carlo simulations, 201–2
permutation tests, 199–200

Configuration of landmarks, 75
Configuration matrix, 76–9

configuration space, 77
position or location, 77–8
size, 78–9

Configuration spaces, 77, 390–1
Consensus configuration, see Reference

configuration
Consistency of relative position of landmarks,

27–8
Continuous functions and models of

deformations, 132
Continuous variables, 190
Contraction, 413
Contrast, 47
CoordGen program, 69–70
Coplanarity of landmarks, 30–1
Correlation, 413
Correlation coefficient, 235
Correspondence of landmarks, 25
Covariance, 217, 413
Criteria for selecting landmarks, see

Landmarks, criteria for choosing
Curves without landmarks, 395–6
CVA, see Canonical variates analysis
CVAGen program, 184–6, 224

Deformation, 131–2
decomposition of, 134–150, 391–2

see also Thin-plate spline, uniform
transformations, non-uniform
transformations, partial warps

Degrees of freedom, 88, 97–8, 214, 215
Depth of field, 43

Digitization of images, 48–9
Discontinuous functions and models of

deformations, 132
Discontinuous variables, 210
Discrete variables, 190
Discriminant function, see Canonical variates

analysis
Disparity, 293–5

confidence intervals, 298–302
hypotheses explaining temporal

patterns, 294
measurement, 297–8
metrics, 296–7
multi-group analysis, 316–17
ontogenetic and interclade comparisons,

300–2
partial, 302
relationship to variation, 293
software, 314–17

DisparityBox, 314–17
SpaceAngle, 317

structure, analysis of
nearest-neighbor analysis, 303–8
patterns of (co)variance, 308–14

DisparityBox program, 314–17
Distance, 81, see also Euclidean distance, full

Procrustes distance, Mahalanobis distance,
partial Procrustes distance

Dot (inner) product, between two vectors,
251–2

Dummy codes, using in regression, 240

Edge registration, see Baseline registration
Eigenanalysis, 146
Eigenvalues, see Eigenvectors
Eigenvectors, 163–4, 167

eigenvectors of the bending energy matrix
(partial warps), 146, 149

relationship to singular axes, 262, 263
see also Principal components, partial warps

Electronically available resources, see Web
resources

Elements of matrix, 77
Error, 193, 230, 232
Error function, 232
Euclidean approximation to Kendall’s shape

space, 87, 95–6
Euclidean distance, 97, 297
Euclidean space, 86, 87, 95, 96, 149, 392
Explicit uniform components, 136, 137
Explicit uniform deformations, see Explicit

uniform components
Explicit uniform term, see Explicit uniform

components

F-test, 197, 212–14, 219
Fiber, 81–3
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Flury hierarchy, 308
Focus, 43
Full Procrustes distance, 85, 115, 390
Full Procrustes superimposition, 94, 96,

99, 115

Gaussian distribution, 191, 305
Generalized least squares Procrustes

superimposition, 113–19, 298
Geodesic distance, see Partial Procrustes

distance
Geometric shape, 11, 72–3
GLS, see Generalized least squares Procrustes

superimposition
Goodall’s F-test, 117, 122, 130, 221,

225, 236
Grand mean, 213, 298–9
Great circle distance, see Partial Procrustes

distance
Grouping variable in MANOVA, 171
Growth:

decoupling from development, 337–9
describing changes in shape related to, see

Ontogenetic trajectory
profiles, 332

Heterochrony, 321, 323, 324
formalisms for, 339–41

Homology of landmarks, 25–7
Hotelling-Lawley trace, 219
Hotelling’s T2-test, 58, 65, 112, 218,

224, 240
Hyperplanes, 309

largest possible angle between, 309–12
Hypersphere, 80

Image acquisition, 39
camera

aperture, 39–40
image capture, 44–5
lens, 40–4

digitization, 48–9
image formation, 40
improving image, 46–7
magnification, 42
saving image, 45–6
system checks, 44

Implicit uniform deformations, 136,
142–3

Implicit uniform terms, see Implicit uniform
deformations

Induced correlation, 111–12
Induced covariance, 110, 112, 119
Influential observations, 119
Isometry, 240, 331, 337, 338
Isotropic change, 62

