Russian Journal of Theriology. Main page    

Russian Journal of Theriology. Main page
Free access to the published articles
Information about online submission, Articles format, Instructions for authors etc
Instructions for reviewers
Subscription and prices
Contacts

Русскоязычный вариант сайта
Epigenetic variation of the common shrew, Sorex araneus, in different habitats
W?jcik J.M., Polly P.D., W?jcik A.M., Sikorski M.D.
P. 043-049
Epigenetic variation of the common shrew, Sorex araneus, was studied in three habitats (floodplain forest, wet sedge bog and dry meadow) at Bia?owie?a, north-eastern Poland. Previous chromosome and allozyme studies of the same population suggested that polymorphisms are related to environmental heterogeneity and that random factors influence frequencies of acrocentric chromosomes and alleles. In the present study we tested whether similar processes influence epigenetic variation. Thirty-one non-metric skull traits were scored in 274 individuals from samples collected in different biotopes. The specific aim of the study was to estimate non-metric trait frequencies and fluctuating asymmetry in shrews from different habitats, and to explain the factors involved in the maintenance of epigenetic polymorphism. Significant differences found among samples of shrews from different habitats indicated that important epigenetic variation exists within the population. This epigenetic variation in the common shrew appears to be related to environmental heterogeneity.

References

  • Andersen T. & Wiig O. 1982. Epigenetic variation in a fluctuating population of lemming (Lemmus lemus) in Norway // Journal of Zoology. Vol.197. P.391-404.
  • Badyaev A.V., Foresman K.R. & Fernandes M.V. 2000. Stress and developmental stability: vegetation removal causes increased fluctuating asymmetry in shrews // Ecology. Vol.81. P.336-345.
  • Badyaev A.V. & Foresman K.R. 2000. Extreme environmental change and evolution: stress-induced morphological variation is strongly concordant with patterns of evolutionary divergence in shrew mandibles // Proceedings of the Royal Society of London. Series B. Vol.267. P.371-377.
  • Badyaev A.V. & Foresman K.R. 2004. Evolution of morphological integration. I. Functional units channel stress-induced variation in shrew mandibles // American Naturalist. Vol.163. P.868-879.
  • Badyaev A.V., Foresman K.R. & Young R.L. 2005. Evolution of morphological integration: developmental accommodation of stress-induced variation // American Naturalist. Vol.166. P.382-395.
  • Berry R.J. 1963. Epigenetic polymorphism in wild population of Mus musculus // Genetical Research. Vol.4. P.193-220.
  • Berry R.J. & Searle A.G. 1963. Epigenetic polymorphism on the rodent skeleton // Proceedings of the Zoological Society of London. Vol.140. P.577-615.
  • Berry R.J., Jakobson M.E. & Peters J. 1978. The house mice of the Faroe Islands: a study in microdifferentiation // Journal of Zoology. Vol.185. P.73-92.
  • Foresman K.R. 1994. Comparative embryonic development of the Soricidae // Merritt J.F., Kirkland G.L.J. & Rose R.K. (eds.). Advances in the Biology of Shrews. Pittsburgh: Carnegie Museum of National History. P.241-258.
  • Genoud M. 1988. Energetic strategies of shrews: ecological constraints and evolutionary implications // Mammal Review. Vol.18. P.173-193.
  • Hanski I. 1986. Population dynamics of shrews on small islands accord with the equilibrium model // Biological Journal of the Linnean Society. Vol.28. P.23-36.
  • Hanski I. & Kaikusalo A. 1989. Distribution and habitat selection of shrews in Finland // Annales Zoologici Fennici. Vol.26. P.339-348.
  • Hanski I. & Kuitunen J. 1986. Shrews on small islands: epigenetic variation elucidates population stability // Holarctic Ecology. Vol.9. P.193-204.
  • Hartman S.E. 1980. Geographical variation analysis of Dipodomys ordii using nonmetric cranial traits // Journal of Mammalogy. Vol.61. P.436-448.
