


Systematics



Systematics: A Course of Lectures

Ward C. Wheeler

A John Wiley & Sons, Ltd., Publication



This edition first published 2012 c© 2012 by Ward C. Wheeler

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical
business with Blackwell Publishing.

Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse
the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright,

Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs
and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product
names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The
publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate
and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not
engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Library of Congress Cataloging-in-Publication Data has been applied for
9780470671702 (hardback)
9780470671696 (paperback)

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Set in Computer Modern 10/12pt by Laserwords Private Limited, Chennai, India

1 2012



For

Kurt Milton Pickett
(1972–2011)

Ave atque vale



Contents

Preface xv
Using these notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

List of algorithms xix

I Fundamentals 1

1 History 2
1.1 Aristotle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Theophrastus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Pierre Belon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Carolus Linnaeus . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Georges Louis Leclerc, Comte de Buffon . . . . . . . . . . . . . . 6
1.6 Jean-Baptiste Lamarck . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Georges Cuvier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Étienne Geoffroy Saint-Hilaire . . . . . . . . . . . . . . . . . . . . 8
1.9 Johann Wolfgang von Goethe . . . . . . . . . . . . . . . . . . . . 8
1.10 Lorenz Oken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Richard Owen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.12 Charles Darwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Preface

These notes are intended for use in an advanced undergraduate or introduc-
tory level graduate course in systematics. As such, the goal of the materials is
to encourage knowledge of core systematic literature (e.g. works of Aristotle,
Linné, Mayr, Hennig, Sokal, Farris, Kluge, Felsenstein) and concepts (e.g. Clas-
sification, Optimality, Optimization, Trees, Diagnosis, Medians, Computational
Hardness). A component of this goal is specific understanding of methodolo-
gies and theory (e.g. Cluster Analysis, Parsimony, Likelihood, String Match,
Tree Search). Exercises are provided to enhance familiarity with concepts and
common analytical tools. These notes are focused on the study of pattern in bio-
diversity; notions of process receive limited attention and are better discussed
elsewhere.

Each chapter covers a topic that could easily be the subject of an entire book-
length treatment and many have. As a result, the coverage of large literatures
is confined to what I think could be covered in a lecture or two, but may seem
brief, idiosyncratic, but hopefully not too superficial. These notes are not meant
to be the last word in systematics, but the first.

Students should have basic knowledge of biology and diversity including
anatomy and molecular genetics. Some knowledge of computation, statistics,
and linear algebra would be nice but not required. Relevant highlights of these
fields are covered where necessary.

Using these notes

This is not a fugue. In most cases, sections can be rearranged, or separated
entirely without loss of intelligibility. Several sections do build on others (e.g.
sections on tree searching and support), while others can be deleted entirely if
students have the background (e.g. sections on computational and statistical
basics). The book was developed for a single semester course and, in general,
each chapter is designed to be covered in a single 90 minute class period. The
chapters on Parsimony, Likelihood, Posterior Probability, and Tree Searching
are exceptions, spanning two such classes.

Exercises are of three types: those that can be worked by hand, those that re-
quire computational aids, and lastly those that are more suited to larger projects
or group work. Hopefully, they are useful.
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Chapter 1

History

Systematics has its origins in two threads of biological science: classification and
evolution. The organization of natural variation into sets, groups, and hierarchies
traces its roots to Aristotle and evolution to Darwin. Put simply, systematization
of nature can and has progressed in absence of causative theories relying on ideas
of “plan of nature,” divine or otherwise. Evolutionists (Darwin, Wallace, and
others) proposed a rationale for these patterns. This mixture is the foundation
of modern systematics.

Originally, systematics was natural history. Today we think of systematics
as being a more inclusive term, encompassing field collection, empirical compar-
ative biology, and theory. To begin with, however, taxonomy, now known as the
process of naming species and higher taxa in a coherent, hypothesis-based, and
regular way, and systematics were equivalent.

Roman bust of Aristotle
(384–322 BCE)

1.1 Aristotle

Systematics as classification (or taxonomy) draws its Western origins from Aris-
totle1. A student of Plato at the Academy and reputed teacher of Alexander the

Ibn Rushd (Averroes)
(1126–1198)

Great, Aristotle founded the Lyceum in Athens, writing on a broad variety of
topics including what we now call biology. To Aristotle, living things (species)
came from nature as did other physical classes (e.g. gold or lead). Today, we
refer to his classification of living things (Aristotle, 350 BCE) that show simi-
larities with the sorts of classifications we create now. In short, there are three
features of his methodology that we recognize immediately: it was functional,
binary, and empirical.

Aristotle’s classification divided animals (his work on plants is lost) using
functional features as opposed to those of habitat or anatomical differences: “Of
land animals some are furnished with wings, such as birds and bees.” Although
he recognized these features as different in aspect, they are identical in use.

1Largely through translation and commentary by Ibn Rushd (Averroes).

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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Features were also described in binary terms: “Some are nocturnal, as the
owl and the bat; others live in the daylight.” These included egg- or live-bearing,
blooded or non-blooded, and wet or dry respiration.

An additional feature of Aristotle’s work was its empirical content. Aspects
of creatures were based on observation rather than ideal forms. In this, he recog-
nized that some creatures did not fit into his binary classification scheme: “The
above-mentioned organs, then, are the most indispensable parts of animals; and
with some of them all animals without exception, and with others animals for
the most part, must needs be provided.” Sober (1980) argued that these depar-
tures from Aristotle’s expectations (Natural State Model) were brought about
(in Aristotle’s mind) by errors due to some perturbations (hybridization, devel-
opmental trauma) resulting in “terata” or monsters. These forms could be novel
and helped to explain natural variation within his scheme.

• Blooded Animals

Live-bearing animals

humans

other mammals

Egg-laying animals

birds

fish

• Non-Blooded Animals

Hard-shelled sea animals: Testacea

Soft-shelled sea animals: Crustacea

Non-shelled sea animals: Cephalopods

Insects

Bees

• Dualizing species (potential “terata,” errors in nature)

Whales, seals and porpoises—in water, but bear live young

Bats—have wings and can walk

Sponges—like plants and like animals.

Aristotle clearly had notions of biological progression (scala naturae) from lower
(plant) to higher (animals through humans) forms that others later seized upon
as being evolutionary and we reject today. Aristotle’s classification of animals
was neither comprehensive nor entirely consistent, but was hierarchical, predic-
tive (in some sense), and formed the beginning of modern classification.

1.2 Theophrastus

Theophrastus
(c.371–c.287 BCE)

Theophrastus succeeded Aristotle and is best known in biology for his Enquiry
into Plants and On the Causes of Plants. As a study of classification, his work
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Figure 1.1: Branching diagram after Theophrastus (Vácsy, 1971).

on ivy (κιττóς) discussed extensively by Nelson and Platnick (1981), has been
held to be a foundational work in taxonomy based (in part at least) on dichoto-
mous distinctions (e.g. growing on ground versus upright) of a few essential
features.

Pierre Belon
(1517–1564)

Theophrastus distinguished ivies based on growth form and color of leaves
and fruit. Although he never presented a branching diagram, later workers (in-
cluding Nelson and Platnick) have summarized these observations in a variety
of branching diagrams (Vácsy, 1971) (Fig. 1.1).

1.3 Pierre Belon

Trained as a physician, Pierre Belon, studied botany and traveled widely in
southern Europe and the Middle East. He published a number of works based
on these travels and is best known for his comparative anatomical representation
of the skeletons of humans and birds (Belon, 1555) (Fig. 1.2).

1.4 Carolus Linnaeus

Carl von Linné
(1707–1778)

Carolus Linnaeus (Carl von Linné) built on Aristotle and created a classification
system that has been the basis for biological nomenclature and communication
for over 250 years. Through its descendants, the current codes of zoological,
botanical, and other nomenclature, his influence is still felt today. Linnaeus was
interested in both classification and identification (animal, plant, and mineral
species), hence his system included descriptions and diagnoses for the creatures
he included. He formalized the custom of binomial nomenclature, genus and
species we use today.
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Figure 1.2: Belon’s funky chicken (Belon, 1555).

Linnaeus was known, somewhat scandalously in his day, for his sexual system
of classification (Fig. 1.3). This was most extensively applied to plants, but
was also employed in the classification of minerals and fossils. Flowers were
described using such terms as visible (public marriage) or clandestine, and single
or multiple husbands or wives (stamens and pistils). Floral parts were even
analogized to the foreskin and labia.

Nomenclature for many fungal, plant, and other eukaryote groups2 is founded
on the Species Plantarum (Linnaeus, 1753), and that for animals the 10th Edi-
tion of Systema Naturae (Linnaeus, 1758). The system is hierarchical with
seven levels reflecting order in nature (as opposed to the views of Georges
Louis Leclerc, 1778 [Buffon], who believed the construct arbitrary and natu-
ral variation a result of the combinatorics of components).

• Imperium (Empire)—everything

• Regnum (Kingdom)—animal, vegetable, or mineral

• Classis (Class)—in the animal kingdom there were six (mammals, birds,
amphibians, fish, insects, and worms)

• Ordo (Order)—subdivisions of Class

• Genus—subdivisions of Order
2For the current code of botanical nomenclature see http://ibot.sav.sk/icbn/main.htm.
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• Species—subdivisions of Genus

• Varietas (Variety)—species varieties or “sub-species.”

(a) Sexual system for plants (Linnaeus, 1758). (b) English translation.

Figure 1.3: Linnaeus’ sexual system for classification (a) with English translation
(b) (Linnaeus, 1758).

The contemporary standard hierarchy includes seven levels: Kingdom, Phy-
lum, Class, Order, Family, Genus, and Species, although other levels are often
created as needed to describe diversity conveniently (e.g. McKenna and Bell,
1997).

1.5 Georges Louis Leclerc, Comte de Buffon

Georges Louis Leclerc, Comte de Buffon, began his scientific career in mathe-
matics and probability theory3. He was appointed director of the Jardin du Roi
(later Jardin des Plantes), making it into a research center.

Georges Louis Leclerc, Comte
de Buffon
(1707–1788)

Buffon is best known for the encyclopedic and massive Histoire naturelle,
générale et particulière (1749–1788). He was an ardent anti-Linnean, believing
taxa arbitrary, hence there could be no preferred classification. He later thought,
however, that species were real (due to the moule intérieur—a concept at the

3Buffon’s Needle: Given a needle of length l dropped on a plane with a series of parallel
lines d apart, what is the probability that the needle will cross a line? The solution, 2l

dπ
can

be used to estimate π.
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foundation of comparative biology). Furthermore, Buffon believed that species
could “improve” or “degenerate” into others, (e.g. humans to apes) changing in
response to their environment. Some (e.g. Mayr, 1982) have argued that Buffon
was among the first evolutionary thinkers with mutable species. His observation
that the mammalian species of tropical old and new world, though living in
similar environments, share not one taxon, went completely against then-current
thought and is seen as the foundation of biogeography as a discipline (Nelson
and Platnick, 1981).

1.6 Jean-Baptiste Lamarck

Jean-Baptiste Lamarck
(1744–1829)

Jean-Baptiste Lamarck (who coined the word “Biologie” in 1802) believed that
classifications were entirely artificial, but still useful (especially if dichotomous).
His notion of classification is closer to our modern keys (Nelson and Platnick,
1981). An example of this comes from his Philosophie zoologique (Lamarck,
1809), with the division of animal life into vertebrates and invertebrates on the
presence or absence of “blood” (Fig. 1.4(a)).

(a) Lamarck’s classification of animals. (b) Lamarck’s transmutational tree. 

Figure 1.4: Lamarck’s division of animal life (a) and transmutational tree (b)
(Lamarck, 1809).

Lamarck is best known for his theory of Transmutation (Fig. 1.4(b))—where
species are immutable, but creatures may move through one species to another
based on a motivating force to perfection and complexity, as well as the familiar
“use and dis-use.” Not only are new species created in this manner, but species
can “re-evolve” in different places or times as environment and innate drive
allow.
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1.7 Georges Cuvier

Georges Cuvier
(1769–1832)

The hugely influential Léopold Chrétien Frédéric Dagobert “Georges” Cuvier di-
vided animal life not into the Scala Naturae of Aristotle, or two-class Vertebrate/
Invertebrate divide of Lamarck, but into four “embranchements”: Vertebrata,
Articulata, Mollusca, and Radiata (Cuvier, 1812). These branches were repre-
sentative of basic body plans or “archetypes” derived (in Cuvier’s view) from
functional requirements as opposed to common genealogical origin of structure.
Based on his comparative anatomical work with living and fossil taxa, Cuvier
believed that species were immutable but could go extinct, (“catastrophism”)
leaving an unfillable hole. New species, then, only appeared to be new, and were
really migrants not seen before. Cuvier established the process of extinction as
fact, a revolutionary idea in its day.

1.8 Étienne Geoffroy Saint-Hilaire

Although (like Lamarck), the comparative anatomist Étienne Geoffroy Saint-
Hilaire is remembered for his later evolutionary views4, Geoffroy believed that

Étienne Geoffroy Saint-Hilaire
(1772–1844)

there were ideal types in nature and that species might transform among these
immutable forms. Unlike Lamarck, who believed that the actions of creatures
motivated transmutation, Geoffroy believed environmental conditions motivated
change. This environmental effect was mediated during the development of the
organism. He also believed in a fundamental unity of form for all animals (both
living and extinct), with homologous structures performing similar tasks. In this,
he disagreed sharply with Cuvier and his four archetypes (embranchements), not
with the existence of archetypes, but with their number.

1.9 Johann Wolfgang von Goethe

With Oken and Owen, Goethe was one of the foremost “ideal morphologists”
of the 19th century in that he saw universal patterns underlying the forms of
organisms. He coined the term “Morphology” to signify the entirety of an or-
ganism’s form through development to adult as opposed to “gestalt” (or type—
which was inadequate in his view). This is similar to Hennig’s concept of the
“semaphoront” to represent the totality of characters expressed by an organism
over its entire life cycle.

Goethe applied these ideas to the comparative morphology and development
of plants (von Goethe, 1790)5 as Geoffroy did to animals, creating morpholog-
ical ideals to which all plants ascribed. He claimed, based on observation, that

Johann Wolfgang von Goethe
(1749–1832) 4“The external world is all-powerful in alteration of the form of organized bodies. . . these

are inherited, and they influence all the rest of the organization of the animal, because if
these modifications lead to injurious effects, the animals which exhibit them perish and are
replaced by others of a somewhat different form, a form changed so as to be adapted to the
new environment” (Saint-Hilaire, 1833).

5In his spare time, he wrote a book called Faust.
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archetypes contained the inherent nature of a taxon, such as “bird-ness” or
“mammal-ness.” This ideal was not thought to be ancestral or primitive in any
way, but embodied the morphological relationships of the members of the group.

1.10 Lorenz Oken

Oken was a leader in the “Naturphilosophie” (Oken, 1802) and an ideal morphol-
ogist. In this, he sought general laws to describe the diversity in nature through
the identification of ideal forms. One of the central tenets of the Naturphiloso-
phie was that there were aspects of natural law and organization that would
be perceived by all observers. He applied this to his classification of animal life,
and created five groups based on his perception of sense organs.

Lorenz Oken
(1779–1851)1. Dermatazoa—invertebrates

2. Glossozoa—fish (with tongue)

3. Rhinozoa—reptiles (with nose opening)

4. Otozoa—birds (with external ear)

5. Ophthalmozoa—mammals (nose, ears, and eyes).

Oken is also known for his attempts to serially homologize vertebral elements
with the vertebrate skull, suggesting fusion of separate elements as the main
developmental mechanism. Although falsified for vertebrates, the idea found
ground in discussions of the development of the arthropod head.

1.11 Richard Owen

Richard Owen was a vertebrate comparative anatomist known for his role in
founding the British Museum (Natural History), the definitions of homology and
analogy, and his opposition (after initial favor) to Darwinian evolution. Owen

Richard Owen
(1804–1892)

(1847) defined a homologue as “The same organ in different animals under every
variety of form and function.” Analogy was, in his view, based on function, “A
part or organ in one animal which has the same function as another part or
organ in a different animal.”

Owen derived the general archetype for vertebrates based (as in Oken) on
the serial homology of vertebral elements (Fig. 1.5).

Owen’s notion of homology and archetype was tightly connected with the
component parts that made up the archetype—the homologues. A system based on concentric

groupings of creatures in sets of
five, “Quinarianism” (Macleay,
1819), was briefly popular in
early 19th century Britain.

1.12 Charles Darwin

To Aristotle, biological “species” were a component of nature in the same way
that rocks, sky, and the moon were. Linnaeus held that the order of natural vari-
ation was evidence of divine plan. Darwin (1859b) brought the causative theory
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Figure 1.5: Owen’s vertebrate archetype showing his model of a series of un-
modified vertebral elements (Russell, 1916; after Owen, 1847).

of evolution to generate and explain the hierarchical distribution of biological
variation. This had a huge intellectual impact in justifying classification as a re-
flection of genealogy for the first time, and bringing intellectual order (however
reluctantly) to a variety of conflicting, if reasonable, classificatory schemes.

Charles Darwin
(1809–1882)

The genealogical implications of Darwin’s work led him to think in terms
of evolutionary “trees,” (Fig. 1.6), the ubiquitous metaphor we use today. The
relationship between classification and evolutionary genealogy, however, was
not particularly clarified (Hull, 1988). Although the similarities between geneal-
ogy and classification were ineluctable, Darwin was concerned (as were many
who followed) with representing both degree of genealogical relationship and
degree of evolutionary modification in a single object. He felt quite clearly that
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Figure 1.6: Darwin’s famous “I think. . . ” tree depiction.
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classifications were more than evolutionary trees, writing that “genealogy by
itself does not give classification” (Darwin, 1859a).

How to classify even a hypothetical case of genealogy (Fig. 1.7)? Darwin’s
Figure presents many issues—ancestral species, extinction, different “degrees of
modification,” different ages of taxa. As discussed by Hull (1988), Darwin gave
no clear answer. He provided an intellectual framework, but no guide to actually
determining phylogenetic relationships or constructing classifications based on
this knowledge.

Darwin transformed Owen’s archetype into an ancestor. Cladistics further
transformed the ancestor into a median.

A B C D E F G H I K L

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

Figure 1.7: Darwin’s hypothetical phylogeny from the Origin.

1.13 Stammbäume

Haeckel (1866) presented the situation in a graphical form (Fig. 1.8), including
both genealogical relationships (as branches), degrees of modification (distance
from root), and even Aristotle’s Scala Naturae beginning with Monera at the
root and progressing through worms, mollusks, echinoderms, tetrapods, mam-
mals, and primates before crowning with humans. In his 1863 lecture, Haeckel di-
vided the scientific community into Darwinians (progressives) and traditionalists
(conservatives): “Development and progress!” (“Entwicklung und Fortschritt!”)
versus “Creation and species!” (“Schöpfung und Species!”). He even coined the
word “Phylogeny” (Haeckel, 1866) to describe the scheme of genealogical rela-
tionships6. Haeckel felt that paleontology and development were the primary

6And the term “First World War” in 1914.
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Figure 1.8: Ernst Haeckel and the first phylogenetic “tree” representation
(Haeckel, 1866).
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ways to discover phylogeny (Haeckel, 1876). Morphology was a third leg, but
of lesser importance. Bronn (1858, 1861) also had a tree like representation
and was the translator of Darwin into the German version that Haeckel read
(Richards, 2005). Bronn found Darwin’s ideas untested, while Haeckel did not.

August Schleicher constructed linguistic trees as Darwin had biological. A
friend of Haeckel, Schleicher “tested” Darwin with language (Schleicher, 1869).
Interestingly, he thought there were better linguistic fossils than biological, and
hence they could form a strong test of Darwin’s ideas.

1.14 Evolutionary Taxonomy

After publication of the Origin, evolution, genetics, and paleontology went their
own ways. In the middle of the 20th century, these were brought together in
what became known as the “New Synthesis.” Among many, Dobzhansky (1937),
Mayr (1942), Simpson (1944)7, and Wright (1931) were most prominent. The
New Synthesis brought together these strands of biology creating a satisfyingly

Ernst Mayr
(1904–2005)

complete (to them) Darwinian theory encompassing these formerly disparate
fields (Provine, 1986; Hull, 1988). The New Synthesis begat the “New System-
atics” (Huxley, 1940), which grew to become known as Evolutionary Taxonomy.
Evolutionary Taxonomy competed with Phenetics (sometimes referred to as Nu-
merical Taxonomy) and Phylogenetic Systematics (Cladistics) in the Cladistics
Wars of the 1970s and 1980s, transforming systematics and classification and
forming the basis for contemporary systematic research.

Here, we are limited to a brief precis of the scientific positions and differences
among these three schools of systematics. Hull (1988) recounts, in great detail,
the progress of the debate beginning in the late 1960s. They were amazing
and frequently bitter times. As Hull writes, “Perhaps the seminar rooms of the
American Museum of Natural History are not as perilous as Wallace’s upper
Amazon, but they come close.”

George Gaylord Simpson
(1902–1984)

Evolutionary Taxonomy as promulgated by Simpson (1961) and Mayr (1969)
reached its apex in the late 1960s. This branch of systematics seized on the prob-
lem Darwin had seen in classification in that he felt that genealogy alone was not
sufficient to create a classification—that systematics needed to include informa-
tion on ancestors, processes, and degrees of evolutionary difference (similarity)
as well as strict genealogy of taxa. There was also a great emphasis on species
concepts that will be discussed later (Chapter 3).

At its heart (and the cause of its eventual downfall), Evolutionary Taxonomy
was imprecise, authoritarian, and unable to articulate a specific goal other than
ill-defined “naturalness.” The only rule, per se, was that all the members of a
taxonomic group should be descended from a single common ancestor. These
groups were called “monophyletic” in a sense attributed to Haeckel (1866). This
is in contrast to the Hennigian (Hennig, 1950, 1966) notion of monophyly that
required a monophyletic group to contain all descendants of a common ancestor.
Hennig would have called some of the “monophyletic” groups of Evolutionary

7Whose AMNH office I occupy.
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Taxonomy paraphyletic (e.g. “Reptilia”), while Hennig’s monophyly was re-
ferred to as “holophyly” by Mayr (Fig. 1.9). We now follow Hennig’s concepts
and their strict definitions (Farris, 1974). According to Simpson (1961), even
the “monophyly” rule could be relaxed in order to maintain cherished group
definitions (e.g. Simpson’s Mammalia).

A B C D E F G H I

I II III IV

Figure 1.9: Alternate valid groups. Evolutionary Taxonomy would allow groups
I, II, and IV; Hennigian Phylogenetic Systematics only I; Phenetics would allow
III (as well as the others depending on degree of similarity).

In applying this rule, there were no specific criteria. Since Evolutionary Tax-
onomy strove to include evolutionary level (grade) information, individual inves-
tigators had to judge the relative importance of different features themselves.
This weighting of information relied on the expert or authority status of the
proponents of a given scenario. Great weight was given to the identification of
fossil ancestors and their inclusion in systematic discussions because they were
links in the Darwinian chain.

Furthermore, given that genealogy was only one element of a classification,
a single genealogy could yield multiple, contradictory classifications. As stated
by Mayr (1969), “Even if we had perfect understanding of phylogeny, it would
be possible to convert it into many different classifications.”

The lack of rules, authoritarian basis for interpretation of evidence, and
inherent imprecision in the meaning of classifications produced doomed Evolu-
tionary Taxonomy. Little remains today that is recognizably derived from this
research program other than, ironically enough, the term “Cladistics.”

1.15 Phenetics

Phenetics, or as it was once referred to, Numerical Taxonomy (as with Cladistics,
Mayr, 1965, was the origin of the name), arose through criticisms of Evolutionary
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Taxonomy. As articulated by Charles Michener, Robert Sokal, Peter Sneath, and
others (Michener and Sokal, 1957; Sokal and Sneath, 1963; Sneath and Sokal,
1973), Phenetics had many features lacking in Evolutionary Taxonomy, and was
free of some of its more obvious problems. Phenetic classification was based on
overall similarity and required an explicit matrix of features, equally weighted.
The idea was that the observations of creatures should be explicit and open to
objective criticisms by other workers. The equal weighting was specified to avoid
the authoritarian arguments about the relative importance of features and to pro-
duce generally useful classifications. Similarity was expressed in a phenogram, a
branching tree diagram representing levels of similarity among taxa.

Robert Sokal

The method was explicit, rules-based, and objective. It also made no refer-
ence to, and had no necessary relationship with, genealogy or evolutionary trees
at all. In fact, phenetic classifications could include groups of genealogically un-
related, but similar, taxa in groups termed “polyphyletic” by both Evolutionary
Taxonomy and Cladistics (Fig. 1.9). This was an unavoidable consequence of
lumping all similarity in the same basket, a fault found as well (if to a lesser
extent) in Evolutionary Taxonomy (see Schuh and Brower, 2009, for more discus-
sion). The specifics of phenetic (and distance methods in general) tree building
are discussed later (Chapter 9).

There are few advocates of phenetic classification in contemporary science.
Several contributions, however, remain. The ideas of objectivity and explicit-
ness of evidence, specificity of rule-based tree construction, and liberation from
authoritarianism all helped systematics move from art to science. Phenetics was
mistaken in several major aspects, but its influence can be seen in modern,
computational systematic analysis.

1.16 Phylogenetic Systematics

Phylogenetic Systematics, or as it is more commonly known, Cladistics, has
its foundation in the work of Hennig (1950)8. Although known and read by
German speakers (e.g. Mayr and Sokal), Hennig’s work did not become widely

Willi Hennig
(1913–1976)

known until later publications (Hennig, 1965, 1966). The presentation of the
work (in German as well as in English) was regarded as difficult, even though
the concepts were few, simple, and clear. As promulgated by Nelson (1972) and
Brundin (1966), Hennig’s ideas became more broadly known following the path
of Nelson from Stockholm to London to New York (Schuh and Brower, 2009).

1.16.1 Hennig’s Three Questions
English uses the term “sister-
group” because Gruppe is
feminine in German. Those
systematists in romance-
language speaking countries
use “brother” group.

Hennig proposed three questions: “what is a phylogenetic relationship, how is it
established, and how is knowledge of it expressed so that misunderstandings are

8The concept of what constitutes phylogenetic relationship and has come to be known as
the “sister-group” was discussed both by Rosa (1918) and more prominently by Zimmermann
(1931). Hennig (1950) cited Zimmerman as important to the development of his ideas (Nelson
and Platnick, 1981; Donoghue and Kadereit, 1992; Williams and Ebach, 2008).
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Figure 1.10: Isomorphism between Hennigian classification (left) and genealogy
(right).

excluded” (Hennig, 1965). His answers were equally precise. Phylogenetic rela-
tionship meant genealogical relationship, expressed as a series of nested sister-
group relationships where two taxa are more closely related (in terms of recency
of common ancestry) to each other than they are to a third9. These sister-group
relationships are established by “special” similarity or synapomorphy—a derived
(= advanced) feature present in the sister taxa and absent in others. The expres-
sion of these relationships is presented in a branching diagram summarizing the
sister-group relationships termed a “cladogram” (Fig. 1.10). In Hennig’s sense,
a cladogram was not an evolutionary tree since it did not contain ancestor–
descendant relationships, but was built on sister-group statements only.

Although Hennig had a view of species very close to that of Mayr and the
evolutionary taxonomists (and the pheneticists as well), the answers to Hennig’s
three questions set his framework apart. In the first place, he defined phyloge-
netic relationship strictly in terms of recency of common ancestry. His emphasis
was entirely on the “clade” as opposed to the “grade” (terms coined by Hux-
ley, 1959) as Mayr (1965) would say. This was a definition that removed the
uncertainties that existed in nearly all (phenetics aside) classification schemes. Plato (360 BCE) was also

the originator of log n binary
search—“To separate off at
once the subject of investiga-
tion, is a most excellent plan, if
only the separation be rightly
made. . . But you should not
chip off too small a piece, my
friend; the safer way is to cut
through the middle; which is
also the more likely way of
finding classes. Attention to
this principle makes all the
difference in a process of en-
quiry.”

The rules of evidence he proposed also set him apart from others in that
he limited evidence of relationship to aspects that were shared and derived

9As Platnick (1989) has pointed out, the distinction between those groups that positively
share features and those that are united only by their absence was known to the ancient
Greeks. Plato (360 BCE): “The error was just as if some one who wanted to divide the human
race, were to divide them after the fashion which prevails in this part of the world; here they
cut off the Hellenes as one species, and all the other species of mankind, which are innumerable,
and have no ties or common language, they include under the single name of ‘barbarians,’
and because they have one name they are supposed to be of one species also. Or suppose that
in dividing numbers you were to cut off ten thousand from all the rest, and make of it one
species, comprehending the first under another separate name, you might say that here too
was a single class, because you had given it a single name. Whereas you would make a much
better and more equal and logical classification of numbers, if you divided them into odd and
even; or of the human species, if you divided them into male and female; and only separated
off Lydians or Phrygians, or any other tribe, and arrayed them against the rest of the world,
when you could no longer make a division into parts which were also classes.”
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(synapomorphy). Phenetics made no distinction between similarity that was
primitive or general (symplesiomorphy), and that which was restricted or de-
rived (synapomorphy). Furthermore, unique features of a lineage or group played
no role in their placement. An evolutionary taxonomist might place a group as
distinct from its relatives purely on the basis of how different its features were
from other creatures (autapomorphy) such as Mayr’s rejection of Archosauria
(Aves + Crocodilia). The patristic (amount of change) distinctions were irrel-
evant to their cladistic relationships. [These terms will be discussed in later
sections.] This would all have been fine if all evidence agreed, but that is not
the case. Alternate statements of synapomorphy or homoplasy (convergence or
parallelism) confused this issue.

AMNH circa 1910 Hennig annoyed many in that his cladograms made no reference to ances-
tors. His methodology required that ancestral species went extinct as splitting
(cladogenetic) events occurred. Species only existed between splitting events,
hence ancestors were difficult if not impossible to recognize (Chapter 3). This
seemed anti-evolutionary, even heretical and won no friends among paleontolo-
gists. Extinct taxa could be accorded no special status—they were to be treated
as any extant taxon (Chapter 2).

1.17 Molecules and Morphology

The 1980s saw tremendous technological improvement in molecular data gath-
ering techniques. By the end of the decade, DNA sequence data were becoming
available in sufficient quantity to play a role in supporting and challenging phy-
logenetic hypotheses, an activity that had previously been the sole province of
anatomical (including developmental) data. Many meeting symposia and papers
were produced agonizing over the issue (e.g. Patterson, 1987). In the intervening
years, the topic has become something of a non-issue. Molecular sequence data
are ubiquitous and easily garnered (for living taxa), forming a component of
nearly all modern analyses. Anatomical information is a direct link to the world
in which creatures live and is the only route to analysis of extinct taxa. Data
are data and all are qualified to participate in systematic hypothesis testing.

A current descendant of this argument is that over the analysis of combined
or partitioned data sets. This plays out in the debates over “Total Evidence”
(Chapter 2) and, to some extent, over supertree consensus techniques
(Chapter 16).

1.18 We are all Cladists

Today we struggle with different criteria to distinguish between competing and
disagreeing evidence. In contemporary systematics, several methods are used
to make these judgements based on Ockham’s razor (parsimony) or stochas-
tic evolutionary models (likelihood and Bayesian techniques). Although they
differ in their criteria, they all agree that groups must be monophyletic in the
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Hennigian sense, that classifications must match genealogy exactly, and that ev-
idence must rely on special similarity (if differently weighted). All systematists
today, whether they like it or not, are Hennigian cladists.

1.19 Exercises

1. Were the pre-Darwinians Cladists?

2. What remains of Phenetics?

3. Do we read what we want into the older literature?

4. What about the “original intent” of terms (e.g. monophyly)? Does it mat-
ter? Can we know? Is definitional consistency important?

5. What are the relationships among the following terms: archetype, bauplan,
semaphoront, ancestor, and hypothetical ancestor?

6. What constitutes “reality” and “natural-ness” in a taxon?



Chapter 2

Fundamental Concepts

This section is a bit of a grab-bag. These are the fundamental concepts upon
which systematics discussions are based. They include concepts and definitions
of characters, taxa, trees, and optimality. From these, definitions of higher level
concepts such as homology, polarity, and ancestors are built.

2.1 Characters

Characters are the basis of systematic analysis. In principle, any variant in an
organism (at any life stage) could be used for comparison, but we usually limit
ourselves to those features that are intrinsic and heritable. However impartially
observations can be made, characters are theory-laden objects (Popper, 1934,
1959). By this, we mean that characters are not unorganized observations, but
ones that convey notions of relevance, comparability, and correspondence. It
is important to keep this in mind as we attempt to test hypotheses of char-
acter evolution and relationship in as rigorous a manner as possible (Popper,
1959). Patterson (1982) and DePinna (1991) regarded the establishment of the
characters themselves as the primary step (or test in the case of Patterson) of
establishing homology.

Karl Popper
(1902–1994)

Biological variants may be intrinsic or extrinsic to an organism. Intrinsic
features would include the familiar character types of morphology, behavior,
and biochemistry. Extrinsic features are a diverse lot, including variation in
population size, geographic location, or environmental conditions. Such external
features are not usually a component of phylogenetic analysis (at least in the
construction and testing of hypotheses) due to the difficulty in establishing
homology relationships and the absence of a direct connection to the organism
itself. There is a gradation here, however, from aspects that are clearly properties
of an organism itself (e.g. obligate feeding on a specific host) to those that are
not (e.g. annual mean temperature).

Intrinsic features are the more frequent sources of systematic information.
These may be divided further into genotypic and phenotypic aspects. Genotypic

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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information is the most obviously appropriate source of comparative variation
since its genomic origin requires that variation be passed through nucleic acids
from generation to generation. All changes are inheritable. Aspects of the pheno-
type, such as anatomy, behavior, overall shape and size, are clearly more similar
in parents and offspring than they are to other creatures (heritable; Fig. 2.1)
even if their specific genetic basis is unknown, and hence have utility as char-
acters. For example, the precise genomic origins of the collum in Diplopoda
(millipedes) are unknown, but its strict passage from parent to offspring and
restricted variation show that it is clearly appropriate for systematic study. Simi-
larly, behavioral features such as stridulation in Orthoptera—whose genetics are
also unknown—show intrinsic variation useful to systematics (Fig. 2.2). Devel-
opmental features may straddle this division, but are technically phenotypic.
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principal component of the variable space.

Figure 2.1: Heritability sensu Galton (1889). See Plate 2.1 for the color figure.

There are many heritable features that are not intrinsic to organisms, hence,
they are not usually employed as grouping information. Examples of these would
be location (offspring usually live near parents), mean rainfall, and population
size. There are gray areas, however. A larval lepidopteran species may be found
exclusively on a particular plant taxon and may eat only the leaves of that
species. The notion that the metabolism of the caterpillar (and its genetics) is
specific to this habitat suggest that this is an intrinsic, even inherited feature,
hence of comparative use (Freudenstein et al., 2003).
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Figure 2.2: Cladogram of orthopteran stridulation (Robillard et al., 2006).

In general, we would like to include as broad and large a collection of charac-
ters as possible. This may include molecular sequence, developmental expression,
anatomical information, and behavioral observations. With burgeoning molecu-
lar genetic and developmental data, situations are rapidly approaching where an
observed variation may be present in multiple data types. Clearly, if we “know”
the genetic origins of an anatomical variant, we cannot code a single feature
in both data sets [contra Freudenstein et al. (2003)]. The issue, in this case, is
independent information. Can the transformations be traced back to a single
change or multiple? If single, only one variant can be coded, if multiple (or
unknown), the changes are potentially independent and should all be used.

2.1.1 Classes of Characters and Total Evidence

Systematists, being classifiers, typically divide characters into classes: mor-
phological, molecular, behavioral, developmental and so forth. Although these
classes can have descriptive meaning, they do not require that their variation be
valued differentially. The observations “compound eyes” and “adenine at posi-
tion 234,” although helpful in understanding where these characters come from
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(anatomy and molecular sequence) and how they were observed, do not convey
any inherent strength or weakness in their ability to participate in hypothesis
testing. In short, there may be descriptive character classes, but analytical
classes do not necessarily follow.

Arnold Kluge

The argument over whether to evaluate all characters simultaneously (“To-
tal Evidence” Kluge, 1989; or “Simultaneous Analysis” Nixon and Carpenter,
1996b) or separately (partitioned analysis) has focused on two very different
ideas of the determination of the “best” phylogenetic hypothesis. The concept
behind partitioned analysis is one of robustness (i.e. how do different data
sources agree or disagree) as opposed to one of optimality and quantity (which
is the best hypothesis given all the data). These will be discussed later in more
detail (Chapter 16).

2.1.2 Ontogeny, Tokogeny, and Phylogeny

Characters and character states can have three types of relationship: “ontoge-
netic,” “tokogenetic,” and “phylogenetic” (Hennig, 1950, 1966). When states
transform into one another during development, they have an ontogenetic re-
lationship. An example is the imaginal disks of holometabolous insects, which
transform into adult features such as eyes, genitalia, and wings. Although onto-
genetic relationships have been used as indicators of character polarity (prim-
itive versus derived) since Haeckel (1868), the transformations in this type of
relationship are within a single organism.

Tokogeny is the relationship among features that vary within a sexually
reproducing species1 (Fig. 2.3). As variation within species, such features have
been considered not to reflect relationships above the species level, hence were
termed “traits” by Nixon and Wheeler (1990). Examples of traits would be color
variation over the geographic range of a taxon or protein polymorphisms within
populations. Nixon and Wheeler argued that true characters must be invariant
within a species, but variable across species. One of the key issues with this
distinction is the definition of and distinction between species. Where is the line
drawn to separate traits and characters (Vrana and Wheeler, 1992)?

Features that vary across taxa are referred to as phylogenetic features and
are by consensus available for systematic analysis. The fraction of total variation
this constitutes varies.

2.1.3 Characters and Character States

Traditionally, there are characters, which represent comparable features among
organisms, and character states, which are the set of variations in aspect or
expression of a character. The distinction between the two concepts has always
been fluid (are crustacean biramous antennae absent/present or a state of ap-
pendages?) (Eldredge and Cracraft, 1980), and in dynamic homology (sensu
Wheeler, 2001b), largely meaningless.

1Also used to describe the parent–offspring relationship, irrespective of reproductive mode.
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Figure 2.3: Tokogenetic and phylogenetic relationships of Hennig (1966).

As discussed by Platnick (1989), the distinction between character and char-
acter state (at least for anatomical features) can be entirely linguistic.

In practice, objections like these sometimes amount only to lin-
guistic quibbles. Abdominal spinnerets are not found in organisms
other than spiders, and they are a valid synapomorphy of the or-
der Araneae regardless of whether they are coded as spinnerets ab-
sent versus present, or as ‘distoventral abdominal cuticle smoothly
rounded’ versus ‘distoventral abdominal cuticle distended into
spigot-bearing projections.’ The more important point of these ob-
jections is that spinneret structure varies among different groups of
spiders. One might treat each identifiable variant in the same way,
resulting in a large number of binary characters, with each ‘pres-
ence’ representing a different, and additional, modification. If the
sequence of modifications is detected correctly, an unobjectionable
additive binary coding of the variable could be achieved. But as the
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number of variants under consideration grows, the likelihood that
some of the relationships among variants will be misconstrued also
grows. If all the variants are coded in binary form, such miscon-
struals can produce erroneous cladograms, as Pimentel and Riggins
[Pimentel and Riggins, 1987] demonstrated.

Platnick also raised the issue of alternate coding schemes. Traditional char-
acters, those where character correspondences are at least thought to be known,
are treated as additive (or ordered) (Farris, 1970), non-additive (or unordered)
(Fitch, 1971), or matrix/Sankoff characters (Sankoff and Rousseau, 1975). In
short (character types are discussed in detail in Chapter 10), these three multi-
state character types (number of states > 2; there are no distinctions for binary
characters) specify the relative costs of transformation between states.

For additive characters, the states are linearly ordered, with each successive
state denoting a more restricted homology statement—requiring an additional
transformation, or step. Therefore, a transformation between states 0 and 2
would require two steps—one step to account for the transformation from 0
to 1, and a second from 1 to 2. With additive characters, each state contains all
of the homology information present in each of the preceding states. Consider
the case of antennae in arthropods. The nearest extant relative of Arthropoda is
the Onychophora (velvet worms; Giribet et al., 2001; Dunn et al., 2008), which
do not possess antennae. Hexapods (including insects), myriapods (centipedes,
millipedes, and kin), and crustaceans exhibit sensory antennae. Those of Crus-
tacea may be biramous (two branches as opposed to one; Fig. 2.4). This feature

Figure 2.4: Biramous crustacean antennae of Daphnia.
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could be coded in an additive fashion with state 0 = absence of antennae; 1 =
presence of antennae; and 2 = presence of biramous antennae. Since biramous
antennae are treated as a special case of the more general (uniramous) anten-
nae and logically cannot occur independently of antennae, the character can be
linearly ordered and transformations treated as additive.

In the above example, we might not feel (or be unwilling to assume) that
biramous antennae logically require the underlying state of uniramous antennae.
If this were the case, a transformation from state 0 to 2 would not require the
intermediate state 1, and be no different from any other transformation. All
transformations would cost the same—one step. This type of coding is referred
to as non-additive or unordered.

A third possibility is that there are arbitrary transformation costs (perhaps
limited by metricity; see Chapter 5). We might have an oracle that has revealed
to us the derivation of biramous antennae de novo is three times as difficult
(whatever that might mean) as the generation of uniramous antennae. Further-
more, it is revealed that to transform uniramous antennae into biramous is twice
as costly as the origination of the uniramous antennae in the first place. These
statements create a cost regime where transformations between 0 and 1 cost
one step, between 0 and 2 cost three steps, and between 2 and 3 a single step.
This more general cost regime character is referred to as a matrix, general, or
Sankoff character. Additive and non-additive characters are special cases of this
more flexible type.

In order to avoid the complexity and cost assumptions embedded in the three
above types, Pleijel (1995) advocated coding features traditionally regarded as
states as characters, thereby expanding the number of characters (each with
two states). In the example above, the single character with three states would
become two characters each with two states (presence/absence of uniramous
antennae; presence/absence of biramous antennae). As Platnick (1989) pointed
out (above), this really just moves the problem to a different level (that of
characters) and the conflation of state information can easily cause errors (e.g.
absence of all states).

The discussion so far assumed that we know a priori which states in different
taxa correspond to each other (they are part of the same character); these
are traditional “static” homology characters (sensu Wheeler, 2001b). There are
situations in which these a priori correspondences are unknown or ambiguous. In
such “dynamic” homology regimes (such as molecular sequence data), there are
no input characters per se; feature (or state) correspondences are tree-specific,
hence the result of an analysis, not an input (properties of this type of homology
scheme are discussed in Chapters 7, 10, 11, and 12).