Jackknife test, 200–1, 417
JPEG format for image files, 45

Kendall’s shape space:
Three-dimensional landmark configurations,

in, 390, 395–6, 399, 402
Two-dimensional landmark configurations,

in, 86–95
“Kluge–Kerfoot” phenomenon, 296

Lagrange multiplier, 165, 176
Landmark configuration, 14–15, 76
Landmarks, 6, 7, 23–50

Bookstein’s typology of, 31
digitizing, 48–9
criteria for choosing, 24–31

adequate coverage of the form, 28–9
consistency of relative position, 27–8
coplanarity of, 30–1
homology, 25–7
repeatability of, 30
applied to specific cases

external body form, piranha, 34–7
scapula, squirrel, 32–4
skull, rodent, 37–39

configuration of, 14–5, 75
curves without, 395–6
definition of, 75
differential weighting of, 399
image acquisition, manipulation and

enhancement, 39–47
superimposing configurations of, 387–9
three-dimensional configuration of, 386–7
software, for digitizing, 48

Latent variables, 262
Least squares, 119, 232–3
Linear regression, 230, 262
Linear combinations, 5, 155–6, 162, 164,

170, 264
Linearity and regression, 236–40

Mahalanobis distance, 177–8
MakeFan program, 406
MANCOVA, 58, 217, 336
MANOVA, 58, 65, 209–28, 210–23

analytic techniques
categorical with continuous variable,

217–18
complex trait with categorical variable,

218–22
simple trait with more than two groups,

214–15
simple trait with two groups, 210–14
two or more categorical variables, 215–17

software, 223–8
see also Computer-based statistical methods,

F-test, Goodall’s F-test
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Means, comparing statistically, see ANOVA,
MANOVA, computer-based statistical
methods, Student’s t-test, F-test, Goodall’s
F-test

Standard error of, 194, 200
Mean square, 215
Measurement theory, 2–10
Mglinstaller, 20
Monte Carlo simulations, 201–2, 305
Morphological disparity, see Disparity
Multiple regression, 262–3, 264–5
Multiple triangles, 65–8
Multivariate analysis of covariance,

see MANCOVA
Multivariate analysis of variance,

see MANOVA
Multivariate regression, see Regression

Nearest-neighbor analysis, 303–8
Negative allometry, 330
Neoteny, 338, 340
Non-affine transformations, see Non-uniform

transformations
Non-uniform deformation, see Non-uniform

transformations
Non-uniform transformations, 143–51, 391–2

algebraic introduction, 146–50
intuitive introduction, 143–6
see also Bending energy, partial warps,

uniform transformations
Normal distribution, 191, 194–5, 211, 212,

215, 219, 234
Normalized vector, 251, 256, see also

Orthonormal basis

Ontogenetic scaling, 336–7
Ontogenetic allometry, 322, 324, 325, 333–4
Ontogenetic trajectory, 341–5

computing by multivariate regression,
see Regression

comparing, 336–47
see also Ontogenetic allometry

Ontogeny, in relation to phylogeny, 321–62
Ordination methods, see Principal components

analysis, canonical variates analysis
Orthogonality, 163, 164
Orthonormal basis, 163–4
Outliers, 119
Outlines, see Semilandmarks
Over-dispersion, 307

Paedomorphosis, 334, 337, 341
Parallelism, between ontogeny and phylogeny,

321, 322, 334
Parameters, 191
Partial disparity, 302
Partial least squares analysis, 261–90

comparison with CCA, 264–5

comparison with PCA, 263–4
comparison with regression, 262–3
comparing patterns of covariances across

groups, 265, 276–7
using to test hypotheses of morphological

integration, 266–76, 277–9
software, 285–9

Partial Procrustes distance, 83, 85, 87, 93–6,
99, 222

Partial Procrustes superimposition, 93, 115
Partial warp scores, 129, 143
Partial warps, 143–51, 298

algebraic introduction, 146–50
degrees of freedom, 128–9
intuitive introduction, 143–6
using as variables in conventional

multivariate analyses,
why not to use as phylogenetic characters,

369–72
see also Bending energy, non-uniform

transformations
PCA, see Principal components analysis
PCAGen program, 151, 181–4
Peramorphosis, 334, 337, 341
Permutation test, 199–200
Phylogeny:

