Archives of the Zoological Museum of MSU. V. 51. P. 3–676.

The history of development of principal theoretical concepts of biological systematics are considered from Antiquity till present time. The following periods are characterized: folk taxonomy, scholasticism, herbal epoch, scientific “classical” systematics (XVIII to middle of XX centuries), “nonclassical” systematics (second half of XX century). Premises of origin of the systematics in the context of emergence of the science during XV–XVII centuries are considered in some details. Formation and theoretical contents of the following principal trends and schools in systematics are considered: scholastic, empirical (phenetic and numerical systematics, phenomenology), typological (classical typologies of Cuvier and Goethe, neotypology, empirical and evolutionary typology), evolutionary (classical phylogenetics and cladistics, evolutionary taxonomy, population systematics and biosystematics), ecomorphological (biomorphics), rational (including biological structuralism, periodical systems, epistemological rationality). Basical concepts and notions of biological systematics are considered briefly (cognitive situation, classification, taxon, species, homology, character, similarity, relationship, weighting). Subject and authors indices. Ill. 16. Bibl. 1668.

Foreword
1. Introduction
 1.1. Systematics and taxonomy
 1.2. The history of systematics as a process
 1.2.1. Classical and non-classical science
 1.2.2. Taxonomic concepts and traditions

2. Folk systematics
 2.1. Myths and reality
 2.2. Folk classifications

3. Protosystematics and onset of the scientific systematics
 3.1. Antique roots
 3.2. Scholasticism
 3.3. The herbal epoch
 3.4. Early systematics: continuing scholasticism
 3.5. Completing scholasticism: Linnaeus
 3.6. “Scala Naturae” and “Taxonomic Map”
 3.6.1. Scala Naturae
 3.6.2. Taxonomic Map
 3.7. Cosmogonical doctrines
 3.7.1. Bibleic mythology: Agassiz
 3.7.2. Numerology: MacLeay
 3.7.3. Organism: Oken and Baer
 3.7.4. Origin of transformism

4. Maturing of scientific systematics
 4.1. Formation of the rational empirical trend
 4.1.1. Beginning of the rational empiricism: Adanson
 4.1.2. Continuing the rational empiricism: Jussieu, Candolle, Strickland
 4.1.3. Further developments
 4.2. Classical typology
 4.2.1. The type concepts
 4.2.2. Classificational typology: Saint-Hilaire, Cuvier
 4.2.3. Organismal typology: Goethe
 4.2.4. The method of type
 4.2.5. Typological homology: Owen
 4.3. Mastering the evolutionary idea
 4.3.1. Earlier concepts
 4.3.2. Systematics and genealogy
 4.3.3. First evolutionists
4.3.4. Microevolution: Darwin
4.3.5. Monophyletism: Haeckel
4.3.6. Polyphyletism: Cope
4.3.7. Initial reaction

5. The XX Century: fragmentation of ideas
 5.1. Traditions and novations
 5.2. Aspects of empiricism
 5.2.1. Intuitivism
 5.2.2. Phenetic idea
 5.2.2.1. Basic contents
 5.2.2.2. Principal notions
 5.2.2.3. Phenetic classification
 5.2.2.4. Phenetics and phylogenetics
 5.3. Numerical systematics
 5.3.1. General characteristics
 5.3.2. Numerical phenetics
 5.3.3. Numerical phyletics
 5.4. Typological concepts
 5.4.1. Transformational typology
 5.4.2. Empirical typology
 5.4.3. Evolutionary typology
 5.5. Rational systematics
 5.5.1. Ontological rationality
 5.5.1.1. Rationality after Driesch, Lubischew
 5.5.1.2. Systematics of natural kinds
 5.5.1.3. Other versions
 5.5.1.4. Causal systematics
 5.5.2. Epistemological rationality
 5.5.2.1. Criteria of scientific content
 5.5.2.2. Criteria of naturalness
 5.5.2.3. “Logical” systematics
 5.5.2.4. Biological systematics and “biologic”
 5.6. Biomorphics
 5.7. Evolutionary concepts
 5.7.1. General characteristics
 5.7.1.1. Relation between systematics and phylogenetics
 5.7.1.2. Basic evolutionary models
 5.7.1.3. Principal notions
 5.7.1.4. From phylogeny to classification
 5.7.1.5. Principal schools
 5.7.2. Population systematics
 5.7.2.1. Basics
 5.7.2.2. Emerging
 5.7.2.3. “The New Systematics” and biosystematics
 5.7.3. Evolutionary taxonomy
 5.7.3.1. Continuing populationism: Mayr
 5.7.3.2. Macroevolutionism: Simpson, Bock
 5.7.3.3. Other approaches
 5.7.4. Cladistics
 5.7.4.1. Forerunners: Zimmermann
 5.7.4.2. Maturation: Hennig
 5.7.4.3. Beyond Hennig
5.7.4.4. Basics
5.7.4.5. Cladistic classification (system)
5.7.4.6. Schools of cladistics