2.2 Taxa

Taxa are collections of organisms. De minimus, a taxon must consist of at least
two creatures. Some, however, would limit the minimal taxon to be a “species”
however defined, not allowing subspecific distinctions. Vrana and Wheeler (1992)
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advocated using individual specimens as terminals on trees. The term “terminal
entities” was used specifically to avoid referring to a single creature as a taxon.
Any other group, however, could be. Since all groups (size > 1) are arbitrary
in their level (although “real” in the sense of monophyly), “higher taxa” are
arbitrary. There are arguments surrounding the level of species, but complete
consensus that the levels of all taxa above the species are arbitrary2. Hence, un-
less the taxa are sister-groups (below), they are incomparable. These groups can
be “real” in the sense of reflecting hierarchical variation in nature, but are not
equal in any way. An implication of this non-comparability is the senselessness
of taxon enumeration (e.g. how many “families” went extinct, or the relative
species richness of non-sister taxa).

There is a myriad of modifiers for taxa. Most refer to taxa on trees in different
positions or levels of inclusion. These are discussed in more detail below. Two,
however, are worth defining here since they are used a great deal in systematic
literature. These are Operational Taxonomic Units (OTUs) and Hypothetical
Taxonomic Units (HTUs) (Fig. 2.5). These terms were developed to be agnostic

A B C D E

OTUs

HTUs

Figure 2.5: OTUs and HTUs on a tree.

2Hennig (1950) advocated a means of non-arbitrary definition of higher taxa. In this system,
the rank of a taxon (Phylum, Class, etc.) would be determined by its age (first occurrence in
fossil record)—the older, the higher. Although logical and consistent, the system never caught
on largely for two reasons. First, the multiplication of higher taxa containing single or only
a few taxa was regarded as ungainly (e.g. Latimeria as a monotypic Class); and second, the
establishment of these dates is far from precise and subject to frequent revision based on the
systematic relationships of other (i.e. sister) taxa and their own uncertain dating.
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to discussions of species or other entities (mainly higher taxa) that appear on
trees. An OTU is any object that occurs at the tips of a tree (also called terminal
taxon or leaf). OTUs might be parts of individual creatures (e.g. molecular
paralogs), individual organisms, species, collections of species, or higher taxa
(e.g. Mammalia). These are normally the inputs to systematic analysis.

HTUs, on the other hand, are not observable, real things. They are abstrac-
tions created at the nodes of trees. They are “hypothetical” since they cannot
be observed in nature and only exist as interpretive objects on a tree. At times,
these HTUs can stand in, or be mistaken, for ancestral taxa. They are, how-
ever, constructed mathematical entities, and any path of transformation that
may have occurred in nature need not have passed through the collection of at-
tributes assigned to an HTU. These terms have origins in the early quantitative
literature. OTU was coined for phenetic use (Sokal and Sneath, 1963), while
Farris (1970) first used HTU in defining the Wagner tree-building procedure.

2.3 Graphs, Trees, and Networks

Trees are the central objects of systematic analysis. Taxa are ordered, characters
explained, and hypotheses tested on trees. Since systematics informs and draws
on other areas of science, there is a diversity of terminology for trees and their
components. This section will lay out the basic definitions and descriptions that
are commonly used.

Nelson (manuscript cited in Eldredge and Cracraft, 1980) made the dis-
tinction among cladograms, trees, and scenarios. This scheme differentiated the
“what,” “how,” and “why” in phylogenetic diagrams (Fig. 2.6). Cladograms
(following Hennig) were a representation of nested sister-group relationships.
Each bifurcation on the tree signifies that the two descendants are sister taxa.
These sister taxa are each other’s closest genealogical (= phylogenetic) rela-
tive. Cladograms make no statements about character change, ancestors, or the
evolutionary process—they are simply nested sets. Cladograms might seem to
make relatively weak statements, but have embedded in them strong conclu-
sions; among them, that sister-groups are coeval and comparable. For example,
it makes little sense to compare aspects of diversity between the plant bug
family Miridae and the carnivorous Reduviidae (Fig. 2.7). The only reasonable
comparison would be with the sister-taxon lace bugs (Tingidae).

Trees are one step up in information content and inference. Trees, in Nel-
son’s definition, are a series of ancestor–descendant statements. By this, Nelson
meant that the points at bifurcations not only signified sister-groups, but also
the ancestral condition of that larger group. With this, the changes between
ancestors and descendants can be plotted on the branches that connect them.
A tree remains a statement of pattern in that transformations are specified, and
localized between ancestor–descendant pairs, but no motivation or biological
explanation is offered.

A scenario is endowed with explanation in terms of evolution, ecology, or
other biological or geological factors of the changes that are postulated to have
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Figure 2.6: Nelson’s distinction among cladogram, tree, and scenario. The clado-
gram, left, conveys information of sister-groups alone. The tree, center, includes
ancestor—(I–IV)—descendant statements and character transformations in ad-
dition to genealogy. The scenario, right, incorporates biological motivation for
evolutionary changes on the tree.

Figure 2.7: Cladogram of cimicomorpha relationships (Schuh et al., 2009).
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occurred on the branches. In general, classifications deal with cladograms, sys-
tematics with trees, and evolutionary biology with scenarios.

2.3.1 Graphs and Trees

The mathematics and computer science literature defines trees in a manner
nearly identical to that of Nelson, though in different terms. This field defines
a tree as a connected, acyclic graph.Sometimes called a free tree.

Graphs

Graphs are general mathematical objects consisting of a pair of sets (V,E) of
vertices (points, V) and edges (lines between vertices, E). The edges can contain
loops, and two vertices may be connected by multiple edges (Fig. 2.8), or by
none. Simple graphs forbid parallel edges and loops. These are the sorts of graphs
we will deal with here. By convention, edges are referred to by their incident
vertices [(u, v)∀eu,v ∈ E]. The degree of a vertex is the number of edges incident
upon it. In Fig. 2.8, vertex v1 has degree 2. Directed graphs can specify in-degree
and out-degree edges, their sum being the degree. Vertex v3 (Fig. 2.8 left) has
in-degree 1 and out-degree 2. It is possible to have a vertex that is unconnected
to any other vertex, hence with degree 0. A graph is said to be connected if
there are no vertices with degree 0, that is, if all vertices can be be visited by a
path over edges. A directed graph can be created from an undirected graph by
specifying an orientation to the edges. In systematics, the root (the only vertex
with degree 2) directs all edges.
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v5

v1 v2

v3 v4
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Figure 2.8: Graphs on vertex set V = {v1, . . . , v6} and edge set E. On the left,
is a directed (digraph) including parallel edges between v3 and v4 (e3,4, e

′
3,4), a

self loop edge on v5 (e5,5), and v6 is unconnected. On the right, is an undirected,
simple graph.

Trees

A tree T = (V, E) is a connected graph without cycles. A cycle is a path over
edges connecting two vertices via one or more additional vertices where each in-
termediate edge is visited exactly once. In Fig. 2.8, the set of vertices v1, v2, v3, v4
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forms a cycle in the undirected graph (right) but not in the directed graph (left)
since its edges can only be traversed in one direction. There are two types of
vertices in V, leaves (often L) and internal (V \ L). The leaf vertices connect
via a single (pendant) edge to another vertex (degree 1), whereas the internal
vertices connect via at least three edges to other vertices (degree ≥ 3). In this
scheme, OTUs and terminal taxa are L and HTUs, V \ L. Edges are equivalent
to branches in biological terminology. Any edge may contain the root, thereby
directing (or rooting) the entire tree. Hennig’s concept of a “stem species” cor-
responds to a non-pendant edge. The tree is said to be binary if each non-leaf
vertex has degree 3. A binary tree with |L| leaves, contains |L| − 2 internal
vertices and 2 · |L| − 3 edges (|E| = |V| − 1). If a tree is rooted, there is an addi-
tional internal node and an additional edge (since the root has degree 2). There
is no requirement that the edges of a tree be directed. If there is a root, how-
ever, all edges become directed. The root will have in-degree 0 and out-degree 2,
leaves in-degree 1 and out-degree 0, and all other (internal) vertices in-degree 1
and out-degree 2.

A forest is a set of trees (unconnected graph) over a set of vertices (Fig. 2.9).
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Figure 2.9: A tree, left, and forest, right, created by removing edge (e4,6). The
leaf vertices are 1, 2, 5, 7, and 8; internal vertices 3, 4, and 6.

2.3.2 Enumeration

There are many possible trees for any given set of leaves. It is straightforward to
calculate the number of binary trees starting with three leaves and three edges
connecting them. This is the only unrooted tree for three taxa. A fourth taxon
may be added to each of the three edges (for n leaves, 2n − 3 edges), yield-
ing three trees. As taxa are added, the options multiply yielding Equation 2.1
(Schröder, 1870).

for n ≥ 3:
(2n − 4)!

(n − 2)!2n−2
(2.1)

The number of rooted trees can be calculated by multiplying by the number of
edges (2n − 3) or incrementing n by 1. This quantity becomes large very quickly
(e.g. 3 trees for 4 taxa, 2027025 for 10, 2.84 × 1074 for 50) and for real data sets
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n unrooted rooted
3 1 3
4 3 15
5 15 105

10 2,027,025 34,459,425
20 8.20 × 1021 3.03 × 1023

50 2.84 × 1074 2.75 × 1076

100 1.70 × 10182 3.35 × 10184

Table 2.1: Number of binary trees for n taxa.

in the hundreds or thousands of taxa analogy fails (Table 2.1). The number of
forests can be generated from Equation 2.1 by observing that removing a set
of k edges from a tree will generate a forest (e.g. 32 forests for a tree of only
4 leaves). Hence from each tree of n leaves can be generated

2n−3∑
k=0

(
2n − 3

k

)
(2.2)

forests. When k is 0, the forest contains only the single original tree. This, and
other aspects of the mathematics of trees, is explored in Semple and Steel (2003).

Spanning Trees

A spanning tree of a graph G is a tree where all vertices in G are connected.
A forest, since it does not connect all vertices (there is no sequence—path—of
edges between vertices in different component trees), is not a spanning tree. As
with trees in general, there can be no cycles or loops. For a complete graph with
n vertices, there are nn−2 spanning trees.

If the edges have weights (w(e)), then the graph is a weighted graph and its
weight, w(G), is the sum of the weights of all its edges. The minimum spanning
tree for a graph is the spanning tree whose weight is minimal. Kruskal (1956) de-
scribed an algorithm to construct the minimum spanning tree in O(m log m) for
m edges and Prim (1957) O(n2) for n vertices3 (notation covered in
Chapter 5).

The Steiner problem expands on minimal spanning trees. A Steiner tree
allows for the addition of extra vertices and associated weighted edges4. This
may further reduce the overall weight of the graph, but the problem becomes
exponential in complexity (see Chapter 5). Gilbert and Pollak (1968) suggested
(later proved) that the ratio between the weight of the best Steiner tree and that
of the minimum spanning tree ρ ≥

√
3

2 (for Euclidean spaces, otherwise ρ ≥ 1
2 ).

3We can find the maximum spanning tree by replacing each w(e) with −w(e) and use
Kruskal’s or Prim’s algorithms.

4For n = 3, the additional vertex is known as the Fermat point.
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Since extant taxa cannot be ancestors of other extant taxa, and we do not
have knowledge of actual ancestors, the tree reconstruction problem of system-
atics is a Steiner-type problem.

2.3.3 Networks

The word network has been used in a cavalier and confusing fashion in system-
atics literature. An early and persistent use describes an unrooted tree as a net-
work (e.g. Bininda-Emonds et al., 2005). Current use is more precise, specifying
a directed (rooted) tree with at least one node with in-degree 2 and out-degree
1 (Fig. 2.10).
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Figure 2.10: A network with directed edges, signified by arrows. This network
has no cycles due to the direction of the edges. Note the presence of an in-degree
2 vertex (v9).

Networks are most frequently used to describe reticulation events derived
from either hybridization or horizontal gene transfer (HGT). In these cases, a
network is created by adding edges to an existing tree (Fig. 2.11). Networks and
their analysis are treated in later sections (Chapters 10, 11, and 12).

2.3.4 Mono-, Para-, and Polyphyly

When trees are directed (rooted) there are three types of groups (sets of taxa,
subtrees) that can be delimited: monophyletic, paraphyletic, and polyphyletic.
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a b c d e f g h

root

a b c d e f g h

R

root

H

d' e'

Figure 2.11: A tree, top, and network, below, created by adding a reticulate
node R (and new pendant vertex H) and edges (ed′,R, ee′,R). The network edges
are directed, signified by arrows. The tree edges have an implied direction due
to the location of the root.

This scheme comes from Hennig (1950), but the term “monophyletic” has its
origins with Haeckel (1868) (see Chapter 1). Hennig’s monophyly was expressed
in terms of the “stem” or ancestral species.

A monophyletic group is a group of taxa in which each taxon is more
closely related to every other taxon in the group than to any taxon
that is classified outside the group.

A taxon x is more closely related to another taxon y than it is to
a third taxon z if, and only if, it has at least one stem species in
common with y that is not also a stem species of z. (Hennig, 1966)

This definition of monophyly appears to be set theoretic, but is built on
Hennig’s stem species definition. Hennig’s monophyletic group was the continu-
ation of a stem species, containing all its attributes. Due to this requirement, a
monophyletic group must contain all descendants of a common ancestor (includ-
ing other descendent stem species). This is in opposition to Mayr (1942), who
defined monophyly in a more catholic fashion, allowing monophyletic groups to
have some, but not necessarily all, descendants of a common ancestor. By this
definition, there may be taxa outside the group that are more closely related
to some of the members inside the group (Fig. 2.12). The classic example of
this is “Reptilia,” not including Aves, but including its sister-taxon Crocodilia.
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Figure 2.12: Groups. I. Monophyletic, II. Paraphyletic, and III. Polyphyletic.

Monophyletic groups are recognized, and defined, by synapomorphy (shared
derived features—see below) and are the only “natural” (i.e. phylogenetic =
directed subtree) groups.

Hennig defined two other sorts of groups: paraphyletic and polyphyletic.
These were defined, in an alternate fashion, by the type of evidentiary error used
to construct them. Paraphyletic groups are those based on symplesiomorphy
(shared primitive features), and polyphyletic groups on convergence. In essence,
paraphyletic groups are grades based on primitive features (often absence-based
such as “Aptera” for basal hexapods without wings (Fig. 2.13), “Agnatha” for
vertebrates without jaws (Fig. 2.14), and “Reptilia” for scale-covered tetrapods
without feathers). The error is one of polarity; primitive features are mistakenly
thought to be derived or mistakenly used as evidence of grouping. Paraphyletic
groups of extinct lineages adjacent to extant monophyletic groups are often
referred to informally as “stem” groups. Polyphyletic groups are based on errors
in basic homology. Functional, convergent similarity (e.g. wings in insects and
birds, herbivory) is mistaken for similarity based on descent.

The definitions of Hennig, with monophyly denoting naturalness based on
shared descent and synapomorphy, paraphyly as a grade sharing primitive fea-
tures, and polyphyly as bald error, are intuitive but informal. Their definitions
are based on inconsistent terms and their application in specific cases (usually
paraphyly and polyphyly) can be unclear. Farris (1974) offered the precise, for-
mal definitions we use today. Farris used the concept of “group characters” and an
algorithmic process to establish his definitions. In short, each member of a group
is assigned a “1” and those not, a “0.” The root of the tree is also assigned a “0.”
This binary character is then parsimoniously optimized on the tree (Fig. 2.15).
If the group character has a single origin (transformation from 0 to 1), and no
reversal (1 to 0), it is monophyletic (Group I of Fig. 2.15). A paraphlyetic group
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Figure 2.13: Basal paraphyly of “Aptera” (Giribet et al., 2004). Apterous
hexapods are illustrated.

Figure 2.14: Devonian agnath Cephalaspis.

will have a single origin and at least one reversal (Group II). If there is more than
one origin (0 to 1), the group is polyphyletic (Group III). Given the assignment
of group states (0 or 1) to internal vertices, hypothetical ancestors are members
of the tested groups if they are optimized to the derived state (1). Formalized,
Farris’s procedure is a series of simple operations (Alg. 2.1).
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Algorithm 2.1: Farris1974GroupDetermination
Data: A tree, T = (V,E), with leaf set, L ⊂ V and a group of leaves G ⊂ V
Result: The group type (mono-, para-, or polyphyletic) of leaves labeled

with 1.
Initialization;
forall elements of L do

if Li ∈ G then
Vi ← 1;

else
Vi ← 0;

end
end
Down-pass;
while there are unlabeled vertices do

if Vi is unlabeled and its descendent vertices, VL and VR, are labeled
then

if VL ∩ VR �= ∅ then
Vi ← VL ∩ VR;

else
Vi ← VL ∪ VR;

end
end

end
Up-pass;
Vroot ← 0;
while there are vertices whose ancestors have not been set do

if the ancestor of Vi, VA
i has been set then

if Vi = 0 or 1 then
Vi ← Vi;

else
Vi ← VA

i ;
end

end
end
Count origins and losses;
forall ei,j ∈ E do

if Vi = 0 and Vj = 1 then
origin = origin + 1;

else if Vi = 1 and Vj = 0 then
loss = loss + 1;

end
end
Return result;
if origin = 1 and loss = 0 then

return monophyletic
else if origin = 1 and loss > 0 then

return paraphyletic
else

return polyphyletic
end
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Figure 2.15: Groups of Figure 2.12 determined as in Algorithm 2.1 (Farris, 1974).
Where there are arrows “→”, the left value is from the first pass and the right
from the second. Group I is monophyletic, Group II is paraphyletic, and Group III
is polyphyletic.

2.3.5 Splits and Convexity

Efforts have been made to identify groups based on trees in the undirected
state. Estabrook (1978) advocated “convex” groups of taxa. These were basi-
cally mono- and paraphyletic groups defined as taxa sharing a character state
which was optimized to each internal vertex on the path between the taxa
(Fig. 2.16). Other than giving more precision to the evolutionary taxonomists
view of monophyly, this notion had little impact. This definition of convexity is
different from that of Semple and Steel (2003) who defined a convex group as a
group that can be created by a single split in a tree—in essence, a group that
could be monophyletic given a rooting on one or the other side of the split.

Splits are divisions of trees (unrooted) into subtrees, frequently used in the
mathematical literature (Buneman, 1971; Bandelt and Dress, 1986). A split is
the division of a tree into two trees by the removal of an edge (Fig. 2.17). Biol-
ogists most frequently encounter splits in the Robinson and Foulds (1981) tree
similarity metric and consensus techniques (Chapter 16), since these operations
deal with shared and unique subtrees irrespective of root position. Splits are a
very handy way to describe all manner of tree manipulations.
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Figure 2.16: Convex group after Estabrook (1978).
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Figure 2.17: A tree (left) split on edge eb,c (right) (Buneman, 1971).

2.3.6 Apomorphy, Plesiomorphy, and Homoplasy

As mentioned above, the concepts of group status and the character evidence
used to identify them, were intertwined in Hennig’s discussions. There are two
aspects of any character (or character state) that are used to describe the fea-
ture. The first is whether it is derived (apomorphic) or primitive (plesiomor-
phic), the second, whether the feature is shared with other creatures (syn- or
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Figure 2.18: Primitive and derived character distributions. (a) State “1” is de-
rived and a synapomorphy, while “0” is a symplesiomorphy. (b) State “1” is an
autapomorphy.

sym-) or unique (aut-). Not all combinations are present, and we are left with
synapomorphy, autapomorphy, and symplesiomorphy (Fig. 2.18)5.

Since plesiomorphies reflect a feature of a larger group including the exam-
ined creatures and other more distantly related taxa, they are not evidence of
relationship. The fact that humans and chimpanzees both have four legs and hair
is based on their membership in Tetrapoda and Mammalia and has nothing to
say about their relationship with respect to other primates. Similarly, a feature
unique to a taxon (such as the collum in millipedes; Fig. 2.19) says nothing about

Figure 2.19: A diplopod with collum visible posterior to the head capsule.

5Although we might reserve autplesiomorphy as a pejorative.
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kinship with other creatures. Only synapomorphy can be evidence of monophyly,
demonstrating shared specific similarity among taxa. Clearly, the notions of
synapomorphy, autapomorphy, and symplesiomorphy are level and question spe-
cific. An autapomorphy at one level is the synapomorphy of analysis at a lower
level (collum as synapomorphy for Diplopoda), or symplesiomorphy when speak-
ing about an even more restricted question (such as among millipede species).

Homoplasy is a term initially used to describe errors in character analysis
(Lankester, 1870a); mistakes in homology—analogous features thought to be
homologous. More precisely, homoplasy is any non-minimal (= parsimonious)
change on a given tree irrespective of cause. On a particular tree, homoplasies
may be described as parallelisms or convergences. Whereas on another tree,
these same features may be optimized with minimal change, hence are no longer
homoplastic (Fig. 2.20). Discussions of homoplasy can get bogged down in argu-
ments over “good” homoplasy (e.g. adaptation) versus “bad” homoplasy (e.g.
noise, error). The term itself refers only to non-parsimonious transformation.

2.3.7 Gene Trees and Species Trees

Although not a type of tree per se, the terms gene tree and species tree have en-
tered the literature. The terms refer to the observation that trees reconstructed
(by whatever means) from different genetic loci often do not agree, hence can-
not all reflect the “true” historical genealogy (“species tree,” Fig. 2.21; Fitch,
1970). This can occur for two reasons, one trivial, one less so. In the former case,
differences among gene-based analyses reflect only the fact that data sets are
finite and any combination of random character selection processes may result
in non-identical results. This can be seen in any large real data set. Random
partitions are unlikely to agree in every detail. In this sense, “gene trees” may
reflect nothing more than homoplasy at the locus level. The latter case could
be due to hybridization or horizontal gene transfer (HGT) between lineages as
opposed to the expected vertical transfer between ancestors and descendants.
HGT is no doubt a real effect, particularly among viruses and bacterial lin-
eages, but ascribing all incongruence to HGT is cavalier and ad hoc. Certainly,
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0
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(a) (b)

Figure 2.20: State “1” is homoplastic on tree (a) (three steps), and synapomor-
phic on tree (b) (one step).
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Figure 2.21: Four loci with three histories in four taxa.

ARHGAP17

AQP8LCMT1

RRM1 STIM1

DCHS1 OR genes

RHBDF1

MPG

C16orf35

MRE

MC DS LA

Jawed vertebrate ancestor

ζ ζ μ α α α θ ζ ζ μ α α α ω π α α

β β β β β

α α α β

β β β α α

α

β

β βα α α α α α α β

ε γ γ η δ β β β

α α α

β

β

α α α

β β β

β

β β

α α

β

α α α

ρ β β εGBY

D A

H A

FOLR1
?

?

MC

DS

LA

Human Platypus Chicken

Frog (X. tropicalis)

Fish (Medaka)

16

11

16
2

2

21
14 s357

s1078+

s27

RHBDF1

GBY
s733

1

14

8

13

19

MC

DS

LA
?

?

MC

RHBDF1

GBY
?

LA

?

POLR3K

Figure 2.22: Globin duplication and diversification (Hardison, 2008). See
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similar disagreement among anatomical character sets such as between larval
and imaginal, or anterior and posterior features would not demand “horizontal”
transfers of anatomical or developmental attributes across lineages.

Another use of “gene trees” concerns phylogenetic patterns of multigene fam-
ilies (e.g. vertebrate globins). This sort of tree is meant to reflect gene duplication
and subsequent diversification (paralogy; Fitch, 1970). Patterns can become en-
tangled and confusing when multigene families are analyzed for a variety of taxa.
Patterns of “gene” and “species” trees can be difficult to distinguish (Fig. 2.22).

2.4 Polarity and Rooting

Systematic data and the trees constructed from them are inherently undirected6.
That is, as graph theoretic objects, there are no directions to edges. Cladograms
and Nelson’s trees, however, are directed. The process of orienting the undirected
trees is termed rooting (à la Haeckel). Rooting creates a special vertex (degree
2) on an edge—the root. This is based on establishing the polarity of individual
characters—determining apomorphy from plesiomorphy. Three main methods
have been employed: stratigraphic age, ontogenetic origin, and outgroup com-
parison7.

2.4.1 Stratigraphy

Stratigraphic rooting was as simple a notion as it was incorrect. The idea was
that taxa, and their features, found in lower (i.e. older) strata were likely to be
more plesiomorphic (Hennig, 1966). This was advocated by many (especially,
but not exclusively, paleontologists) up through the 1970s (e.g. Gingerich and
Schoeninger, 1977; Harper, 1976; Szalay, 1977; Fig. 2.23). There was an imme-
diate problem with this approach: it assumed a level of perfection in the fossil
record (Schaeffer et al., 1972; Eldredge and Cracraft, 1980; Nelson and Platnick,
1981). Examples of this situation abound. If one were to use Archaeopteryx and
its sister dromeosaurs to establish the polarity of feathers (Fig. 2.24), they would
appear primitive since the derived Archaeopteryx is found in the Jurassic and
the more basal dromeosaurs are known only from the Cretaceous (Norell and
Makovicky, 2004).

2.4.2 Ontogeny

Since Haeckel (1866) and the “Biogenetic Law” (Fig. 2.25), ontogeny has been
thought to be a window onto plesiomorphy. Earlier ontogenetic forms were

6The methods of Three-Taxon Analysis (Nelson and Platnick, 1991) are inherently rooted
at the matrix stage. The matrix, however, is created with reference to an outgroup.

7Several other methods have been proposed and rejected including “common equals
primitive”—repeatedly falsified (e.g. wings in hexapods), “complex equals derived”—falsified
by empirical observations of reduction and loss, and “chorological progression”—basing po-
larity on geographic distribution and assumptions of the observability of advanced features.
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Figure 2.23: Primate stratigraphic polarity (Gingerich, 1984).

thought to be more primitive, or at least more general. Nelson (1978) reformed
this idea into what he referred to as a “direct” method of inferring primitive
character states. This had great influence, especially in vertebrate work, not only
in determining polarity, but homology itself. This notion was less influential in
invertebrate, specifically entomological, circles due to the radical changes in de-
velopment in holometabolous insects that, in this view, would render genitalia,
eyes, and wings non-homologous among insects. Ontogeny is much less relied
upon for polarity determination currently, largely due to the fact that ontogentic
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Figure 2.24: Dromeosaur phylogeny (Norell and Makovicky, 2004).

series are not in total agreement (hence they cannot all be correct) and that
there is variation in development, which is itself informative. Developmental
sequences are a fruitful source of systematic information (e.g. Velhagen, 1997;
Schulmeister and Wheeler, 2004), but they no longer hold a special place in
directing trees.

2.4.3 Outgroups

Quentin Wheeler

Today, the dominant technique for rooting trees is the outgroup method. The
notion of character generality as indicating plesiomorphy (e.g. undifferentiated
legs more general than wings) goes back to Hennig and before. As codified by
Watrous and Wheeler (1983), outgroup comparison embraces the ad hoc nature
of polarity determination and relies on the idea that features common to some
members of the ingroup and its sister-group (ideally) or more distantly related
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Fish Salamander Tortoise Chick Pig Calf Rabbit Human Early

Late

Figure 2.25: Haeckel’s illustrations (later criticized) of the “Biogenetic Law”
(Haeckel, 1866).

taxa are more likely to be plesiomorphic. After a “best” tree has been identified
by whatever means8, that edge which leads to the outgroup is said to contain
the root node, and the tree is directed (Fig. 2.26).

Empirical comparisons between ontogenetic and outgroup criteria (e.g.
Wheeler, 1990; Meier, 1997) have generally favored outgroup polarity establish-
ment. Furthermore, the increased use of genomic characters, without the possi-
bility of ontogeny, has solidified outgroup comparison as the dominant rooting
technique (Nixon and Carpenter, 1993).

All-zero Outgroups

At times, analyses contain a hypothetical “all-zero” taxon and use this as an
outgroup (e.g. Grimaldi and Engel, 2008) (Figs. 2.27 and 2.28).

Such pseudo-outgroups are simply the codification of the authors’ notions
of character polarity unmoored from the empirical restrictions of real taxa and,

8Usually the outgroup is treated as any other terminal or leaf taxon, but Lundberg (1972)
suggested leaving the outgroup taxon outside of the primary analysis and only employing it
for use in identifying the root edge.
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Figure 2.26: Progressively more derived character states as nodes move away
from the outgroup (Watrous and Wheeler, 1983).

TABLE 1
Data Matrix for Phylogenetic Analysis of

Piesmatidae
(see text for description of characters)

taxa characters

11111111112222
12345678901234567890123

Piesma
(Piesma) 10111110$11111111011111
(Parapiesma) 11111110211111111011111
(Afropiesma) 10111110011111111011111

Miespa 10110000201101?11011011
Mcateella 10110000201111011211011
Heissiana 10010000101111?1111?011
Eopiesma 10010001?01???0011?0111
Cretopiesma 00100110010000010000011
Outgroup* 00000000000000000000000

   *The outgroup was generated from plesiomorphic states
inferred by comparison across basal pentatomorphs.
   $ subset polymorphism (= 0/1)

Figure 2.27: The data matrix of Grimaldi and Engel (2008).
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Figure 2.29: The placement of Cretopiesma (Grimaldi and Engel, 2008) based on
an all-zero outgroup was revised into an entirely different family (Piesmatidae
to Aradidae) based on character analysis of actual outgroup taxa (Cassis and
Schuh, 2009).
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usually, simply confirm their preconceived ideas. Often when character analysis
of actual creatures is performed, conclusions based on such artificial outgroups
are refuted (Cassis and Schuh, 2009) (Fig. 2.29).

2.5 Optimality

Much more will be said later about the specific calculus of optimality (Chap-
ters 9, 10, 11, and 12). Here, the discussion centers around definitions and trees
as hypotheses (Chapter 4). For trees to participate in hypothesis testing, we
must be able to evaluate them and determine their relative quality. In order to
do this, we require a comparable index of merit. We can argue about what that
index should be, but we should all be in agreement that it must be some objective
function based on data and tree [c = f(D, T)]. In other words, trees must have a
cost and we are obliged to use this cost to determine if tree A is “better” than
tree B and, transitively, identify the “best” tree or trees (Fig. 2.30(a)). Without
such a cost, these objects are mere pictures—“tree-shaped-objects” (Wheeler
et al., 2006a) of no use to science (Fig. 2.30(b)).

(a)  Dunn et al. (2008) metazoan tree

(- log lik 796; 399:2).

(b)  Scornavacca et al. (2008) metazoan treeshaped

object (supertree).

Figure 2.30: Tree, left, and Tree-Shaped-Object, right.

2.6 Homology

As with optimality, much more will be said later about homology, its definition,
types, and identification criteria (Chapter 7). The definition of homology used
here is that of Wheeler et al. (2006a).
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Features are homologous when their origins can be traced to a unique
transformation on the branch of a cladogram leading to their most
recent common ancestor.

This definition grows out of that of Nelson and Platnick (1981), so far as ho-
mology is a synapomorphy of some group, and that transformation defines its

Norman Platnick

origin. The difference here is the explicit reference to a specific edge of a specific
tree. Tree, transformation, and synapomorphy are all components of homology.
There can be no notion of homology without reference to a cladogram (albeit
implicitly) and no choice among cladograms without statements of homology.

2.7 Exercises

1. How many unrooted trees are there for five taxa? How many rooted? How
many forests (unrooted) per tree?

2. How many taxa will generate a mole of trees?

3. How many simple, undirected, unweighted graphs are there for n vertices?

4. Can a monophyletic group exist without apomorphies (Helen Keller para-
dox)?

5. Are polarity statements inferences or observations?

6. Which are more grievous: errors in polarity or homology?

7. Give an example of a group that is convex sensu Estabrook (1978) but
not sensu Semple and Steel (2003).

8. Can synapomorphies be identified on the tree of all life?

9. What is the degree of each vertex in Figure 2.31?

V0 V2

V1 V3

V4 V5

Figure 2.31
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10. Is the graph in Figure 2.32 a tree? If not, what is it?

V2

V6V3

V5
V4

V8

V7

V1

V0

V13V12

V11

V9

V10

Figure 2.32

11. Show all directed trees derivable from the undirected tree in Figure 2.33.

V2 V4

V3 V5

V6V1 V0

V7

Figure 2.33

12. How many splits are possible in a tree of n leaves?
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13. Using Farris’s (1974) procedure, what is the status of groups A, B, and C
in Figure 2.34?

A A A B B C CA

Figure 2.34

14. Contrast the statement “common equals primitive” with “broadly dis-
tributed equals primitive.” Is either/both correct?



Chapter 3

Species Concepts,
Definitions, and Issues

It is hard to imagine that a field as developed as systematics would have at
its core such an unsettled and disputed concept as that of the species. There
is an enormous literature and literally dozens of published concepts: biologi-
cal, ecological, phylogenetic, monophyletic, evolutionary, Hennigian, internodal,
taxonomic, and so on (Mayden, 1997; Lherminera and Solignac, 2000; Wilkins’
list http://scienceblogs.com/evolvingthoughts/2006/10/a list of 26
species concepts.php), many of which overlap in particulars, designed around
specific or general categories, patterns, processes, and observational inference1.
In addition to definitional differences, the point has even been made that per-
haps species are not “real”2 at all. The effects of these differences are not re-
stricted to systematics alone. The definition, reality, and philosophical status
of species have an impact on all areas in the study of biological diversity. How
can “species” distribution, origin and extinction, historical gain and loss of di-
versity, even simple enumeration be accomplished without a consensual and
concrete definition?

Without going into every nuance, modern species concepts can be differen-
tiated along lines of emphasis of pattern or process and the primacy of mono-
phyly. In pre-evolutionary discussions, a typological (static, descriptive) view of
species was most often employed. The New Synthesis of the mid-20th century
emphasized evolutionary coherence through interbreeding, yielding the Biolog-
ical Species Concept. More recently, with the rise of cladistic thinking, explicit
phylogenetic species concepts have been articulated, differing among themselves
on the importance of monophyly and sex, and this has even led to a modern form

1To these we might add the political (designated by national boundaries) and financial (if
there’s money in it) species concepts.

2Real in the sense of being a component of nature separate from human perception.

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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of species nihilism or nominalism and the debate between universal monoist and
pluralist species concepts.

3.1 Typological or Taxonomic Species Concept

Plato, Aristotle, and the other ancients recognized that biological variation was
not continuous (Chapter 1). There were observable natural kinds whose forms
were similar and thought to be constant over time and space—“resemblance of
the shapes of their parts or their whole body” (Aristotle, 350 BCE). The ob-
servation of external morphological similarity within and discontinuity between
types (reflecting their “essence”) underpinned the concept (and recognition) of
what came to be called species3. This view held through to Linnaeus and later.
Species were characterized by a suite of anatomical features that were viewed
as universal and unchanging evidence of the plan of Providence. After Darwin,
this view of species morphed into what has been termed the typological species
concept—one grounded in anatomy and construing species as the basic taxo-
nomic unit. Species in this view were recognized through similarity while defined
and characterized by a specific suite of features.

As Darwinian ideas of natural selection and interbreeding entered species
thinking, this typological definition hit its operational apex with Regan (1926):
“A species is a community, or a number of related communities, whose distinc-
tive morphological characters are, in the opinion of a competent systematist,
sufficiently definite to entitle it, or them, to a specific name.”

Charles Tate Regan
(1878–1943)

The typological species concept was (and is) absent from the two main foci
of modern species debate: first, species as the smallest unit in the phylogenetic
hierarchy of life; and second, species as the fundamental unit of evolution.

3.2 Biological Species Concept

Claimed to be the most generally influential species concept, the Biological
Species Concept (BSC4) was a product of the New Synthesis (Sect. 1.14) of
the mid 20th century. The concept was one of individuals in populations linked
by sexual reproduction and gene flow developed by Dobzhansky (1937), Wright
(1940), and Mayr (1940) among others. The most familiar version of the BSC is
from Mayr (1942): “Species are groups of actually or potentially interbreeding
natural populations, which are reproductively isolated from other such groups.”
In its most recent form, the BSC emphasized the actuality of reproductive iso-
lation: “A species is a group of interbreeding natural populations that are re-
productively isolated from other such groups” (Mayr and Ashlock, 1991). As
compared to later, phylogenetic concepts, the BSC is a process-based definition
as it relies on the reproductive habits of sexual organisms.

3The word “species” came into use in the 16th century via Middle English based on the
Latin specere, to look.

4These naming and abbreviation (BSC, MSC, PSC, etc.) conventions may not be identical
in other works.
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The importance of interbreeding was recognized much earlier by Ray (1686):
“no surer criterion for determining species has occurred to me than the dis-
tinguishing features that perpetuate themselves in propagation from seed.”
Dobzhansky (1937) emphasized this in his definition of speciation based on the
restriction of gene flow between populations through barriers to interbreeding.
Patterson (1980, 1985) emphasized the complement by placing importance on
species mate recognition as opposed to avoiding interbreeding (Dobzhansky’s
reinforcement). The BSC also jibed well with the main allopatric mode of New
Synthesis speciation and population thinking that Mayr and others thought
crucial to understanding biological diversity.

John Ray
(1627–1705)

It is an important point, Mayr’s assertions aside, that the BSC was never
widely employed outside of Metazoa. In plants, for instance, the BSC was largely
irrelevant (Levin, 1979; Donoghue, 1985; Gornall, 1997), and for non-Eukaryotes
(as mentioned above) inapplicable.

3.2.1 Criticisms of the BSC

A multitude of criticisms (reviewed in Wheeler and Meier, 2000) has been leveled
at the BSC focusing, appropriately, on the emphasis on sexual reproduction.

Agamotaxa (asexual creatures) by definition have no exchange of genetic
information and each individual, for all intents and purposes, represents an
independent lineage. Although less common (though far from unknown) in the
metazoan taxa for which the BSC was formulated, an enormous (and perhaps
majority) of taxa are asexual. These creatures lie outside the BSC. Furthermore,
as Hull (1997) points out, during perhaps the first half of the history of life on
Earth there was no sexual reproduction. Does this mean there were no species?

Operational difficulties immediately arose where creatures were not sym-
patric. How could one determine if allopatric individuals and populations could
interbreed? Other information regarding morphology, ecology, behavior and so
forth would have to be used as a proxy for the interbreeding criterion (Mayr,
1963). Similarly, allochronic taxa would face the same difficulty. It is impossible
to test reproductive compatibility in creatures that do not reproduce contem-
poraneously.

Hybridization of taxa that are largely allopatric, but show some level of hy-
bridization in sympatry, present an acknowledged problem to species delineation
(Cracraft, 1989). Are these creatures one or two species? Since there are no pre-
cise conditions for species recognition, it will come down to the judgement of
Regan’s “competent taxonomist” as to whether the degree of hybridization is
significant enough to assign the creatures to a single species.

Emphasis on reproduction as the sole delimiter of species implied that the
origin of reproductive isolation was the mechanism of speciation and the genera-
tion of biological diversity. The most trenchant, perhaps even fatal, observation
was made by Rosen (1979) in showing that reproductive compatibility could,
and perhaps often was, plesiomorphic (Fig. 3.1). This would lead to species with
members that were more phylogenetically related to members of other species
than to their own. This type of species paraphyly is due to the reliance on a
single character, reproductive compatibility, over the totality of information.
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A B C D E

Change in reproductive system

Species I Species II

Figure 3.1: Two biological species (I and II) with individuals or populations
A–E. A, B, and C can interbreed with each other, but not with D and E (which
can interbreed with each other). C is genealogically more closely related to D
and E than A or B, yet is a member of a different biological species. (after
Rosen, 1979).

In sum, these factors yield a situation in which the BSC offers no precise
way to group creatures or assign the species rank.

3.3 Phylogenetic Species Concept(s)

Starting with Donn Rosen in the late 1970s, cladistic ideas were applied to the
species problem. These resulted in a series of “phylogenetic” species definitions
that differed in their emphasis on monophyly and the tokogenetic relationships
(Sect. 2.1.2) between parents and offspring. Unlike the BSC, reproductive com-
patibility has no special place in these species concepts, but each emphasizes
aspects of historical or parental patterns of relationship.

3.3.1 Autapomorphic/Monophyletic Species Concept

As mentioned above, Rosen (1979) pointed out that sole reliance on reproduc-
tive compatibility could impede the understanding of biological diversity. Rosen
(1978) discarded the BSC in favor of a more restrictive definition based on
geography and apomorphy, “a geographically constrained group of individuals
with some unique apomorphous characters, is the evolutionary unit of signifi-
cance.” Rosen argued for monophyly (via apomorphy) to establish the group,
and biogeography the rank.

Donn Rosen
(1929–1986) Mishler and Donoghue (1982), Mishler (1985), and Donoghue (1985) followed

Rosen’s criticisms of the BSC as leading to non-monophyletic species and erected
a strictly monophyletic notion of species recognized by apomorphy.
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A species is the least inclusive taxon in a formal phylogenetic
classification. As with all hierarchical levels of taxa in such a
classification, organisms are grouped into species because of evidence
of monophyly. Taxa are ranked as species rather than at some higher
level because they are the smallest monophyletic groups deemed
worthy of formal recognition, because of the amount of support for
their monophyly and/or because of their importance in biological
processes operating on the lineage in question. (Mishler and The-
riot, 2000)

Brent Mishler

This definition of a Monophyletic Species Concept (MSC), although precise
in grouping individuals, leaves the assignment of the species rank as Reganeskly
arbitrary (a point elaborated by Vrana and Wheeler, 1992). Apomorphy de-
fines the group, but whether or not it is a species depends on the systematist’s
opinions on the level of support and the importance of the clade. If such an
assignment is arbitrary, are species (as a level, rather than as monophyletic
groups) real?

Two main criticisms are leveled at monophyletic species concepts. The first,
discussed more below, is that the entire notion of monophyly may have no ap-
plication below the level of species due to the reticulate nature of bisexual taxa.
The importance of tokogenetic relationships is emphasized in the Phylogenetic
Species Concept below. The second point is due to the fact that the ancestral
or stem species (in Hennig’s terminology) cannot have any apomorphies not
shared by its descendants (although it could be diagnosably distinct; Fig. 3.2).
Consequently, this lineage cannot be recognized by apomorphy5.

B C

Acquisition of apomorphy II

Acquisition of apomorphy I

Stem species A

Figure 3.2: The stem species “A” will share apomorphy I with descendent species
“B” and “C”, but not apomorphy II. Hence, “A” can have no unique apomor-
phies (Hennig, 1966).