Ontogeny and, 321–61
Inferring from morphometric data, 363–5,

367–80
Photo-editing software, 47
Pillai’s trace, 219
Pinhole camera, 40–4
Pinocchio effect, 119, 120, 132
PLS, see Partial least squares analysis
Population, 190
Positive allometry, 330
Power (statistical), 205
Power law, formalism for analysis of allometry,

330–1
Pre-shape space, 79–83

definition, 79
fibers in, 81–3
shape of, 79–80

Principal axes of a transformation, 61
variables implied by, 62–5

Principal components analysis, 15, 156–70,
328–30

algebraic description of, 161–5
comparison with PLS, 263–4
finding phylogenetic characters by, 372–6
geometric description of, 156–61
interpretation of results, 166–70

relationship to allometric coefficients,
328–30

principal component scores, 159–61
relationship to canonical variates analysis,

155, 170–1
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scree plots, 168
software, 181–4
testing whether successive eigenvalues are

distinct, 169
Principal strains of a transformation, 61
Principal warps, 149, see also Partial warps
Probability distribution, 190
Procrustes distance, 82–3, 93, 94, 389–90

full, 85, 115, 390
partial, 83, 85, 87, 93–6, 99, 389

Procrustes methods, 113–21
Procrustes residuals, see Shape coordinates, GLS
Procrustes superimposition, 113–19

axes of symmetry, and, 117
degrees of freedom, 97–8
partial, 93, 115
full, 94, 96, 99, 115

Reference configuration, 83
Selecting, 96–7

Regress6 program, 255–6
Regression, 229–59, 423

assumption of linearity, 236–40
bivariate, 232–4
comparison with PLS, 262–3
comparing regressions

directions of change, 249–53
rates of response, 254

correlation coefficient, 235
MANCOVA, 240–2
multivariate, 14, 58, 235–6
regression equations

bivariate, 230, 232
multivariate, 235–6

software, 255–9, 406
standardization by, 242–4

Relative warps, 170, 423, see also Principal
components analysis

Repeatability, 30
Repeated median as a criterion for

superimposition, 119–20
Resampling-based methods, 222–3

bootstrap, 195–9
jackknife, 200–1
Monte Carlo methods, 201–2
permutation tests, 199–200

Rescaling, 52
Residual variance, 263
Resistant-fit superimposition, 119–21
Resistant-fit theta-rho analysis, see Resistant-fit

superimposition
Resources available electronically, see Web

resources
Robust methods, 119
Rotation, 52, 74, 389
Rotational effects, 111
Row vector, 76

Saliences, 263
Sample, 190
Sampling with replacement, 196
Scalar, 209
Scale, 55
Scaling, 74, 388–9
Scaling factor, 425
Scatter-plot, 54
Scree plot, 168
SemiLand program, 406
Semilandmarks:

superimposition
differential weighting of landmarks and

semilandmarks, 399, 403
equal weighting of landmarks and

semilandmarks, 397–9
sliding to minimize bending energy,

399–401
sliding to perpendicular alignment on

reference, 401–2
sensitivity analysis, 403–4
statistical analysis, 404–5
software, 406

Shape:
definition of, geometric, 11, 72–3
space, 83–7, see also Kendall’s shape space,

pre-shape space, tangent space
variables, 5, 23–152, see also Bookstein

shape coordinates, superimposition,
partial warps

see also Shape change, shape, theory of
Shape change:

anisotropy of, 62
as a deformation, 131–2
covariance with separately measured factors,

see Regression
ontogenetic, see Ontogenetic trajectory
visualization of, 150–1

Shape coordinates, see Bookstein shape
coordinates, superimpositions

Shape space, 83–7, see also Kendall’s shape
space, tangent space

Shape, theory of, 72–104
configuration matrix, 76–9

configuration space, 77
position or location, 77–8
size, 78–9

definition of shape, 11, 72–5
dimensions and degrees of freedom of, 97–8
pre-shape space, 79–83

fibers in, 81–3
shape of, 79–80

reference configuration, 96–7
rotation to maximal similarity, 87
shape spaces, 83–7
tangent spaces, 95–6
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Shape variable, 5, see also Bookstein shape
coordinates, superimposition, partial
warps