  • Hausser J. & Jammot D. 1974. Etude biométrique des mâchoires chez les Sorex du groupe araneus en Europe continentale (Mammalia, Insectivora) // Mammalia. Vol.38. P.324 -343.
  • Howe W.L. & Parsons P.A. 1967. Genotype and environment in the determination of minor skeletal variants and body weight in mice // Journal of Embryology and Experimental Morphology. Vol.17. P.285-292.
  • Leary R.F. & Allendorf F.W. 1989. Fluctuating asymmetry as an indicator of stress: Implications for conservation biology // Trends in Ecology & Evolution. Vol.4. P.214-217.
  • Leary R.F., Allendorf F.W., Knudson R.L. & Thorgaard G.H. 1985. Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout // Heredity. Vol.54. P.219-225.
  • Levene H. 1960. Robust tests for equality of variances // Olkin I. (ed.). Contributions to Probability and Statistics. Stanford: Stanford University Press. P.278-292.
  • Meyer A. & Searle J.B. 1994. Morphological studies on British common shrews // Folia Zoologica. Vol.43. Suppl.1. P.115.
  • Møller A.P. & Swaddle J.P. 1997. Asymmetry, Developmental Stability, and Evolution. Oxford: Oxford University Press.
  • Palmer A. R. & Strobeck C. 1986. Fluctuating asymmetry: measurement, analysis, patterns // Annual Review of Ecology and Systematics. Vol.17. P.391-421.
  • Palmer A.R. & Strobeck C. 1992. Fluctuating asymmetry as a measure of developmental stability: Implications of non-normal distributions and power of statistical tests // Acta Zoologica Fennica. Vol.191. P.57-72.
  • Pankakoski E. & Hanski I. 1989. Metrical and non-metrical skull traits of the common shrew Sorex araneus and their use in population studies // Annales Zoologici Fennici. Vol.26. P.433-444.
  • Pankakoski E., Koivisto I. & Hyvarinen H. 1992. Reduced developmental stability as an indicator of heavy metal pollution in the common shrew Sorex araneus // Acta Zoologica Fennica. Vol.191. P.137-144.
  • Pankakoski E. 1985. Epigenetic asymmetry as an ecological indicator in muskrats // Journal of Mammalogy. Vol.66. P.52-57.
  • Polly P.D. 2007. Phylogeographic differentiation in Sorex araneus: morphology in relation to geography and karyotype // Russian Journal of Theriology. Vol.6. P.00-00.
  • Sikorski M.D. 1982. Non-metrical divergence of isolated populations of Apodemus agrarius in urban areas // Acta Theriologica. Vol.27. P.169-180.
  • Sjøvold T. 1977. Non-metrical divergence between skeletal populations // Ossa. Vol.4. Suppl.1. P.1-133.
  • Wójcik J.M. 1991. Chromosomal polymorphism in the common shrew Sorex araneus and its adaptive singnificance // Mémoires de la Société vaudoise des Sciences naturelles. Vol.19. P.51-62.
  • Wójcik J.M., Wójcik A.M. & Zalewska H. 1996. Chromosome and allozyme variation of the common shrew, Sorex araneus, in different habitats // Hereditas. Vol.125. P.183-189.
  • Wójcik J.M., Wójcik A.M. & Sikorski M.D. 2003. Morphometric variation of the common shrew, Sorex araneus, in different habitats // Mammalia. Vol.67. P.225-231.
  • Zakharov V.M. 1987. [Asymmetry of Animals]. Moskva: Nauka [in Russian].
  • Zakharov V.M. 1992. Population phenogenetics: analysis of developmental stability in natural populations // Acta Zoologica Fennica. Vol.191. P.7-30.
  • Zakharov V.M., Demin D.V., Baranov A.S. Borisov V.I. Valetsky A.V. & Sheftel B.I. 1997a. Developmental stability and population dynamics of shrews Sorex in central Siberia // Acta Theriologica. Suppl.4. P.41-48.
  • Zakharov V.M., Pankakoski E. & Sheftel B.I. 1997b. Phenotypic diversity and population dynamics: another look (with particular reference to the common shrew Sorex araneus) // Acta Theriologica. Suppl.4. P.57-66.
  • Zakharov V.M., Pankakoski E., Sheftel B.I., Peltonen A. & Hanski I. 1991. Developmental stability and population dynamics in the common shrew, Sorex araneus // American Naturalist. Vol.138. P.797-810.
  • Zima J., Fedyk S., Fredga K., Hausser J., Mishta A., Searle J.B., Volobouev V.T. & Wójcik J.M. 1996. The list of the chromosome races of the common shrew (Sorex araneus) // Hereditas. Vol.125. P.97-107.

Download PDF