5Of course, at a time horizon during the existence of the stem species, it would have
recognizable apomorphies and would be monophyletic, since its descendants would not yet
exist.
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3.3.2 Diagnostic/Phylogenetic Species Concept

The term Phylogenetic Species Concept (PSC) was coined by Cracraft (1983) to
differentiate his definition as different from those of Rosen and Mayr. One of his
key points was that monophyly did not apply at the level of species. This idea
was promulgated earlier with Nelson and Platnick (1981) stating that species
were “the smallest detected samples of self-perpetuating organisms that have
unique sets of characters.” This definition was thought to be compatible with
cladistic phylogenetic analysis, but not dependent on it, in that these clusters
of organisms need not share apomorphies.

Joel Cracraft

Cracraft (1983) defined species as “the smallest diagnosable cluster of in-
dividual organisms within which there is a parental pattern of ancestry and
descent,” the “parental pattern” being the ancestor–descendant relationship
between parent and offspring used by Eldredge and Cracraft (1980) in their
definition. This concept was general to sexual or asexual taxa, but the parental
component proscribed hybrids (unless they were to create a new group that
continued to reproduce on its own).

A central feature of this definition is the absence of apomorphy, which is
replaced by diagnosability. This was further amplified by Nixon and Wheeler
(1990), “the smallest aggregation of populations (sexual) or lineages (asexual)
diagnosable by a unique combination of character states in comparable indi-
viduals (semaphoronts).” This definition also shifted the definition from one
referring to individuals to one based on aggregations of populations or lineages.

These instantiations of the PSC allow, on the face of it, both monophyletic
and paraphyletic groups to be recognized as species (but would forbid poly-
phyletic species). The authors of these definitions, however, argue strenuously
that the concept of monophyly does not apply to species, hence species-
paraphyly is no sin6. This idea can be traced back to Hennig (1966) in his distinc-
tion between phylogenetic relationships (those between species) and tokogenetic
(those between individuals within a species) (Fig. 3.3). Nixon and Wheeler refer
to features that vary within a species and reflect tokogeny as “traits” while those
between, reflecting phylogeny, were recognized as “characters,” which are fixed
for all individuals. Species are diagnosed on the basis of unique combinations of
traits (as opposed to the apomorphies of the MSC).

As Nixon and Wheeler (1992) point out, this distinction allows for phyletic
speciation (without cladogenesis) as the diagnosis of a lineage changes through
time and new features originate and become fixed in populations. A single lin-
eage could undergo multiple “speciations” without any cladogenesis. This is di-
rectly contrary to speciation modes envisioned by the MSC and other concepts
(below) that require splitting events for new species and render the ancestral
species extinct. Furthermore, in the PSC, species may survive a splitting event
if their diagnosable suite of features is unchanged (as opposed to the new sister
species) (Fig. 3.4). The potential for creating species based on plesiomorphy,
the possibility of phyletic speciation, and the potential perpetuation of species

6Hennig himself viewed species in a similar manner to the BSC as “reproductive commu-
nities” (Hennig, 1966) that were bounded in origin and extinction by splitting (cladogenic)
events (see below).
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Figure 3.3: Diagram showing the phylogenetic relationships between species
(upper) and tokogenetic relationships between individuals within a sexually
reproducing species (Hennig, 1966).

through cladogenesis are the three implications of the PSC that attract the
most criticism.

3.4 Lineage Species Concepts

These species concepts define species not as groups, but as lineages through time.
Both Hennig and Simpson employed lineage concepts, but with very different
results.

3.4.1 Hennigian Species

Rudolf Meier
The Hennigian lineage concept (Hennig, 1950, 1966; Meier and Willmann, 2000)
was of a collection of individuals linked by tokogenetic relationships with its ori-
gin at one splitting event and its demise at a second. Such a species could only
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Figure 3.4: Three modes of speciation consistent with the PSC: phyletic A,
ancestral persistence B, and ancestral extinction C (Nixon and Wheeler, 1992).

persist in the absence of splitting because cladogenesis disrupts the tokogenetic
relationships between the daughter groups, now independent lineages (Fig. 3.3).
Unlike the BSC or PSC, there can be neither phyletic speciation nor persistence
of species through splitting. In the former case, tokogeny is maintained through-
out the time between splits, and in the latter, tokogeny is necessarily disrupted.
These notions were formalized by Kornet (1993) as “internodal” species. The
Hennigian species concept emphasizes the reproductive continuity of the lineage
and isolation of post-split sister taxa.

3.4.2 Evolutionary Species

Simpson (1961) was dissatisfied with the atemporal aspect of the BSC and pro-
posed the Evolutionary Species Concept (ESC) to remedy this shortcoming. He
defined a species as “a lineage (an ancestor–descendant sequence of populations)
evolving separately from others and with its own unitary role and tendencies.”
Many of these terms are, to put it mildly, vague. Wiley (1978) and Wiley and
Mayden (2000) sought to make the concept more precise with:

An evolutionary species is an entity composed of organisms that
maintains its identity from other such entities through time and
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over space and that has its own independent evolutionary fate and
historical identities.

Wiley and Mayden (2000) defined the maintenance of identity as did Hennig
via tokogeny among sexually reproducing organisms. Their idea of independent
evolutionary fate and identity comes from the separation of this lineage from all
others, its independence. By these definitions, the ESC is little different from
the Hennigian concept above (as Wiley and Mayden say)7. The main difference
lies in the lack of specific beginning and end points. In the Hennigian concept,
splitting defines both the birth and death of a species lineage. The ESC has no
such restriction. As with the PSC, species may persist through splitting for an
undetermined term. A crucial problem with this concept lies in how one would
operationally identify such a species and differentiate it from other lineages
either antecedent or descendent?

E. O. Wiley

3.4.3 Criticisms of Lineage-Based Species

Although the temporal component of lineage concepts is attractive, it also raises
an operational problem. How are such species to be recognized? Lineages that
exist between splitting events (Hennigian species) will not be observable, even
in principle because 1) they cannot have unique apomorphies and 2) any newly
observed taxon creates a new splitting event, hence new lineage species. Even
the existence of such species in the first place is the result of a cladogram con-
structed from observed terminals. The splitting points (hypothetical ancestors)
are operational, mathematical constructs (graph vertices) as are the lineages
themselves (graph edges). Like ancestors, they must have been there, but can-
not be identified (Fig. 3.5).

S

S'

A B

C

S

S'

A B

C

D

S''

Figure 3.5: The Hennigian lineage species defined by splitting event S and S′ no
longer exists when terminal taxon D is observed. S → S′ is replaced by S → S′′

and S′′ → S′.

7Wiley and Lieberman (2011) now say that the ESC is identical to the Hennigian concept.
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3.5 Species as Individuals or Classes

One of the prominent issues in the discussion of species as ontological objects is
whether species are individuals or classes. This may seem an arcane topic, but
it has far-reaching ramifications in studies of historical diversity, extinction, and
conservation.

An ontological class is a universal, eternal collection of similar things. A
biological example might be herbivores, or flying animals that are members
of a set due to the properties they possess. Classes are defined in this way
intentionally, by their specific properties as necessary and sufficient, such as
eating plants or having functional wings. Such a class has no beginning or end
and no restriction as to how an element of such a set got there. A class such
as the element Gold (in Hull’s example) contains all atoms with 79 protons. It
does not matter if those atoms were formed by fusions of smaller atoms or fission
of larger, or by alchemy for that matter. Furthermore, the class of Gold exists
without there being any members of the class. Any new atoms with atomic
number 79 would be just as surely Gold as any other. One of the important
aspects of classes is that scientific laws operate on them as spatio-temporally
unrestricted generalizations (Hull, 1978). Laws in science require classes.

Michael Ghiselin Individuals on the other hand, have a specific beginning and end, and are
not members of any set (other than the trivial sets of individuals). Species,
however defined, are considered to have a specific origin at speciation and a
specific end at subsequent speciation or extinction (or at least will). As such,
they are spatio-temporally restricted entities whose properties can change over
time yet remain the same thing (as we all age through time, but remain the
same person). A particular species (like a higher taxon) is not an instance of a
type of object; each is a unique instance of its own kind.

Much of the thinking in terms of law-like evolutionary theory at least implic-
itly relies on the class nature of species. Only with classes can general statements
be made about speciation, diversity, and extinction. Ghiselin (1966, 1969, 1974)
argued that species were individuals and, as such, their names were proper
names referring to specific historical objects, not general classes of things. As
supported by Hull (1976, 1978) and others, this ontology has far-reaching im-
plications. This view of species renders many comparative statements devoid of
content. While it might be reasonable to ask why a process generated one gram
of Gold while another one kilogram, the question “why are there so many species
of beetles and so few of aardvarks?” has no meaning at all if each species is an
individual. General laws of “speciation” become impossible, and temporally or
geographically based enumerations of species meaningless.

David Hull
(1935–2010)

Although the case for species as individuals has wide acceptance currently
(but see Stamos, 2003), biologists often operate as if species were classes. As an
example, species descriptions are based on a series of features and those creatures
that exhibit them are members of that species. This implies that species are an
intensionally defined set and would exist irrespective of whether there were any
creatures in it or not.
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3.6 Monoism and Pluralism

Given the great diversity of species concepts and definitions, some have argued
that different concepts should be used for different situations, offering a so-
lution for the differences between sexual, asexual and hybrid origin taxa. This
reasoning has been extended to allow for a diversity of concepts to match the di-
versity of reproductive systems, life history strategies, and patterns of variation
(Cracraft, 2000).

A less extreme version of pluralism, advocated by Mishler and Brandon
(1987) and Mishler and Theriot (2000), would have a single rule for grouping—
monophyly—but allow a pluralistic view of what level in a tree hierarchy is to
be assigned the rank species, and what the rationale would be. Agreeing with
these authors on monophyly, but unwilling to accept an arbitrarily defined en-
tity in systematics, Vrana and Wheeler (1992) urged the separation of pattern
statements (monophyly) from process (species), removing the entire issue from
concern. Wheeler and Platnick (2000) criticized this view, saying that due to
the reticulating nature of the historical patterns of sexual creatures, there is
no assurance that different sources of data would yield the same set of relation-
ships. This argument loses force, however, with the realization that this can, and
usually does, occur in all data sets, at all levels, with sexual or asexual creatures.

The monoist perspective is that there must be a single definition of species,
universally applied to all scenarios presented by living things. Even though
this does not currently exist (at least consensually), systematists have been
working to identify one in the thought that it is attainable and desirable, and
the present “a particularly unfortunate time to give up” (Wheeler and Platnick,
2000). Furthermore, of what use is a word, like a pluralistically defined species,
that means different things to different people in different situations? If species
are a component of nature, and scientists are to make general statements about
them, the word must have a single meaning.

If, however, species are defined as in the MSC and they are ontological
individuals, a non-arbitrary designation of a precisely comparable level in the
hierarchy of individuals will be difficult to identify. For this reason, Mishler and
Brandon (1987) have embraced their convenience-based pluralism.

3.7 Pattern and Process

One of the difficulties in constructing a single species definition relates to the
sometimes conflicting goals of incorporating pattern and process inform-
ation. The BSC is the most notable—based as it is on gene-flow through
interbreeding—but not the only (e.g. ecological) concept based on an explicit
notion of biological process. In essence, the concepts state that evolution occurs
this way, so species should be defined in this manner.

Other definitions emphasize pattern phenomena, specifically monophyly. In
such a concept, the patterns that drive diversification are irrelevant to whether
a group is monophyletic or not. Such ideas began with Rosen (1978, 1979) and
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continued through the MSC of Donoghue (1985) and Mishler (1985) and the
species nihilism of Vrana and Wheeler (1992). In each of these systems, mono-
phyly is the only criterion for grouping taxa. Mishler and Brandon (1987) then
proposed a secondary, potentially process-based assignment of the species rank.

The PSC and ESC both emphasize the tokogenetic relationships among taxa
as a fundamental aspect of conspecifics. Tokogeny, due to the process of inter-
breeding, links the members of a species. As Wheeler and Platnick (2000) state,
“a concept fully compatible with phylogenetic theory but not dependent on prior
cladistic analysis.”

No definition can simultaneously optimize the description of both pattern
and process (not that they will always disagree, but they certainly can). Perhaps
we should only use the word monophyly for statements of pattern and reserve
“species” solely for statements of evolutionary units and process.

3.8 Species Nominalism

Some authors have argued whether species as things actually exist in nature,
or are merely a notion imposed by the human mind to aid us in organizing
information. This argument of species nominalism usually does not progress to
the level where species are thought to be completely arbitrary collections of
organisms as constellations are of stars. The focus of most arguments are on the
level of species. Are they arbitrary in the manner of higher taxa (e.g. genera,
families), or are they real components of nature?

Darwin (1859b) has been thought to be such a nominalist: “I look at the
terms species as arbitrarily given, for the sake of convenience, to a set of indi-
viduals closely resembling each other.” At the very least, for species to be real in
any sense they must first be non-arbitrary. Each of the concepts above, certainly
from the BSC through MSC and PSC to lineage definitions claim to be precise
in their identification of the groups of creatures (or populations) to be gathered
into a species. The BSC, PSC, and lineage definitions are also quite specific
about assignment of these groups to the species rank. Those ideas based on
strict monophyly, however clear they are in defining the groups, are inherently
arbitrary in the choice of which level to assign the rank of species. Rosen (1979)
used geographic restriction as a criterion; Mishler and Brandon (1987) and Mish-
ler and Theriot (2000) allow for multiple criteria to be used (quoted above).

Vrana and Wheeler (1992) took this argument to its extreme, arguing that
the species level was entirely arbitrary and in no way different from higher taxa.
These authors argued for phylogenetic analysis of the pattern of diversification
based solely on monophyly. The notion of species as phylogenetic units would
be abandoned in favor of using individual organisms as terminals (leaves). The
designation of species would then be free to be used on any convenient basis for
the investigation of evolutionary process.

These last two views disagree on extent, but are in agreement that the as-
signment of species rank will always be arbitrary, hence cannot be real in the
ontological sense of being natural components of the biological world.
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Figure 3.6: A comparison of species concepts given a cladogram. The solid lines
represent tokogenetically related groups of individual creatures. The triangle
marked “Asexual” contains multiple independent asexual lineages. The abbre-
viations for the various concepts BSC, MSC, PSC, HSC, and ESC are contained
in the text. The cell is marked “Y” if the lineage is a species in that concept, “N”
if not, “NA” if inapplicable (e.g. no temporal component). S4+5+6 is marked
“Y/N” due to the fact that it would be “Y” if the lineages interbreed and “N”
if not. If the diagram were to be cut at time “T,” the MSC would have “Y” for
S3, S7, S9, and S11.

3.9 Do Species Concepts Matter?

As mentioned above, it seems amazing that such a fundamental idea as species
seems to provoke so much disagreement and apparent chaos among systematists
(Fig. 3.6). Is it worth it? Some would say no and embrace the idea that species
are unique, potentially arbitrary, and in no way comparable. However, there
are those who feel that making statements and testing hypotheses involving the
comparison and enumeration of objects called “species” as natural evolutionary
units is possible and desirable.

Studies in biodiversity, historical patterns of diversification and extinction,
“speciation” theory, and adaptation all require that species be real components
of nature, that there is a unique and precise method to identify a species, and
that this method applies to all creatures and all time. If such a species concept
exists, not everyone agrees we have found it.

3.10 Exercises

1. Is it important to have a single species definition, or are multiple concepts
allowable or desirable?

2. How do the practical issues involved in identification of taxa interact with
the species concepts described in the chapter?
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3. Are asexual taxa species? How might horizontal gene exchange affect this?

4. Suppose that each organism in a study group is unique at the whole
genome level (and you have these data). What would be the issues in-
volved in applying the various species concepts to identifying species level
taxa?

5. Give examples of studies where species are treated as a class and as indi-
viduals. If all species were individuals how would these studies have been
effected? If classes?



Chapter 4

Hypothesis Testing and the
Philosophy of Science

This chapter briefly presents several philosophical topics relevant to systematic
analysis. Although there is a large universe of philosophical ideas discussed in
the systematics literature, I have limited the discussion here to a number of
areas that have direct impact on how analyses are done—how decisions are
made as to choices among analytical options and the process of reasoning from
data acquisition to choice of final tree hypothesis. The discussion is far from
complete, but should serve as an entrée into the underlying epistemology of
systematics.

4.1 Forms of Scientific Reasoning

4.1.1 The Ancients

Plato
(c.427–c.347 BCE)

Although scientific reasoning has existed as long as science itself, the hypothesis-
driven approach is more recent. Plato argued the cause of natural laws in his
ideas of universals (Chapter 1). Universals were ideal forms with inherent real-
ity. The observed world, however, consisted of shadows, imperfect realizations of
absolute and unchanging forms. One could learn about ideals from their observed
representations and hence study the natural laws that governed Plato’s univer-
sals, but this was never embodied in any hypothesis-testing framework.

Aristotle rejected the ideal forms of Plato, placing the real world and obser-
vations of it at the center of scientific inquiry. In this, Aristotle was the founder

Aristotle
(384–322 BCE)

of Ontology, the metaphysical science of being itself. Aristotle rejected platonic
ideals and universal forms. He argued that observable objects around us were
the reality of nature, ideals the mental abstractions. Aristotle was not entirely
pure in his reasoning, however, and though we associate him with Ontology, his
ideas were something of a mix.

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.



68 Hypothesis Testing and the Philosophy of Science

In biology, the classifications of Aristotle can be viewed as hypotheses of
pattern in biological variation with terata as counter, if not falsifying, data.
Aristotle did not weigh alternate scenarios based on specific observations, how-
ever, he produced narrative classifications to explain what he saw. Aristotle did
have a notion of minimal necessary explanation (parsimony, see below) often
thought to have originated with Ockham.

4.1.2 Ockham’s Razor

Ockham was an English Franciscan monk who wrote widely in the intellectual
areas of medieval thought including logic, metaphysics, physics, and theology.
He eventually ran afoul of Pope John XXII (branding Ockham a heretic) over
apostolic poverty. For this, Ockham was excommunicated (though rehabilitated
after his death) and fled to Germany, residing there the remainder of his life. His
political writings urge an early form of separation of church and state, no doubt
not a coincidence. Of most interest to systematics is Ockham’s nominalism and
ontological parsimony.

William of Ockham
(c.1285–c.1347)

Ockham’s nominalism (as with Aristotle) rejected ideal universal forms as
having reality. He focused, instead, on the individuality of objects. Any gen-
eralizations were intensions of the human thought process. These generaliza-
tions might have had more weight than mere words, but remained human-
generated abstractions, not components of the natural world. Such discussions
in his Summa Logicae (Ockham, 1323) form part of the foundation of modern
epistemology.

We look to Ockham most, however, for Ockham’s razor. This is the idea that
in explaining phenomena the simplest explanation is most favored.

For nothing ought to be posited without a reason given, unless it is
self-evident (literally, known through itself) or known by experience
or proved by the authority of Sacred Scripture.

Ockham felt that human reasoning was incapable of complete understanding of
not only nature but theological principles such as the soul, and these could only
be understood through divine revelation.

Although Ockham did express the idea of simplicity and minimalism in log-
ical inference, much more has been ascribed to him than he actually wrote and
the idea of minimal inference goes back as far as Aristotle1. The most commonly
encountered quotes from Ockham:

Pluralitas non est ponenda sine neccesitate [Purality should not be
posited without necessity]

and

Frustra fit per plura quod potest fieri per pauciora [It is pointless to
do with more what can be done with less]

1The often quoted “Entia non sunt multiplicanda sine necessitate.” is nowhere to be found
in Ockham’s writings.
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refer to simplicity in elements, parameters, or causations. Anything beyond the
minimal is unsupported, hence unnecessary.

The parsimony criterion makes explicit reference to Ockham’s razor in jus-
tifying its simplicity argument, but in reality, all optimality-based methods
operate on this basis (lower cost, higher likelihood or probability). Likelihood
analyses incorporating model selection explicitly seek to minimize parameters
in balance with enhanced tree likelihoods. Parsimony methods, in using a min-
imal set of operational assumptions (e.g. lack of a statistical model), are most
explicit in minimizing operational assumptions as well as explanatory events
(see below).

The minimization principle of inference runs through much of formal scien-
tific logic as an operational principle. This is not because it will necessarily lead
to truth, but because it is precise and efficient2.

4.1.3 Modes of Scientific Inference

Scientific inference is the process of generating explanations of data with
hypotheses—here trees. Among the many forms of scientific inference, there are
four of most direct interest to systematics: induction, deduction, abduction, and
the synthetic hypothetico-deduction. Modern systematics employs these forms
of logic in multiple guises and often in impure, combined forms.

4.1.4 Induction

Francis Bacon
(1561–1626)

Induction is a process whereby multiple observed instances of a phenomenon lead
to a generalization (sometimes ascribed in origin to Francis Bacon). In essence,
for a series of observations ai each leading to result b: a0 → b, a1 → b, . . . , ak →
b ∴ A → b. In a commonly used example, “Every swan I see is white, therefore
all swans are white.”

David Hume
(1711–1776)

Hume (1748) cited two problems with this mode of inference. First, since
certainty would require exhaustive observation of all data (A above), which is
impossible for non-trivial problems, absolute proof is impossible. Second, induc-
tion assumes that all future observations will agree with those already gathered.

In systematics, we can see this play out in Bayesian analysis of clades (Chap-
ter 12). Clade posterior probabilities are estimated through additional observa-
tions generalizing to a high probability (in terms of the data) result. Even though
very high probabilities (often 1.0) are recovered, a very small fraction of trees are
evaluated and the probabilities depend on specific data sources. Given that clade
posterior probabilities can vary with data source (such as molecular sequence
loci), the identical behavior of past and future data sources cannot be assured.

4.1.5 Deduction

A deductive inference (Socrates) is constructed by building a series of logical
statements into an argument or syllogism. If the premises are true, the result

2After all, which of the non-minimal solutions should be chosen—and why?
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must be true. A syllogism is based on a major and minor premise, which then
produce a conclusion. There are four premise types: all are, all are not, some
are, and some are not. From these elements, a proof system is built. Aristotle
produced the canonical example of deductive syllogism:

Socrates
(469–399 BCE)

All men are mortal.
Socrates is a man.
Socrates is mortal.

The major premise “All men are mortal” and the minor “Socrates is a man”
leads inexorably to the conclusion “Socrates is mortal.” In the case of swans,
one might construct the following:

All swans are white.
Your dinner is a swan.
Your dinner is white.

Deduction is an absolute proof system, not directly applicable to empirical
systematic questions. There are cases, however, where deductive logic can be
useful. The case of ghost taxa (Norell, 1987) is an example:

Sister taxa are coeval.
These taxa are sister taxa.
These taxa are coeval.

By this syllogism, if we have a fossil of one taxon, even if we do not have one
from its sister-group, we know the sister-group is at least that old.

4.1.6 Abduction

Charles S. Peirce
(1839–1914)

Abductive inference chooses that hypothesis which is most consistent with em-
pirical instances. The method was championed by Charles Peirce in the late
19th century (Houser et al., 1997); philosophy of science being among his widely
varied interests in metaphysics, logic, semiotics, mathematics, and physics. Al-
though without an academic position for most of his life (his appointment at
Johns Hopkins being terminated due to his living with a woman who was not,
at that time, his wife) his work was regarded as of the highest caliber. Unfortu-
nately for Peirce, much of this was not known until after his death with Bertrand
Russell referring to him as one of the most original thinkers of the 19th century.
After his death, his papers were purchased by Harvard University, yielding over
1650 unpublished manuscripts totaling more than 100,000 pages.

The abductive process is one of identifying a set of potential hypotheses and,
given a series of observations that could have been generated by the hypotheses,
choosing that which is best (Eq. 4.1).

Set of hypotheses H (4.1)
Data D = f(H)

H′ ⊆ H such that D′ ⊆ f(H′)
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With respect to swans, one might say “All I see are white swans, it must be
that all swans are white.”

For science in general, alpha-level hypotheses are by their nature abductive.
The intuiting of patterns from observation is a crude abductive practice. In
systematics, maximum likelihood (ML) is the foremost example of abductive
inference. In ML, that hypothesis that maximizes the probability of the data,
i.e. observations, is chosen as the best hypothesis.

4.1.7 Hypothetico-Deduction

William Whewell
(1794–1866)

Hypothetico-deduction was proposed as a method of scientific inference by
Whewell (1847)3. The method improves upon inductive reasoning and solves
the flaws described by Hume by use of the modus tollens (“manner that denies
by denying”), or, more simply, falsification.

The basic notion of modus tollens is expressed simply for statements P and
Q and observation x as:

P ⊆ Q

x /∈ Q

∴ x /∈ P

Hypothetico-deduction proceeds in several steps involving observation, hypoth-
esis creation, prediction/retrodiction, and testing through falsification.

1. Make observations.

2. Erect a hypothesis to explain the observations.

3. Deduce a prediction or retrodiction from the hypothesis.

If false (Falsification) goto step 2.

Else if true (Corroboration) goto 3.

Repeated lack of falsification (corroboration) is a measure of the strength of
the hypothesis. Empirical falsification can mean several things, however. The
conclusion of the modus tollens could be correct (as above, x /∈ P), or the entire
original hypothesis could be incorrect (P � Q), or it could be that the hypothesis
requires modification. If we refer to the swan example, we have the hypothesis
“All swans are white” and we have a black bird in front of us. The modus tollens
yields three alternatives: “This is not a swan,” or “I’m wrong about swans,” or
“All swan are white, except this one.”

Karl Popper

Karl Popper
(1902–1994)

It is hard to overstate the influence of Popper on practicing scientists today,
especially in systematics. Popper (1934, 1959, 1963, 1972, 1983) extended and for-
malized the operations of hypothetico-deductive inference and applied it to many

3Whewell coined many terms, among them “scientist.”
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areas of science. For this work, the AMNH presented Popper with a gold medal in
1979. Popper made precise several concepts crucial to the hypothetico-deductive
method and science in general. These ideas were discussed in terms of four basic
concepts: background knowledge, probability, hypothesis, and evidence.

• Background knowledge b—This is the sum total of knowledge not subject
to test or falsification. This may include axiomatic statements and previ-
ously tested hypotheses. Any hypotheses included in background knowl-
edge must be highly corroborated since they are not subject to test at this
stage. An example of this would be the inclusion of Aves within Dinosauria
as a hypothesis in 1863 (Huxley, 1863), but background knowledge now
after much corroboration.

• Probability p—Popper employed the “relative frequency” of events defini-
tion of probability, eschewing logical and subjective concepts (see Chap-
ter 6).

• Hypothesis h—The causative scenario currently subject to test.

• Evidence e—Data gathered to test the hypothesis.

Popper then defined three measures of aspects of a test of a hypothesis given
evidence and background knowledge.

• Support (Eq. 4.2)—quantifies the difference between the probability of
the evidence given the hypothesis and background information and the
probability of the evidence alone. The first term is the likelihood of the
hypothesis (Popper, 1959) given other information such as a model (not
subject to test, hence should be highly corroborated).

p(e|h, b) − p(e|b) (4.2)

• Severity of Test (Eq. 4.3)—quantifies the relative level of support on [0,1],
normalized to the total probability of the evidence given the two alternates
of with and without the hypothesis.

p(e|h, b) − p(e|b)
p(e|h, b) + p(e|b) (4.3)

An alternate formulation (Eq. 4.4) is related to the likelihood ratio test
discussed in Chapters 11 and 15.

p(e|h, b)
p(e|b) (4.4)

• Corroboration (Eq. 4.5)—also normalized support on [-1,1] with the prob-
ability of the evidence and the hypothesis given the evidence.

p(e|h, b) − p(e|b)
p(e|h, b) − p(e, h|b) + p(e|b) (4.5)

This measure can be negative if an alternate hypothesis is favored over
that which is tested.
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All three of these measures share the same numerator, and hence are positively
correlated. Additionally, all involve the likelihood of the hypothesis (Grant and
Kluge, 2007, 2008a notwithstanding). Much discussion about the relative merits
of hypothesis testing and optimality criterion choice are based on these concepts.
The idea of Total Evidence Analysis, for instance (Kluge, 1989), is grounded in
severity of test. The greater the amount and diversity of evidence brought to
bear on a question, the greater the opportunity for falsification and the more
severely the hypothesis is tested.

Thomas Kuhn
(1922–1996)

Popper, though highly respected in systematics, is not without his critics,
some severe within the philosophy of science community. Feyerabend (1975,
1987) wrote explicitly that he thought Popper’s ideas were without justification.
Kuhn (1962) argued that theories were not rejected based on their falsification,
but on social factors among scientists. Bartley (1976) analogized Popper’s ideas
to narrative stories.

Sir Karl Popper is not really a participant in the contemporary pro-
fessional philosophical dialogue; quite the contrary, he has ruined
that dialogue. If he is on the right track, then the majority of pro-
fessional philosophers the world over have wasted or are wasting their
intellectual careers. The gulf between Popper’s way of doing philos-
ophy and that of the bulk of contemporary professional philosophers
is as great as that between astronomy and astrology. (Bartley, 1976)

Champion (1985) judged Popper to have failed due to (he felt) the quixotic
nature of his goals.

Popper’s ideas have failed to convince the majority of professional
philosophers because his theory of conjectural knowledge does not
even pretend to provide positively justified foundations of belief.
Nobody else does better, but they keep trying, like chemists still
in search of the Philosopher’s Stone or physicists trying to build
perpetual motion machines. (Champion, 1985)

Falsification in Systematics

In systematics, trees (or statements conditioned on them) are the main form
of hypothesis, which are tested with characters. In the context of parsimony,
characters with non-minimal change on a tree (homoplasy) act as falsifiers of
that tree hypothesis. However, there are no non-trivial homoplasy free data sets
(at least that I know of). A strict falsificationist perspective would require that
any tree with homoplasy is falsified. In fact, this would result in all trees begin
falsified. All hypotheses of relationship would then be rejected. Clearly, this is
an absurd position. This situation has been referred to as näıve falsification.
Näıve in the sense that it is absolutely (deductively) correct, yet leads to an
improper (or empty) result in non-trivial empirical cases.

As mentioned above, a single non-conforming observation need not sink an
entire theory. The theory can be modified to account for this disagreeing ob-
servation. Such an exception is referred to as an ad hoc statement in that it is
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specific to a particular observation and has no (or at least limited) generality.
The discovery of a black swan, for instance, might be accommodated in the
theory that all swans are white, by the ad hoc statement “except for this one
here” (as opposed to eating the swan quickly and invisibly). This process can be
extended without limit rendering falsification meaningless (as W. V. Quine ar-
gued). This would seem fatal, until it is realized that not all hypotheses require
the same degree of ad hoc rescue.

Arnold Kluge

The realization and use of the observation that all observations support (and
reject) all hypotheses, but not to equal extent, leads to sophisticated or method-
ological falsification. This is the form of falsification pursued by Farris (1983)
and Kluge (e.g. Kluge, 2009). In this framework, the least falsified (in terms
of homoplasy) hypothesis (= tree) is most favored. Farris (1983) emphasized
the minimization of “extra-steps” as ad hoc hypotheses of character conver-
gence or parallelism. This concept is slightly recast as the minimization of total
cost in dynamic homology since the calculation of minimal cost for a charac-
ter (sequence character for instance) is tree specific (Wheeler, 2001b, 2011).
According to Farris (1983), sophisticated falsification equates to parsimony and
Popper and justifies its use. The appeal to Popperian logic underpins much of
the argumentation in favor of parsimony.

Synthesis of Inference

In light of the above discussion, the model of hypothetico-deduction in sys-
tematics can be recast as a combination of methods. Steps 1 and 2 (making
observations and erecting a hypothesis) are abductive. This is followed (step 3)
by the deduction of a predictive statement. This statement is falsified in terms of
an objective function of tree optimality. The prediction is that the current tree
(hypothesis) optimizes an objective function more effectively than an alternate
tree. The falsification comes in comparing the value of the objective function
between the two. If the current tree is “better,” it is corroborated (induction)
and the method returns to the previous step (3), identifying another competing
hypothesis to be tested against the current best (deductive step). If the current
tree is less optimal than an alternate, it is falsified and the challenger becomes
the current best hypothesis. This process is repeated until all alternate hypothe-
ses are tested and as long as the objective function is transitive [if f(A) ≤ f(B)
and f(B) ≤ f(C) then f(A) ≤ f(C)] the set of optimal (least falsified) hypotheses
will be identified.

1. Make observations.

2. Erect a hypothesis (tree T) to explain the observations (initially the opti-
mal tree T o ← T) and compete with T o.

3. Deduce the prediction that T o will optimize f() better (f(T o) ≤ f(T)).

4. Compare f(T) and f(T o)
If f(T o) � f(T)(Falsification) then T o ← T

Else true (Corroboration).

5. If there are trees remaining to be tested, goto step 2, else return T o.
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The objective function could in principle take many (transitive) forms. The
above formalism allows model-based methods such as likelihood and topology-
based posterior probability (Bayesian Maximum A Posteriori, MAP) as opti-
mality criteria (f()). The choice of criterion must then be defended on other
grounds, but the hypothetico-deductive process would remain unchanged.

4.2 Other Philosophical Issues

There are many issues where philosophical considerations affect how we think
about problems and what we do to address them. Several are discussed in other
sections, including the arguments over whether species are individuals or classes
and species nominalism (Chapter 3), the combination (“Total Evidence”) or
partition of data (Sect. 16.2.7), and optimality criteria (Chapter 13).

One topic that is an element of many discussions is the operational meaning
of minimization and weighting.

4.2.1 Minimization, Transformation, and Weighting

When we speak of minimizing the cost of a cladogram, especially in a Popperian
context, what are the components to be minimized? Are we to minimize trans-
formations, or overall cost—allowing for weighted transformations? At what
level do we apply the parsimony criterion? There is no current consensus on
these issues and they definitely affect systematic results.

Kluge and Grant (e.g. Grant and Kluge, 2005; among many others) have
argued that the entity to be minimized when evaluating competing tree hy-
potheses is transformations. This form of minimization requires that all events
be weighted equally since only this scheme will minimize both overall cost and
absolute numbers of transformations. Wheeler (1995) and Giribet (2003) ar-
gued that alternate transformation weighting schemes should be considered and
in some cases favored over homogeneous weighting. They advocated sensitivity

Gonzalo Giribetanalysis (Section 10.11) to evaluate and potentially choose hypotheses based
on alternate weighting schemes. There is no theoretical, in the sense of math-
ematical, limitation (other than perhaps metricity) on these weights. Are both
these scenarios—minimizing “steps” and minimizing “cost”—parsimony? What
of larger-scale genomic events such as locus insertion–deletion and rearrange-
ment? If these transformations were to be weighted equal to nucleotide substi-
tutions, insertions and deletions, grossly non-metric costs would be implied and
trivial (all large indel) results produced (Fig. 4.1).

The issue is unsettled4.
Ockham’s razor appears even within the context of the minimization of trans-

formations. Consider the nucleic acid sequences AAC and TT. If we allow sub-
stitution, insertion, and deletion events of one nucleotide, there are a minimum
of three events (transformations) required to edit one sequence into the other.
If, however, we choose a simpler model, one with only insertions and deletions,
a minimum of five events are required (there are multiple five transformation

4This same argument applies to “Implied Weights” (Goloboff, 1993b).
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A

C −

d (A,C) ≤ d (A,− ) + d (− ,C)

ACGTACGT

ACTTAC ∅

(b)

(a)

d (ACTTAC,ACGTACGT) ≤ d (ACTTAC,∅) + d (∅,ACGTACGT)

Figure 4.1: Giribet and Wheeler (2007) scenario for non-metric large scale trans-
formation costs implied by equal transformation weighting (Grant and Kluge,
2005).

scenarios). The former model is more complex, yet yields a lower number of
transformations; the latter, lower model complexity, yet a greater number of
events. At which point is “plurality” to be avoided? Both solutions are more
and less parsimonious, but in different components of their arguments.

4.3 Quotidian Importance

Although the nomenclature of inferential methods may not seem of particular
relevance to an empirical scientist, scientific hypothesis testing is based on spe-
cific rules to ensure the validity of results. Tree searching is a direct application of
hypothetico-deductive reasoning. Systematic analysis relies on hypothesis test-
ing in many guises, hence it is crucial that these tests conform to the rigors of
logical systems, without which valid inference is impossible.

4.4 Exercises

1. Give examples of inductive, deductive, and abductive inferences in sys-
tematics.

2. Can single observations falsify a systematic hypothesis? Would Patterson’s
angels qualify?

3. Is weighted parsimony parsimony?

4. Who’s cuter, Gonzalo or Taran?



Chapter 5

Computational Concepts

Systematics is a synthetic science, and several fundamental problems fall among
the most difficult faced by computer science. In order to better understand the
issues involved and the techniques developed to deal with them, an introduction
to computer science basics is reviewed.

5.1 Problems, Algorithms, and Complexity

5.1.1 Computer Science Basics

David Hilbert
(1862–1943)

The theory of computation begins with (Gödel, 1931), Kleene (1936), Post
(1936), Church (1936a,b), and Turing (1936, 1937). These works answered the
Entscheidungsproblem (“Decision Problem”) proposed by Hilbert in 19001 of
whether a method could always be devised to output correctly whether a state-
ment were true or false. In other words, were there unsolvable problems? Gödel
proved that there were statements that were true, but could not be proven so.

Kurt Gödel
(1906–1978)

Simply put, for any self-consistent system sufficient to describe the arithmetic
of natural numbers, there are true statements that cannot be proven. Church
(“undecidable” problems) and Turing2 (“halting” problem) followed this result
and independently proved that there were problems that could not be com-
puted (Church’s Theorem), answering the Entscheidungsproblem in the nega-
tive. These results, and the mechanisms used to arrive at them, are the heart of
computation theory.

Church developed a system, the Lambda Calculus, to study computation
that, with his student Turing’s machine-based approach, form the basis of mod-
ern computer science. Both these systems were “universal” in that they could

1This was one of Hilbert’s 23 unsolved problems that drove much of mathematics in the
20th century.

2Church’s Ph.D. student.

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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compute anything that was computable and eventually lead to “functional”
(such as ML) and “imperative” (such as C) schools of computer programming
languages. Church, Kleene, Rosser, and Turing showed that these alternate ap-
proaches were in fact interconvertible (Church and Rosser, 1936). The Turing
Machine was the first physical conception of a universal computing device and
its development and use are at the basis of algorithmic complexity analysis
relevant to systematics.

Alonzo Church
(1903–1995)

Turing Machines

In his computing model, Turing imagined a person with a pencil, paper, and
a brain. The person (computer) could move about the paper (left and right);
could read and write on the paper; could store an internal state, a series of
actions based on that state, and what was read from the paper (Fig. 5.1)—an
elegant and very human model. More specifically, there was:

• A Tape one cell wide and potentially infinitely long onto which symbols
could be written and from which they can be read.

• A Head that reads the state of the cell under it and can write to it. The
head can move to the left or right.

• A Table (transition function) containing the action of the head given the
symbol on the tape cell and the state of the Register.

• A Register that contains an internal state (finitely many including an
initial, start state).

Tape

Transition Table
Head

State Register

Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

Figure 5.1: Representation of a Single Tape Turing Machine with tape (seven
cells), read-write head, transition table, and head state register.

Alan Turing
(1912–1954)

One of the most amazing results of Turing’s work was that this simple construct
was proven to be able to compute anything that was computable (receive input,
operate on that input, and halt); it was “universal” (Church–Turing Thesis)3.

3Turing’s construct was not intended to be fabricated, but provided the basis for mathe-
matical analysis of problems. There are many variations of Turing Machines that have been
created for convenience or to model specific problems.
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5.1.2 Algorithms

In order to discuss the algorithms important to systematic analysis, it is impor-
tant to define the term first. There are a variety of definitions of algorithm in
use today from the intuitive and informal (“a series of steps taken by a com-
puter to solve a problem”) to precise, mathematical statements. One definition
useful to our discussions is derived from the Church–Turing thesis: an algorithm
is a Turing machine that always halts. By this we mean, a set of instructions
(transition function) that will yield a definite result for any input. All problems
that are algorithmically solvable are solvable by Turing machines; those that
are not, are not.

Computability

The converse of the universality of the Turing machine was the definition of com-
putability. If no Turing Machine could be defined that was guaranteed to halt
(algorithm), the problem was uncomputable. This was the algorithmic incom-
pleteness of Gödel, and Church and Turing’s solution to the Entscheidungsprob-
lem. It may seem cruelly arcane to discuss non-computable problems, but they
do occur in every-day situations. An example is data compression. A general
algorithm for the guaranteed maximum compression of a (non-trivial) string
cannot exist (Kolmogorov complexity). It is uncomputable (Solomonoff, 1964).

5.1.3 Asymptotic Notation

Before discussing the complexity of algorithms (below), we require a language
to describe the relative size of functions that tend to infinity (since all prob-
lems will grow without bound with unbounded input). This is referred to as
O-notation (Bachman, 1894) and is extremely useful in the discussion and ana-
lysis of computer algorithms.

O-notation

One of the main strengths of the O-notation is that it hides less important details
and focuses on how functions change. In essence, the O-notation concentrates
on the component of a function that grows most quickly. Hence, a function like:

f(x) = ax2 + bx + c (5.1)

will be dominated by the x2 term as x grows. If we define a function g(x) = x2,
we then say that f(x) is of the order of g(x), written f(x) is O(g(x)) or in this
case O

(
x2

)
. The fact that f and g differ by the constant factor a, or that f has

other, lower order terms is irrelevant. They will grow at the same rate and differ
only by a constant factor (asymptotically). A cubic function will have O

(
x3

)

and so forth. By definition, f is of order at most g if for positive real c and real
x > x0 (Fig. 5.2):

|f(x)| ≤ c · |g(x)| (5.2)
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x
x0

f(x)

c.g(x)

Figure 5.2: The function f(x) is of at most order g.

Algorithms are characterized as O(log n), O(n), O(n · log n), etc. depending
on their growth in execution time with input size4. Additional precision was
given to this form of analysis by Knuth (1973), defining Ω() and Θ() (for
a, b ∈ R+):

f(x) is Ω(g(x)) [f is of order at least g] a · |g(x)| ≤ |f(x)|
f(x) is O(g(x)) [f is of order at most g] |f(x)| ≤ b · |g(x)|
f(x) is Θ(g(x)) [f is of order g] a · |g(x)| ≤ |f(x)| ≤ b · |g(x)|

In systematics, we primarily use O(), “big-O.”5.

5.1.4 Complexity

One useful way to describe the performance of algorithms is the time or storage
space they require. These are called time complexity and space complexity and
are expressed in the O-notation (above). We focus here on time complexity,
but space complexity can be a significant issue in some forms of computation.
Certain biomolecules (e.g. DNA) theoretically can be used to compute difficult
problems in low complexity time, but may require exponentially large amounts
of space—significantly curtailing their potential utility.