Shear, 137–42
ShuffleAllometry program, 258
Simple3D program, 406
Singular axes, 262
Singular value, 263
Singular value decomposition, 262–3
Singular warps, 262
Size, 11–13, 51–3, 55–6, 230, see also Centroid

size
Sliding baseline registration, 109–13

uniform transformations, calculation from,
142–3

Sliding semilandmarks, 399–402
Software, 19–20

Bookstein shape coordinates, 69
canonical variates analysis, 184–6
comparing directions of regression vectors,

257–9
comparing subspaces of variation, 317
customizing symbols for scatter-plots, 186–7
disparity, 314–17
MANOVA, 223–8
partial least squares analysis, 285–9
principal components analysis

three-dimensional landmarks, 406
two-dimensional landmarks, 181–4

regression
three-dimensional landmarks, 406
two-dimensional landmarks, 255–9

semilandmarks, 406
sources on the web, 19
standardization by regression, 257
traditional morphometric variables,

computing from landmarks, 358–60
superimposition

three-dimensional data, 406
two-dimensional data, 121, 127–8

variation, 314–17
see also individual programs

SpaceAngle program, 317
Standard6 program, 257
Standardization by regression, 242–4
Strain, see Principal strain
Strauss–Sadler estimate of range, 307
Student’s t-test, 58, 197–9, 211–12, 222,

see also Hotelling’s T2 test
Superimposition, 105–8, 387–390

methods
generalized least squares Procrustes,

113–19, 387–390
resistant-fit, 119–21
sliding baseline registration, 109–13
three-dimensional landmarks, 387–390

resolving apparent inconsistencies among
methods, 124–6

software, 127–8, 406
SuperPoser program, 121, 127
Symmetric tensors, 61

t-test, see Student’s t-test
Tangent space, 95–6
Target form, 137–8, 147
Taxonomic discrimination, 365–7
Taxonomy, 364
TBox program, 226
Thin-plate spline, 129–52

non-uniform components from
three-dimensional landmarks, 392

non-uniform components from
two-dimensional landmarks, 143–50

physical metaphor, 133–4
shape change as deformation, 131–2
software, 151–2
uniform (affine) components, 134–43
visualization of shape change, 150–1

ThreeDPCA6 program, 406
ThreeDRegress6 program, 406
TIFF format for image files, 45
tpsDig program, 48–9, 406
tpsrelw program, 406
TradMorphGen program, 359–60
Translation, 51, 52, 57, 74, 77, 80, 84, 387–8,

see also Centered configuration matrix
Transpose of a matrix, 162
Transpositional allometry, 341
Triangles, shape coordinates, 52–5
Truss measurement scheme, 4–5
Two-point registration, 51–72, see also

Bookstein shape coordinates
TwoGroup program, 69, 71–2, 224–6
Type 1 landmark, 31–2
Type 2 landmark, 31–2
Type 3 landmark, 31–2
Type I error, 193
Type II error, 193

Uniform (affine) transformations, 134–43
Conceptual framework for, 137–8
Mathematical derivation of, 138–42
shear and compression/dilation terms,

137–42
six component model, 136
sliding baseline registration and, 142
Bookstein shape coordinates and, 142
RFTRA, and, 143
component scores, 181, 185

Variables, 190
selection of, 23–4

Variance, 162, 214
Variance-covariance matrices, 263, 295, 298
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Variance transfer, 105–9
Variation, 295–6, see also Disparity

metrics, 296–7
structure, analysis of

nearest-neighbor analysis, 303–8
common subspace analysis, 308–14
see also Principal components analysis

VecCompare program, 257–8
VecDisplay program, 258–9

Vectors:
eigenvectors, 163–4, 167
inner (dot) product of, 251
see also Linear combinations, partial warps,

principal components analysis

Web resources, 19
Wilks’ lambda, 58, 178, 219, 236
Windows metafiles, 45
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