6. Development of conceptual framework
6.1. Cognitive situation
 6.1.1. Structure of cognitive situation
 6.1.2. Some general principles
6.2. Classification. Taxonomic system
 6.2.1. General concepts
 6.2.2. Principal parameters and characteristics
6.3. Taxon. Species
 6.3.1. Taxon
 6.3.2. Species
6.4. Similarity. Relationship
 6.4.1. Similarity
 6.4.2. Relationship
6.5. Homology. Character
 6.5.1. General concepts of homology
 6.5.2. Homology – phylogenesis – ontogenesis
 6.5.3. Epistemological aspects of homology
 6.5.4. Homology – a brief epilogue
 6.5.5. Character
6.6. Weighting
 6.6.1. Basic principles of weighting
 6.6.2. Basic principles of character weighting
 6.6.3. Similarity weighting

7. “Another history”: Creation of plant, of botany, and of systematics
7.1. Setting decoration
7.2. Another prologue: Where the new people are taken from
7.3. Reconstruction
 7.3.1. Reconstruction of classification of the living beings: lack in Paracelsus
 7.3.2. Complete list of system
 7.3.3. System of Usteri
 7.3.4. On relation between taxa and life forms
 7.3.5. Stair and broom
7.4. History of plant systematics
 7.4.1. Folk biology and a local biota
 7.4.1.1. Anthropocentrism and artificiality of “folk taxa”
 7.4.1.2. The first scientific program of Aristotle
 7.4.1.3. Insufficiency of the concept of folk taxonomy
7.4.2. Medieval herbalists and the birth of Natural History in the XVI century
 7.4.2.1. History of Natural History
 7.4.2.2. Four generations of naturalists
7.4.3. Changes in the XVI century: Appliances of knowledge transmission and creation of the object of science
 7.4.3.1. Technique of accurate description
 7.4.3.2. Changes in experience for its broadcast
 7.4.3.3. The “plant” subject
 7.4.3.4. History bounded by technology
 7.4.3.5. Classification and ranks
7.4.4. Andrea Cesalpino and the birth of systematics
7.4.4.1. Cesalpino and Galileo: Primary morphology
7.4.4.2. Cesalpino’s philosophy of systematics
7.4.4.3. Cesalpino and Harvey: about induction
7.4.4.4. Following the forgotten founder

7.5. Reconstruction of the Linnaean classification program
7.5.1. The line of Linnaeus
7.5.2. Linnean reduction
 7.5.2.1. New morphology
 7.5.2.2. The Linnaean formula
 7.5.2.3. Plan of Creation
 7.5.2.4. Combinative system
 7.5.2.5. The Linnaean ranks
 7.5.2.6. Strange analogies: future in the past
 7.5.2.7. Blinding of observer
 7.5.2.8. Newton of biology

7.6. From the King of Nature to a naked ape: The end of anthropocentrism
7.7. How to leap an abyss in two jumps

Subject Index
Author Index
Literature