4The function log is assumed to be log2 unless otherwise noted.
5There are other, more rarely used, complexity measures e.g. ω, o.
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Time Complexity

The time complexity of an algorithm is the growth of the execution time of
an algorithm as the problem size (the input size n) grows. A procedure that
takes four times as long to complete when the problem size is doubled (e.g.
calculating all pairwise distances between n points on a map) is said to have time
complexity O(n2). Often, it is impossible to calculate the exact time complexity
of an algorithm. For this reason, “best case,” “worst case,” and “average case”
time complexities can be calculated. It can be extremely difficult (or practically
impossible) to calculate best case complexity and, in most cases, we are satisfied
with worst and average case time complexity calculations.

It may also be important to understand the growth in memory requirements
of an algorithm, and its space complexity captures this (of course a computer
program can only access as much memory as it has time, limited by the time
complexity, so time and space complexity are closely linked). Algorithm choice
may require trade-offs between time and space complexity. This type of analysis
was pioneered by Knuth (1973) and others in the 1950s and 1960s.

Donald Knuth

An Example: Loops

Consider the following algorithm fragments. Algorithm 5.1 would have a com-
plexity O(n) since the number of operations would grow linearly with n. Con-
sider this slightly more elaborate fragment (Alg. 5.2). This procedure would
have a complexity O(nm) since the number of operations would grow with the
product of n and m. If m were O(n), the algorithm would be O(n2).

Algorithm 5.1: SingleLoop
for i = 1 to n do

sum ← sum + i;
end
return sum;

Algorithm 5.2: NestedLoops
for i = 1 to n do

for j = 1 to m do
sum ← sum + i + j;

end
end
return sum;

Time Complexity and Systematics

When algorithms are presented in later sections, their time complexity will be
discussed (e.g. trajectory searches using SPR—O(n2), or TBR—O(n3)). Knowl-
edge of the time complexity of the algorithms used in phylogenetic analysis is
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Time Factors
Complexity Problem Size

2 4 8 16
O(1) 1 1 1 1
O(log n) 1 2 3 4
O(n) 2 4 8 16
O(n2) 4 16 64 256
O(2n) 4 16 256 65536
O(n!) 2 24 40320 2 × 1013

Table 5.1: Time complexity and problem size.

important for both planning and evaluation of systematic results. If a tree search
algorithm is O(n3) in number of leaves, then the investigator knows that if they
were to double the number of taxa in their analysis, they should expect to spend
a factor of eight more time (Table 5.1). A more effective (in terms of optimal-
ity) procedure of higher time complexity might be favored over one of lower
complexity for small data sets, but not for large. Only through understanding
the underlying complexity inherent in systematic algorithms can an investigator
evaluate results and make best use of available time and resources.

5.1.5 Non-Deterministic Complexity

The above description was for the calculation of deterministic complexity—
informally, the time required on a Turing Machine where at each step, the
machine performs a single operation, each in turn until it halts. Consider a
series of decisions, such as searching a house for a lost item. At each step,
a different (but unvisited) room is chosen and examined. Assuming that you
would like to make as short a search as possible (in terms of moving around
the house), what path should be taken? If there were n rooms, there would
be n! potential routes. In order to evaluate these routes, a näıve deterministic
algorithm might evaluate each order of room visits, hence an O(n!) process. If,
however, instead of evaluating each path in turn, all room choices at each point
were evaluated simultaneously, the time complexity would grow only as O(n)—a
vast improvement. This is non-deterministic time complexity.

Since a non-deterministic machine is able to perform many (even infinitely,
but countably many) operations simultaneously, complexity is determined as-
suming the algorithm makes the “best” choice at each point (since it evaluates all
choices), and that of minimum complexity. Hence, a non-deterministic machine
can be viewed as a (potentially exponentially large) collection of deterministic
machines. The complexity of a non-deterministic machine, then, is that of the
minimum complexity of all the deterministic machines implied in its operation.

5.1.6 Complexity Classes: P and NP

A desire for more fine-grained classification of problems than computable or not
has yielded partitions of computable problems into classes depending on their
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complexity. Some of these problems are easily solvable or at least tractable,
and others, as far as we know, are not. We would like to know where our par-
ticular problems lie. For our purposes, we can limit discussion to the classes
P,NP, and NP–complete.

An intuitive definition of tractable6 problems is “those that have polynomial-
time algorithms.” By these we mean (Eq. 5.3) that for some problem size n and
constant k, there exists an algorithm A (deterministic Turing machine), whose
time complexity is of the order nk.

TimeAn ∈ O(nk) (5.3)

The time to solve the problem grows as an exponent of the problem size. This
exponent may be large, but it is still polynomial. These problems constitute the
class P.

There are two reasons why this definition is used. First, it might seem that if k
were very large, say 100 or 1000, n1000 would still be unfeasible for non-trivial n.
However, once a polynomial-time algorithm has been identified, even with large k,
experience shows that improvements soon follow, reducing the exponent to more
manageable levels. Second, this definition preserves the invariance with respect
to computing models and languages. All universal computing models can be con-
verted into each other with some complexity (polynomial-time reducible7), hence
the definition will work for all languages. Conversely, if there is no polynomial-
time algorithm for any computing model, none exists for any of them.

Whether P = NP is equivalent
to whether it is easier to ver-
ify a mathematical proof than
create one for a given theorem.

A prize of US$1,000,000 is avail-
able at http://www.claymath.

org if you feel you have in-
sights. A proof was claimed in
2008, but is widely thought to
be flawed.

The second class we are concerned with is NP. These are those problems
that cannot be solved in polynomial-time on a deterministic machine, but are
solvable in polynomial-time by a non-deterministic machine (with unlimited
space), hence Non-deterministic Polynomial. The deterministic time complexity
of these problems is at least exponential (O(2n))—intractable for non-trivial
inputs. One of the most important outstanding problems in theoretical computer
science and mathematics in general (since it has other implications) is whether
P and NP are equal or P is a subset of NP.

P = NP ? P � NP (5.4)

If these classes are equal, then there must exist polynomial-time determinis-
tic algorithms for all problems. This is strongly suspected to not be the case
since there are many problems for which there are no known polynomial-time
algorithms after considerable effort, but it has not been proven to be true.

Among those problems in NP \ P (assuming this is non-empty), are those
that are most difficult. Each one of them is at least as hard (in terms of
polynomial-time reducibility; Karp, 1972) as all others in NP. These problems
are called NP–complete (Fig. 5.3). If a polynomial time solution can be found
for any one of these problems, it will be applicable to all. Unfortunately, many of
the problems encountered in systematics are NP–complete. These include tree
search and tree alignment, implying that we are unlikely ever to find polynomial-
time algorithms for their solution (Day, 1987; Wang and Jiang, 1994).

Richard Karp
6More precise definitions of algorithmic tractability are used in the computer science liter-

ature (e.g. Hromkovic, 2004).
7Usually ≤ O(n3)
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NP

P NP–complete NP–hard

Figure 5.3: Assuming P �= NP, the relationship among computable classes of
problems.

Technically, the term NP–complete refers to a decision problem (i.e. Turing
true or false). The term NP–hard is used to refer to a decision, optimization, or
search problem which is as hard (or harder) as any NP problem.

5.2 An Example: The Traveling
Salesman Problem

Julia Robinson (1919–1985)
published one of the first pa-
pers on TSP (Robinson, 1949)

A classical NP–complete problem is the Traveling Salesman Problem (TSP).
Consider a salesman wishing to visit a collection of cities, yet minimize his or
her travel time. The number of possible tours is very large—exponentially in fact.
If there are n cities to visit, there are n choices for the first city to visit, n − 1
for the second, n − 2 for the third and so on (Fig. 5.4) yielding n! total tours
((n − 1)! if you start at one of the cities). The problem has received a great deal
of attention, with problem sizes increasing dramatically over the last 50 years
(Table 5.2). The largest problem solved to date is for 24,978 Swedish cities
(a course of 72,500 km) completed in 2004 (Fig. 5.5). Since many commonly
encountered NP–hard optimizations can be reduced to the Traveling Salesman
Problem, TSP heuristics are generally useful (Graham et al., 1985).

A

B C

D

E
F

G

A

B C

D

E
F

G

Figure 5.4: Traveling Salesman Problem. Tours after two cities have been visited
left, a complete tour, right.
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Year Research Team Problem Size
1954 G. Dantzig et al. 49 cities
1971 M. Held and R.M. Karp 64 cities 64 random points
1975 P.M. Camerini et al. 67 cities 67 random points
1977 M. Grötschel 120 cities
1980 H. Crowder and M.W. Padberg 318 cities
1987 M. Padberg and G. Rinaldi 532 cities
1987 M. Grötschel and O. Holland 666 cities
1987 M. Padberg and G. Rinaldi 2,392 cities
1994 D. Applegate et al. 7,397 cities
1998 D. Applegate et al. 13,509 cities
2001 D. Applegate et al. 15,112 cities
2004 D. Applegate et al. 24,978 cities

Table 5.2: Progress in Solving Traveling Salesman Problems. http://www.tsp
.gatech.edu//history/milestone.html.

5.3 Heuristic Solutions

As mentioned above, exact solutions to NP–complete problems can require expo-
nential time. Therefore, we are extremely unlikely (unless P = NP) to identify
exact solutions to these problems. Since such problems are so frequently en-
countered (especially in systematics), techniques have been developed that yield
useful, if inexact solutions. These heuristic techniques come in several flavors.

• Approximation—Algorithms that will yield results not exactly optimal,
but within an acceptable distance (hopefully guaranteed) from the optimal
solution.

• Local Search—A technique to refine and improve an initial solution by
varying elements in its local space (defined for the problem), accepting
better solutions repeatedly until a stable, if local, result is found. Also
referred to as “Hill Climbing.”

• Simulated Annealing—By mimicking the process of annealing metals, lo-
cally optimal solutions (often identified via Local Search) are improved
by escaping to more global optima by transitioning through less optimal
intermediates in a probabilistic fashion (Metropolis et al., 1953).

• Genetical Algorithm—This procedure mimics the evolutionary generation
of variation with genetic recombination and selection to improve a pool of
local solutions (Fraser and Burnell, 1970).

• Randomization—Potential solutions are generated and improved by vari-
ous Monte Carlo-type (Metropolis and Ulam, 1949) random processes.

The application of these techniques to systematic problems will be discussed in
greater depth in later sections (Chapters 8 and 14).
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Figure 5.5: Traveling Salesman Problem solved for Swedish cities. http://www.
tsp.gatech.edu//sweden/index.html.

5.4 Metricity, and Untrametricity

A component of many NP–hard optimizations is a distance function and the
objective of the problem is often to maximize or minimize this function summed
over elements or choices. Examples are the segments of a tour, as in the
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Traveling Salesman Problem, or edges in other graph problems such as phylo-
genetic trees.

In order for approximation algorithms and heuristic procedures to have
bounded behavior (guaranteed to be within some factor of the optimal solu-
tion), these distances or costs used by optimization problems usually must be
metric8. The limitations of metricity on these distances is natural and has far-
reaching influence on phylogenetic problems (e.g. Wheeler, 1993). There are four
conditions for metricity (Eq. 5.5).

∀x d(x, x) = 0 (5.5)
∀x, y;x �= y d(x, y) > 0

∀x, y d(x, y) = d(y, x)
∀x, y, z d(x, y) ≤ d(x, z) + d(z, y)

Put simply, the distance between any element and itself must be zero, all other
distances must be greater than zero, all distances must be symmetrical, and
the most direct distance between two elements must be lower cost than any
route through a third element (triangle inequality). Non-metric distances can
have unforeseen and sometimes bizarre effects. An example of this would be to
imagine a TSP with a city hovering somewhere—in an alternate universe with
zero distance to all other cities (since it resides in another dimension, such things
are possible). All cities could be reached by traveling first to this bizzaro-city
and then to any other at zero cost. Analogous pathological situations can occur
with sequence data when indels (gaps) are treated as missing data (Sect. 8.3.3;
Wheeler, 1993).

There are further constraints that can be placed on distances such as that
of Equation 5.6, resulting in an ultrametric distance.

∀x, y, z d(x, y) ≤ max(d(x, z), d(z, y)) (5.6)

These topics are pursued in the context of distance-based tree reconstruction
techniques (Chapter 9) and molecular clocks (Chapter 17).

5.5 NP−Complete Problems in Systematics

The core problem of phylogeny reconstruction, the Phylogeny Problem, is NP–
complete (Foulds and Graham, 1982). In this problem, we seek to find a tree (T =
(V,E)), with cost CT (metric cost d summed over edges in E), that minimizes CT

over all trees. Given the exponential number of trees (Eq. 2.1), it is not surprising
that this problem is beyond polynomial solutions (except under certain unlikely
conditions; Chapter 9). This problem is familiar to most systematists, but there
are many other NP–hard optimizations including the Tree Alignment Problem
(Sankoff, 1975) shown to be NP–complete by Wang and Jiang (1994), ML tree
reconstruction (Roch, 2006), and many problems in genomic analysis (such as
chromosomal inversion; Caprara, 1997).

8In fact, most provable results for these problems require metric distances.
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Systematists must understand the theoretical basis and implications of the
complexity of the problems they desire to solve. Only with a solid ground-
ing in these computational concepts, can systematists evaluate the tools and
techniques required to attack the myriad of hard optimizations presented by
phylogeny reconstruction.

5.6 Exercises

1. If a rooted tree has n leaves, what is the time complexity of locating a
specific edge?

2. What is the time complexity of writing down all possible DNA sequences
of length n? Up to length n?

3. If the length of a tree could be determined by examining a single edge,
what would be the time complexity for evaluating m trees with n taxa?

4. If the evaluation of a genome (size m loci) on a vertex of a tree (n leaves)
is O(m3), the evaluation of the entire tree requires visiting each vertex,
and a search in tree space requires O(n2 log n), what is the time complexity
of the entire operation?

5. If given the optimal phylogenetic tree by an oracle, how could this be
verified (decided)?

6. Give examples of metric and non-metric distances for DNA sequence data
with indels.

7. Show that P � NP, or barring that, P = NP 9.

9This will guarantee a passing grade in the class.



Chapter 6

Statistical and
Mathematical Basics

Many techniques in systematics involve statistical approaches and employ basic
mathematical tools to evaluate phylogenetic trees1. Minimum evolution, like-
lihood, and Bayesian approaches are built on these concepts and this section
touches on several of the core ideas required to understand and evaluate these
methods.

6.1 Theory of Statistics

The discussion here is a precis of some of the background concepts used in
statistical methods in systematics. This is not meant to provide complete or
in-depth coverage of these topics, but to introduce the basic ideas encountered
in likelihood and Bayesian phylogenetic methods. There are numerous excellent
treatments of this subject (e.g. DeGroot and Schervish, 2006—upon which this
discussion is based) available to the curious.

Pierre de Fermat
(1601–1665)

Blaise Pascal
(1623–1662)

6.1.1 Probability

The concept of probability is usually thought to originate with Pascal and Fer-
mat in the 17th century in studies of dice games, although some calculations were
performed over a century earlier. Intuitive definitions of probability abound from
the highly personal (“It will probably rain tomorrow”) to the general (“These
planes are nearly always late”). Fortunately, the mathematics of probability are
unaffected by this variation.

1Notation reference in Appendix A.

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.



90 Statistical and Mathematical Basics

There are three general flavors of interpretations of probability in com-
mon use:

1. Frequency—The relative frequency of events is commonly used to describe
the probability of an event. For example, how many times will heads come
up in a coin toss, given the previous tosses? This interpretation has the
problems of being imprecise (how many events are required to determine
probability) and unclear as to how much variation is allowed around a
probability value. Another obvious shortcoming of this notion is that it
implies a large number of trials or events, hence is difficult to apply in
situations where events are few, rare, or in the future (probability of a
meteor falling).

2. Classical—This concept comes from the notion of equally likely outcomes,
such as those in a coin toss. There are two possible outcomes (head or
tails) that seem equally likely, hence have the same probability. Since these
probabilities must sum to 1, heads and tails are each assigned a probability
of 1

2 . In general, if there are n possible outcomes, their probabilities will be
1
n . Problems with this notion include that it is basically circular—the
likelihood of outcomes is their probability—and that it is unclear how to
proceed when events are not equally likely.

3. Subjective—This interpretation comes from an individual’s own ideas or
intuition as to the probabilities of events (do I think a meteor will fall).
Although this notion can be expressed numerically, there is no way to
assure accuracy, precision, that any individual will be consistent in as-
signing probabilities, or that any two individuals would assign the same
probability to the same event.

Set Theory and Probability

The basis of probability theory resides in sets. The set of all possible events is
the sample space, S. A specific event s then must reside in S, s ∈ S. If a coin
is tossed once, there are two possible events, heads or tails (s0 = H, s1 = T ), in
the sample universe (S = {H, T}). If a coin were tossed n times there would be
2n events (sequences of tosses) in the sample space.

Events may overlap, complement, or be disjoint (Fig. 6.1) and the union,
intersection, and complement operators describe these relationships. Consider
the sets of hexapods (A) and herbivores (B). Those creatures that are both
hexapods and herbivores would be defined by their intersection (A ∩ B), those
that are either hexapods or herbivores their union (A ∪ B), and those that are
neither their complement ((A ∪ B)c = S \ (A ∪ B)).

Axioms

No matter to which interpretation of probability one cleaves, mathematically,
a probability of an event x, Pr(x), must comply with three axioms (S is the
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A ∩ B

A B

S

A \ (A ∪ B ) B \ (A ∪ B )

(A ∪ B)c

Figure 6.1: The relationship between events A and B in sample space S.

sample space or set of all events):

For any event A, Pr(A) ≥ 0 (6.1)

Pr(S) = 1 (6.2)

For every infinite sequence of disjoint events A0, A1, . . .

Pr

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Ai) (6.3)

Where disjoint events are mutually exclusive (A ∩ B = ∅). From these ax-
ioms, a probability distribution or probability on sample space S, is defined as a
specification of Pr(A) that satisfies Equations 6.1, 6.2, and 6.3.

6.1.2 Conditional Probability

The probability of A given that B has occurred is referred to as the conditional
probability of A given B (Pr(A|B)). This may occur in a situation where the
outcome of a coin toss experiment seems bizarre (assuming a fair coin) but given
that the coin was biased, not so strange after all. This would be the conditional
probability of an outcome given that the coin was unfair.

Conditional probability is defined by Equation 6.4 for Pr(B) > 0. The con-
ditional probability is undefined when Pr(B) = 0.

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
(6.4)

Conditional probability is most prominently applied in systematics via Bayes,
Theorem (see below) in which the probability of a parameter (such as a tree) is
conditioned upon a set of observations.
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6.1.3 Distributions

Random Variables

The fundamental entity of probability theory is the random variable. Consider
a sample space S. A random variable X is a function that assigns a positive real
number X(s) to each outcome s ∈ S. As an example, consider a coin toss exper-
iment. If a coin were tossed 100 times, there would be 2100 possible outcomes.
X could be the the number of heads (0 to 100) found in the 100 trials.

A probability distribution is the set of probabilities of all events in the sample
space. Distributions of random variables may be discrete or continuous. Discrete
distributions can take a finite number of different values, or an infinite (but
countable) sequence of values. Continuous distributions, on the other hand,
may achieve all values on an interval.

For a discrete distribution, we can define a probability function f of a random
variable X such that,

f(x) = Pr(X = x) (6.5)

The probability of any x that is not possible is 0, and the sum of the probabili-
ties of all possible events is 1 (

∑
x∈S f(x) = 1). For the 100 coin-toss experiment

above, f would assign a probability to each of the 2100 possible outcomes. Distri-
butions can be discrete or continuous, in either case the summed or integrated
probabilities over S must be 1.

The definition for a continuous random variable is somewhat different, since
the probability of any individual value is zero. Probabilities are more properly
assigned to intervals (a, b] where the probability function f (where ∀x, f(x) ≥ 0)
is integrated over the interval (Eq. 6.6).

Pr(a < X ≤ b) =
∫ b

a

f(x)dx (6.6)

The interval containing all values of x has probability 1 (
∫ ∞
−∞ f(x)dx = 1).

We encounter both discrete and continuous distributions in statistical phy-
logenetic methods.

Mean and Variance

Two properties of distributions of particular interest are the mean and vari-
ance. These values give information about the general behavior of a distribution
compactly. For a random variable X, the mean or expectation (E(X)) of a dis-
tribution is defined as Equation 6.7 or 6.8:

E(X) =
∑

x∈S x · f(x) for discrete distributions (6.7)

E(X) =
∫ ∞
−∞ x · f(x)dx for continuous distributions (6.8)

The variance (Var(x)) of a distribution is defined as Equation 6.9.

Var(x) = E
[
(X − E (x))2

]
(6.9)
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Probability Distributions

There are several probability distributions commonly used in systematics. These
include the Uniform, Normal or Gaussian, Binomial, Poisson, Exponential,
Gamma, and Dirichlet.

Uniform—This distribution describes events with equal probability over the
sample space (Fig. 6.2). This distribution is used when values are drawn “at
random” from some set of possibilities (k of them from a to b) for the discrete
form (Eq. 6.10) or an interval ([a, b]) in the continuous (Eq. 6.11).

f(x) =

{
1
k for x = a, a + 1, a + 2, . . . , a + k − 1 = b

0 otherwise
(6.10)

f(x) =

{
1

b−a for a ≤ x ≤ b

0 otherwise
(6.11)

−2 −1 0 1 2
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2.5

Figure 6.2: Discrete uniform distributions with [a, b] = [−1, 1], [0, 1], and
[0.25, 0.75].

The mean and variance are calculated as:

E(X) = (a + b)/2 (6.12)

Var(X) = (b − a)2/12 (6.13)

Gaussian—The Gaussian or Normal distribution (Eq. 6.14) is a continuous
distribution that describes observations tending to cluster around a mean value
(Fig. 6.3). One reason for the utility of this distribution is the fit it has to many
real-world situations. This is due, in part, to the central limit theorem. This
result states that for a random sample of size n taken from any distribution
with mean μ and variance σ2, the sample mean Xn will have a distribution
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Figure 6.3: Gaussian distributions with (μ, σ) = (0, 0.45), (0, 1), and (1, 2.24).

that is approximately normal with mean μ and variance σ2/n. As a result, the
Gaussian distribution can be used to describe a broad variety of phenomena.

f(x|μ, σ2) =
1

(2π)
1
2 σ

e−
1
2 ( x−μ

σ )2 for −∞ < x < ∞ (6.14)

With mean and variance:

E(X) = μ (6.15)

Var(X) = σ2 (6.16)

Binomial—When events can have two outcomes, and the probability of the
occurrence of one outcome is p, and the other (or non-occurrence) is (1 − p) or
q, the probability of exactly x occurrences in n trials is described by Eq. 6.17.
This discrete distribution (Fig. 6.4) is used to calculate such familiar scenarios
as coin tossing.

f(x) =

{(
n
x

)
pxqn−x for x = 0, 1, 2, . . . , n

0 otherwise
(6.17)

The mean and variance are calculated as:

E(X) = np (6.18)

Var(X) = npq (6.19)

Poisson—The occurrence of random arrival events that occur during fixed
time (or space) intervals at an average rate are Poisson distributed (Eq. 6.20,
Fig. 6.5). A Poisson process is one in which the number of events occurring in a
fixed interval t with mean λt and the number of events in disjoint time intervals
are independent. Poisson processes are used in likelihood analyses to describe
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Figure 6.4: Binomial distributions (upper p = 0.5, n = 50, lower p = 0.9, n = 50).

the distribution of transformation events in time (numbers of changes) and the
location of changes in a gene or genome. The Poisson distribution is a discrete
distribution and has the interesting property that its mean and variance are
the same.

f(x|λ) =

{
e−λλx

x! for x = 0, 1, 2, . . .

0 otherwise
(6.20)

The mean and variance are calculated as:

E(X) = λ (6.21)

Var(X) = λ (6.22)

Exponential—The exponential distribution (Fig. 6.6, Eq. 6.23) is a continu-
ous distribution that describes the time intervals between a series of independent
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Figure 6.5: Poisson distributions (upper λ = 2, middle λ = 7, lower λ = 12).

events that follow a Poisson process. This distribution is often used to describe
events such as the failure of light bulbs or edge weights in Bayesian analysis.

f(x|β) =

{
βe−βx for x > 0

0 otherwise
(6.23)
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Figure 6.6: Exponential distributions with β = 0.5, 1.0, and 1.5.

The mean and variance are calculated as:

E(X) =
1
β

(6.24)

Var(X) =
1
β2

(6.25)

Gamma—The continuous gamma distribution (Fig. 6.7, Eq. 6.26) describes
the sum of (in the integer form) α exponentially distributed variables, each with
a mean of β−1. The gamma distribution is used to describe rate variation among
classes of characters in likelihood calculations (in the discrete form with α = β).

f(x|α, β) =

{
βα

Γ(α)x
α−1e−βx for x > 0

0 otherwise
(6.26)

Where the normalization term Γ(α) insures integration to 1:

Γ(α) =
∫ ∞

0

xα−1e−xdx (6.27)

The mean and variance are calculated as:

E(X) =
α

β
(6.28)

Var(X) =
α

β2
(6.29)

The exponential distribution is the same as the gamma distribution with α = 1.
Dirichlet—The Dirichlet distribution (Eq. 6.30) is used most frequently in

systematics as a prior for parameter values in General-Time-Reversible (GTR)
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Figure 6.7: Gamma distributions with (α, β) = (1, 1), (1, 2), and (2, 3).

and other character change models (Chapter 12). This continuous distribution
is used to describe the scenario where the numerous parameter combinations
are evenly distributed.

f(x1, . . . , xk−1|α1, α2, . . . , αk) =

{
1

B(α)

∏k
i=1 xai−1

i for x > 0

0 otherwise
(6.30)

Where :

B(α) =

∏k
i−1 Γ(ai)

Γ(
∑k

i=1)ai

for α = (α1, . . . , αk) (6.31)

The mean and variance are calculated as:

E(X) =
αi

α0
(6.32)

Var(X) =
αi(α0 − αi)
α2(α0 + 1)

(6.33)

and

α0 =
k∑

i=1

αi (6.34)

6.1.4 Statistical Inference

Statistical inference is the process of estimating characteristics of an unknown
probability distribution from a set of observations. The inference may con-
cern the type of distribution (e.g. Gaussian) or its parameters (e.g. μ and σ).
The basic problem is that the data are finite and absolute certainty is im-
possible. The goal is to choose the “correct” parameter or distribution with
high probability.
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6.1.5 Prior and Posterior Distributions

Priors and Problems

A typical inference problem would be to infer the specific value of a parameter
θ in the parameter space Ω. Any observations (x) gathered would have been
generated from the distribution function f and parameter θ. Observations have
been drawn from f(x|θ).

Before any observations are gathered from f(x|θ), an investigator may have
knowledge about where in Ω the parameter θ may lie; that θ is more likely to be
found in one area than another. As an example, the height of an adult human
female is less likely to be less than one meter or greater than three than between
one and three meters. This knowledge may be based on previous experimental
data, experiences, or even subjective opinion and can be expressed as a distri-
bution of θ on Ω, ξ(θ). That distribution is known as the prior distribution of θ.
“Prior” is used because the distribution is specified before any observations are
drawn from f(x|θ).

Disagreements over the validity, and even existence, of prior distributions are
extreme within the statistical community. Bayesian statisticians adhere to the
proposition that prior distributions can be defined in all circumstances and these
probabilities are as valid as any other in statistics. This parallels the subjective
interpretation of probability itself. If all probabilities are subjective, they are all
equally valid no matter their source.

Others disagree, stating that a parameter θ is a fixed, if unknown, value
and is not drawn from a distribution. The only way, then, to establish priors
is through extensive previous observation (such as the historical performance
of a machine). Both factions would agree that in the presence of good prior
information, it should be used.

Posterior Distribution

The conditional probability of a set of observations given a specific value of θ
multiplied by the probability (prior, ξ(θ)) that θ has that value, f(x|θ)ξ(θ), is
their joint distribution. The total probability over all possible values of θ in the
parameter space Ω for a given set of observations x is then:

g(x) =
∫

θ∈Ω

f(x|θ)ξ(θ)dθ (6.35)

The conditional probability of θ given the observations x is then:

ξ(θ|x) =
f(x|θ)ξ(θ)

g(x)
(6.36)

which is known as the posterior probability of θ given x. In its discrete form,
this is known as Bayes’ (1763) Theorem (Eq. 6.37).

Thomas Bayes
(1702–1761)

p(θ = θi|x) =
p(x|θi)p(θ = θi)∑

j∈Ω p(x|θj)p(θ = θj)
(6.37)
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Since g(x) is always a constant (depending on x not θ):

ξ(θ|x) ∝ f(x|θ)ξ(θ) (6.38)

When the probability of the observations x are treated as a function of θ, f(x|θ)
is referred to as the likelihood function.

6.1.6 Bayes Estimators

Let us suppose that there is a universe of possible sets of observations X from
which we will draw (observe) a specific set x. An estimator of the parameter
θ is a real values function δ(X) that specifies the estimate of θ for each x. In
general, we are interested in estimates that are close to parameter values. More
specifically, we desire an estimator δ such that δ(X) − θ will be near zero with
high probability. We can define a “loss” function L(θ, a) that measures the cost
of an estimate a of θ. Most likely, as the difference between a and θ grows, so
does L. For a particular estimate a, the expected loss is:

E [L(θ, a)] =
∫

Ω

L(θ, a)ξ(θ)dθ (6.39)

Conditioned on a set of observations x:

E [L(θ, a)|x] =
∫

Ω

L(θ, a)ξ(θ|x)dθ (6.40)

If an estimator (δ∗) is chosen that minimizes the expected loss in Equation 6.40,
it is the Bayes estimator of θ (Eq. 6.41).

E [L(θ, δ∗(x))|x] = min
a∈Ω

E [L(θ, a)|x] (6.41)

In systematics, the use of Bayes estimators would be in identifying the spe-
cific value of a parameter such as the tree. If the loss function is uniform over all
“incorrect” parameter values (all bad choices are equally bad), we can choose
the parameter value that maximizes the posterior probability. Such an estimator
is referred to as the Maximum A Posteriori (MAP) estimate. Since the denom-
inator of Bayes’ Theorem (Eq. 6.37) is a constant, the MAP estimator can be
found by maximizing the numerator of Equation 6.37 over the parameter space
(Eq. 6.42).

θMAP = argmax
θ∈Ω

[p(x|θ) · p(θ)] (6.42)

As an example, consider a coin toss. Let us suppose the coin comes from a
mint that, in the past, has produced coins with two tails or two heads 1

20 of the
time each, and the remainder are fair coins with heads on one side and tails on
the other. A coin is tossed three times, producing heads each time. What is the
MAP estimate of the type of the coin (two headed—θ = 1, two tailed—θ = 0,
or fair—θ = 0.5)? Since there are only three possibilities, we can calculate them
easily. Using Equation 6.42, the a posteriori probabilities would be:
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θ = 0 : 0 · 0.05 = 0
θ = 0.5 : 0.125 · 0.9 = 0.1125
θ = 1 : 1.0 · 0.05 = 0.05

Hence, the MAP estimate would be that the coin was fair (θMAP = 0.5).
It would take a run of five heads to change the MAP result to 1, showing the
initially great, but waning influence of the prior.

6.1.7 Maximum Likelihood Estimators

Bayes estimators form a complete and precise system for estimation of param-
eters. However, they require two things that may be difficult or impossible to
acquire—a specific loss function and the prior distribution of the parameter. In
avoiding these issues, other systems usually have serious defects and limitations.
One simple and broadly popular method to construct estimators without loss
functions and priors is maximum likelihood (ML).

Fisher (1912) employed the likelihood function f(x|θ) from Equation 6.38,
the idea being that the value of θ that maximized the probability of the ob-
served data (x) should be a good estimate of θ. For each observed sequence
x ∈ X, we can define δ(x) to signify a value θ ∈ Ω such that f(x|θ) is maximal.
The estimator defined this way (θ̂ = δ(x)) is the maximum likelihood estimator
(Eq. 6.43).

θML = θ̂ = argmax
θ∈Ω

p(x|θ) (6.43)

Ronald A. Fisher
(1890–1962)

If we reconsider the coin toss example above, the likelihood values would be:

θ = 0 : 0
θ = 0.5 : 0.125
θ = 1 : 1

Leading to the result that θ̂ = 1.
Given that θ̂ is a maximum point of a function, there may be multiple such

points or none (yielding estimation problems). These situations are not encoun-
tered frequently, but can lead to non-identifiability of parameters.

6.1.8 Properties of Estimators

When evaluating estimators, there are three properties that are commonly dis-
cussed: consistency, efficiency, and bias.

Consistency—A comforting property of an estimator would be that it con-
verges on the parameter value as sample size grows (|θ̂ − θ| < ε [i,e. arbitrarily
small] as n → ∞ 2). When this is the case, the estimator is said to be consis-
tent. Bayes and ML methods are generally, but not exclusively consistent. In
systematics, proofs of consistency rely on specific models. If the conditions of
these models are violated by the data, the proofs do not hold (Chapter 13).

2The estimator is said to be strongly consistent if limn→∞|̂θ − θ| = 0.
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Efficiency—Informally, an estimator with a low variance is said to be efficient.
Bias—An estimator with symmetrical error distribution (i.e. equally prob-

able to be erroneously high or erroneously low). Unbiased estimators are rela-
tively inefficient. In fact, there is always a biased estimator for a parameter with
greater efficiency than an unbiased.

6.2 Matrix Algebra, Differential Equations,
and Markov Models

Here, a brief introduction to the solution of simultaneous linear differential equa-
tions is outlined as it relates to systematic analysis. The topics covered here are
restricted to those that touch on distance, likelihood, and Bayesian methods.
An excellent general text on the subject is Strang (2006).

6.2.1 Basics

Recall that systems of linear equations and unknowns (Eq. 6.44)

a00x0 + a01x1 + a02x2 = y0 (6.44)
a10x0 + a11x1 + a12x2 = y1

a20x0 + a21x1 + a22x2 = y2

can be represented in matrix form (Eq. 6.45).⎡⎣a00 a01 a02

a10 a11 a12

a20 a21 a22

⎤⎦ ·
⎡⎣x0

x1

x2

⎤⎦ =

⎡⎣y0

y1

y2

⎤⎦ (6.45)

6.2.2 Gaussian Elimination

Systems of n equations and n unknowns can be solved via manipulation of their
matrix representation in a process called Gaussian Elimination. An example
would be the determination of edge weights on an additive tree. Given the
additive distance matrix of Table 6.1 and tree of Figure 6.8, we can solve for
edge weights.

A B C D
A 0 3 8 9
B 3 0 9 10
C 8 9 0 9
D 9 10 9 0

Table 6.1: Additive distances for tree in Figure 6.8.
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A

B

C

D

e0

e1

e2

e3

e4

Figure 6.8: An additive tree with distances of Table 6.1.

The edge weights and observed distances are a series of unknowns and linear
equations (Eq. 6.46).

dAB = eo + e1 (6.46)

dAC = eo + e2 + e3

dAD = eo + e2 + e4

dBC = e1 + e2 + e3

dBD = e1 + e2 + e4

dCD = e3 + e4

These equations can be represented in matrix form (Eq. 6.47).⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 0 0
1 0 1 1 0
1 0 1 0 1
0 1 1 1 0
0 1 1 0 1
0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
e0

e1

e2

e3

e4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
3
8
9
9

10
9

⎤⎥⎥⎥⎥⎥⎥⎦ (6.47)

The last row of the coefficients (left) and distances (right) can be removed since
they contain redundant information (there are

(
n
2

)
distances and only 2n − 3

edges) leaving 5 equations and 5 unknowns (Eq. 6.48).⎡⎢⎢⎢⎢⎣
1 1 0 0 0
1 0 1 1 0
1 0 1 0 1
0 1 1 1 0
0 1 1 0 1

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
e0

e1

e2

e3

e4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
3
8
9
9

10

⎤⎥⎥⎥⎥⎦ (6.48)

By adding and subtracting complete rows, we can transform the expression into
a diagonal series of 1’s and 0’s elsewhere with the result vector (left) containing
the edge weights (Eq. 6.49).
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⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
e0

e1

e2

e3

e4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1
2
3
4
5

⎤⎥⎥⎥⎥⎦ (6.49)

Given that most distance matrices are non-additive, and the systems overde-
termined (more equations than unknowns), the least-squares approach of Section
9.5.2 is normally employed.

6.2.3 Differential Equations

Let us suppose we have a coupled pair of linear differential equations (Eq. 6.50)
that we wish to solve by finding functions of v and w in terms of t only.

dv

dt
= 5v − 6w (6.50)

dw

dt
= 3v − 4w

With initial (t = 0) conditions v = 5 and w = 6. These can be represented in
matrix form (Eq. 6.51):

u(t) =

[
v(t)
w(t)

]
, with A =

[
5 −6
3 −4

]
, and u(0) =

[
5
6

]
(6.51)

with
du

dt
= Au with u = u(0) at t = 0 (6.52)

In order to solve this linear differential equation in two unknowns, we can look
to the simpler case of a single equation

du

dt
= au (6.53)

where there would be a simple solution:

u(t) = eatu(0) (6.54)

If we generalize to the vector case:

v(t) = eλty (6.55)

w(t) = eλtz

or as a vector:
u(t) = eλtx

We can then substitute back from the scalar case and have:

λeλty = 5eλty − 6eλtz

λeλtz = 3eλty − 4eλtz
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This can be represented as the eigenvalue problem:
5y − 6z = λy (6.56)

3y − 4z = λz

yielding the eigenvalue equation
Ax = λx (6.57)

where λ is an eigenvalue and x is its associated eigenvector.

6.2.4 Determining Eigenvalues

λ is an eigenvalue of A if and only if A − λI is a “singular” matrix, meaning
that the determinant must be equal to zero (Eq. 6.58).

det(A − λI) = 0 (6.58)

The determinant is a value associated with a matrix, which can be quite labo-
rious (näıvely O(n3), not so näıvely O(n2.376)) to calculate. In this simple case
of a 2 x 2 matrix, the determinant can be calculated easily (Eq. 6.59).

B =
[
a b
c d

]
(6.59)

det|B| = ad − bc

Hence, we seek the determinant of

B =
[
a − λ b

c d − λ

]
(6.60)

yielding:
det|B − λI| = (a − λ)(d − λ) − bc = 0

So for Equation 6.51:

det|A − λI| = (5 − λ)(−4 − λ) − (−18) = 0 (6.61)

This rearranges to λ2 − λ − 2, the characteristic polynomial of A with solutions
λ = (−1, 2). By solving back into the original matrix form, we determine the
eigenvectors x1 and x2.

λ1 = −1 → (A − λ1I)x1 =
[
6 −6
3 −3

] [
y
z

]
=

[
0
0

]
(6.62)

x1 =
[
1
1

]
(6.63)

λ2 = 2 → (A − λ1I)x2 =
[
3 −6
3 −6

] [
y
z

]
=

[
0
0

]
(6.64)

x2 =
[
2
1

]
(6.65)
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In general, there will be k eigenvalues and eigenvectors for k equations of k
variables.

The complete solution has the form:

u(t) =
k∑

i=1

cie
λitxi (6.66)

We can then solve back given each eigenvalue and generate our final solution
(Eq. 6.67).

u(t) = c1e
−t

[
1
1

]
+ c2e

2t

[
2
1

]
(6.67)

For initial conditions (t = 0):

c1x1 + c2x2 = u(0) (6.68)[
1 2
1 1

] [
c1

c2

]
=

[
5
6

]
(6.69)

Resulting in:

u(t) = 7e−t

[
1
1

]
− e2t

[
2
1

]
(6.70)

or in the original non-matrix form Eq. 6.71.

v(t) = 7e−t − 2e2t (6.71)

w(t) = 7e−t − e2t

6.2.5 Markov Matrices

A stochastic process where the probability of a successor event is solely depen-
dent on its current state (not past) is called a Markov process. Markov processes
are employed in character transformation models due to this memoryless prop-
erty. As an example from DNA sequences, the probability of an A substituting to
a T has nothing to do with whether the A was previously a C, G, or anything else.

A special class of matrix differential equations that models this sort of pro-
cess employs a Markov or stationary matrix. In these matrices, the sum of the
solutions is fixed (nothing is gained or lost—only transitioned among states) so
each column sums to 1, and all entries are positive (e.g. Eq. 6.72).

Andrei Markov
(1856–1922)

M =

⎡⎢⎢⎣
.7 .1 .1 .1
.1 .7 .1 .1
.1 .1 .7 .1
.1 .1 .1 .7

⎤⎥⎥⎦ (6.72)

In the discrete case, the maximum eigenvalue is always equal to 1 and the
others ≤ 1. As a result, as time steps increase (in essence, multiplication by the
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Markov transition matrix) the terms derived from the non-dominant (i.e. < 1)
eigenvalues diminish and limit to zero, resulting in the steady-state condition.

Continuous time Markov processes are a related form where the net rate
of change is zero. In this case, the transition probabilities represented in the
columns of the matrix sum to zero. As an example, we might have a mutation
matrix with equal forward and reverse rates between states 0 and 1 (μ0↔0 =
μ0↔1, μ = μ0↔0 + μ0↔1) (Eq. 6.73).

M =

[
−μ

2
μ
2

μ
2 −μ

2

]
(6.73)

The characteristic polynomial and eigenvalues of M are determined as above
(Eq. 6.75).

λ2 + μλ = 0 (6.74)

λ = {0,−μ}

For continuous Markov processes, λmax = 0 in all cases.

This yields eigenvectors {
[
1
1

]
,

[
1
−1

]
}. Solving for the general form with ini-

tial conditions
[
1
0

]
, yields the familiar equation for a two state character.

Pi=j(t) = 0.5 + 0.5e−μt (6.75)

Pi�=j(t) = 0.5 − 0.5e−μt

6.3 Exercises

1. What is the probability of fair coin toss outcome H, H, T, T, T?

2. What are the mean and variance of the estimate of probability of heads
in the coin toss experiment of the previous question?

3. What is the probability of tossing a fair coin five times with outcome
2H, 3T?

4. Consider the coin toss outcome H, T, H, T, T. There are seven possi-
ble values for the probability of heads (θ = 0.01, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0).
Consider two prior distributions on θ, uniform and 1

θ . What are the values
for θMAP and θML for these observations and the two priors? What are
the posterior probabilities for the MAP solutions? What is the effect of
the uniform prior on θMAP compared to θML?

5. Consider the tree of Figure 6.8. Using additive distance matrix, Table 6.2,
determine the edge weights.
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A B C D
A 0 5 11 12
B 5 0 12 13
C 11 12 0 11
D 12 13 11 0

Table 6.2: Additive distances for the tree in Figure 6.8.

6. Determine the complete time equations for the following matrix (initial
conditions v(0) = 4, w(0) = 6:

v(t) = 8v + 2w (6.76)

w(t) = 2v + 8w

7. Determine the complete time equations for the following matrix (initial
conditions a(0) = 1, b(0) = 0:

a(t) = −0.1a + 0.1b (6.77)

b(t) = 0.1a − 0.1b



Part II

Homology



Chapter 7

Homology

Homology is perhaps the central concept of comparative biology and systemat-
ics. First defined by Owen (1843, 1847), the idea has undergone redefinition
and refinement in the succeeding century and a half from pre-evolutionary
“same-ness” to the modern cladistic incarnation as an optimized character
transformation.

7.1 Pre-Evolutionary Concepts

Before evolutionary ideas presented a generative explanation, the observation
that organisms possessed similar parts in similar positions offered biologists a
basis for classification. The patterns of similarity and difference were taken as
evidence of a natural or super-natural plan and allowed comparative biologists to
construct classifications and compete them on their ability to explain observed
variation (Hull, 1988).

7.1.1 Aristotle

Pierre Belon
(1517–1564)
Father of comparative biol-
ogy, murdered in the Bois de
Boulogne.

The use of anatomical features (Aristotle, 350BCE) to create his classification
implies comparability between observed features of organisms (e.g. blooded,
egg-laying). These similarities among features were organizational and empiri-
cal, and perhaps functional, but implied nothing about their origins. For Aris-
totle, the similarities and their classifications were statements of organization of
nature. As a result, similar statements could be made about minerals or other
non-living natural phenomena. Aristotle saw a progression of perfection, so to
speak, in moving from “lower” to “higher” forms, but these held no notion of
what we would call origins today.

7.1.2 Pierre Belon

Belon’s comparison between the skeleton of a human and bird is striking
(Sect. 1.3) not only in its general aspects but in its specific aspects as well.

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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Figure 7.1: Belon’s Big Bird (Belon, 1555).

Belon (1555) labeled corresponding structures in a way we recognize as ho-
mology today (Fig. 7.1). It is unclear whether for Belon this was the result of
an analytical procedure, or simply an observational statement (Rieppel, 1988).
Nonetheless, his Figure still impresses and is emulated in modern work.

7.1.3 Étienne Geoffroy Saint-Hilaire

Étienne Geoffroy Saint-Hilaire
(1772–1844)

One of the most important principles in the recognition of comparable anatom-
ical components is their topological (i.e, positional) similarity. This idea is first
found in Geoffroy Saint-Hilaire’s “principe des connexions” (Fig. 7.2). This posi-
tional criterion for structures as variants of the same “type” is more or less equal
to what we now call homology. Saint-Hilaire (1830) differed from Cuvier in the
lack of requirement of a functional similarity, hence vestigial structures could
be part of the same “unity of type” as functional ones and constitute evidence
of the “uniformity of type.” For Geoffroy, these were philosophical, intellectual
constructs akin to archetypes. This is in opposition to the ideas of Cuvier who
based his ideas on empirical observation of natural pattern. Cuvier, via careful
analysis, falsified some of Geoffroy’s ideas (e.g. structures in cephalopods and
vertebrates).
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Figure 7.2: Illustration of Geoffroy Saint-Hilaire’s idea of topological “connec-
tions” among anatomical features (Saint-Hilaire, 1818).

Darwin cited the “principe des connexions” in the Origin as evidence for com-
mon origin of groups and support for his evolutionary explanation of homology.

What can be more curious than that the hand of a man, formed for
grasping, that of a mole for digging, the leg of the horse, the paddle
of the porpoise, and the wing of the bat, should all be constructed
on the same pattern, and should include the same bones, in the same
relative positions? Geoffroy Saint-Hilaire has insisted strongly on the
high importance of relative connexion in homologous organs: the parts
may change to almost any extent in form and size, and yet they always
remain connected together in the same order. (Darwin, 1859b)

7.1.4 Richard Owen

Richard Owen
(1804–1892)

Though inimical to the idea of evolution (his views were less consistent later in
life), the modern idea, and often definition, of homology used today is that of
Owen. Owen coined the terms “archetype” (Fig. 7.3) (Owen, 1847, 1848, 1849)
and “homology” (Owen, 1843). He did this through synthesizing the functional
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Figure 7.3: Owen (1843) archetype.

ideas of Cuvier and the topological relations of Geoffroy Saint-Hilaire. Owen still
discussed pattern in his archetype as an abstraction. This was not an ancestor in
the evolutionary sense, but a general plan for a group such as classes of vertebrates.

The definitions of Owen (1843):

• Analogue—A part or organ in one animal which has the same function as
another part or organ in a different animal.

• Homologue—The same organ in different animals under every variety of
form and function.

• Analogy—Superficial or misleading similarity.

In order to recognize homologues, Owen used the criteria of connections
and composition derived from Geoffroy Saint-Hilaire. Owen further recognized
both special (between organisms) and general (within organisms) homology as
subtypes. The latter is usually referred to as serial homology today.

7.2 Charles Darwin

Darwin (1859b) did not redirect or refine the concept of homology, but used
homology as evidence for and an explanation of common descent. In proposing
a natural explanation for the generation of homologues, Darwin transformed
the discussion of archetypes to that of ancestors. This had little effect on what
comparative biologists actually did in an operational sense, but it completely
changed why they did it. The determination of archetypes was replaced by the
search for ancestors.

Charles Darwin
(1809–1882)All the foregoing rules and aids and difficulties in classification are ex-

plained, if I do not greatly deceive myself, on the view that the natural
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system is founded on descent with modification; that the characters
which naturalists consider as showing true affinity between any two
or more species, are those which have been inherited from a common
parent, and, in so far, all true classification is genealogical; that com-
munity of descent is the hidden bond which naturalists have been un-
consciously seeking, and not some unknown plan of creation, or the
enunciation of general propositions, and the mere putting together
and separating objects more or less alike. (Darwin, 1859b)

7.3 E. Ray Lankester

Lankester, in addition to defining homoplasy (Lankester, 1870a), felt that the
“homology” defined by Owen required refinement, since it was non-evolutionary.
Lankester defined “homogeny” as a structure in organisms that was similar due
to shared ancestry (Lankester, 1870b). This evolutionary concept of homology
has its direct descendant in Hennig’s homology concept, and is the one we use
today.

Ray Lankester
(1847–1929)

7.4 Adolf Remane

Remane (1952) described the criteria by which homologues were to be recog-
nized. This work was very influential in the mid 20th-century New Synthesis for
its summary and synthesis of the ideas of Geoffroy Saint-Hilaire, Cuvier, Owen,
and Haeckel.

Adolf Remane
(1898–1976)

Remane (1952)(translation of Reidl, 1978) proposed six criteria—three
principles:

1. Position—“Homology can be recognized by similar position in comparable
systems of features.”

2. Structure—“Similar structures can be homologized without reference to
similar position, when they agree in numerous special features. Certainty
increases with the degree of complication and of agreement in the struc-
tures compared.”

3. Transition—“Even dissimilar structures of different position can be re-
garded as homologous if transitional forms between them can be proved
so that in considering two neighboring forms, the conditions under (1) and
(2) are fulfilled. The transitional forms can be taken from ontogeny of the
structure or can be true systematically intermediate forms.”

and three auxiliary:

1. General conjunction—“Even simple structures can be regarded as homol-
ogous when they occur in a great number of adjacent species.”

2. Special conjunction—“The probability of the homology of simple struc-
tures increases with the presence of other similarities, with the same dis-
tribution among closely similar species.”
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3. Negative conjunction—“The probability of the homology of features de-
creases with the commonness of occurrence of this feature among species
which are not certainly related.”

Remane, however, presented no definition of homology—only a method to
recognize homologues. This lack of a specific definition of homology has led to a
great deal of fruitless argumentation due to the conflation of the definition and
recognition criteria of homology.

7.5 Four Types of Homology

Wiley (1975), followed by Patterson (1982), divided definitions of homology into
four1 types: classical, evolutionary, phenetic, and cladistic. This classification of
ideas tracks the pre- and post-evolutionary schools of classification.

7.5.1 Classical View

This view, exemplified by Haas and Simpson (1946) and Boyden (1973), is ba-
sically that of Owen: “The same organ in different animals under every variety
of form and function.” As such it suffers from the imprecise nature of Owen’s
idea of “same” and “essential.” The concept has intuitive appeal, but provides
no means to exclude or include alternate hypotheses of homology.

7.5.2 Evolutionary Taxonomy

Closely tracking the ideas of the evolutionary synthesis (Sect. 1.14) (Mayr,
1982), the Evolutionary Taxonomy school employed the Remane-type rationale
of position, structure, and transformation. Similarity was the only test, yet not
all similarities were accepted as homologies since “analogies” (due to conver-
gence) were differentiated from homologues as evolutionary similarities (Bock,
1974, 1977). Parallelisms (“two or more character states derived from a common
ancestral state,” Hecht and Edwards, 1977), however, could be permitted as ho-
mologous. This would seem to exclude very few homology hypotheses, including
those of states with independent origins (e.g. “wings” of bats and birds), since
there was no restriction on the recency of ancestors.

Ernst Mayr
(1904–2005)

Evolutionary Taxonomy as a school was devoted to the study of process and
such focus served as an impediment when it came to homology. As made clear
by Brady (1985), such evolutionary taxonomists as Ernst Mayr confused the
definition of homology with its causative explanation:

One very important methodological aspect of science is frequently
misunderstood and has been a major cause of controversy over such
concepts as homology or classification. It is the relation between
a definition and the evidence that the definition is met in a par-
ticular instance. This is best illustrated by an example: The term

1n + 1 where n = Gaul.
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“homologous” existed already prior to 1859, but it acquired its cur-
rently accepted meaning only when Darwin established the theory
of common descent. Under this theory the biologically most mean-
ingful definition of “homologous” is: “A feature in two or more taxa
is homologous when it is derived from the same (or a correspond-
ing) feature of their common ancestor.” What is the nature of the
evidence that can be used to demonstrate probable homology in a
given case? There is a whole set of such criteria (like the position of
a structure in relation to others), but it is completely misleading to
include such evidence in the definition of “homologous,” as has been
done by some authors. (Mayr, 1982)

7.5.3 Phenetic Homology

In an effort to avoid the causal and potentially circular definitions of homology
presented by Evolutionary Taxonomy, an “operational” homology definition was
used by pheneticists Sokal and Sneath (1963); Jardin (1970) and Sneath and
Sokal (1973). By avoiding causative, process statements, in principle all “simi-
larities” could be treated as homologies, whether primitive or derived. In prac-
tice, however, “compositional and structural correspondence” were used to select
those similarities useful for analysis. Basically, this was a return to Owen (1843).

7.5.4 Cladistic Homology

Willi Hennig (1913–1976) re-
ceiving AMNH Gold Medal
from Director Thomas Nichol-
son

Hennig (1950, 1966) made more specific distinctions between primitive (ple-
siomorphy) and derived homology (apomorphy) and non-homologous similarity
(analogy, homoplasy) (see Sect. 2.3.6). For Hennig, these distinctions arose out
of a transformational notion of homology, “Different characters that are to be
regarded as transformation stages of the same original character are generally
called homologous.” Wiley (1975) extended this concept: “Two (or more) char-
acters are said to be homologous if they are transformation stages of the same
original character present in the ancestor of the taxa which display the charac-
ters.” This differs from the classical ideas of similarity, since the features need
not be similar in any particular way, only have common origins. This is also
at variance with the evolutionary taxonomist view that two features can have
origins in a third (if common) state in a common ancestor. The emphasis is
on transformation from generally distributed states to more restricted, derived
states. Homologies are apomorphies—synapomorphies in fact.

Homology = Synapomorphy

Regarded as the rebel yell of “pattern” cladistics, the equality of homology and
synapomorphy (Nelson and Platnick, 1981) has an older (cf. Patterson, 1982)
and more nuanced meaning.

Donn Rosen (1929–1986),
Gareth Nelson, and Norman
Platnick.

The focus of this definition of homology is in features shared by monophyletic
groups. Synapomorphies are, by definition, features (or their states) restricted
to a group of taxa that contains all descendants of a common ancestor. As with
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Wiley’s definition above, an attribute found in the common ancestor and its de-
scendants is homologous and a synapomorphy (e.g. wings in pterygote insects).
A symplesiomorphy is simply a synapomorphy of a more inclusive group, homol-
ogous at that level (e.g. having six legs in Pterygota, plesiomorphic at that level,
but a synapomorphy for the more including Hexapoda). Hence, a homology is
always a synapomorphy, (if at a more general level) and a synapomorphy is
always a homology. Furthermore, this definition immediately offers a test. Each
homology statement, as a synapomorphy, is tested through congruence with
other features. If the weight of evidence were to support an alternate scheme,
where members of the group possessing a feature were not monophyletic, the hy-
pothesis of homology would be falsified. Homologies can be proposed by multiple
routes, but are always tested and potentially falsified by the same congruence-
based process2. Brady (1985) traces this idea back to at least Darwin:

The importance, for classification, of trifling characters, mainly de-
pends on their being correlated with several other characters of more
or less importance. The value indeed of an aggregate of characters is
very evident in natural history. Hence, as has often been remarked, a
species may depart from its allies in several characters, both of high
physiological importance and of almost universal prevalence, and yet
leave us in no doubt where it should be ranked. Hence, also, it has
been found, that a classification founded on any single character,
however important that may be, has always failed; for no part of the
organization is universally constant. The importance of an aggregate
of characters, even when none are important, alone explains, I think,
that saying of Linnaeus, that the characters do not give the genus,
but the genus gives the characters; for this saying seems founded on
an appreciation of many trifling points of resemblance, too slight to
be defined. (Darwin, 1859b)

7.5.5 Types of Homology

In his review of homology, Patterson (1982) enumerated several types and modes
of homology identification and distinguished these from tests. Patterson (1988)
further associated terms in use in molecular evolution with their corresponding
relation in morphological comparisons. These relations are organized around
three “tests” of homology: congruence (agreement with other characters), simi-
larity (likeness in form), and conjunction (discussed above). Only homology (or
the molecular, orthology) meets all three criteria (Table 7.1).

DePinna (1991) refined the ideas of Patterson, defining “primary” and “sec-
ondary” homology. A primary homology was a putative homology statement
that had passed the tests of similarity and position, but was as yet untested on
a cladogram. DePinna pointed out that the only real test was that of congruence.

2Patterson (1982) also proposed “conjunction,” the presence of two features in a single
organism (as in wings and forelimbs in “angels”), as a potential falsifier of homology. DePinna
(1991) and others have pointed out that such angels can occur as forms of homology (e.g. de
novo character origination), leaving congruence as the only absolute test of homology.
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Relation Congruence Similarity Conjunction Molecular
Test Test Test Term

Homology Pass Pass Pass Orthology
Homonomy Pass Pass Fail Paralogy
Complement Pass Fail Pass Complement
Two homologies Pass Fail Fail Two orthologies
Parallelism Fail Pass Pass Xenology
Homoeosis Fail Pass Fail Paraxenology
Convergence Fail Fail Pass Convergence
Endoparasitism Fail Fail Fail -

Table 7.1: Combinatorics of homology and non-homology relations after Patter-
son (1982, 1988).

A secondary homology had passed this test with a unique origin on a parsimo-
nious cladogram.

7.6 Dynamic and Static Homology

Molecular sequence data presented an interesting challenge to homology deter-
mination. These sequences could vary not only in state (elements of the se-
quence) but in length as well. At first, when compared among multiple taxa,
such variation was placed in the traditional context of putatively homologous
(= comparable) columns via a formal or informal alignment process (Chap-
ter 8). However, when these sequences were examined directly on trees, it was
immediately obvious that the putative homology schemes could vary among tree
topologies. Some scenarios of putative sequence homology require more trans-
formations (however weighted) on a given tree than others. In essence, that
the congruence principle existed not only between topologies, but within, and
applied to the determination of characters themselves as well at to the disposi-
tion of their states. The idea that even putative homology schemes could vary
among trees was termed dynamic homology (Wheeler, 2001b) to distinguish it
from those schemes that were invariant over topologies (such as many complex
anatomical attributes, for example, forelimbs in tetrapods). Such dynamic ho-
mologies are not limited to molecular data, but can be found in other sequences
such as developmental events, call songs in insects, and even “serial” homol-
ogy of anatomical features in segmented organisms (Schulmeister and Wheeler,
2004; Robillard et al., 2006; Ramı́rez, 2007).

Salvatore “Lucky” Luciano
(1897–1962)

One of the hallmarks of dynamic homology is the lack of transitivity among
sequence elements in taxa (Fig. 7.4). While a forelimb in taxon A, B, and C
is comparable, that of “the third Guanine residue in taxon A” will have mul-
tiple potential comparable elements in other taxa. This was formalized in the
definition of static and dynamic characters (Varón et al., 2010):

Static homology characters. Let A and B be two states of a character.
A correspondence between the elements in A and B is a relation
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I. AAATTT

II. TTT

III. AAA 

I/II

II/III

III/I

AAATTT
TTT

TTT
AAA

AAATTT
AAA

AAATTT

TTT

AAA

Figure 7.4: Non-transitive nature of the relationship among dynamic homology
sequence elements (after Wheeler, 2001b).

between them. We define static homology characters as those in
which for every element in A there is at most one corresponding
element in B, and the correspondence relations are transitive (i.e.
let a ∈ A, b ∈ B, and c ∈ C be elements of different states, where a
corresponds to b, and b corresponds to c; then a and c must also
correspond to each other). Corresponding elements with the same
value match the notion of primary homology (DePinna, 1991).

Dynamic homology characters. We define as dynamic homology char-
acters (Wheeler, 2001b) the complement of their static homology
counterparts: for some pair of states A and B, there exists an ele-
ment a ∈ A that has more than one corresponding element in B, or
the correspondences are not transitive. Dynamic homology charac-
ters typically have states that may have different cardinalities, and
no putative homology statements among the state elements. These
characters formalize the multiple possibilities in the assignment of
correspondences (primary homologies) between the elements in a
pair of states, which can only be inferred from a transformation se-
ries linking the states, and the distance function of choice.

With dynamic homology, the principle of connections of Geoffroy Saint-
Hilaire drives the optimality function, and the test is still one of congruence
(if more generally). Position, composition, and congruence are simultaneously
and quantitatively optimized and tested (as in Brady, 1985).

This leads to a further modification of the homology definition:

Features are homologous when their origins can be traced to a unique
transformation on the branch of a cladogram leading to their most
recent common ancestor (Wheeler et al., 2006a).
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In the end, the central issue is whether aspects of organisms have single or
multiple origins. If single, they are homologous; if not, not.

7.7 Exercises

1. Discuss the example of wings in birds, bats, pterosaurs, and moths in
terms of the homology definitions discussed above. Under what conditions
are these structures homologous?

2. What are the issues involved in the homology of therapod hind limb digits?
Discuss these digit homology scenarios in terms of positional, developmen-
tal, and dynamic homology frameworks.

3. “Eyes” are broadly distributed, but not uniformly present, in Metazoa.
Discuss homology in this context. Are the “eyes” of cephalopods and verte-
brates homologous? How would the underlying genetic mechanisms affect
this determination?



Chapter 8

Sequence Alignment

8.1 Background

Traditional analysis of sequence data (Chapters 9, 10, 11, and 12) requires an a
priori scheme of correspondences among the observed sequence elements. Given
that sequence data can vary in length, a process is required to convert the
variable-length sequence data into constant-length aligned data suitable for this
form of character-based optimization. Sequence alignment (or Multiple Sequence
Alignment—MSA when there are more that two sequences) is this process.

Sequences can be composed of a variety of objects, from familiar nucleic
acid and protein data to observations less frequently treated as sequences such
as developmental, behavioral, and chromosomal data. As pre-aligned characters,
MSA can be performed under a variety of criteria. This section will focus on
cost minimization (= parsimony), and later sections will take up others (Chap-
ters 11 and 12). MSA is not a necessary prerequisite for phylogenetic analysis
(Sect. 10.6), but it is a common one.

8.2 “Informal” Alignment

The discussion here is limited to alignment procedures that are precisely defined
both in methodology and objective. There will be no discussion of “by-eye”
alignment or subjective hand adjustments made to alignments generated with
software tools. Such operations, to the extent that they are ill-defined and not
based in optimizing objective measures of quality, are better discussed elsewhere.

8.3 Sequences

Sequences are linear arrays of elements. As such, they contain two sorts of
information—the type of each element and its position relative to other elements.
The positional information can come from any one-dimensional ordering such
as body-axis, time and position on a chromosome or within a protein (Fig. 8.1).

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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5'-GCAAAAATAACGAT-3'

Start End

ND1-16SrDNA-12SrDNA-CytB-ND6

Head Tail

Figure 8.1: Example sequences. Top: Segment of heteropteran 18S rRNA
(Wheeler et al., 1993); Middle Top: Generalized arthropod body plan; Middle
Bottom: Orthopteran stridulation (Robillard et al., 2006); Bottom: Fragment of
mtDNA gene order.

Given that organisms (in general) have defined morphologies (with a body-
axis) and undergo growth and development (time-axis), this type of data is quite
commonly encountered. When discussing sequences, there are three aspects that
must be defined: the sequence alphabet, the transformations it may suffer, and
an objective distance function to quantify change.

8.3.1 Alphabets

The set of possible elements that may appear in a sequence defines its alphabet
(Σ). Familiar alphabets include those for DNA (Σ = {A, C, G, T, gap}), Morse
code (Σ = {dit, dah, short gap,middle gap, long gap}), and arthropod segment
appendages (Σ = {no appendages, antennae, legs, mouthparts}). Locus synteny
maps (such as mtDNA gene order) are sequences of annotated loci with the
genes themselves as alphabet elements (e.g. 18S rRNA). The set of develop-
mental events in the lifetime of an organism presents another alphabet. A spe-
cial character representing an empty string of characters (λ)—not an element
itself—is often used to represent “gaps” or indels since there are no actual ele-
ments present. The gap symbol (“-”) may be used interchangeably with λ. Any
given sequence is an instantiation of possible elements and is represented as Σ∗.
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8.3.2 Transformations

Sequences of elements can undergo several modes of transformation. Four com-
monly encountered types are substitution, insertion–deletion, inversion, and
move (Fig. 8.2). Transformations can occur in complex combinations (e.g.
Inversion + Move) making their reconstruction in systematic analysis complex.

(b)  x0, x1, x2, x3, x4, x5 → x0, x2, x3, x4, x6, x5

(c)  x0, x1, x2, x3, x4, x5 → x0, x1, x4, x3, x2, x5

(d)  x0, x1, x2, x3, x4, x5 → x0, x3, x4, x5, x1, x2,

– – –

(a)  x0, x1, x2, x3, x4, x5 → x0, x1, x2, x3, x4, x5′ ′

Figure 8.2: Sequence transformations. (a) Substitution; (b) Insertion–Deletion;
(c) Inversion; and (d) Move.

8.3.3 Distances

It is always convenient and often necessary to specify an objective distance func-
tion between sequences. These distances are some function (differentially
weighted or not) of the transformations involved in converting, or editing, one
sequence into another. Such edit distances can include substitutions only (e.g.
Hamming, 1950, or Manhattan) for equal length sequences, or more complex
combinations of moves and indels. Distances are usually required to be metric and
follow the triangle inequality, among other constraints (Eq. 8.1, see Sect. 5.4).

∀x d(x, x) = 0 (8.1)
∀x, y;x �= y d(x, y) > 0

∀x, y d(x, y) = d(y, x)
∀x, y, z d(x, y) ≤ d(x, z) + d(z, y)

Metricity can be applied at the level of distances among elements or entire
sequences. Wheeler (1993) argued that non-metric element distances (as in
among indels and nucleotides) would lead to nonsensical results (e.g. empty
sequence medians; Fig. 8.3).

8.4 Pairwise String Matching

Alignment of sequence pairs is the foundation of all more elaborate procedures.
The problem, simply stated, is to create the series of correspondences between
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A, C, G → '-' = 1

A ↔ C = 3
A ↔ G = 3
C ↔ G = 3

AAA CCC

GGG

- - - 

cost = 9

AAA CCC

GGG

ACG 

cost = 18

Figure 8.3: Nonsensical sequence median with non-metric indel costs. Since in-
dels cost less than one-half nucleotide substitutions, the lowest cost median will
always be an empty (all gap) sequence. All 27 possible medians of length 3 with
A, C, and G will yield a cost of 18.

A C G T

T G C A 

----

- - - -

Figure 8.4: Trivial alignment of cost zero when indels have cost = 0 and substi-
tutions cost > 0.

the nucleotides in two sequences via the insertion of gaps, such that the edit
cost (the weighted sum of all events—insertions, deletions, nucleotide substitu-
tions—required to convert one sequence into another) between the sequences is
minimized (or some other function optimized). Non-zero costs must be assigned
to each type of event, or trivial, zero-cost alignments can result (e.g. indels cost-
ing zero and an alignment that places each nucleotide opposite a gap; Fig. 8.4).

The first algorithmic solution to this form of string-matching problem was
proposed by Needleman and Wunsch (1970) and is used throughout most align-
ment procedures (See Gusfield, 1997, for more extensive discussion).

Richard Bellman
(1920–1984)

The procedure follows a dynamic programming approach (Bellman, 1953)
by solving a series of small, dependent sub-problems that implicitly examine all
possible alignments (Eq. 8.2; Torres et al., 2003).

f(n, m) =
min(n,m)∑

k=0

2k

(
m

k

)(
n

k

)
(8.2)

f(n, m) ≈ (1 +
√

2)2n with n = m

There are two components to the procedure. The first determines the cost of
the best alignment (or alignments—there may be multiple solutions) by applying
the recursion in Equation 8.3.
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cost[i][j] = min

⎧⎪⎨
⎪⎩

cost[i − 1][j − 1] + σi,j match/mismatch
cost[i − 1][j] + σindel insertion
cost[i][j − 1] + σindel deletion

(8.3)

This is often referred to as the “wavefront” update (Alg. 8.1). The second is the
“traceback” (Alg. 8.2), which yields the alignment itself (more complex examples

Algorithm 8.1: PairwiseSequenceAlignmentCost
Data: Input strings X and Y of lengths |X| and |Y|
Data: Element distance matrix σ of pairwise substitution costs between

all elements in Σ and λ (indel)
Result: The minimum pairwise alignment cost.
Initialize first row and column of matrices;
direction [0] [0] ← ‘↘’;
cost [0] [0] ← 0;
length [0] [0] ← 0;
for i = 1 to |X| do

cost [i] [0] ← cost [i − 1] [0] + σXi,λ;
direction [i] [0] ← ‘→’;
length [i] [0] ← length [i − 1] [0] + 1;

end
for j = 1 to |Y| do

cost [0] [j] ← cost [0] [j − 1] + σYj ,λ;
direction [0] [j] ← ‘↓’;
length [0] [j] ← length [0] [j − 1] + 1;

end
Update remainder of matrices cost, direction, and length;
for i = 1 to |X| do

for j = 1 to |Y| do
ins ← cost [i − 1] [j] + σXi,λ;
del ← cost [i] [j − 1] + σYj ,λ;
sub ← cost [i − 1] [j − 1] + σXi,Yj

;
cost [i] [j] ← min (ins, del, sub);
if cost [i] [j] = ins then

direction [i] [j] ← ‘→’;
length [i] [j] ← length [i − 1] [j] + 1;

else if cost [i] [j] = del then
direction [i] [j] ← ‘↓’;
length [i] [j] ← length [i] [j − 1] + 1;

else
direction [i] [j] ← ‘↘’;
length [i] [j] ← length [i − 1] [j − 1] + 1;

end
end

end
return cost [|X|] [|Y|]
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Algorithm 8.2: PairwiseSequenceAlignmentTraceback
Data: Strings X and Y of Algorithm 8.1
Data: direction matrix of Algorithm 8.1
Data: length matrix of Algorithm 8.1
Result: X′ and Y′ contain aligned sequences of X and Y via inclusion of

gaps
alignCounter ← length [|X|] [|Y|];
xCounter ← |X|;
yCounter ← |Y|;
while xCounter ≥ 0 and yCounter ≥ 0 and alignCounter ≥ 0 do

if direction [i] [j] =‘→’ then
X′ [alignCounter] ← X [xCounter];
Y′ [alignCounter] ← GAP;
xCounter ← xCounter − 1;
alignCounter ← alignCounter − 1;

else if direction [i] [j] =‘↓’ then
X′ [alignCounter] ← GAP;
Y′ [alignCounter] ← Y [yCounter];
yCounter ← yCounter − 1;
alignCounter ← alignCounter − 1;

else
X′ [alignCounter] ← X [xCounter];
Y′ [alignCounter] ← Y [yCounter];
xCounter ← xCounter − 1;
yCounter ← yCounter − 1;
alignCounter ← alignCounter − 1;

end
end

can be found in Phillips et al. (2000)). Needleman and Wunsch described a maxi-
mization of identity algorithm, whereas a minimization of difference is presented
here. The underlying principles are unchanged.

The first part of the algorithm fills a matrix cost of size (n + 1) × (m + 1)
to align a pair of sequences X and Y of lengths n and m respectively. Each cell
(i, j) is the cost of aligning the first i characters of a with the first j characters
of b (i.e. aligning x1 · · ·xi and y1 · · · yj). Each value is calculated using the
previously aligned subsequences—that is the cost of cell (i, j) will be for indel
and substitution cost matrix σ.

The additional first row and column (the reason for the +1 in the matrix
dimensions) represents the alignment of a sequence with an empty string, that
is, initial gaps. Each decision minimum is recorded, to follow the path that leads
to the cost of aligning X and Y, that is, the cost in cell (n, m).

In order to create the actual alignment between the sequences, a traceback
step is performed that proceeds back up and to the left of the matrix, keeping
track of the optimal indels and substitutions performed in the matrix update
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operations (Alg. 8.2). The minimum cost path is followed back, where the best
move is diagonal if the nucleotides of the sequences correspond, and the left and
up moves signify indels.

8.4.1 An Example

Consider two sequences “ACGT” and “AGCT” and alignment parameters of
nucleotide substitution cost equal to 1 (σsubstitution) and indel cost equal to 10
(σindel) (Fig. 8.5).
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T
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. . . .

Figure 8.5: Pairwise alignment cost matrix for σsubstitution = 1 and σindel = 10.
Arrows denote optimal path to each cell.
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The minimal cost alignment for these sequences (ACGT and AGCT) with
the cost regime indels = 10, substitutions = 1 is two, with two base substitutions
implied between the sequences (C↔G, and G↔C).

If a complementary cost scenario is specified, e.g. indels = 1 and substitu-
tions = 10, a different optimal solution is found (Fig. 8.6). In this case as well,
the minimum cost is two, but no substitutions are implied—only indels (2). Fur-
thermore, there are two equally optimal solutions differing in the placement of
the gaps. This ambiguity comes from the equally costly paths found at matrix
element 3,3 (of 0,0 to 4,4). The non-unique nature of such solutions is a frequent

- A C G T

-
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0 1 2 3 4

1 2 3
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1

A C G T- A - C TG

A G C T-A - G TC

. . . ... . . .. and

Figure 8.6: Pairwise alignment cost matrix for σsubstitution = 10 and σindel = 1.
Arrows denote optimal path to each cell.
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property of alignments and can have dramatic effects on phylogenetic conclu-
sions (Wheeler, 1994).

The Needleman–Wunsch procedure loops through the length of both input
sequences in their entirety, hence has a time (and space) complexity of O(nm)
or more simply O(n2).

8.4.2 Reducing Complexity

The n2 matrix can be quite large for long sequences, and when they are highly
similar, as in most systematic analyses, there is a great deal of the matrix
that plays no role in the optimal pairwise alignment. This observation moti-
vated Ukkonen (1985) to improve on the quadratic time complexity of the basic
algorithm. Ukkonen showed that when sequences were similar, only a central

Esko Ukkonen

diagonal (whose width depended on that similarity) was required. The more
similar the sequences, the tighter the bound and the faster the alignment.

Algorithm 8.3 shows the outline of the Ukkonen method. In essence, the dis-
tance between the sequences (threshold) is converted into the number of cells
away from the diagonal that are required to ensure a correct result (barrier)—
minimally the difference in lengths of the input sequences. The alignment pro-
ceeds, limited by these barriers (Fig. 8.7). If the cost of the resulting alignment

-barrier

0 n-m

n-m+barrier

n = |Y|

m = |X|

cost00

costnm

X

Y

Figure 8.7: Ukkonen barriers in cost matrix to align sequences X and Y as in
Algorithm 8.3.
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Algorithm 8.3: PairwiseSequenceAlignmentUkkonen
Data: Input strings X and Y of lengths |X| and |Y| with |Y| ≥ |X|
Data: Element distance matrix σ of pairwise substitution costs between

all elements in Σ and λ (indel)
Result: The minimum pairwise alignment cost.
threshold ← (|Y| − |X| + 1) · σindel;
barrier ← 


(
1
2

(
threshold

σindel
− (|Y| − |X|)

))
�;

while threshold ≥ cost [|X|] [|Y|] do
for i = 0 to |X| do

for j = max (0, i − barrier) to min (i + barrier + (|Y| − |X|) , |Y|)
do ·

· As in Algorithm 8.1
·

end
end
if threshold ≤ cost [|X|] [|Y|] then

threshold ← 2 · threshold;
barrier ← 


(
1
2

(
threshold

σindel
− (|Y| − |X|)

))
�;

end
end
return cost [|X|] [|Y|]

is greater than or equal to the threshold value, then the barriers limited the
alignment and optimality is not assured. If this occurs, the threshold is doubled
and the procedure repeated until the threshold is greater than the cost of the
alignment. The time complexity of this Ukkonen’s algorithm is O(nd), where d
is the distance between the sequences. For related sequences, this can be a huge
speed-up.

8.4.3 Other Indel Weights

The Needleman–Wunsch algorithm operates on indel functions where the cost of
a gap (wk) is a linear function of its length (k), wk = kw1 (w1 is the cost of a gap
of length 1). Other, more complex indel cost functions have been proposed and
analyzed, usually resulting in greater time complexity as the cost for additional
flexibility or realism.

Non-Linear

Waterman et al. (1976) examined a large number of possible sequence metrics
and described algorithms for wk ≤ kw1 with time complexity O(n3). The reason
for this additional complexity has to do with the non-independent nature of
the indels. Briefly, in addition to the cost matrix of the basic algorithm, two
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additional matrices are required (P and Q) that track the cost of indels of
varying length (Eq. 8.4). These matrices are recursed through repeatedly for
each element in cost, greatly adding to execution time.

costi,j = min
(
costi−1,j−1 + σXi,Yj

, Pi,j , Qi,j

)
(8.4)

Pi,j = min
1≤k≤i

(costi−k,j + wk)

Qi,j = min
1≤k≤j

(costi,j−k + wk)

Affine

A special case of wk ≤ kw1, where gaps have the cost function wk = uk + v
(u, v ≥ 0), is often referred to as an “affine” function. Gotoh (1982) was able
to show that for this restricted situation, multiple traversals through P and Q
were not required (Eq. 8.5), yielding a time complexity of O(n2) (but with a
constant factor of 3 over atomic indels).

costi,j = min
(
costi−1,j−1 + σXi,Yj

, P ′
i,j , Q

′
i,j

)
(8.5)

P ′
i,j = min

(
costi−k,j + w1, P

′
i−1,j + u

)
Q′

i,j = min
(
costi,j−k + w1, Q

′
i,j−1 + u

)

8.5 Multiple Sequence Alignment

Other than techniques that operate on pairwise distances (Chapter 9), most
sequence-based tree reconstruction methods begin with a multiple sequence
alignment (MSA). This is not necessary (Sections 10.6 and 11.5), but is often the
case. There are potentially huge numbers of MSAs (for m sequences of lengths
n1, . . . , nm; Eq. 8.6; Table 8.1; Slowinski, 1998),

f(n1, . . . , nm) =

∑m
k=1 nk∑

N=max(n1,...,nm)

N∑
i=0

(−1)i

(
N

i

) m∏
j=1

(
N − i

N − nj − i

)
(8.6)

and the problems involved in constructing them are legion and non-obvious.

m 2 3 4 5
n = 1 3 13 75 541

2 13 409 23917 2244361
3 63 16081 10681263 14638756721
4 321 699121 5552351121 117629959485121
5 1683 32193253 3147728203035 1.05 × 1018

10 8097453 9850349744182729 3.32 × 1026 1.35 × 1038

Table 8.1: Number of multiple sequence alignments for very small data sets
(m sequences of length n).
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The first problem to present itself is how to assess the quality of a given MSA,
with each option implying different meaning to the MSA. There are three basic
approaches: “sum-of-pairs” (SP), “consensus,” and “tree alignment” (Gusfield,
1997). Each of these criteria assumes metricity in sequence distances (stochastic
model-based versions of these optimality criteria are discussed in Chapters 11
and 12).

David Sankoff

SP–alignment (Carrillo and Lipman, 1988) seeks to minimize the pairwise
distance (substitutions and indels, potentially weighted) summed over all se-
quence pairs in the MSA. This distance is calculated based on the multiply
aligned sequences (as opposed to their individual pairwise alignments). To create
a multiple alignment, pairwise alignment can be generalized in a straightforward
fashion to align more than two sequences. The matrix would have an axis for each
sequence (k sequences would require k dimensions), and there would be 2k−1

paths to each cell representing all the possible combinations of gaps and sub-
stitutions possible (seven in the case of three sequences). These two factors add
enormously to the calculations (O

(
nk2k−1

)
), making multidimensional align-

ments unattainable for real data sets. Furthermore, Wang and Jiang (1994) have

Lusheng Wang

shown that the exact SP–problem is NP–complete, so solutions for non-trivial
data sets are unlikely ever to be identified. Gusfield (1997) defined a method,
lifted alignment, with a guaranteed bound of not more than twice the optimal
SP–score (assuming metric element distance). MUSCLE (Edgar, 2004b,a) and
SAGA (Notredame and Higgins, 1996) are SP–alignment programs.

Consensus alignment methods seek to create an MSA such that the summed
distances between the aligned sequences and a consensus sequence is minimized.
This sequence can be a central sequence in a “star” (a Steiner sequence) or
one created by the most frequent element in each aligned position (plurality
character). Again, assuming element metricity, a guaranteed bound of a factor
of two can be found for consensus as for SP, and by the same “lifting” procedure
(Gusfield, 1997). Consensus MSAs can also be scored using the Shannon entropy
measure (Shannon, 1950). The score (sMSA) is based on treating each multiply
aligned column as independent and calculating the logarithm of the probability
of the number of elements in the column calculated from their frequency in each
aligned position (Eq. 8.7 with nij of element j in aligned position i).

pri =
elements∏

j=1

freqnij

ij (8.7)

sMSA = −
columns∑

i=1

elements∑
j=1

nij log prij

Tree alignment (Sankoff, 1975) places sequences to be aligned on the leaves of
a tree, seeking to minimize the pairwise distances along the edges. This tree is
the phylogenetic tree sought in systematic analysis, hence is the ideal form of
MSA in systematics.
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8.5.1 The Tree Alignment Problem

The problem of determining the minimum cost of a tree (T = (V, E)) for a set of
terminal (leaf, L ⊆ V) sequences and a specified distance function (d) is known
as the Tree Alignment Problem (TAP; Sankoff, 1975). The key operation is
the construction of vertex sequences (medians) such that the pairwise distance
between vertices (V) along the edges (E) is minimal (Fig. 8.8). If the distance
is Hamming (hence sequences equal in length), the calculation of this cost is
straightforward. If, however, the set of allowed transformations includes indels,
the optimization (i.e. finding the minimum cost) is NP–hard (Wang and Jiang,
1994) and cannot (unless P = NP) be guaranteed. This is the situation we are

Tao Jiang

faced with in molecular sequence data, and the problem in which we are most
interested. The combinatorial complexity of TAP comes from the exponential
number of possible sequence medians at the internal vertices. There may be,
in fact, an exponential number of minimum cost solutions. MALIGN (Wheeler
and Gladstein, 1998) and POY (Wheeler et al., 2005; Varón et al., 2008, 2010)
are Tree–alignment programs.

8.5.2 Trees and Alignment

The TAP was originally described in terms of identifying the alignment, given
a tree, that is of minimal cost. Each median assignment, however, has an as-
sociated alignment (“Implied Alignment”; Wheeler, 2003a), hence there are,
potentially, an exponential number of minimum cost alignments for any given
tree. Even a tiny data set (for 10 sequences of length 5)—an unrealistically

ACT ACGTT

TTGT GCT

ACT

GCT

ACGT

TCGT

ACGTT

AC-T-

GC-T-

TTGT-

ACGTT

AC--T

GC--T

TTG-T

Figure 8.8: Example tree alignment. Either set of medians (ACGT, TCGT;
ACT, GCT) yields a cost of 6 transformations (indels and substitutions). The
two alignments also result in a tree cost of 6.
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small and well-behaved case—presents 1.35 × 1038 possible homology schemes
(Slowinski, 1998). This problem, for a single cladogram, is as hard as the more
familiar tree search problem itself.

8.5.3 Exact Solutions

Sankoff and Cedergren (1983) proposed a recursive, exact solution to TAP with
O(nk) (k sequences of length n) time complexity based on the recursion in Equa-
tion 8.8. Clearly, this was not likely to be useful for non-trivial data sets given
the k-dimensional sequence alignment. Wheeler (2003c) proposed another exact
solution, also using dynamic programming. In this case, the time complexity
is exponential in sequence length (O(k · 42n)) due to the explicit enumeration
of possible medians. Both methods could be improved by a branch-and-bound
type procedure, perhaps based on some generalized form of Ukkonen (1985).

di,j,...,k = min
δ1+...+δn �=0

(
di−δ1,...,k−δN

+ min
x1,...,xm

× (cost of 2n vertex state assignments)

)
(8.8)

where δi = 0 if gap, 1 otherwise

8.5.4 Polynomial Time Approximate Schemes

Of theoretical use, but almost no practical utility due to the large time complex-
ity, Polynomial Time Approximate Schemes (PTAS) are methods with known
bounded behavior for TAP (Wang et al., 1996; Wang and Gusfield, 1997; Wang
et al., 2000). These methods use a combination of “lifted” alignment (Sect.
10.9.3) and exact O(nk) solutions to create algorithms that achieve provable
boundedness, at an increasing cost of time complexity. Currently (Wang et al.,
2000), the best procedure is O(kdn5) (for k sequences of length n on a tree
with depth d) for a bound of 1.5 over the optimal solution. Clearly, an O(n5)
procedure will not be useful for real data sets of thousands of nucleotides, but
this does provide a benchmark to evaluate the bounds and time complexity of
other heuristic procedures.

8.5.5 Heuristic Multiple Sequence Alignment

Current heuristic procedures are similar in that many attempt to render multiple
alignment tractable by breaking down simultaneous n–dimensional alignments
into a series of manageable pairwise alignments related by a “guide tree” (in
the parlance of Feng and Doolittle, 1987). These differ in the techniques used to
generate the guide tree and conduct the pairwise alignments at the guide tree
nodes (“profile alignment”). Furthermore, the procedures may or may not be
explicitly linked to optimality criteria. Below several commonly (and some less
commonly) used methods are discussed. This discussion is by no means exhaus-
tive and restricts itself to the algorithmic procedures as opposed to execution
time efficiency. More complete lists can be found at http://pbil.univ-lyon1
.fr/alignment.html and additional comparisons in Phillips et al. (2000).
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Additionally, methods that deal with simultaneous tree reconstruction and
alignment (e.g. POY, Wheeler, 1996; Varón et al., 2008, Hein et al., 2003;
BAli-Phy, Redelings and Suchard, 2005; Suchard and Redelings, 2006) will be
discussed in other sections (Chapters 10, 11 and 12). Hidden Markov Model
methods fall outside the metric tree-alignment paradigm and will be discussed
with other likelihood and Bayesian techniques (Chapters 11 and 12).

8.5.6 Implementations

Common Operations

Most, but not all, MSA implementations share core components. These include
guide trees, progressive alignment, profile alignment, refinement, and optimality
(scoring) criteria. These components may vary in detail, but most MSA methods
can be constructed from combinations of these fundamental operations (Fig. 8.9).

Guide Trees are directed graphs that specify an order of pairwise alignments
to build up a multiple alignment. Each vertex on the guide tree signifies the

costT

x

x

x

x

x

x x

xx

x

S0 S1 S2 S3 S4 S5

P0

P1

P2

P3

P4

Figure 8.9: Common components of heuristic MSA implementations. Observed
sequences (S0, . . . , S5) are placed as leaves of a guide tree T and profile align-
ments (P0, . . . , P4) created at each non-leaf vertex as the process moves pro-
gressively down the tree (leaves to root, post-order) resulting in a full MSA at
P4 with cost costT . Each edge may be revisited in a refinement step by deleting
each edge in turn (“x”) and recreating it based on pairwise alignment of its two
connected vertices.
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alignment of the two child vertex sequences (usually O(n2) or so). The tree
is traversed post-order (leaves to root) adding up alignments until the root is
reached with the complete MSA. Since the guide tree determines alignment
order, and there are so many possibilities (Eq. 2.1), the choice of guide tree is
an important aspect of MSA implementation. Usually, an initial guide tree is
constructed from pairwise distances via Unweighted Pair Group Method using
arithmetic Averages (UPGMA) (Sokal and Michener, 1958), Fitch–Margoliash
(Fitch and Margoliash, 1967), Neighbor-Joining (Saitou and Nei, 1987), or an
other distance-based technique (Chapter 9), since distances can be based on
pairwise alignments. The initial guide tree may be revised based on an initial
MSA with this second tree constructed via the same distance-based techniques.

Progressive Alignment is the alignment process based on the guide tree (Feng
and Doolittle, 1987). As mentioned above, each vertex on the guide tree requires
a pairwise alignment, hence the overall complexity for m sequences is O(mn2)
for each MSA. For vertices whose descendants are not exclusively leaves, align-
ment techniques are required to align sequences to alignments and alignments to
other alignments. In order for the heuristic to be useful, these must be roughly
quadratic, hence sub-alignments are aligned by the same basic pairwise tech-
nique, but with the entire aligned column acting as the single element in stan-
dard procedures. This may be done on partial alignments, or “profiles,” which
are MSAs reduced to single strings (Fig. 8.10).

AAT AATA

AAT-
AATA

CAA

CAA--
-AAT-
-AATA

GGGTT AGGGT

-GGGTT
AGGGT-

-CAA--
--AAT-
--AATA
-GGGTT
AGGGT-

CCGGTT

-CAA--
--AAT-
--AATA
-GGGTT
AGGGT-
CCGGTT

AATĀ

C̄A AT̄Ā

ĀGGGTT̄

M̄SRRTW¯ ¯ ¯

M̄SRRTW¯ ¯ ¯

Figure 8.10: Progressive alignment of Feng and Doolittle (1987) where pairwise
alignments are performed via post-order tree traversal at non-leaf vertices to
create partial MSAs following “once a gap, always a gap” (left of vertices) or
profile sequences (right of vertices) of IUPAC symbols for each column with a
“bar” if a gap is also present in that aligned column.

.
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Profile alignment. Sequence profiles are used during progressive alignment
to allow the alignment of two partial MSAs (with l and m sequences of length
n) or a sequence and an MSA in quadratic rather than O(nlm) time.

Refinement improves the initial MSA through realignment along guide tree
edges, recombining candidate alignments, or modifying the guide tree itself. Usu-
ally, refinement proceeds until no improvement (by optimality score) can be found.

Optimality Criterion, or score, is the objective function used to measure MSA
quality. As mentioned above, frequently encountered measures are sum-of-pairs
(SP), Shannon entropy, and phylogenetic tree cost.

MSA Software

Below are described a few (there are a large number) MSA implementations.
This list is not intended to be exhaustive, but illustrative (Fig. 8.11).

CLUSTAL (Higgins and Sharp, 1988; Thompson et al., 1994) creates a sin-
gle multiple alignment based on a single guide tree. A Neighbor-Joining (NJ)
tree (Saitou and Nei, 1987) is calculated from the pairwise alignments. Internal
profile sequences are consensus sequences of their descendent partial alignments.
When profiles are aligned at internal vertices, the average distance (potentially
weighted) between elements in each profile is used in pairwise alignment. There
is no optimality value associated with a CLUSTAL alignment (CLUSTAL 2.0,
however, has additional features).

TREEALIGN (Hein, 1989a,b) also produces a single multiple alignment
based on a single guide tree, but by keeping all potential sequence medians
in an “alignment graph.” The method is potentially very strong in solving the
Tree Alignment Problem, but due to the very large number of medians for real
data sets, does not scale beyond small collections of relatively short sequences.

MALIGN (Wheeler and Gladstein, 1998) uses multiple guide trees to gener-
ate a diversity of multiple sequence alignments, choosing the “best” on the basis
of the parsimony score (indels included) of the most parsimonious cladogram
derived from that alignment. Hence, MALIGN is a Tree Alignment program.
Guide trees are “searched” (using standard tree refinement procedures such as
branch-swapping and randomization) and multiple alignments created for each
candidate guide tree. Partial multiple alignments are pairwise aligned at guide
tree vertices based on the union of elements in aligned columns as profiles. Each
alignment is used as the basis for a heuristic cladogram search (indels weighted
and included). The cost of the most parsimonious cladogram is attached to
the alignment as its optimality score. MALIGN will output multiple multiple-
alignments if they are equally optimal.

POY (Wheeler et al., 2005; Varón et al., 2008, 2010) explicitly attempts
to solve the Tree Alignment Problem. As such it is not an alignment program
per se, but complete phylogenetic tree search software. POY can output an
Implied Alignment (Wheeler, 2003a) for a given tree or trees.

SAGA (Notredame and Higgins, 1996) takes a different approach, eschew-
ing progressive alignment and guide trees altogether in favor of a Genetical-
Algorithm (Holland, 1975) approach to directly improve the MSA SP–score.
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SAGA generates an initial set (generation) of MSAs via a random gap padding
process. These MSAs are evaluated via SP, and undergo generations of breeding,
mutation, recombination, and selection. This cycle is continued until the MSA
population stabilizes.

MUSCLE (Edgar, 2004b,a) seeks to minimize the SP–score, and adds guide
tree edge (i.e. iterative) refinement to the basic progressive alignment paradigm.
Like CLUSTAL, MUSCLE creates an initial guide tree, but uses a rapid UP-
GMA or NJ approach. Progressive alignment is then employed using the log-
expectation (LE) score. This initial MSA is used to create a second guide tree
again with UPGMA or NJ but using Kimura (1983) distance, and a second MSA
via the LE score and progressive alignment. At this point, MUSCLE performs
an edge-based refinement. In each step, an edge is removed from the guide tree
following the procedure of Hirosawa et al. (1995), and profiles created at the
incident vertices as if they were roots of two separate trees. These are aligned,
calculating the SP–score. The process is repeated until no further improvements
are found.

MAFFT (Katoh et al., 2002) operates in much the same way that MUSCLE
does. MAFFT differs in using a Fourier transform method to both identify com-
mon sequence motifs (reducing pairwise sequence alignment time complexity)
and for profile and pairwise alignments. MAFFT uses NJ to create guide trees.

Collection of
Sequences

Pairwise
Distances

Initial Guide Tree

New Guide Tree
Initial MSA

Progressive Alignment

New MSA

Pairwise
Distances

CLUSTAL
MALIGN

Progressive Alignment

Edge Refinement
Improve SP Score

Tree Refinement
Improve Tree Score

New MSA

MAFFT

MUSCLE

Alignment Refinement
Improve SP Score

MSA0 MSA1 MSAn

Pairing Mutation Cross over

Selection

SAGA

Figure 8.11: Procedural relationships among heuristic MSA implementations.
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MAFFT also goes through two rounds of initial guide tree and MSA generation
via progressive alignment, followed by edge refinement (Hirosawa et al., 1995)
to improve a weighted SP–score.

DIALIGN (Morgenstern et al., 1996; Morgenstern, 1999) differs from other
methods in looking for alignments of contiguous gap-free fragments of DNA
that may have mismatches. This contrasts with the approach that attempts to
globally align each position in a sequence. No gap penalty is employed. The
idea behind this method is to create complete alignments by stitching together
locally similar sequences that may be separated by highly divergent regions. An
optimal alignment is one that maximizes the weighted sum of the matches in
the smaller segments. Alignments can be compared on this basis. This method
makes no reference to cladograms or trees whatsoever.

COFFEE (Notredame et al., 1998, 2000) behaves as a “wrapper” or meta-
algorithm, using a genetic algorithm to optimize multiple alignments based on
consistency with the pairwise alignments of the same sequences. Any pairwise
alignment procedure can be used under the COFFEE optimality function.

8.5.7 Structural Alignment

Many of the most common molecular sequences submitted to MSA are those of
structural RNA such as transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs).
These sequences are not translated into protein and interact as mature molecules
in protein synthesis. These interactions depend on higher order structure cre-
ated by the internal nucleotide pairing of the single-stranded RNA. At its most
simple level, RNA secondary structure is centered around single-stranded “loop”
regions and double-stranded “stem” or “helix” regions (Fig. 8.12). For all but the
smallest RNAs, secondary structures are reconstructed computationally-based
on the minimization of the combined free energy of stem and loop regions. As
with the primary sequence data, the secondary structures provide historical in-
formation and can inform alignment and tree reconstruction. Sankoff (1985) pre-
sented an algorithm to simultaneously optimize the MSA, sequence medians, and
sequence folding energy. These three problems can be solved by dynamic pro-
gramming and the Sankoff algorithm does so in O(n3m) time and O(n2m) space
for m sequences of length n 1. The solution is based on an enhanced optimality
criterion for the tree alignment based on the structural folding energy. The cost
of the alignment, CA, is equal to the traditional parsimony cost summed over
edge distances, DT , added to the energy of the median sequence structures, E(s).
In this way, there is an explicit trade-off between pure tree alignment cost and
the energy of the reconstructed structures—a true joint solution. There are limits
to this procedure, the most prominent of which is that the structures need to be
broadly similar. This is to allow for the correspondences and indels of structural
elements (subsequences). Additionally, some forms of ‘pseudo-knotting’ (see
below) are forbidden and these may occur in some RNA structures.

1This is not to be confused with the informal “by-eye” manual alignment procedures said
to be structural. These are clearly ad hoc in nature (e.g. Kjer, 2004).
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Figure 8.12: Secondary structure model for Thermus thermophilus. http://
rna.ucsc.edu/rnacenter/ribosome images.html. See Plate 8.12 for the color
figure.

Sankoff Algorithm

The Sankoff (1985) algorithm is based on three recursions: alignment, folding,
and median sequence reconstruction. These are combined to solve the joint
problem simultaneously.
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• Alignment—The core sequence alignment step in this context is slightly
generalized from that discussed above (Eq. 8.3) in that the cost is defined
for subsequences. For sequences a = {ai, . . . , am} and a = {b1, . . . , bn} and
1 ≤ i ≤ j ≤ m and 1 ≤ h ≤ k ≤ n, D(i, j;h, k) is the minimum alignment
cost between partial sequences ai, . . . , aj and bh, . . . , bk. D can be calcu-
lated via the recursion relationships:

D(i, j;h, k) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(i, j;h, k − 1) + y

D(i, j − 1;h, k − 1) + x if aj �= bk

D(i, j − 1;h, k − 1) if aj = bk

D(i, j − 1;h, k) + y

D(i + 1, j;h, k) + y

D(i + 1, j;h + 1, k) + x if ai �= bh

D(i + 1, j;h + 1, k) if ai = bh

D(i, j;h + 1, k) + y

(8.9)

with base indel cost y and substitution cost x, and initial conditions:

D(i, i;h, h) =
{

x if ai �= bh

0 if ai = bh
(8.10)

This will have a time complexity of O(m2n2) or approximately O(n4)
when m ∼ n. In previous sections, we dealt with the special case of whole
sequences or D(1,m; 1, n), which then has quadratic time complexity only
requiring the upper four terms in Equation 8.9.

• Folding—The central idea behind secondary structure reconstruction is the
minimization of the Gibbs Free Energy of the structure. This is determined
by the internal pairing of nucleotides and the geometry of loop and stem
regions. The structure S of a sequence a is defined as a set of pairs (i, j) that
creates bonds between the nucleotides with an experimentally determined
energy e(s). These pairs must satisfy the “knot constraint” where if i ≤ i′ ≤
j ≤ j′, (i, j) and (i′, j′) cannot be distinct elements of S (Fig. 8.13).

i

i' j

j'

Figure 8.13: “Knot” in secondary structure between structure pairs (i, j) and
(i′, j′) where i ≤ i′ ≤ j ≤ j′.
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i j

i'

j'

r

r'

0 n

i'' j''

Figure 8.14: r is accessible from (i, j) while r′ is not. The k-loop closed by
(i, j) would be all z where i < z < i′ and j′ < z < j. Those in position z′ where
0 ≤ z′ < i′′ and j′′ < z′ ≤ n are external.

Several additional terms need to be defined before setting up the folding
recursion: accessible, k-loop, and external (Fig. 8.14). Given (i, j) ∈ S and
i < r < j, if there is no (i′, j′) ∈ S where i < i′ < r < j′ < j then r is ac-
cessible from (i, j). The pair (p, q) is accessible if both p and q are. The
k-loop closed by (i, j) comprises the u ≥ 0 unpaired positions and the k −
1 ≥ 0 accessible pairs. The k-loops correspond to hairpins (k = 1), bulges,
and interior loops (k = 2, u > 0), stacked pairs (k = 2, u = 0), and multiple
loops (k ≥ 3).

The free energy of a given loop can be approximated by the function

e(s) = A + (k − 1)P + uQ (8.11)

with the experimentally determined A, P, Q and structural u, k from above.

These are the components of the recurrence relationship to determine
F(i, j), the minimum free energy for the secondary structure S on the partial
sequence i, . . . , j.

F(i, j) = min
{

C(i, j)
mini≤h<j{F(i, h) + F(h + 1, j)} (8.12)

C(i, j) = min

⎧⎪⎪⎨
⎪⎪⎩

e(s), hairpin closed by (i, j)
min{e(s) + C(p, q)}, 2-loop closed by (i, j)

and (p, q) accessible
mini<h<j−1{G(i + 1, h) + G(h + 1, j − 1) + A}

G(i, j) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C(i, j) + P

mini≤h<jmin

⎧⎪⎨
⎪⎩

G(i, h) + (j − h)Q
G(i, h) + G(h + 1, j)
(h − i + 1)Q + G(h + 1, j)
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These have initial conditions F(i, i) = 0, C(i, i) = ∞, and G(i, i) = ∞. The
minimum free energy of the entire structure would then be F(1, n).

• Medians—Median sequences (= hypothetical ancestors or HTUs) are con-
structed to be the lowest cost (= most parsimonious) assignments given
a tree and the alignment as in Section 8.5.1. The alignment cost D from
above (Eq. 8.10) is generalized to be the cost over the edges of the phylo-
genetic tree between vertices (Eq. 8.13).

D
−−→
(i, j) = minnot∀j′

r=jr
{D−−−→

(i′, j′) + γ
−−−−−−−→
(aj(j − j′))} (8.13)

In this situation, the medians are derived from a fixed tree and alignment,
hence can be determined in O(nm) for n sequences of length m.

In combining the three above elements, there are two points worth keeping
in mind. The first is that the indel and match/substitution costs of the align-
ment operations need to be set in such a way to be comparable with the free
energy values calculated for the structure. Only in this way can these values be
summed to determine the overall optimality value. The second is that the sec-
ondary structures are required to maintain a great deal of higher-level identity.
Individual loops must be inserted or deleted in toto, and loops may only corre-
spond with individual loops in other sequences. A single loop in one sequence
cannot correspond to multiple sequences in another.

When we combine these elements, we are presented with a rather complex
recursion (Eq. 8.14) for F

−−→
(i, j), the minimum cost alignment and secondary

structure for N leaf sequences on a tree.

F
−−→
(i, j) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
−−→
(i, j) + γ(a(1)

i1
, . . . , a

(N)
iN

) + γ(a(1)
j1

, . . . , a
(N)
jN

)

minir≤hr<jr
{F−−−→(i, h) + F

−−−−−−→
(h + 1, j)}

D
−−→
(i, j)

(8.14)

C
−−→
(i, j) = min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
e(sr) + D

−−−−−−−−→
(i + 1, j − 1)

minnot∀(pr,qr)=(ir,jr)

×{∑ e(sr) + C(p, q) + D
−−−−−−→
(i + 1, p) + D

−−−−−−→
(q, j − 1)}

minir<hr<jr−1{G
−−−−−−→
(i + 1, h) + G

−−−−−−−−−→
(h + 1, j − 1) + NA}

G
−−→
(i, j) = min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C(i, j) + NP + γ(a(1)
i1

, . . . , a
(N)
iN

) + γ(a(1)
j1

, . . . , a
(N)
jN

)

minir≤hr<jr
min

⎧⎪⎪⎨
⎪⎪⎩

G
−−−→
(i, h) +

∑
(jr − hr)Q + D

−−−−−−→
(h + 1, j)

G
−−−→
(i, h) +

−−−−−−−→
G(h + 1, j)∑

(hr − ir + 1)Q + G
−−−−−−→
(h + 1, j) + D

−−−→
(i, h)
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These have initial conditions F
−−→
(i, i) = 0, C

−−→
(i, i) = ∞, and G

−−→
(i, i) = ∞ if any

ir = jr.
The overall time complexity of the Sankoff procedure is high—O(n6) for two

sequences of length n, and the MSA case even more daunting, with exponential
dependency on the number of taxa (N), O(n3N ).

Implementations

The basic approach of most implementations of structural alignment is the
Sankoff algorithm. In order to make the problem tractable, however, simplifying
restrictions are made. Several of these approaches are compared in Gardner and
Giegerich (2004).

FOLDALIGN (Gorodkin et al., 1997) reduces the pairwise alignment com-
plexity by not allowing branching structures. In doing so, the time complexity
of aligning two sequences is reduced by a quadratic factor to O(n4). The lack
of branching in the structures effectively limits the operation to relatively short
sequences. A further reduction in the exponential factor comes from the use of
progressive alignment (for N sequences, O(N)) after determining the all-pairs
costs (O(N2)). The result is a procedure akin to CLUSTAL, but with a struc-
tural component.

DYNALIGN (Mathews and Turner, 2002) is limited to pairwise alignment,
but is free of the structural restrictions in FOLDALIGN. DYNALIGN limits
the distance between aligned nucleotide positions to m, thereby reducing the
pairwise Sankoff time complexity from O(n6) to O(m3n3), with m3 as a constant
factor.

PMCOMP/PMMULTI (Hofacker et al., 2004) uses a probabilistic pairing
model to calculate initial pairwise alignments and then uses progressive align-
ment to create the full multiple alignment. In the progressive alignment step,
the same restriction on distances between subsequence alignments (D(i, j;h, k)
above) used in DYNALIGN is applied, reducing time complexity from O(n6) to
O(n4). A further factor of N sequences is added for the progressive step, hence,
the overall time complexity is O(n4N).

RNAcast (Reeder and Giegerich, 2005) is based on a “consensus shape”
approach where the reconstructed structures are limited to those common to a
body of sequences. This reduces the space of possible structures and the specific
structures of sequences are optimized within this space. RNAcast does not align
the input sequences, but creates a set of consensus structural elements.

RNASalsa (Stocsits et al., 2009) is a meta-algorithm implementing a refine-
ment procedure based on input alignments and structural models. An aligned set
of sequences are input with structural information demarcated for one of the
input sequences. RNASalsa first generalizes the single input structure to the
other sequences in the input set based on the input alignment. Second, refined
structural reconstructions are performed on the input sequences (using the same
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probability structure codes in PMCOMP above), given the constraints based on
the generalized input structure. The third and final step progressively aligns the
sequences based on the refined structural models. Given the reliance on input
alignment and structural information, the main time complexity factors are in
the structural refinements (O(n4) for n nucleotides) and progressive alignment
(O(N) for N taxa).

Comparisons−−What is a Good Alignment?

There are myriad comparisons and comparison methodologies that have been
published (e.g. Notredame, 2002; Batzoglou, 2005; Wheeler, 2007a) and I have
no desire to create another one here. Comparisons center on two sorts of analy-
ses: 1) whether one procedure or another is more similar to a “real” or simulated
alignment (Ogden and Rosenberg, 2007), and 2) whether competing methods
optimize an objective function (such as SP or tree-length) more effectively or in
a more timely fashion (Boujenfa et al., 2008; Wheeler and Giribet, 2009).

It seems most unlikely that we will ever encounter a “real” alignment in na-
ture, hence comparison of procedures that are at least nominally optimization-
based to simulated, “known” alignment seems fruitless, but see Ogden and
Rosenberg (2007) for a different view. Even comparison on the basis of objective
functions can be difficult, since the various implementations do not attempt to
optimize precisely the same functions.

As far as systematic analysis is concerned, the central goal is to identify
optimal trees. Those methods that yield better solutions to this problem, no
matter what optimality criterion one chooses, are to be favored. Most likely,
the best way a method can do this effectively is to directly attempt to optimize
tree costs—the Tree Alignment Problem itself. It is worth remembering that
even for a single tree, there may be an exponential number of equally costly
alignments. This reality is rarely explored, and its impact on the potentially
equally large number of tree solutions is largely unexamined. Multiple alignment
methods offer one set of heuristics to this problem; in later sections we will
encounter others.

8.6 Exercises

1. Align the two sequences “ACGTTA” and “TCTA” by hand using the cost
scenarios where all transformations are equally costly.

2. What is the best method to choose a MSA? Should this be optimality-
based?

3. Choose a small data set and run it through several MSA programs. How
do they differ? Change indel and gap extension parameters. How do the
alignments change?
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4. Are MSA columns independent?

5. What are some implications for phylogenetic analysis of affine indel
models?

6. Is hand (“by-eye”) alignment adequate for phylogenetic analysis?

7. Are there any cases where it would be advisable/defensible to discard
sequence data?



Part III

Optimality Criteria



Chapter 9

Optimality
Criteria−Distance

Distance analysis, as opposed to character-based analysis, reconstructs phylo-
genetic relationships based on the pairwise overall distances between taxa. This
approach has a long history, beginning with the first computational approaches
to systematics and the early use of molecular biological data to create phylo-
genetic trees. This form of phylogenetic analysis is characterized by fast algo-
rithms (generally) and statistically motivated statements about tree topology,
edge weights, and correctness. Distances are highly amenable to simulation tests
as well. For these reasons, they have been very popular in mathematical treat-
ments. Unfortunately, distance analysis is also characterized by a necessary loss
of information (i.e. multiple character data sets generating identical dissimilar-
ity matrices) and departure from optimizing a set of specific character changes.
For these reasons, distances have not been as popular in empirical analyses.

9.1 Why Distance?

Phenetic techniques are inherently distance-based (whether similarity or dis-
similarity) given that they are constructed from overall similarity as opposed to
specific primitive or derived character change. The entire foundation of phenetic
classification rests on distance quantified similarity (Chapter 1). Michener and
Sokal (1957) defined their initial clustering procedures on a data set of soli-
tary bees (Megachilidae) comprising 97 taxa and 122 characters. These resulted
in 11,834 individual observations, which were converted into 4656 pairwise dis-
tances (actually similarities in their example) and analyzed on that basis. These
data did not require distance analysis; it was thrust upon them. Other forms
of data, especially that from molecular sequences such as DNA or protein, have
been transformed and treated this way.

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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Several forms of data are observed as distances. Although not practiced
much today, both immunological distances (Micro-complement fixation) (Sarich
and Wilson, 1967) and DNA:DNA hybridization (Sibley and Ahlquist, 1984,
1990) were extremely popular in the 1970s and 1980s. These data expressed
dissimilarity directly and required appropriate analytical tools (also based on
dissimilarity) to erect phylogenetic hypotheses.

9.1.1 Benefits

The most commonly used distance methods are, in general, much faster than
character-based methods (such as parsimony or likelihood). Least-squared meth-
ods (such as Fitch and Margoliash (FM), 1967) have a time complexity of at least
O(n4) for n taxa, and Neighbor-Joining (Saitou and Nei, 1987) O(n3). These
may seem time consuming but, compared to NP–hard tree search, these time
complexities are quite manageable. Yet, this comes not from a factor unique to
distance data themselves (general distance tree optimization is NP–hard—see
below) but from the application of methodologies (such as Neighbor-Joining)
that are low complexity heuristics of the full combinatorial problem.

A further benefit (although not all would agree) is the ability to adjust or
“correct” observed dissimilarities for multiple hits via stochastic character (usu-
ally DNA) transformation models (e.g. Nei and Li, 1979)—although likelihood
methods possess this ability as well. The objective of these model-based transfor-
mations is to estimate the “true” number of changes between leaf taxa. Inherent
in such models are ideas of variance and expectation that can be used to make
statistical statements of asymptotic behavior and expected data requirements
for correct resolution of trees (Erdös et al., 1997).

Other methods establish the validity of edges (branches) of trees through
analysis of their implied quartets (four-taxon statements), leading to procedures
with high probability (given a correct distance model) of returning the “correct”
tree (Buneman, 1971).

9.1.2 Drawbacks

There are three main drawbacks to distance analysis: the loss of information,
the treatment of heterogeneous data is unclear, and the absence of optimized
specific character transformation events.

Clearly, if sequences of thousands of nucleotides are recoded as simple dis-
tances, considerable information is lost (e.g. Penny, 1982). This is an obvious
point, usually countered by the vision of nucleotides as individual random sam-
ples drawn from a universe of possibilities defined by the parameters of the system.
The concept of nucleotides as historically unique events clashes with this view.

Many, if not most, modern analyses combine data from different sources
(Kluge, 1989). Although it might seem reasonable to create distances among ho-
mogeneous character types, how would one combine 10 nucleotide changes, three
gene rearrangements, a shift in development, and a change in body tagmosis into
a single dissimilarity value (even if one could somehow normalize the numbers)?
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Finally, if we are interested in specific transformation events, distance-based
trees can only serve as a heuristic for the global solution to the event based (i.e.
character) scenario. The global solution to optimal edge transformations cannot
be created from a series of potentially contradictory pairwise statements. Only
direct, global analysis of character data can achieve this goal.

9.2 Distance Functions

Raw distance values can be transformed via evolutionary models to attempt to
account for hidden evolutionary change. A simple example is the back muta-
tion (multiple hits) from A → C → A. Although two changes have occurred,
the observed distance would be 0. The goal of the transformation is to ac-
count for the actual number of changes (observed and unobserved) between
the sequences. Such a distance would be additive (see below) and would allow
correct tree reconstruction with high probability. This is illustrated by a sim-
ple homogeneous evolutionary model—Jukes–Cantor (Jukes and Cantor, 1969).
After some time interval, the expected distance between two DNA sequences
will hit its maximum at 0.75 (1 − [

4 · ( 1
4 )2

]
). After that point, even with con-

tinuous change, there will be no observable difference in overall dissimilarity.
The Jukes–Cantor model would correct for this and extrapolate to higher levels
of dissimilarity, hopefully restoring additivity to the distance values. There are
many such models, based on a variety of assumptions of sequence evolution (up
to General-Time-Reversible in complexity, Lanave et al., 1984).

9.2.1 Metricity

One immediate issue of note is that once stochastic models are used to trans-
form observed distances, these distances are no longer metric (Sect. 5.4). In
order to account for multiple hits and back mutations, there must be a non-
zero probability that two identical sequences have undergone change. Hence,
the identity condition will be violated (d(i, i) > 0, if μt > 0). Furthermore, the
triangle inequality itself may be violated if the sequence dissimilarities are near
saturation (0.75 for Jukes–Cantor). As an example, posit three sequences s0,
s1, and s2 with sequence dissimilarities d(s0, s1) = 0.375, d(s1, s2) = 0.375, and
d(s0, s1) = 0.75. The Jukes–Cantor distance (Dij = −3

4 log(1 − 4
3dij)) between

s0 and s2 would be unbounded, the other two finite—hence violating the triangle
inequality (D(s0, s2) > D(s0, s1) + D(s1, s2)). Even though the dissimilarities
themselves are additive, the corrected distances are clearly non-metric.

9.3 Ultrametric Trees

Let us suppose that we have a tree, T = (V,E), that exactly reflects the “true”
branching pattern of a set of leaf taxa (L ⊂ V) in that the non-leaf nodes, V \ L,
are labeled with the time since divergence of its descendent vertices, which must
be strictly increasing along all paths from leaves to root (Fig. 9.1). Such a tree
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A B C D E

2

3

5

7

Figure 9.1: An ultrametric tree for the data in Table 9.1.

A B C D E
A 0 2 3 5 7
B 0 3 5 7
C 0 3 7
D 0 7
E 0

Table 9.1: Ultrametric distances for ultrametric tree in Figure 9.1.

X

Y

Zd(x,y)

d(x,z)

d(y,z)

Figure 9.2: Three point condition of ultrametric distances of Buneman (1971).

is an ultrametric tree. A true tree would be an ultrametric tree. It would be
nice to have such an object, but such trees tend not to present themselves.
What we are likely to have are data, in this case distance data. A data matrix,
D, defines an ultrametric distance if and only if the matrix is metric, and for
x, y, and z, of distances d(x, y), d(x, z), and d(y, z) two of these must be the
maximum value (hence equal; Table 9.1). This is referred to as the three point
condition (Buneman, 1971) (Eq. 9.1; Fig. 9.2). Matrix D is also referred to as
an ultrametric matrix.
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Any three points x, y, z can be renamed such that:

d(x, y) ≤ d(x, z) = d(z, y) (9.1)

If D is ultrametric, then it has a unique ultrametric tree T (and this tree can be
found in O(n2) time). The inverse is also true; if a tree T is ultrametric, then it
must have an ultrametric matrix D (Gusfield, 1997).

Recall the conditions of metric distances (Eqs. 5.5 and 9.2).

∀x d(x, x) = 0 (9.2)
∀x, y;x �= y d(x, y) > 0

∀x, y; d(x, y) = d(y, x)
∀x, y, z d(x, y) ≤ d(x, z) + d(z, y)

An ultrametric distance adds a further condition (Eq. 9.3) derived from the
three point condition (above).

∀x, y, z d(x, y) ≤ max(d(x, z), d(z, y)) (9.3)

This corresponds to the behavior of distances under a rigid molecular clock
model (Zuckerkandl and Pauling, 1962). In addition to other restrictions, all
leaf taxa must be equidistant from the root.

Ultrametric distances are an ideal case of distance data that allow rapid,
“correct” tree reconstruction. Unfortunately, real data are never (to my knowl-
edge) ultrametric.

9.4 Additive Trees

A weaker condition than ultrametricity, is additivity. An additive tree possesses
edge weights (branch lengths) that directly match the observed distances among
taxa. That is, the edge weights summed over the path between two leaves equals
the distance between them (Fig. 9.3, Table 9.2). It follows that all ultrametric
trees are additive, but not all additive trees are ultrametric. Furthermore, an

A

B C

D

E

1

3

2 1

4

4

6

Figure 9.3: An additive tree (edges not drawn to scale).
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A B C D E
A 0 4 8 10 7
B 0 10 12 9
C 0 10 9
D 0 11
E 0

Table 9.2: Additive distances for additive tree in Figure 9.3.

X

Y

U

V

d(x,y)

d(x,u)

d(y,v)

d(u,v)

d(x,v)

d(y,u)

Figure 9.4: Four point condition of additive metric distances of Buneman (1971).

additive tree is characterized by the four point condition (Fig. 9.4; Eq. 9.4;
Buneman, 1971).

Any four points x, y, u, v can be renamed such that:

d(x, y) + d(u, v) ≤ d(x, u) + d(y, v) = d(x, v) + d(y, u) (9.4)

There are two important implications of additive distances that bear on tree
reconstruction: the Farris transform, and Buneman trees.

9.4.1 Farris Transform

Farris et al. (1970) defined a transform of additive data into ultrametric values
(in O(n2) time), which can then be reconstructed by O(n2) methods. Com-
pletely non-intuitive (at least to me), the Farris transform reveals deep connec-
tions between additive and ultrametric distances (Fig. 9.5). Due to its general
importance (it pops up in many areas of mathematics—Dress et al., 2007), the
transform was given its patronym by Bandelt (1990).

The Farris transform of observed, additive dij to ultrametric d′ij (Eq. 9.5)
adds a constant factor δ to distances recalculated from fixed leaf x (originally
the most distant, presumed out-taxon yielding δ ≥ max dxy) to create an ad-
vancement index, which is the vertex labeling of ultrametric trees.

if x �= y d′
i,j = δ +

1
2
(di,j − dx,i − dxj) (9.5)

if x = y d′
i,j = 0
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i j x

α β

Y

d ′( i , j)  = δ +
1

2
(d( i , j )  − d ( i ,x)  − d ( j ,x ) )

d ′( i , j )  = δ +
1

2
((α  +  β)  − (α  +  γ )  − (β  +  γ ) )

d ′ ( i , j)  = δ +
1

2
(−2  ⋅  γ )

d ′ ( i , j )  = δ − γ

Figure 9.5: Farris transform of a triplet.

Original Observed Distances Transformed Distances

A

B

C

D

A B C D E
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10 12 9
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11

A
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D

A B C D E

3 6 12 5

6 12 5

12 6

12

0

0

0

0

E 0

Figure 9.6: Farris transform of additive metric distances of Table 9.2 with δ = 12
(Farris et al., 1970).

The new ultrametric matrix of advancement indices can then be used for ultra-
metric tree reconstruction (Figs. 9.6 and 9.7).

9.4.2 Buneman Trees

Based on the four point condition, Buneman (1971, 1974) developed a procedure
to identify splits (= edges) that were pairwise compatible. The central concept
is that a split on a tree divides the tree on an edge into two subtrees containing
sets of leaf taxa. The split in Figure 9.4 would yield xy|uv. A value, β(xy|uv),
can be defined (Eq. 9.6) based on the four point condition (Fig. 9.8).

Peter Buneman

β(xy|uv) = min[d(x, u) + d(y, v), d(x, v) + d(y, u)] − (d(x, y) + d(u, v)) (9.6)



9.4 Additive Trees 155

A B C DE

5

3

6

12

Figure 9.7: Ultrametric tree derived from transformed matrix of Table 9.2 and
Figure 9.6.

A

B C

E

D
S0 S1

β0 = {AB | CDE}

β1 = {ABC | DE}

Figure 9.8: Buneman Tree (Buneman, 1971).

Equation 9.6 can be generalized to splits on larger trees, defining the Buneman
Index βs (Eq. 9.7).

βs of split {A,B} =
1
2

min β(xy|uv) (9.7)

∀x, y ∈ A

∀u, v ∈ B

All splits with βs > 0 are pairwise compatible, hence imply a tree. Furthermore,
the βs values are the weights of the tree edges. Given the quartets that must be
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BacAbortus(I)

RochalQuint(H)
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I
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G
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DAnaplMarg(D)
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Figure 9.9: “Splits” Tree (Bandelt and Dress, 1992b) with splits drawn showing
relative support on left, and pattern of splits on right.

evaluated, the construction of a Buneman tree is O(n4). A point of note here is
that the Buneman tree is based on properties of additive distances. The result
is not based on optimality in any way, but the compatibility of supported splits.

Due to the strict requirements of Buneman trees, they frequently have few
supported edges. To deal with the unresolved nature of Buneman trees, the
method of “Split Decomposition” (Bandelt and Dress, 1992a,b) was developed.
In this method of representing distance data, the relative Buneman index of
each edge—and alternate quartet resolutions—are represented simultaneously
as axes of a box, the major axis proportional to the dominant split, the minor
the residual. A clear, well-Buneman-supported edge would be a narrow box; an
ambiguous one would be square (Fig. 9.9).

9.5 General Distances

The two previous sections dealt with distances exhibiting desirable, but rare to
non-existent (at least for real data) properties. The remainder of this discussion
centers on methods that do not require ultrametricity or additivity (Table 9.3),
but may require metricity to correctly reconstruct distances with high probabil-
ity. These methods attempt to optimize an objective function (even if they were
not described that way initially). The general problem, like other tree-searching
operations, is NP–complete (Day, 1987), hence no method short of explicit
or implicit enumeration of solutions can guarantee an optimal result. In this
sense, the series of O(n2), O(n3), and O(n4) methods below are low-complexity
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A B C D E
A 0 2.4 7.9 10.1 3.5
B 0 7.6 9.1 10.5
C 0 8.1 10.1
D 0 11.2
E 0

Table 9.3: Non-additive distances.

heuristic algorithms. The methods that were based on explicit optimality cri-
teria (Percent Standard Deviation, minimum length, and minimum evolution)
certainly implied NP–hard optimizations from their conceptualization. UPGMA
and Neighbor-Joining were more procedural tree-building techniques, which (at
least initially) had no optimality objective.

9.5.1 Phenetic Clustering

Clustering algorithms are the heart of phenetic techniques. First enunciated by
Michener and Sokal (1957), a large collection of procedures developed through
variation in the agglomeration steps. The most (historically) popular algorithm
is the Unweighted Pair Group Method using arithmetic Averages (UPGMA).

UPGMA

UPGMA proceeds by defining clusters of most similar leaf taxa and joining them
in a cluster, and then adding others in decreasing order of similarity. The level
at which taxa are joined is called the “linkage level” (Fig. 9.10). As each cluster
is created, the distance between that cluster and all other leaf taxa (or clusters)
has to be calculated to proceed. The distance between two clusters, ci and cj

A B C D E F

TaxaLinkage Levels

L0

L1
L2

L3

L4

L5

A B
C

D   E

F

Clusters

Figure 9.10: UPGMA clustering (Michener and Sokal, 1957).
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is simply the average pairwise distances, d, between the members if ci and cj

(Eq. 9.8).

dci,cj
= (|ci| · |cj |)−1

∑
∀a∈ci,∀b∈cj

da,b (9.8)

Using this relation, clusters are constructed:

1. Assign each leaf to a cluster with linkage level 0.

2. Choose one pair of clusters with minimum distance dij .

3. Create a new cluster ck = ci ∪ cj at linkage level dij/2.

4. Remove clusters ci and cj .

5. Calculate distance between ck and remaining clusters (Eq. 9.8).

6. Repeat until all leaves are added.

UPGMA is (by inspection) an O(n2) algorithm (Alg. 9.1).
Although not employed recently in general biological systematics, the medi-

cal literature continues to employ this method (Fig. 9.11, Achtman et al., 2001).
The UPGMA tree derived from the distances of Table 9.3 is shown in

Figure 9.12.

Algorithm 9.1: UPGMA
Data: Input pairwise distance matrix, D, for a set of taxa, L.
Result: UPGMA Tree, T = (V,E) and linkage levels for each vertex.
V ← L;
E ← ∅;
clusterNumber = |L|;
for clusterNumber = 0 to |V| − 1 do

linkageLevelclusterNumber ← 0;
end
while � a cluster with all leaf nodes do

Choose smallest distance in D
(i, j) ← min D;
Create vertex and edges;
V ← V ∪ vclusterNumber;
E ← E ∪ (vclusterNumber, i);
E ← E ∪ (vclusterNumber, j);
Remove vi and vj distances from D;
linkageLevelclusterNumber ← Di,j/2;
Add vclusterNumber distances to remaining vk in D via Eq. 9.8;
clusterNumber ← clusterNumber + 1;

end
T ← (V,E);
return (T, linkageLevel)
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Figure 9.11: UPGMA clustering of meningitis strains (Achtman et al., 2001).
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A B E C D
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A B C D E F G H
A 0 2.4 7.9 10.1 3.5
B 0 7.6 9.1 10.5
C 0 8.1 10.1 7.75 8.53
D 0 11.2 9.6 10.1
E 0 7.0
F 0
G 0 9.33
H 0

Expanded Distance Matrix

Figure 9.12: UPGMA clustering of distances of Table 9.3 with matrix expanded
to include added vertices.

Variations

Many permutations of this process were defined depending on whether the
cluster distances were calculated from the average, minimum, or maximum of
the leaf distances; or weighting the linkage levels based on recency of addition
(Sneath and Sokal, 1973).

• Single linkage clustering: d(x, u) ← min(d(y, u), d(z, u)).

• Maximal linkage clustering: d(x, u) ← max(d(y, u), d(z, u)).

• Weighted by size of subgroup, WPGMA (later arrivers given more weight
(1/2)n).

Cophenetic Correlation Coefficient

Although UPGMA (and relatives) were not defined with an optimality criterion
in mind, Sokal and Rohlf (1962) defined the Cophenetic Correlation Coefficient
(CPCC) to compare phenograms. This was the simple least-squares regression of
the linkage levels, li,j (average value l̄), determined by clustering to the observed
distances, di,j (average value d̄), (Eq. 9.9). Farris (1969) made great use of the
CPCC in his criticism of phenetic methods.

CPCC =

∑
i<j(di,j − d̄) · (li,j − l̄)√(∑

i<j(di,j − d̄)2
)
·
(∑

i<j(li,j − l̄)2
) (9.9)

9.5.2 Percent Standard Deviation

Fitch and Margoliash (1967) (Fig. 9.13) and Cavalli-Sforza and Edwards (1967)
independently were the first to define an optimality criterion for their tree con-
struction method, Percent Standard Deviation (PSD in Fitch and Margoliash
parlance). The PSD value was calculated based on a given tree, by estimatingWalter Fitch

(1929–2011) branch lengths (Du,v) from observed (usually model transformed) distances (dij)
via a least-squares approach (Eq. 9.10). The original method built up trees
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Figure 9.13: Fitch–Margoliash analysis of cytochrome c protein sequences (Fitch
and Margoliash, 1967). Note the negative branch length on the edge leading to
tetrapods.

by comparing triples, choosing those that implied the lowest average distance
between pairs of groups compared to a third (i.e. A and B in ((A, B) C)).
The three branches in the triples were estimated by average distances among
members of the three groups. After an initial tree was constructed, others were
constructed and compared to others based on PSD.
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PSDT=(V,E) =
∑
e∈E

(duv − Duv)2

d2
uv

(9.10)

Later use of the PSD criterion minimized the value over trees as a familiar
tree search, and with equally familiar NP–hard complexity (Day, 1987). The
procedure (tree-building heuristic) described by Fitch and Margoliash (1967)
has a time complexity of O(n4), but was later improved to O(n3) (Desper and
Gascuel, 2007).

Estimating Branch Lengths

Several methods, including those that minimize PSD (above) and ME (below),
estimate edge weights (branch lengths) by least-squares. This is based on a sta-
tistical view of the distribution of distances and the desire to create edge weights
that conform to their statistical expectation (summarized by Felsenstein, 2004).
The process is relatively simple in that each observed distance corresponds to
a series of edges on a given tree. With n leaf taxa and 2n − 3 edges, there are
(n2 − n)/2 linear equations created by the sum of edge weights linking each pair
of leaves. Given that there are more equations than unknowns, the system is
overdetermined and can be solved using elementary linear algebra.

For the tree in Figure 9.14, there are 10 equations and 7 variables (Eq. 9.11).

d(A,B) = e0 + e1 (9.11)
d(A,C) = e0 + e2 + e4 + e5

d(A,D) = e0 + e2 + e4 + e6

d(A,E) = e0 + e2 + e3

d(B,C) = e1 + e2 + e4 + e5

d(B,D) = e1 + e2 + e4 + e6

d(B,E) = e1 + e2 + e3

d(C,D) = e5 + e6

d(C,E) = e5 + e4 + e3

d(D,E) = e6 + e4 + e3

A

B C

D

E

e0

e1

e2

e3

e4

e5
e6

A

B C

D

E

0.25
2.15

1.31

4.49

2.11

3.25
4.85

Figure 9.14: Tree of five leaves and seven edges. Edges labeled on left and esti-
mated (distances of Table 9.3) by least-squares on right. The tree has a length
(ME) of 18.41 and PSD of 3.24.
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The main time-consuming step in solving for the edge weights comes in invert-
ing the matrix representation of Equation 9.11 with O(n3) complexity. If these
operations take place during a search, however, where similar trees have been
solved earlier, significant economies can be realized (Bryant and Waddell, 1998).

9.5.3 Minimizing Length

Minimum Evolution

An alternate notion of minimization—evolutionary tree length—was proposed
by Kidd and Sgaramella-Zonta (1971). These authors proposed to use a least-
squares method, as in Fitch and Margoliash (1967) and Cavalli-Sforza and Ed-
wards (1967), to calculate edge weights (branch lengths), but to use the linear
sum of the edge lengths (Minimum Evolution; ME) as an optimality criterion—
in the spirit of parsimony (Eq. 9.12, Fig. 9.14).

Kenneth Kidd

ME =
∑
e∈E

Duv (9.12)

The ME criterion was adopted by Neighbor-Joining (NJ) (Saitou and Nei, 1987;
Rzhetsky and Nei, 1993) as an optimality criterion for NJ, and others (e.g.
Desper and Gascuel, 2007) have employed ME as an optimality criterion in
standard tree searching (Fig. 9.15).

Pauplin (2000) derived an O(n2) method to calculate the total length of
a distance tree without the necessity of determining edge weights. This fast

0.2

Figure 9.15: Minimum evolution phylogeny for fibril A collagen proteins (Zhang
et al., 2006).
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ME method has been used to improve the execution time of a variety of dis-
tance tree-building heuristics (e.g. Balanced Minimum Evolution; Desper and
Gascuel, 2002).

Distance Wagner

After his (Farris, 1970) character-based method for calculating Wagner trees,
Farris (1972) modified his O(n3) (cubed because the closest taxon is chosen at
each point; if the taxon addition order is determined a priori, the process is
O(n2)) procedure for distances. The key modification to allow the use of dis-
tances comes in the calculation of the distances between median (i.e. internal
or HTU) nodes and leaf (or OTU) nodes. Farris used a greatest-lower-bound
approach based on metric distances (specifically the triangle inequality) as op-
posed to the least-squares method of Fitch and Margoliash (1967) and Kidd and
Sgaramella-Zonta (1971). The distance from new node F, is created by adding
node C to edge (G,H) to node Z not yet placed on the tree (Eq. 9.13, Fig. 9.16).
Taxa were added to the growing tree by minimizing the patristic (i.e. edge path)
distance between the leaf to be added and a specific edge on the tree (Eq. 9.14,
Alg. 9.2).

1. Begin by choosing the closest pair of taxa (min dG,H).

2. Add the taxon C closest (via Eq. 9.14) to the pair (G,H) (or to the closest
edge of the tree if the tree has > 2 taxa).

3. Create a new vertex F with distances to (C,G,H) calculated via Eq. 9.14,
and distances to taxa yet to be added (Z) via Eq. 9.13.

G H

C

d(C,(G,H ) )  =
1

2
(d (C,G)  + d (C,H )  − d(G,H ) )

G H

C

F

Z

d (C,F )  =
1

2
(d (C,G )  + d (C,H )  − d (G,H ) )

d (G,F )  = (d (G,C )  − d (C,F) )

d (H,F )  = (d (H,C )  − d (C,F ) )

d (Z,F )  = max(d(vi,Z )  − p (vi,F ) )
vi∈T

Figure 9.16: Distance Wagner procedure to create edge weights between leaves
and non-leaf vertices (upper), and distances between non-leaf vertices and leaves
(Farris, 1972). The distances d are observed and p are patristic, previously cal-
culated edges.



9.5 General Distances 165

Algorithm 9.2: DistanceWagner
Data: Input pairwise distance matrix, D, for a set of taxa, L.
Result: Distance Wagner Tree, T = (V,E).
V ← L;
E ← ∅;
Choose two starting taxa
E ← (v0, v1);
While there are leaf nodes to add
while ∃vk /∈ T do

Choose smallest distance between next leaf and each edge in tree
(i, j) ← mini,j d(vk, ei,j) = 1

2 (d(vk, vi) + d(vk, vj) − d(vi, vj));
Remove ei,j

E ← E \ ei,j ;
Create vertex and edges;
V ← V ∪ vHTU ;
E ← E ∪ (vHTU , i);
E ← E ∪ (vHTU , j);
E ← E ∪ (vHTU , vk);
Update tree
T ← (V,E);
Determine distances from vHTU to vi, vj and vk

d(vk, vHTU ) = 1
2 (d(vk, vi) + d(vk, vj) − d(vi, vj));

d(vi, vHTU ) = d(vi, vk) − d(vk, vHTU );
d(vj , vHTU ) = d(vj , vk) − d(vk, vHTU );
Determine distances from vk to remaining nodes
∀l /∈ T, d(vl, vHTU ) = maxvp∈i,j,k(d(vp, vl) − p(vp, vHTU ));
HTU ← HTU + 1;

end
T ← (V,E);
return T

4. Repeat until all taxa have been added to the tree.

d(Z,F) = max
vi∈T

(d(vi, Z) − p(vi, F)) (9.13)

d(C, (G,H)) =
1
2
(d(C,G) + d(C,H) − d(G,H)) (9.14)

Although not conspicuous in its initial description, the Distance Wagner
technique strives to minimize total patristic distance over the tree (Fig. 9.17).

Distance Wagner trees can contain negative branch lengths and are often
longer (sum of estimated edge weights) than those reconstructed by ME or FM.
Both of these effects come from the application of the triangle inequality to the
distances. If metricity is violated, negative branches may occur. The triangle
inequality also requires that patristic distances on the tree cannot be less than
those observed, placing a lower bound on edge weights not found in ME or FM.
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Figure 9.17: Distance Wagner tree for seven carnivores from Farris (1972).
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5.8

3.65

1.05

3.6

2.95

5.15H

F

G

A B C D E F G

A 0 2.4 7.9 10.1 3.5
B 0 7.6 9.1 10.5
C 0 8.1 10.1 6.55
D 0 11.2 8.75
E 0 9.45 8.45
F 0
G 0

Figure 9.18: Distance Wagner tree and expanded distances of Table 9.3. Tree
length is 19.9. ME tree length is 18.43 and PSD is 3.70.

These effects can be seen using the example data of Table 9.3 (Fig. 9.18), where
the edge connecting leaf A and non-leaf vertex H is −2.3. The overall length
of this tree is 19.9 compared to 18.43 for this tree using ME branch estimation
(PSD = 3.70).

Neighbor-Joining

Masatoshi Nei
Neighbor-Joining (NJ; Saitou and Nei, 1987) is a very popular method of dis-
tance analysis that was originally described without any particular optimality
criterion. Subsequently, Rzhetsky and Nei (1993) published a justification of
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NJ in terms of minimum evolution. NJ is guaranteed to give the correct tree
if the distances are additive. Of course, in this unlikely event, with additive
distances, we can apply the Farris Transform, convert the distance matrix to
an ultrametric (in O(n2) time), and reconstruct the tree exactly in O(n2) time
(Gusfield, 1997) as opposed to O(n3) for NJ (below).

The NJ algorithm defines a normalized distance between the leaf taxa that
adjusts the distance value for each pair of leaf taxa by their average distance
to other leaves. For observed dij of leaf set L, the normalized distance, Dij , is
given in Equation 9.15.

Dij = dij − (ri + rj)) (9.15)

ri = (|L| − 2)−1
∑
∀k∈L

dik

rj = (|L| − 2)−1
∑
∀k∈L

djk

NJ begins with a “star” phylogeny and proceeds by joining pairs of “neighbors”
based on Equation 9.15, creating new nodes that connect the joined taxa to the
remaining star (Fig. 9.19). The overall time complexity to build a tree is O(n3)
(n = |L|; Alg. 9.3).

1. Define a Tree T, of all leaf taxa L, initially a “star”.

2. Choose a pair of leaf taxa, i, j, for which Dij (Eq. 9.15) is minimal.

3. Create new node k, set dkl = 1
2 (dil + djl − dij) for all l in L.

4. Add edges dik = 1
2 (dij + ri − rj) and djk = dij − dik.

5. Add edge from l to T, remove i and j from L.

6. Repeat until all leaf taxa are added.

The NJ tree of Table 9.3 is shown in Figure 9.20. The length of this tree is 18.11,
but without the least-squares edge weight estimates of ME. NJ has been used
in the vast majority of distance-based analyses and in empirical studies, and is
nearly ubiquitous in viral systematics (Fig. 9.21).

A

B

C

DE

A

B

C

DE

k

i
j A

B

C

DE

k

i j

Figure 9.19: Neighbor-Joining procedure (Saitou and Nei, 1987).
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Algorithm 9.3: NeighborJoining
Data: Input pairwise distance matrix, D, for a set of taxa, L.
Result: Neighbor-Joining Tree, T = (V,E).
E ← ∅;
V ← L ∪ v|L|;
Create “star” edges
for i = 0 to |L| − 1 do

E ← E ∪ (v|L|, vi);
end
While there are nodes to create
while |V| < 2 · |L| − 2 do

Choose smallest distance between pair of vertices
(i, j) ← mini,j D(vi, vj) (Eq. 9.15);
Destroy evi,v|L| and evj ,v|L|
E ← E \ (evi,v|L| ∪ evj ,v|L|);
Create vertex and edges;
V ← V ∪ vHTU ;
E ← E ∪ (vHTU , vi);
E ← E ∪ (vHTU , vj);
E ← E ∪ (vHTU , v|L|);
Determine new edge distances
d(vi, vHTU ) ← 1

2 (dij + ri − rj);
d(vj , vHTU ) ← (dij − d(vi, vHTU ));
Determine new edge distances to leaf vertices
∀l ∈ L, dl,HTU = 1

2 (dil + djl − dij);
HTU ← HTU + 1;

end
T ← (V,E);
return T

A

E C

D

B

−0.15

3.65

2.21

2.49

1.81

3.26

4.84H

F

G

Figure 9.20: Neighbor-Joining tree of example data Table 9.3. The total tree
length (by NJ edge estimation) is 18.11.
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Figure 9.21: Neighbor-Joining tree of H5N1 “Avian” flu virus of WHO/OIE/
FAO H5N1 Evolution Working Group http://www.cdc.gov/eid/content/14/
7/e1-G2.htm. See Plate 9.21 for the color Figure.
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Desper and Gascuel (2002) proposed a method analogous to the NJ proce-
dure by requiring the weight of sister taxa (the two descendent edges incident
on a vertex) to be equal as opposed to being weighted by the number of
leaves in each subtree. This “Balanced Minimum Evolution” procedure uses
the same optimality value—ME—but with lower time complexity than that for
NJ (O(n2 log n)).

ME and Tree Search

The NJ algorithm can be viewed as a heuristic solution to the general ME
problem. If this point of view is taken, standard tree search procedures can be
employed in an effort to optimize ME and identify the optimal tree. As men-
tioned before, this will be an NP–hard optimization, as for any other optimality
criterion.

9.6 Comparisons

There are two means of comparing the various distance approaches: optimality
criterion and tree-building algorithm. Three optimality criteria (at least by the
methods) have been discussed here: Cophenetic Correlation Coefficient, Percent
Standard Deviation, and Minimum Evolution. The choice among these is more
one of aesthetic than any empirical means since a tree may be optimal for one
criterion or another. Any argument among them must be made on the relative
merits of the criteria themselves.

One point of comparison is important to make clear in the two forms of
minimum evolution, that of the Distance Wagner (DW) and Minimum Evolution
proper (ME). As mentioned above, the total DW tree lengths will always be
greater than or equal to that yielded from ME. This is due to the different
objectives of the two length criteria. DW seeks to minimize overall tree length
given the constraints of metricity (Sect. 9.2.1 above), specifically the triangle
inequality. ME, on the other hand, seeks to create tree lengths based on the
statistical expectation of distances. As a result of this, ME can reconstruct
branch lengths that yield patristic distances between taxa that are impossibly
low—less than that observed in the input matrix. In the examples based on Table
9.3, the ME paths between AC, AD, BE, and EC are all less than that observed.
They are impossibly short. Of the 10 pairwise paths, four are too short, four are
longer than observed, and two are exactly on, coincident with the objective of
creating edge lengths as expected amount of evolution. The DW does not have
this problem, but does display a negative branch length on AH. This negative
value indicates that the observed distances are non-metric (similarly, negative
branch lengths in NJ trees are indicative of non-additive distances (Fig. 9.20).
Negative branches frequently occur in real and simulated data sets (Gascuel,
1997), especially those that have been transformed by evolutionary models.
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When considering the tree-building procedures themselves (UPGMA, Dis-
tance Wagner, Neighbor-Joining, etc.), they must be evaluated on efficacy (of
optimizing some criterion) and efficiency (time complexity). Given the real-
ity of the overall NP–hard optimization, these tree-building procedures are best
viewed as starting points for refinement procedures discussed later (Chapter 14).

9.7 Exercises

1. Given the additive tree in Figure 9.22, produce the ultrametric tree via
the Farris transform.

A

B E

D

C

2

4

1 5

3

6

8

Figure 9.22: Convert this additive tree to an ultrametric via the Farris
transform.

2. Given the following symmetrical distance matrix (Table 9.4), create the
UPGMA tree.

A B C D E
A 0 3.5 8.2 9.1 4.3
B 0 8.9 11.2 9.3
C 0 7.9 9.9
D 0 11.6
E 0

Table 9.4: A non-additive distance matrix.
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3. Given the symmetrical distance matrix (Table 9.4), create the Distance
Wagner tree.

4. Given the symmetrical distance matrix (Table 9.4), create the NJ tree.

5. What are the implications for edge weights of the differing methods used
by Distance Wagner and least-squares to estimate them?



Chapter 10

Optimality
Criteria−Parsimony

The operation of assigning states to non-leaf vertices is often referred to as
optimization. This operation implies a set of transformations between adja-
cent (ancestor–descendant) vertices, and that assignment is also referred to
as optimization. This chapter discusses the operations involved in both these
forms of character optimization under the parsimony criterion. Median (ver-
tex) states will be assigned to minimize overall tree cost without reference to
a stochastic model of character change or evolution—although there may be
non-homogenous transformation cost scenarios.

As per usual, we define a tree, T = (V, E), and a transformation cost matrix σ
that specifies the cost of transformations among the elements (character states)
of the data set. The purpose of the operation is to determine the minimum cost
of a tree given a transformation cost matrix and data (T(σ, D)). There are two
general types of characters discussed here: static and dynamic sensu Wheeler
(2001b). Static characters are those whose correspondences (observations in leaf
taxa) are fixed and invariant over alternate trees, while the correspondences
of dynamic characters may vary with tree topology such that overall cost is
minimized. The static character types include additive, non-additive, and ma-
trix (alternately referred to as general or Sankoff), while unaligned sequence
and chromosomal characters are referred to as dynamic homology characters.
A computational distinction between these classes of characters can be drawn
based on the time complexity of their optimization. Static characters can be op-
timized on a given tree in polynomial time, whereas the optimization of dynamic
characters is, in general, NP–hard.

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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10.1 Perfect Phylogeny

The most simple (and potentially satisfying case) is a matrix of n leaf taxa
and m binary observations, or features, for each leaf. If the observations are
binary, (0, 1), we can test to see if the character columns are in either of two
relationships. Consider two characters: the set Ai of taxa with a 1 for a character
i (0 can always be set to the out or root state) and a similarly constructed set
Aj for some character j, where |Ai| ≤ |Aj |. If:

∀i, j ∈ m character set

if Ai ∩ Aj = ∅ or

Ai ⊆ Aj (10.1)

then there is a perfect phylogeny. If:

∀i, j ∈ m character set

∀a, b ∈ n leaf taxa

Aia = 1, Aib = 0 and Aja = 0, Aib = 1 (10.2)

then there is not (this can be tested in O(nm) time; Gusfield, 1997). If the data
are “perfect,” derived distances will be ultrametric, and there will be O(n2) time
reconstruction of a unique tree (Fig. 10.1). The problem can be generalized
to r-states characters. If the characters are additive (Sect. 10.2.1), there is a
polynomial time algorithm to solve for the tree; if non-additive (Sect. 10.2.2),
the problem is NP–hard for r > 2 (Steel, 1992). Of course, these perfect scenarios
are nearly non-existent in empirical situations. Homoplasy happens.

10.2 Static Homology Characters

There are three classes of static characters each with exact, polynomial opti-
mization procedures: Additive, Non-Additive, and Matrix (or Sankoff). Due to

A B C D E

1

2 3

4

1          2          3

A 0          0          0

B 1          1          0

C 1          1          0

D 1          0          1

E 1          0          1

4

0

0

1

1

0

Figure 10.1: A perfect phylogeny with the characters and states on the left and
the tree in the center. If character 4 were added, the problem is no longer perfect.
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their low complexity, procedures to reduce more difficult to analyze data types
to these static types are common (e.g. developmental “event-pairing,” Bininda-
Emonds et al., 2002). The entire multiple sequence alignment enterprise (Chap-
ter 8) can be seen as an effort to convert dynamic sequence characters to more
tractable static characters.

The algorithms presented in this section have two major components, an
initial post-order traversal (down-pass) that establishes the cost (in terms of
weighted events) of the tree for the data, and a second pre-order (up-pass) to
establish the median (non-leaf vertex) state (character element) assignments
(Wheeler et al., 2006a).

10.2.1 Additive Characters

Additive (or ordered) characters (Farris, 1970) are those with transformation
costs determined by the difference in their state index (Eq. 10.3). Each successive
index represents an increasingly restrictive homology statement. State 3 implies
all features inherent in state 2, which in turn implies all in state 1 and so forth
(Fig. 10.2).

for states {s0, s1, . . . , sn−1}
σsi,sj

= |i − j| (10.3)

As part of the optimization procedure, we first define the concept of an inter-
val. The interval [a, b] contains all the states numerically intermediate between,
and including, the lower (a) and higher (b). As an example, [0, 3] would contain
0, 1, 2, and 3. The singleton state a would imply the interval [a, a]. P denotes
the preliminary state of a node, A the final state of ancestor of that node, F its
final state, and L and R the preliminary states of the left and right descendants

3
2

1

4

0

Figure 10.2: Additive character states with “4” implying “3”, which implies “2”
and so on. State “0” would signify the absence of all variations in the feature.
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Algorithm 10.1: AdditiveDownPass
Data: Tree, T = (V, E), with leaf taxa L ⊂ V
Data: Character set, c ∈ N for V. The down-pass or preliminary states

are cp

Data: Vertex, v, of T, initially the root. If v /∈ L then v has two
descendants vleft and vright

Result: Return the minimum cost of c on T
Initialize tree cost to 0
cost ← 0;
Preliminary state of leaf taxa are their observed states
for v ∈ L do

cp
v ← Lv;

end
v is not a leaf taxon
if v /∈ L then

if not set cp
vleft

then
AdditiveDown(T, c, vleft);

end
if not set cp

vright
then

AdditiveDown(T, c, vright);
end
cp
v ← cp

vleft
∩ cp

vright
;

No intersection of descendent states
if cp

v = ∅ then
Smallest closed interval between descendent states
cp
v ← sci{cp

vleft
, cp

vright
};

Cost of closest elements in cp
vleft

and cp
vright

l = closest element of cp
vleft

in cp
vright

;
r = closest element of cp

vright
in cp

vleft
;

cost ← cost + |l − r|;
end

end
return cost

of the node. For intervals I1 = [a, b] and I2 = [a′, b′], the closest state in I1 to
I2 is a′ if a′ > b or b′ if b′ < a. The smallest closed interval between I1 and I2

is defined as [b, a′] if a′ > b and [b′, a] if b′ < a; and the largest closed interval
as [min(a, a′),max(b, b′)]. In order to determine the cost of optimizing character
c on tree T, a post-order traversal of the tree is performed (Alg. 10.1). This
down-pass is that of Farris (1970).

1. Begin at leaves (post-order). The preliminary states of the leaves are their
observed states.

2. Choose a non-leaf node whose descendants have known preliminary states.
Test for overlap between descendants by taking the intersection of the
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intervals ([a, b] ∩ [a′, b′]) = [a′, b]) of its left and right descendants (prelim-
inary P = L ∩ R).

3. If the intervals overlap (P 	= ∅), assign P to the node.

4. If no overlap (P = ∅), take the smallest closed interval between them
(P = [b, a′] if a′ > b and [b′, a] if b′ < a) and increment the cost by the
minimum difference between the largest state in L and smallest in R, or
the reverse, whichever is smaller (min (b′ − a, a′ − b)).

5. Continue to the root, setting the preliminary states of each vertex.

After the down-pass, a pre-order up-pass is performed (Alg. 10.2) to establish
the set of median states at each non-leaf vertex that is compatible with the

Algorithm 10.2: AdditiveUpPass
Data: Tree, T = (V,E), with leaf taxa L ⊂ V
Data: Character set, c ∈ N for V initialized by Algorithm 10.1.
Data: Preliminary states are cp, final or up-pass states are cf .
Data: Vertex, v, of T, initially the root. If v /∈ L then v has two

descendants vleft and vright.
Result: Require that c contain the set of all states consistent with the

tree cost
leaf or root;
if v ∈ L or v = root then

cf
v ← cp

v;
if v /∈ L then

if cp
v ∩ cf

vparent
= cf

vparent
then

cf
v ← cf

vparent
;

else if (cp
vleft

∪ cp
vright

) ∩ cf
vparent

	= ∅ then
X = (cp

vleft
∪ cp

vright
∪ cp

v) ∩ cf
vparent

;
if X ∩ cp

v 	= ∅ then
cf
v ← X;

else
Largest closed interval between X and cp

v

cf
v ← lci{X, cp

v};
else

Largest closed interval between {cp
v and cf

vparent
}

and{(cp
vleft

∪ cp
vright

) and cf
vparent

}
cf
v ←

lci{
[
cp
v closest to cf

vparent

]
,
[(

cp
vleft

∪ cp
vright

)
closest to cf

vparent

]
}

Recurse up the tree until all V /∈ L are updated
AdditiveUp(T, c, vleft);
AdditiveUp(T, c, vright);
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minimum cost. The original (Farris, 1970) up-pass yields a single median of
a potential set. Algorithm 10.2 is that of Goloboff (1993a) (Fig. 10.3), which
yields the complete set of parsimonious assignments. The intersection and union
operations are on the intervals of the character sets defined above.
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{0,1}

{1}

{0,1}

cost += 1

cost += 1

cost += 1

Total cost = 5

cost += 2

Figure 10.3: Additive character optimization. Down-pass of Farris (1970) (top
left), up-pass of Goloboff (1993a) (top right), and final states (lower center).

1. Begin at root (pre-order), root F = P.

2. Move up the left and right descendants of the node.

3. Rule 1: If the overlap between the preliminary state (interval) of the node
and its ancestor is equal to the ancestral state, the final state of the node
is that intersection (if A ∩ P = A then F = A).

4. Rule 2: (If Rule 1 does not apply and ((L ∪ R) ∩ A 	= ∅).) If the union
of the preliminary states of the two descendants of the current node has
state(s) in common with the ancestor of the current node, then define
X = ((L ∪ R ∪ P) ∩ A). If X ∩ P 	= ∅. Then, the final states of the node
are equal to X (F = X). Otherwise (X ∩ P = ∅), the final states are the
set (largest closed interval) of X and the state in P closest to X.
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5. Rule 3: (If Rule 1 and 2 do not apply) Then, the final states (F) of the
current node is the largest closed interval between the state in P closest
to A and the state in (L ∪ R) closest to A.

6. Continue to leaves (for leaves F = P).

Continuous Characters

Continuous (i.e. real valued) characters, such as measurements of length, or ra-
tios can be optimized via this same additive procedure simply by multiplying
the values by some large constant factor representing the precision of the mea-
surement and truncating the result. The “real” values become integerized and
can be optimized as above. The character weight would need to be scaled down
to the same degree to maintain parity with other characters and to remove any
dependency on units. This approach was taken by Goloboff et al. (2006) and is
implemented in TNT (Goloboff et al., 2003) and POY4 (Varón et al., 2008).

10.2.2 Non-Additive Characters

When character transformation costs are constant1 between all state pairs
(Eq. 10.4), those characters are said to be non-additive or unordered (Fitch,
1971) (Fig. 10.4).

for states {s0, s1, . . . , sn−1}
and constant k

∀i,j σsi,sj
= k (10.4)

3

21

4

0

Figure 10.4: Non-additive character states with all possible transformations
equal in cost.

1In practice, all transformation costs are set to unity (1) since the constant term k can
be applied as a character weight after the optimization process. The presentation here is for
clarity in comparison with matrix characters (below).
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Algorithm 10.3: NonAdditiveDownPass
Data: Tree, T = (V, E), with leaf taxa L
Data: Character set, c ∈ N for V. The down-pass or preliminary states

are cp

Data: Vertex, v, of T, initially the root. If v /∈ L then v has two
descendants vleft and vright

Data: Constant k cost of character transformation
Result: Return the minimum cost of c on T
Initialize tree cost to 0;
cost ← 0;
Preliminary state of leaf taxa are their observed states
for v ∈ L do

cp
v ← Lv;

v is not a leaf taxon
if v /∈ L then

if not set cp
vleft

then
NonAdditiveDown(T, c, vleft, k);

if not set cp
vright

then
NonAdditiveDown(T, c, vright, k);

cp
v ← cp

vleft
∩ cp

vright
;

No intersection of daughter states;
if cp

v = ∅ then
cp
v ← cp

vleft
∪ cp

vright
;

cost ← cost + k ;

return cost

The down-pass of the non-additive optimization procedure is similar to that
for additive (Alg. 10.3) with the exception that in the place of intervals, the sets
of characters in non-additive are not filled in between maximum and minimum
states. The union and intersection operations act as standard set operations.
Additionally, the incremental cost of character change is calculated not as the
distance between the intervals of the parent states:

cost ← cost + |cp
vleft

− cp
vright

| (10.5)

but by the constant k (Eq. 10.4). The down-pass procedure is identical to that
of Farris (1970) (using standard set notation), although he defined it only for
binary characters. The up-pass is due to Fitch (1971).

cost ← cost + k (10.6)

1. Begin at leaves (post-order).

2. Choose a non-leaf node whose descendants have known preliminary states.
Test for overlap between descendants (preliminary P = L ∩ R).
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3. If no overlap (P = ∅), take the union (combination) of their states (P =
L ∪ R) and increment the cost by k.

4. Move to the ancestor of the node. Continue to root.

The up-pass is also similar to that of additive (Alg. 10.4) (Fig. 10.5):

1. Begin at root (pre-order), root final state = root preliminary state (F = P).

2. Move up the left and right descendants of the node.

3. Rule 1: If the overlap between the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final states, F, are
equal to that of the ancestor (F = A).

4. Rule 2: (If Rule 1 does not apply) If the union of preliminary states of the
two descendants of the current node (L and R) are equal to the preliminary
states of the current node (P = L ∪ R), then F = P ∪ A.

5. Rule 3: (If Rule 1 and 2 do not apply) Then the final state is the union
of the preliminary state set, augmented by states that are common to the
ancestor and either of its descendants (F = P ∪ (L ∩ A) ∪ (R ∩ A)).

6. Continue to leaves (leaf final state = leaf preliminary state, F = P).

Algorithm 10.4: NonAdditiveUpPass
Data: Tree, T = (V,E), with leaf taxa L
Data: Character set, c ∈ N for V initialized by Algorithm 10.3.
Data: Vertex, v, of T, initially the root. If v /∈ L then v has two

descendants vleft and vright. If v 	= root then
v = (vparent)left or (vparent)right

The down-pass or preliminary states are cp, final or up-pass states are cf

Result: Require that c contain the set of all states consistent with the
tree cost

v is leaf or root
if v ∈ L or v = root then

cf
v ← cp

v;
v is not a leaf taxon
else if v /∈ L then

if cf
vparent

∩ cp
v = cf

vparent
then

cf
v ← cf

vparent
;

else if cp
vleft

∪ cp
vright

= cp
v then

cf
v ← cp

v ∪ cf
vparent

;
else

cf
v ← cp

v ∪
(
cf
vparent

∩ cp
vleft

)
∪

(
cf
vparent

∩ cp
vright

)
;

Recurse up the tree until all V /∈ L are updated
NonAdditiveUpPass(T, c, vleft);
NonAdditiveUpPass(T, c, vright);
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Figure 10.5: Non-additive character optimization Fitch (1971) down-pass (top
left), up-pass (top right), and final states (lower center).

10.2.3 Matrix Characters

Characters with arbitrary transformation costs (Eq. 10.7) were first described
with their optimization procedure by Sankoff (1975). Unlike the procedures for
additive and non-additive characters above, matrix characters require a different
approach using dynamic programming to determine the cost and final median
state sets for the tree (Alg. 10.5).

for states {s0, s1, . . . , sn−1}
σsi,sj

= kij (10.7)

As with pairwise sequence alignment (Chapter 8), there are two phases to the
dynamic programming algorithm here. The first determines the cost of the tree
(here a post-order down-pass), and this is followed by a pre-order trace back
step to determine the median state assignments (Fig. 10.6).

The up-pass of the Sankoff–Rousseau algorithm determines the final state
sets for each node by tracing the fromleft and fromright values. If these are true
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Algorithm 10.5: MatrixDownPass
Data: Tree, T = (V,E), with leaf taxa L
Data: Character set, c ∈ N for V with k states
Data: Vertex, v, of T, initially the root. If v /∈ L then v has two

descendants vleft and vright. If v 	= root then
v = (vparent)left or (vparent)right

Data: v.cost is an array of size k such that v.costi (0 ≤ i < k) is the total
cost of the subtree rooted at v with state vk

Data: If v ∈ L then v.costi ← 0 if the observed state of v is i, otherwise
v.costi ← ∞

Result: Cost of T
v is not a leaf taxon
if v /∈ L then

MatrixDownPass(T, vleft, σ);
MatrixDownPass(T, vright, σ);
for i = 0 to k − 1 do

v.costi ← ∞;
fromleft

i ← false;
fromright

i ← false;
for i = 0 to k − 1 do

minleft ← ∞;
minright ← ∞;
for j = 0 to k − 1 do

if vleft.costj + σij < minleft then
minleft ← vleft.costj + σij ;

if vright.costj + σij < minright then
minright ← vright.costj + σij ;

v.costi ← minleft + minright;
for j = 0 to k − 1 do

if vleft.costj + σij = minleft then
fromleft

j ← true;

if vright.costj + σij = minright then
fromright

j ← true;

return min vroot.costi over i

for a state i, for a left or right vertex (respectively), then those states are in-
cluded in the final state set for that vertex. The trace back proceeds analogously
to that of the Needleman–Wunsch algorithm (Alg. 8.1) in sequence alignment.

The time complexity for the additive and non-additive procedures are linear
in the number of taxa n and in character states k, hence (O(nk)), whereas the
Sankoff–Rousseau algorithm is quadratic in character states, (O(nk2)). Clearly,
both additive and non-additive optimization are special cases of the general
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Figure 10.6: Matrix character optimized using the Sankoff–Rousseau algorithm
(Sankoff, 1975). The states with their costs circled are the final state assignments
determined during the up-pass traceback.

matrix type, with non-diagonal elements either all 1 (non-additive) or the dif-
ference in matrix indices (additive).

Although the matrix character optimization algorithm does not require
metricity, biologically odd results may occur otherwise. As an example, an ad-
ditional state could be added to an existing set, with very low transformation
cost to all other elements (σk,0 < 1

2 min σi,j). The median state at all internal
vertices (V \ L) would then be this new state for all trees, no matter what the
leaf conditions were.

10.3 Missing Data

Missing data are always undesirable, not only because of lack of information, but
also because of how they are optimized on trees. The primary requirement of the
optimization of a missing observation is that it should not affect the choice of
optimal tree, implying that such a non-observation must never contribute cost
to a tree. In order for this to be the case, optimization routines (such as Addi-
tive, Non-Additive, and matrix methods) treat missing values as a maximally
polymorphic state (in order to ensure that the missing datum adds no cost to the
tree)—in essence, that all states are present in that non-observation. Recalling
the down-pass of these operations, it is clear that the missing value will conform
to the first non-missing observation. This is because of the intersection opera-
tions (∩) between the states. This operation is seeking the common information
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2 {0,1}

{0,1}

{0,1}

1

X⇒4
X⇒2 X⇒1 X⇒0 X⇒0X⇒1

Figure 10.7: Missing character X will assume different states depending on where
it is placed on the tree.

between the two character sets. If one is maximally polymorphic (has all states),
then the intersection of that state and any other will be that other set. Any
other scenario would add cost to the optimization, which is impossible. Unfor-
tunately, unlike unambiguous observations, the missing data will conform to
different observations on different trees as it encounters various other taxa first,
assuming (in essence) a variety of character states simultaneously (Fig. 10.7).
This curious and perhaps undesirable behavior is at the core of the discussions of
Platnick et al. (1991) and Nixon and Davis (1991). Unfortunately, as bad as this
seems, this treatment of missing data—like democracy—is terrible, except for
everything else.

It is worth noting that autapomorphic data can behave as if they were miss-
ing. A unique state of a non-additive character will be lost and conform (as with
missing data) to the first non-unique state it encounters (Fig. 10.8). The same
situation occurs with an additive character but yields different behavior. Due
to the different cost scenario of additive characters, the placement of a unique
state can affect tree cost (Fig. 10.9). This is due to the fact that a unique state
will either be basal, intermediate, or derived compared to other states. Hence,
its homology implications and costs are not uniform.

The behavior of missing data cannot be predicted a priori in any general
way; their pathological effects (if any) are specific to individual analyses.
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Figure 10.8: Autapomorphic non-additive character will act as missing data,
except for adding a single step, no matter where it is placed.
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Figure 10.9: Autapomorphic additive character will assume different states de-
pending on where it is placed on the tree, adding from one to five steps to the
tree depending on its placement.
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10.4 Edge Transformation Assignments

Frequently, median vertex assignments are not unique. In the example of Fig-
ure 10.5, all internal vertices are ambiguously optimized. It may seem odd that
the tree cost itself can be set so precisely, when the states that cause it cannot.
Often, investigators wish to examine branch lengths or localize transformations
to a particular edge on a tree. If the vertex assignments are unique, this is
straightforward. When ambiguity exists, this may be impossible. As a means
of examining change, we often make arbitrary (if repeatable) choices (or ran-
dom for that matter) in resolving vertex ambiguity and examine the impact on
edge weights.

One option is to resolve states such that transformations occur as closely to
the root as possible, and a second is to refrain from changes as long as possible,
pushing change to the leaf tips of the tree (Fig. 10.10). These two scenarios
have been called “ACCTRANS” and “DELTRANS” in PAUP (Swofford, 1993,
2002). It is important to recognize that these are only two possibilities (and
not extremes either for anything other than the root and pendant edges). All
transformations (and there may be an exponentially large number of unique
scenarios) can be generated easily (if tiresomely) via recursively visiting each
vertex, assigning each potential state and moving on to the next vertex up
the tree towards the leaf nodes. This approach has been used to examine the
diversity of optimization scenarios in discussions of evolutionary trends and
repeated patterns (e.g. Maddison, 1995).

Given that the weights of edges (branch lengths) may vary tremendously
with these different optimizations, the question of when to collapse or resolve
branches arises immediately.

4 2 1 0 1 0

0

0

0

1

1

4 2 1 0 1 0

1

0

1

2

1

Figure 10.10: Alternate vertex character optimizations of Figure 10.5. The left
is “delayed” change and the right “accelerated.” The tree cost is unaffected.
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10.5 Collapsing Branches

In general, systematists would like the graphs they present to reflect or repre-
sent all those clades and only those clades that are supported. “Supported,” in
this context, usually means unambiguous character change between the parent
of a vertex (node) and itself (but for other ideas of support see Chapter 15).
Consider the additive optimization of Figure 10.3. Several vertices (those closest
to the root) are ambiguous, while those further away are uniquely optimized.
Coddington and Scharff (1994) enumerated four options as to how to handle
this issue.

Jon Coddington

1. Collapse if the minimum edge weight is zero.

2. Collapse if the edge weight is zero on an arbitrary tree (from all
possibilities).

3. Collapse if the maximum edge weight is zero.

4. Discard trees that must contain zero-length branches.

If we restrict ourselves to options 1 and 3 (2 and 4 seem—to me, at least—to be
arbitrary and unreasonable), then the question is whether to collapse branches
(edges) because they can be zero (case 1) or must be zero (case 3) (Fig. 10.11).
Over time, different phylogenetic software implementations have approached
this problem in different ways. Most have presented options (whether or not
users were aware of them) to choose alternate collapsing regimes. At this point
in time, the consensual opinion is to be conservative and collapse an edge if its
minimum weight is zero. In this way, the investigator can be sure that there is
at least some character support for each resolved node on a tree.

10.6 Dynamic Homology

This section treats sequences (in their general form) as characters and presents
methods to create minimum cost scenarios on trees directly. As such, these

4 2 1 0 1 0 4 2 1 0 1 0

Figure 10.11: Alternate branch collapsing scenarios of the optimizations of
Figure 10.5. Left is case 1 and right case 3 of Coddington and Scharff (1994).
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ideas are both in opposition and close cousins to the multiple sequence align-
ment methods of Chapter 8. The sections of that chapter concerning sequences
(Sect. 8.3) and pairwise-string matching (Sect. 8.4) are introductory to the con-
cepts discussed here.

10.7 Dynamic and Static Homology

Dynamic homology (Wheeler, 2001a,b) is based on the idea that statements
of homology cannot exist outside of a specific cladogram. Two features are
homologous if and only if their origin can be traced back to a specific change on
a specific branch of a specific cladogram (Fig. 10.12). This definition not only
does not require primary or putative homology, but does not allow it (sensu
DePinna, 1991). Since each cladogram may have its own set of correspondences
among features, any “putative” or “primary” homology statements would be
equally bound to that cladogram.

The tasks of homology determination and cladogram searching are insepara-
ble. An optimal cladogram is one that minimizes the costs of all transformations
among attributes of the organisms under study, allowing for all possible corre-
spondences among variants.

This manner of thinking leaves static homology characters unaffected. Their
a priori fixed correspondences are a special case of the more general dynamic
homology scenario.

Following the treatment in Varón et al. (2010), we can define A and B as
two states of a character (such as a sequence). A relationship exists between
the elements in A and B that is a correspondence. A static homology character
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Figure 10.12: The feature “A” has non-unique origins on the left, hence is not
homologous. “A” has a single origin on the right, hence the “A”s are homolo-
gous. The Implied Alignments (Wheeler, 2003a) are shown to the right of the
cladograms.
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Figure 10.13: Three simple sequences characters showing multiple element cor-
respondences and non-transitivity (Wheeler, 2001a).

is one in which, for each element in A, there is at most one element in B, and
these correspondences are transitive (i.e. if a ∈ A corresponds to b ∈ B, and b
corresponds to c ∈ C, then a and c must also correspond). A dynamic homology
character would be the complement of this definition. For some pair of states A
and B, there exists an element a ∈ A that corresponds to more than one element
in B, or the correspondences are not transitive (Fig. 10.13).

10.8 Sequences as Characters

Unlike static characters where individual observations constitute states, se-
quence character states are extended strings. Individual observations (e.g. nu-
cleotides in a DNA sequence) are part of an array of states whose optimizations
are interrelated. The optimization of a given additive (Sect. 10.2.1) or non-
additive (Sect. 10.2.2) feature takes place independently of all others (if on the
same cladogram). Those in a sequence character are determined by the lowest
cost correspondence among all observations in that sequence. In short, static
homology elements are independent, those of dynamic homology are not. This
is the root cause of the complexity of their optimization.

A sequence character, then, is the entire contiguous sequence. If the sequence
is a genetic sequence of a particular locus, then that locus is the character.
If the sequence is the set of developmental steps involved in the origin of an
anatomical feature, then all those steps are components of the character. In the
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case of a nucleotide sequence character, we may or may not specify individual
locus identities (annotations) of sequences (hence, sequences of loci). This is a
static homology statement at the locus level, and the sequence characters of the
various loci would be optimized independently. This is, however, only a special
case. The general problem would involve all nucleotides in a genome and all
events that relate them. Annotation, or identification of loci is not a necessary
input of dynamic homology analysis (but may be a result; Wheeler, 2007b). If
locus annotations are known, the gene homologies would be static and allow for
more rapid optimization.

10.9 The Tree Alignment Problem on Trees

The Tree Alignment Problem (TAP; Sect. 8.5.1) was originally described in
the context of tree optimization (Sankoff, 1975), but later discussed in terms
of multiple sequence alignment (Sankoff and Cedergren, 1983). The basic prob-
lem is the same—given a tree (T = (V, E)), a set of sequences (L ⊆ V), and a
metric distance function (d), determine the median sequence assignments for
the internal vertices (V \ L) such that the overall tree cost (

∑
u,v∈E d(u, v)) is

minimal. As mentioned earlier, this optimization problem has been shown to
be NP–hard (Wang and Jiang, 1994). The TAP is the parsimony problem for
dynamic homology sequence characters.

10.9.1 Exact Solutions

As mentioned above, exact solutions will be unavailable for non-trivial data sets.
Sankoff and Cedergren (1983) proposed a k-dimensional recursive procedure (for
k sequences) that used the tree topology to determine the alignment cost for
each cell in cost matrix (Eq. 8.8). The time complexity of this procedure is
[O

((
2k − 1

) · nk
)

for k sequences of length n]. Wheeler (2003c) proposed a sim-
ilarly time-complex approach, but based on a different dynamic-programming
model. The idea behind this procedure was to use the matrix character opti-
mization of Sankoff (1975) with the potential sequences as states. The matrix
of character state transformations (σ) is determined by the pairwise edit cost
(Sect. 8.4) between sequences. Given the large number of possible sequences
(from minimum length n to maximum 2n Nsequences =

∑i=2n
i=n i4), the time com-

plexity for an exact solution would be O(n · N2
sequences) (after an initial

(
Nsequences

2

)
set-up operation to determine the pairwise costs). This leads to an unexplored,
but potentially useful heuristic procedure where a heuristic sequence set (akin
to a heuristic tree search set) could be generated where Nheuristic � Nsequences

with time complexity O(kN2
heuristic) (Sect. 10.9.3)(Wheeler, 2003c).

10.9.2 Heuristic Solutions

The central problem in heuristic TAP procedures is the assignment of the in-
ternal (V \ L) vertices. Multiple sequence alignment (MSA) can be viewed as a
TAP heuristic, constructing median sequences by static optimization (usually
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Down-Pass

GGGG GGG GAAG GAA

GAA(G)
1 Indel
Cost=2

GRRG
2 Subs
Cost=2

GGG(G)
1 Indel
Cost=2

Total Cost = 6

Up-Pass

GGGG GGG GAAG GAA

GAA

GAA

GGG

Insertion

2 Substitutions

Insertion

Figure 10.14: Direct Optimization (Wheeler, 1996) down-pass (top) and up-pass
(bottom). In this example, all substitutions cost 1 and indels 2.
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non-additive, or matrix) of the independent leaf characters (i.e. columns) of the
MSA. Given the exponential complexity nature of the problem, this approach,
as all others, will be an upper bound for non-trivial data sets.

Other heuristics operate directly on the tree, without recourse to MSA. These
are presented roughly in increasing order of time complexity. Unfortunately, two
of the most commonly used methods do not have known guaranteed bounds
(Direct Optimization, Iterative Improvement) but guaranteed time complexity.

Direct Optimization

Direct Optimization (DO; Wheeler, 1996) is currently the TAP heuristic most
commonly used in empirical studies (Liu et al., 2009). DO creates a set of
minimum cost medians at each internal vertex (V \ L) on a tree by pairwise
comparison of the two descendants of that vertex. A preliminary median is cre-
ated from the minimum cost pairwise alignment (Sect. 8.4) by choosing those
sequence elements (including “gap” or indel element) nearest to the correspond-
ing descendent elements given a metric objective cost function d. All positions
consisting solely of indel elements (implying that corresponding elements in
the descendent vertices contain indel elements) are deleted from the candidate
median (since sequences do not contain gaps).

The procedure continues down the tree in a post-order traversal, summing
up the cost of each median (from the pair wise comparison of vertices) until
the root is reached. As with other optimization procedures, an up-pass is then
performed to assign final median assignment to each vertex (Fig. 10.14). The
DO algorithm is similar to the first pass of pairwise alignment (Alg. 8.1). Both
the first-pass and traceback (Alg. 10.6, 10.7) are augmented by a matrix of
elements σ′ containing those elements closest to the input elements based on
the costs specified in σ (i.e. elements and combinations of elements and their
nearest element or elements).

10.9.3 Lifted Alignments, Fixed-States,
and Search-Based Heuristics

This category of heuristics is based on inputting pre-specified sequences. Lifted
alignments (Wang and Gusfield, 1997; Wang et al., 2000) rely on using a subset

Daniel Gusfield

of the leaf (observed) sequences to assign to the remaining vertex sequences.
In a lifted alignment, the assignment of a vertex sequence must be from the
set of sequences that are descendants of that node. A uniform lifted alignment
chooses either the left or right descendant consistently for each assignment at
that level (Fig. 10.15). The powerful result derived from lifted alignments is
that they have a guaranteed bound. The average cost of the 2d (tree depth d)
uniform-lifted alignments will be no greater than twice the global minimum. As
such, uniform-lifted alignments are not likely to be useful for empirical analysis,
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Algorithm 10.6: DirectOptimizationFirstPass
Data: Input strings X and Y of lengths |X| and |Y|
Data: Element cost matrix σ′ of elements nearest to all pairs of elements

in Σ and λ (indel) based on element cost matrix σ of Algorithm 8.1
Result: Median cost.
Initialize first row and column of matrices;
direction [0] [0] ← ‘↘’;
cost [0] [0] ← 0;
length [0] [0] ← 0;
for i = 1 to |X| do

cost [i] [0] ← cost [i − 1] [0] + σ′
Xi,λ

;
direction [i] [0] ← ‘→’;
length [i] [0] ← length [i − 1] [0] + 1;

end
for j = 1 to |Y| do

cost [0] [j] ← cost [0] [j − 1] + σ′
Yj ,λ;

direction [0] [j] ← ‘↓’;
length [0] [j] ← length [0] [j − 1] + 1;

end
Update remainder of matrices cost, direction, and length;
for i = 1 to |X| do

for j = 1 to |Y| do
ins ← cost [i − 1] [j] + σ′

Xi,λ
;

del ← cost [i] [j − 1] + σ′
Yj ,λ;

sub ← cost [i − 1] [j − 1] + σ′
Xi,Yj

;
cost [i] [j] ← min (ins, del, sub);
if cost [i] [j] = ins then

direction [i] [j] ← ‘→’;
length [i] [j] ← length [i − 1] [j] + 1;

else if cost [i] [j] = del then
direction [i] [j] ← ‘↓’;
length [i] [j] ← length [i] [j − 1] + 1;

else
direction [i] [j] ← ‘↘’;
length [i] [j] ← length [i − 1] [j − 1] + 1;

end
end

end
return cost [|X|] [|Y|]
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Algorithm 10.7: DirectOptimizationTraceback
Data: Strings X and Y of Algorithm 10.6
Data: direction matrix of Algorithm 10.6
Data: length matrix of Algorithm 10.6
Data: Element cost matrix σ′ of elements nearest to all pairs of elements

in Σ and λ (indel) based on element cost matrix σ of Algorithm 8.1
Data: Median sequence M′ between input sequences X and Y of

minimum cost.
alignCounter ← length [|X|] [|Y|];
medianCounter ← 0;
xCounter ← |X|;
yCounter ← |Y|;
while xCounter ≥ 0 and yCounter ≥ 0 and alignCounter ≥ 0 do

if direction [i] [j] = ins then
M[alignCounter] ← σ′ (X [xCounter] , GAP);
xCounter ← xCounter − 1;
alignCounter ← alignCounter − 1;

else if direction [i] [j] = del then
M[alignCounter] ← σ′ (GAP, Y [yCounter]);
yCounter ← yCounter − 1;
alignCounter ← alignCounter − 1;

else
M[alignCounter] ← σ′ (X [xCounter] , Y [yCounter]);
xCounter ← xCounter − 1;
yCounter ← yCounter − 1;
alignCounter ← alignCounter − 1;

Remove GAP only positions;
for i = 0 to length [|X|] [|Y|] − 1 do

if M [i] 	= GAP then
M′ [medianCounter] ← M [i];
medianCounter ← medianCounter + 1;

Median sequence M′ without GAP elements;
return M′

but do give us some idea of the lower bound on tree costs. Polynomial Time
Approximation Schemes (PTAS) for the TAP (Wang et al., 2000) make use of a
combined exact and uniform-lifted assignment to create guaranteed performance
bounds in polynomial time (Table 10.1).

Fixed-States optimization (FS; Wheeler, 1999) is not strictly speaking a
lifted alignment since the vertex assignments are not limited to their descen-
dants, but may be drawn from any of the leaf sequences (Fig. 10.16). Since FS
allows a superset of vertex assignments, the bound for FS can be no greater
than the factor of two for lifted alignment (Wang and Gusfield, 1997). FS
can be accomplished via the Sankoff–Rousseau algorithm for matrix characters
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s0 s1 s2 s3 s4 s5 s6 s7

s0 s3 s5 s7

s3 s5

s5

s0 s1 s2 s3 s4 s5 s6 s7

s0 s2 s4 s6

s2 s6

s6

Figure 10.15: Lifted assignment (Wang and Gusfield, 1997) (top) and uniform-
lifted assignment (Wang et al., 2000) (bottom).

Running time O(kdn3) O(kdn4) O(kdn5) O(kdn6) O(kdn7) O(kdn8) O(kdn9)

TPTAS/Tmin 1.67 1.57 1.50 1.47 1.44 1.42 1.40

Table 10.1: PTAS time complexity for k sequences of length n and tree depth d
(Wang et al., 2000).

(Alg. 10.5), with the observed sequences as the states, and their transforma-
tion costs determined by their pairwise edit cost (Alg. 8.1). Since the number of
states is equal to the number of leaves (k), the time complexity of FS is O(k3) for
each tree, which is usually much smaller than that of DO (O(kn2) for sequence
length n) but can grow to be worse for very large data sets (k > n).

Search-based optimization (SBO; Wheeler, 2003c), as mentioned above, ex-
pands the possible vertex assignments to non-leaf sequences spanning the di-
vide between FS and an exact solution. SBO allows unobserved sequences to
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s0 s1 s2 s3 s4 s5 s6 s7

s3 s3 s5 s6

s3 s5

s5

s0 s1 s2 s3 s4 s5 s6 s7

s10 s9 s4 s12

s8 s45

s23

Figure 10.16: Fixed-States Optimization (Wheeler, 1999) (top) and Search-
Based Optimization (Wheeler, 2003b) (bottom). Note that the Fixed-States
assignments need not be descendent sequences, and that Search-Based assign-
ments may be outside the leaf set.

be assigned to non-leaf vertices to further improve tree cost. If k additional po-
tential sequence medians are added to the n observed, the time complexity of
tree evaluation will be O((n + k)2) (via Alg. 10.5) after an initial O((n + k)2m2)
(for sequence length m) edit cost determination. It is unclear whether heuristic
sequence sets can be identified that are sufficiently compact to make SBO a
useful tree heuristic.

10.9.4 Iterative Improvement

Iterative improvement is a process of improving vertex median assignments
by creating an exact median for each vertex in turn from its three neighbors
(Sankoff and Cedergren, 1983; Wheeler, 2003b) via a three-dimensional DO.
This procedure can be used after any initial median assignment (e.g. DO, lifted,
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s0 s1 s2 s3 s4 s5 s6 s7

v2 v3 v5 v6

v1 v4

Figure 10.17: Iterative improvement (Sankoff and Cedergren, 1983; Wheeler,
2003b). Vertices v1, . . . , v6 are each recalculated from their three neighbors.
Note that v1 and v4 are neighbors.

or “nearest” leaf). Since the alteration of one vertex may affect its three neigh-
bors, the process is repeated, iteratively, over all internal vertices until the vertex
set is stable, or the tree cost has reached a stable minimum (Fig. 10.17). The
time complexity will depend on the number of taxa, k, and the cube of the
length of the sequences, m, for O(km3). Experience shows that tree optimality
is often improved this way, but at high (factor of m) cost (Frost et al., 2006).

10.10 Performance of Heuristic Solutions

There are only a few comparisons of TAP heuristic effectiveness. In general,
worst-case effectiveness should follow worst-case time complexity, hence the or-
der: lifted assignment, FS, DO, IA, SBO, to exact solutions. Although as yet
unstudied, the average case quality of bounds should improve as computational
effort increases. An area of great interest is in the comparison of MSA as a
TAP heuristic to the methods described here (specifically DO as an O(kn2)
method similar in complexity to progressive alignment). A handful of limited
studies (e.g. Wheeler, 2007a; Wheeler and Giribet, 2009) have shown the su-
periority (in terms of TAP cost) of DO (via POY; Wheeler et al., 2005; Varón
et al., 2008) to MSA (via CLUSTAL; Thompson et al., 1994) in simulated and
real data. More general studies of stronger alignment methods (e.g. MUSCLE,
MAFFT) and broader sequence problem sets have yet to reveal themselves.

10.11 Parameter Sensitivity

A topic of great importance to TAP analysis is parameter sensitivity. At its most
basic, the relative costs of indels and substitutions must be specified (unless anal-
yses are limited to areas of exact matching). The objective distance functions
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that relate sequences to one another via edit costs are based on element edit
costs (σ here) among all pairs of sequence elements and the empty (λ) or gap
element. As shown for MSA earlier (Sect. 8.4), the specific values of these pa-
rameters are likely to have a large effect on the correspondences among sequence
elements in MSA and TAP. The repercussions of the choice of cost model will
continue through to the TAP cost and then through tree search playing a role
in the solution to the General Tree Alignment Problem (GTAP; TAP with tree
search to identify the optimal tree). The exploration of this effect has been
termed sensitivity analysis (Wheeler, 1995).

10.11.1 Sensitivity Analysis

Unfortunately, at least in the world of parsimony, there is no method to deter-
mine the “true” values of these necessary parameters via observation in nature,
and no way to choose one set over another purely on their optimality values
(since the numbers are not comparable). As a result, Wheeler (1995) suggested
sensitivity analysis to track the influence of parameter variation on phyloge-
netic results (Fig. 10.18). The idea was to repeat analyses using different sets
of parameters (indel costs, transition–transversion ratios etc.) and compare the
end results on the basis of congruence and stability among data sets. While not
an impediment to theoretical studies, empirical studies are driven by the desire
for specific results. Wheeler (1995) suggested two approaches. The first was to
identify those taxonomic groups (= vertices) that were largely or completely
robust to parameter variation. These groups are relatively insensitive to the un-
measurable assumptions of analysis (Fig. 10.19). Unfortunately, as there can be
huge variation in parameters, few aspects of tree topology are entirely free of
this sort of dependence.

The second was to identify those areas in parameter space that minimized
incongruence among characters using an incongruence metric (Wheeler, 1995;
Wheeler et al., 2006b) (Fig. 10.20). Studies that report sensitivity results (e.g.
Giribet and Edgecombe, 2006; Murienne et al., 2008) usually present both of
these modes of analysis.

One solution to the problem of sensitivity has been proposed by Grant and
Kluge (2003, 2005) and that is to treat all transformations as equally costly in all
circumstances. The form of parsimony advocated by Grant and Kluge is one of
minimizing transformations. This interpretive choice was regarded as somewhat
arbitrary by Giribet and Wheeler (2007) since this is only one of a very large
set of possible cost regimes. Furthermore, this completely homogeneous cost
regime could well result in non-metric transformation costs when extended to
high-order changes involving the insertion and deletion of sequence blocks.

10.12 Implied Alignment

Although DO-based trees (or lifted, FS, and SBO for that matter) are not based
on multiple sequence alignment, and vertex medians may vary in length, it is
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Figure 10.18: A sampling of sawfly trees, based on morphological and molecular
data of Schulmeister et al. (2002), showing the effects of parameter set variation.
The notation signifieds indel:transition cost ratio / transversion:transition cost
ratio = indel:transversion:transition cost ratio.

possible to trace the correspondences between vertex sequence elements over
the tree. The tracing would follow a pre-order path from root to leaves keeping
track of the chain or element correspondences between ancestor and descendant.
These traces would link all the leaf sequences through their hypothetically an-
cestral medians. Where there were deletions (or areas basal to insertions), gap
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Figure 10.19: A majority rule consensus tree containing all vertices present in
more than half of the analyses performed under different parameter sets (Schul-
meister et al., 2002). “Navajo rugs” are displayed at the vertices.
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Figure 10.20: Pseudoscorpion analysis of Murienne et al. (2008). The base tree is
that which minimized incongruence among multiple molecular loci. The “Navajo
rugs” show the presence or absence of each vertex in parameter space. See
Plate 10.20 for the color Figure.
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AA AA AGGG ATT ATTG

A A A A A GG G A T T A GT T- - - - -

A A A A A GG G A T T A GT T

A A- -
A A- -
A GG G
A T T -
A GT T

Figure 10.21: Implied alignment (Wheeler, 2003a) of five sequences: AA, AA,
AGGG, ATT, and ATTG. The original optimized tree is shown on the upper
left; the implied traces upper right; implied traces with traces extended and gap
characters filled in lower left; and the final implied alignment in the lower right.
See Plate 10.21 for the color Figure.

characters (‘-’) are to be placed. The weighted sum of the transformations along
these traces would exactly match the tree cost. When displayed in 5’ to 3’ order,
these correspondences among leaf elements (with medians removed) would look
a great deal like a multiple sequence alignment. It would be the alignment
implied by the tree and cost parameters. It would be an implied alignment
(Fig. 10.21) (Wheeler, 2003a). Implied alignments are different from traditional
multiple alignments in that the column identity (= putative homology) varies
with, and is linked irrevocably to, the tree topology. Sequence elements (usually
nucleotide, but they could be anything in theory) involving non-homologous
(i.e. multiple origin) insertions may appear to be “mis-aligned” when inspected
visually. This is due, however, to their non-homology (heuristic effects aside).
They cannot align since they cannot be homologous. If such elements had a
single origin (such as if they were present in a monophyletic group), they would
line up (Fig. 10.12).

One nice feature of implied alignments is that they exactly reflect the sequence
transformations that have occurred on the tree. This allows verification of the
TAP heuristic cost in that the implied alignment can then be diagnosed as a se-
ries of static characters. Given the same tree topology and cost regime (e.g. indel
cost), either mode of analysis should return the same cost. This aspect of im-
plied alignments leads to a useful TAP search heuristic. Since TAP optimization
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heuristics such as DO are quadratic in sequence length, and static characters lin-
ear, the implied alignment can be used to search for optimal trees much more
rapidly than DO can. Of course, the implied alignment potentially would change
with each tree topology, but an alternation between DO and implied alignment
(Static Approximation; Wheeler, 2003a) can be a fast and effective tool for initial
tree search on unaligned sequence data (Varón et al., 2010).

10.13 Rearrangement

In addition to the insertion–deletion and substitution modes of sequence change,
other transformations are possible. These are placed in the general category of
moves or rearrangement. Chromosomes can be viewed as sequences with gene
regions (loci) as sequence elements. Variation in gene order, orientation, and
complement have been used as historical information since the first multi-gene
mitochondrial sequences became available. Initially, these were informal analyses
(e.g. Boore et al., 1995, Fig. 10.22), but more recently, they have been based on
explicit, optimality-based algorithmic procedures (Moret et al., 2002). Most fre-
quently, sequence and gene order information have been treated independently.
Ideally, however, these data would be optimized simultaneously.

10.13.1 Sequence Characters with Moves

The straightforward, if daunting, simultaneous option is to extend sequence edit
algorithms to include moves of blocks of sequences from one position to another
(Eq. 10.8). A näıve analysis would suggest complexity for the general case of

4 Crustaceans (4 orders)

134 Insects (10 orders)

2 Chelicerates (2 orders)

4 Myriapods (2 orders)

Onychophoran

Tardigrade

Pogonophoran, 3 annelids
(S–A rather than A–S in Platynereis)

Echiuran

Gastropod, polyplacophoran
molluscs

Arthropoda

COI    L(UUR)   COII

LrRNA  L(CUN) L(UUR)    NDI

LrRNA  L(CUN) L(UUR)    NDI

LrRNA  L(CUN) L(UUR)    NDI

LrRNA  L(CUN) L(UUR)    NDI

LrRNA  L(CUN)   I    L(UUR)    NDI

LrRNA  L(CUN)   A    S   L(UUR)    NDI

L(CUN)   A    S   L(UUR)    NDI

Figure 10.22: Mitochondrial gene order variation in protostome taxa (Boore
et al., 1998). See Plate 10.22 for the color Figure.



10.13 Rearrangement 205

O(n5) with order n potential sequence blocks moving to order n positions, and
order n such moves between two sequences. Clearly, the general case will be
very difficult. Cormode and Muthukrishnan (2002) studied a special case of
approximate edit cost calculation yielding a sub-quadratic time complexity of
O(log n log∗ n).

Substitution at i with e:
S0 . . . Sn−1 → S0 . . . Si−1, e, Si+1, . . . Sn−1 (10.8)

Deletion at i:
S0 . . . Sn−1 → S0 . . . Si−1, Si+1, . . . Sn−1

Insertion at i of e:
S0 . . . Sn−1 → S0 . . . Si−1, e, Si, . . . Sn−1

Move with 0 ≤ i ≤ j ≤ k ≤ n − 1:
S0 . . . Sn−1 → S0 . . . Si−1, Sk . . . Sk−1, Si, . . . , Sj−1,

Sk, . . . , Sn−1

Given the inherent complexity of this sequence-based analysis, moves are
generally studied at the gene locus level, as rearrangements of high-order ele-
ments as opposed to nucleotides themselves.

10.13.2 Gene Order Rearrangement

Chromosomal gene synteny patterns can undergo a variety of transformations
including moves, inversions, insertions, and deletions (Fig. 10.23). There are
two components required for systematic analysis of gene order data. First, an
edit distance function must be defined, and second, median genomes must be
reconstructed. This is a brief summary of several approaches to rearrangement
analysis.

a b c d e f

a b cd e f

a b c~d~e f

a b~d~e f g

move (d,e) after (a)

move (d,e) after (a) and invert (d,e)

move (d,e) after (a) and invert (d,e)
delete (c) and insert (g)

Figure 10.23: A sequence of elements [a, . . . , g] (top) transformed via move
(upper center), inversion and move (lower center), and inversion, move, inser-
tion, and deletion (bottom). The complement of element x is represented by ∼ x.
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Distances

Gene order distance functions measure the edit cost between synteny maps based
on specific classes of transformation events. These vary from the linear time
Break point distance to NP–hard inversion distance. Each of these functions is
based on an explicit biological mechanism of genetic change.

Breakpoint—Sankoff et al. (1996) defined the breakpoint distance based on
the minimum number of breaks required to edit one chromosome into another.
The distance refers to the number of adjacent pairs of loci present on one chro-
mosome but not another (Fig. 10.24). The breakpoint distance can be calculated
in linear time, but does not include orientation information.

Inversion—Unlike breakpoint distances, inversion distances can make use
of the orientation, or sign, of loci. An inversion is a flipping of a segment of a
chromosome (Fig. 10.25). Without orientation information, the calculation of in-
version distance is NP–hard. If gene orientation information is present, however,
the distance can be calculated in linear time (Hannenhalli and Pezvner, 1995).

Tandem Duplication Random Loss (TDRL) Boore (2000) attributed the
vast majority of metazoan mitochondrial evolution to this TDRL mode. In this
model, a segment of a chromosome (or even entire genome) is duplicated, and
one copy of each duplicated locus is deleted at random (Fig. 10.26). The dis-
tance between two genomes can be determined in O(n log n) time (Chaudhuri
et al., 2006). The method has great appeal for the ordering of loci, but does not
explain/take account of their differences in orientation.

distance = 3

L1L2L3L4L5L6 → (L1L2)(L2L3)(L3L4)(L4L5)(L5L6)

L1L3L2L6L4L5 → (L1L3)(L3L2)(L2L6)(L6L4)(L4L5)¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Figure 10.24: Breakpoint distance between two chromosomes. The bars denote
inverse orientation. There are three locus adjacencies in the upper chromosome
not found in the lower. Note that neither orientation nor within-pair order are
relevant.

distance = 2

L1L2L3L4L5L6 → L1(L3L2)L4L5L6 →¯ ¯

L1L3L2(L4L5L6) → L1L3L2L6(L5L4) → L1L3L2L6L4L5
¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Figure 10.25: Inversion distance between two chromosomes. The bars denote
inverse orientation. Three inversions are required to edit the top left sequence
into the bottom right (L2L3 to L̄3L̄2, L4L5L6 to L̄6L̄5L̄4 and L̄5L̄4 to L4L5).
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L1L2L3L4L5L6 → L1L2L3L4L5L6L1L2L3L4L5L6

→ L1L3L2L4L5L6 → L1L3L2L4L5L6L4L5L6

→ L1L3L2L6L4L5

Figure 10.26: Tandem duplication random loss transformation between chro-
mosomes. There are two rounds of duplication and loss to edit the upper left
sequence into the lower right.

A B

C D

A D

BC

Figure 10.27: Double-Cut-Join rearrangement model of Yancopoulos et al.
(2005). The two cuts on the left chromosome yield the two rearranged chro-
mosomes on the right.

Double-Cut-Join (DCJ)—DCJ was proposed by Yancopoulos et al. (2005) as
a rearrangement mechanism (Fig. 10.27). In this operation, a chromosome is cut
in two places and rejoined, bringing the loci next to the cuts into adjacency. The
distance between two chromosomes can be calculated in linear time (Yancopou-
los et al., 2005). DCJ mediated rearrangements can be very flexible, allowing
for a large diversity of moves, inversions, duplications and losses to occur.

10.13.3 Median Evaluation

For the distances described above (with the exception of unsigned inversions),
there are linear or nearly linear algorithms for their calculation. The median op-
timization, however, for each of them is known (or in the case of TDRL, thought)
to be NP–hard. Many heuristic tree optimization algorithms optimize vertices
as medians of their three adjacent vertices. This makes the tree optimizations
intractable even when based on linear time distances. Implementations such as
GRAPPA (Bader et al., 2002) have implemented a variety of median solvers for
this purpose.

10.13.4 Combination of Methods

The methods above optimize locus-level rearrangements alone. In order to in-
clude the nucleotide sequence information as well, combination methods are re-
quired to include the broadest collection of available data (Darling et al., 2004).
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Wheeler (2007b) coupled genomic rearrangement (via the use of GRAPPA) with
sequence optimization (DO and FS—see above) to include the information in an-
notated sequences. This annotation was not required for locus homology (= iden-
tity), but to mark the potential break points in the rearrangement analysis.
LeSy et al. (2006, 2007) removed the annotation requirement, resulting in an
entirely dynamic approach to both nucleotide and locus homology (Fig. 10.28).

x1 x2 x3 x4
x5

y2 y3 y5y4y1

x2

y5 y4y1 y3 y2

x3 x4x1 x5

(a)

(b)

(c)

(d)

Figure 10.28: The method of LeSy et al. (2007) to identify homologous regions
and loci dynamically: (a) non-rearranged seeds constitute a block, (b) consecu-
tive blocks are connected into a large block, (c) blocks are used as anchors to
divide genomes into loci, (d) loci are aligned allowing order rearrangements.
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10.14 Horizontal Gene Transfer, Hybridization,
and Phylogenetic Networks

There are two sorts of phylogenetic networks that occur in discussions and anal-
ysis of reticulate scenarios. The first is motivated by ideas of horizontal gene
transfer (HGT, Fig. 10.29) and involves the addition of edges to trees such that
they accommodate transfer events for specific sets of characters. The second,
hybridization networks, produces trees possessing vertices with in-degree 2 and
out-degree 1, motivated by the hybridization of lineages (= vertices) (Fig. 10.30).

When dealing with networks as explanations of HGT events, directed edges
are added to binary trees to allow for the individual patterns of sets of characters
(N = (V,E)). The resolution of the alternate binary trees implicit in the network
account for the diversity of postulated events. In order to arrive at the optimality
(cost) of such a network, the sum of cost of the most parsimonious trees (Ti ∈ N)
for each set of characters (bi ∈ B) is calculated (Eq. 10.9).

N = (V, E) (10.9)

Ncost =
∑
bi∈B

(
min

T∈T (N)
Tcost (bi)

)
(10.10)

The construction of hybrid networks involves the calculation of the hybrid
number. This is determined by the SPR (Subtree-Pruning and Regrafting) dis-
tance between component trees. This calculation is NP–hard even for a pair
of trees (Bordewich and Semple, 2005), hence many operations on this class of
phylogenetic networks have exponential time complexity.

5

Bacteria Archaea

Common ancestral community of primitive cells

Plastids

Mitochondria

Eukarya

3,4

21

Figure 10.29: Depiction of potential horizontal gene transfer events (Smets and
Barkay, 2005).
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a b c d e f g h

root

a b c d e g h

R

root

H a b c d e f g h

root

r' r''

Figure 10.30: Phylogenetic networks. Underlying tree (top), modified to include
the hybrid node R (bottom left), and to accommodate a horizontal event along
edge (r′, r′′) (bottom right).

10.15 Exercises

1. Consider Figure 10.31. Give the down-pass, up-pass optimizations (show-
ing rules) and tree cost assuming the character is additive.

2. Consider Figure 10.31. Give the down-pass, up-pass optimizations (show-
ing rules) and tree cost assuming the character is non-additive.

0 2 3 3 1 1 0

Figure 10.31: Cladogram and character states for exercises 1 and 2.
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A C - G T

A  C  G  T  -

A      0  1  1  1  1

C      1  0  1  1  1

G      1  1  0  1  1

T      1  1  1  0  1

-      1  1  1  1  0

Figure 10.32: Cladogram, character states, and cost matrix for exercise 3.

3. Consider Figure 10.32. Give the down-pass, up-pass (final states) opti-
mizations and tree cost assuming the character is optimized according to
the cost matrix in the figure using dynamic programming.

4. For the above three examples, collapse branches according to rules 1 and
3 of Coddington and Scharff (1994). Do you think either (or another) is
more reasonable? For all situations?

5. Consider Figure 10.33. Give the down-pass optimizations and tree cost
assuming the character is optimized according to the cost matrix in the
figure using direct optimization. Use IUPAC codes to represent nucleotide
ambiguity.

TA AT TGGTT CCGTT

A  C  G  T  -

A     0  1  1  1  1

C     1  0  1  1  1

G     1  1  0  1  1

T     1  1  1  0  1

-     1  1  1  1  0

CAGT AAAATWGG

Figure 10.33: Cladogram, sequence states, and cost matrix for exercise 5.
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12345

13542¯ ¯
Figure 10.34: Chromosomes with number loci, x̄ signifies complement of x.

6. Consider Figure 10.34. If the numbers represent loci (and bar above com-
plement) on a chromosome, what is the breakpoint distance between these
two chromosomes?

7. Briefly discuss the differences between dynamic and static homology con-
cepts with reference to a morphological example.



Chapter 11

Optimality
Criteria−Likelihood

The previous two chapters discussed methods to determine the cost of a tree
based on overall distance and the minimization of weighted transformations. We
discuss here the determination of tree cost using stochastic models of character
change optimizing the probability of the observed data on T given some set
of parameters. This probability is proportional to the likelihood function of
Section 6.1.7 and is referred to as the maximum likelihood (ML) criterion.

As with parsimony, ML methods assign median (ancestral) states (either in
an optimal or average context) such that the overall likelihood of the tree is
maximized. Unlike minimization-based parsimony, ML methods require explicit
models of character evolution (as opposed to edit cost regimes) and edge param-
eters (branch lengths; parsimony requires none) to determine tree optimality.

The presentation here will also divide characters into static and dynamic
types since they require different analytical techniques.

11.1 Motivation

One might explore alternate optimization criteria for their own sake. ML, how-
ever, was proposed in the context of purported problems with parsimony anal-
ysis. Although Camin and Sokal (1965) and Farris (1973a) had discussed ML
methods, Felsenstein (1973) was the first to identify concerns with parsimony
and advocate ML as a solution. Much of the discussion centering on the rela-
tive merits of parsimony and likelihood in systematics is based on the simple
scenario described by Felsenstein (1978).

Joseph Felsenstein

11.1.1 Felsenstein’s Example

Felsenstein posited a four-taxon example (Fig. 11.1) with a simple model of
change in binary characters to make his point. In this scenario, there are taxa

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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A

B

C

D

p p

qq

q

root

Figure 11.1: Felsenstein (1978) scenario for the statistical inconsistency of par-
simony. Probability calculations begin at the root vertex.

A, B, C, and D related by a tree. A and B are on one side of a central split and
C and D the other. All characters are posited to have state 0 at the arbitrarily
labelled root position. The probabilities of change on each branch are either p
or q as labelled. The probabilities of character change are symmetrical so that
for all characters pr(0 → 1) = pr(1 → 0).

Felsenstein was concerned with the issue of statistical consistency; in this
context, consistency refers to the conditions under which characters would re-
cover the model tree (AB|CD) as opposed to the alternatives (AC|BD or
AD|BC). There are six character distributions relevant to this problem: two
for each of the three alternate splits (Eq. 11.1), where the number of each char-
acters supporting a split (nABCD) are:

AB|CD : n1100 + n0011 (11.1)
AC|BD : n1010 + n0101

AD|BC : n1001 + n0110

Each of these conditions has an associated probability (starting from the root)
based on p and q (Eq. 11.2):

pr1100 = pq
[
(1 − q)2(1 − p) + q2p

]
(11.2)

pr0011 = (1 − q)(1 − p) [q(1 − q)(1 − p) + (1 − q)pq]

pr1010 = p(1 − q)
[
q2(1 − p) + (1 − q)2p

]
pr0101 = (1 − p)q [q(1 − q)p + (1 − q)q(1 − p)]

pr1001 = p(1 − q) [q(1 − q)p + (1 − q)q(1 − p)]
pr0110 = (1 − p)q

[
q2(1 − p) + (1 − q)2p

]



11.1 Motivation 215

In order for the parsimonious result to return the model tree, the probability
of those characters supporting the tree must be greater than that for the two
alternatives (Eq. 11.3).

pr1100 + pr0011 ≥ pr1010 + pr0101, pr1001 + pr0110 (11.3)

If q ≤ 1
2 (which we assume), then pr1010 + pr0101 ≥ pr1001 + pr0110. Hence, the

condition we require is that pr1100 + pr0011 ≥ pr1010 + pr0101. This will be
achieved when the probability of two parallel changes in p exceeds that of a
single change in q (Eq. 11.4).

p2 ≤ q(1 − q) (11.4)

The key relationship is between p and q. As long as p grows with respect
to q, parsimony will be increasingly unlikely to return the model tree
(Fig. 11.2)1.

Criticisms and qualifications of this result are argued in discussions of the
relative merits of optimality criteria and are discussed in Chapter 13.

0
0
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1.00

.10 .20 .30 .40 .50

Q

C

NC

.60 .70 .80 .90 1.00

Figure 11.2: The “Felsenstein Zone” (NC) of statistical inconsistency of parsi-
mony (Felsenstein, 1978).

1This effect is removed if p/q is constant and p and q become adequately small (Felsenstein,
1973) or the number of states increases sufficiently (Steel and Penny, 2000).
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11.2 Maximum Likelihood and Trees

From the discussion of Section 6.1.7, the likelihood of a hypothesis (in this case
a tree T) given data D, is proportional to the probability of the data given the
tree (and some model; Eq. 11.5, Edwards, 1972).

l(T |D) ∝ pr(D|T ) (11.5)

A systematic ML method selects T such that pr(D|T ) is maximized. This state-
ment includes the requirement of knowledge of a broad variety of quantities
needed to determine the likelihood. These include transformation models, edge
distribution (branch lengths), and other parameters bundled together under the
term “nuisance parameters.”

11.2.1 Nuisance Parameters

Nuisance parameters are all those aspects required to calculate pr(D|T ) other
than the data and tree topology. The three most important and commonly spec-
ified nuisance parameters are 1) transformation model (probabilities of change
between character states), 2) edge parameters (time and rate of change along
branches), and 3) distribution of rates of change among characters. These pa-
rameters can be denoted collectively by θ, and are estimated from observed
data (as with edge parameters), or chosen to maximize the likelihood of a tree
or trees. An important assumption for the analysis of character data is that
they are independent and identically distributed (i.i.d.). This allows the joint
likelihood of several characters to be calculated as the product of their indi-
vidual values. Certainly, for many character types, this is not reasonable (e.g.
stem and loop sequence characters in rRNA). However, distributional models
can account for this to a large extent (although dynamic character types would
be an exception).

If we have knowledge of the distribution of the nuisance parameters Φ(θ|T ),
we can integrate out θ (within parameter space Θ) to determine p(D|T )
(Eq. 11.6).

p(D|T ) =
∫

θ∈Θ

p(D|T, θ)dΦ(θ|T ) (11.6)

That T which maximizes p(D|T ) in this way is referred to as the maximum
integrated likelihood (MIL) (Steel and Penny, 2000). The MIL is also the MAP
Bayesian estimate (Chapter 12) if the distribution of tree priors is uniform (flat).

When discussing stochastic model-based systematic methods, it can be useful
to determine the probability that a given method, M, will return the “true”
tree given a tree T and set of model parameters θ, ρ(M,T, θ). If we have Φ(θ|T )
and a prior distribution of trees, p(T ), the nuisance parameters and tree can be
integrated out, identifying M with the highest expectation of success (Eq. 11.7).

ρ(M) =
∑
T

p(T )
∫

θ∈Θ

ρ(M,T, θ)dΦ(θ|T ) (11.7)
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Székely and Steel (1999) showed that ρ(M) is maximized for the method that
returns T with maximum p(T)pr(D|T ). This is the Bayesian maximum a poste-
riori or MAP tree. As mentioned above, this is identical to the MIL tree when
all prior probabilities of trees are equal. The use of non-uniform tree priors (such
as empirical or Yule) breaks this identity.

11.3 Types of Likelihood

As mentioned above, θ can have many complex components, and we are unlikely
to have much knowledge of their distribution. One approach to circumvent this
problem is to choose θ such that p(D|T, θ) is maximized. This is referred to as
maximum relative likelihood (MRL). In general, this is the methodology used in
empirical analyses. Problems may arise when p(D|T, θ) > p(D|T ′, θ′) for a low
probability θ (if we were to have Φ(θ|T )) while for a set of high probability
θ, p(D|T ′, θ′) > p(D|T, θ). Steel and Penny (2000) cite such an example in a
four-taxon case where parsimony outperforms MRL. MRL operates in absence
of p(T ) and Φ(θ|T ), allowing likelihood analysis of systematic data. There are,
however, further distinctions among MRL methods.

11.3.1 Flavors of Maximum Relative Likelihood

There are three variants in the manner in which non-leaf character states are
determined. The most usual method is to sum over all possible vertex state
assignments weighted by their probabilities. In the nomenclature of Barry and
Hartigan (1987), this is referred to as maximum average likelihood (MAL). An
alternative would be to assign specific vertex states (as well as other parame-
ters) such that the overall likelihood of the tree is maximized. Barry and Har-
tigan (1987) suggested this method, naming it most parsimonious likelihood
(MPL, sometimes referred to as ancestral maximum likelihood). This would ap-
pear to be convergent with parsimony, but the edge probabilities are the same
over all characters hence MPL will not (in general) choose the same tree as
parsimony.

John HartiganA third variant was proposed by Farris (1973a) and termed evolutionary
path likelihood (EPL). In this form, the entire sequence of intermediate char-
acter states between vertices are specified such that the overall tree likelihood
is maximized. Interestingly, the tree which maximizes this form of likelihood
is precisely the most parsimonious tree. This result holds for a broad and ro-
bust set of assumptions (there is no requirement of low or homogeneous rates of
character change for example). This would conflict with Felsenstein’s assertion
of ML methods being consistent and Farris’ result that MP is an ML method.
This seeming paradox is resolved when it is realized that the forms of likelihood
discussed by Farris and Felsenstein (and the separate analogous MP = ML re-
sults of Goldman, 1990 and Tuffley and Steel, 1997) differ (Fig. 11.3). For the
remainder of this discussion, when we talk of ML methods, we will be referring
to MAL.
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Maximum a posteriori Tree
(MAP)

unequal p(T) equal p(T) 

Maximum Integrated Likelihood
(MIL)

know φ(θ|T) optimize (θ|T)
Maximum Relative Likelihood

(MRL)

Maximum Likelihood
(ML)

Maximum Average Likelihood
(MAL)

Maximum Parsimonious Likelihood
(MPL)

Evolutionary Path Likelihood
(EPL)

average over
vertex states

select best
vertex states

select best
path of states

Figure 11.3: A classification of likelihood methods employed in systematics.

11.4 Static-Homology Characters

11.4.1 Models

Character Transformation

We can create a general model for a character of n states, with instantaneous
transition (rate) parameters between states i and j, Rij , and a vector of state
frequencies Π (Eq. 11.8; Yang, 1994a).

R =

⎡
⎢⎢⎢⎢⎣

R00 . . . R0n

· . . . ·
· . . . ·
· . . . ·

Rn0 . . . Rnn

⎤
⎥⎥⎥⎥⎦Π =

⎡
⎢⎢⎢⎢⎣

π0

·
·
·

πn

⎤
⎥⎥⎥⎥⎦ (11.8)

In general, we require several symmetry conditions of R (Eq. 11.9).

∀i Rii = 0 (11.9)
∀i, j Rij = Rji

n∑
i=1

n∑
j=1

πi · πj · Rij = 1

The combination of these two matrices yields the Q, or rate matrix, of Tavaré
(1986) (Eq. 11.10).

Qij =
{

Ri,j · πj i �= j
−∑n

m=1 Ri,m · πm i = j
(11.10)

The probability of change (P) between states i and j in time t can be calculated
from elementary linear algebra (Eq. 11.11; Sect. 6.2):

Pi,j (t) =
n∑

m=1

eλmt · Um,i · U−1
j,m (11.11)
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with λm, the eigenvalues of Q, U the associated matrix of eigenvectors and U−1,
its inverse (Strang, 2006). The time-reversible constraint of the matrix allows
efficient computation of tree likelihoods.

This formulation is the most general (if symmetrical) description of a Markov
process for n character states. This model has, at most, n − 1 independent
frequency parameters (Π; one for each state, but the total must sum to 1) and(
n
2

) − 1 independent rate parameters (R) due to the constraints above (Eq. 11.9).

Special Cases

All character transformation models in use today, from the simple binary model
of Felsenstein (1973), through the four state homogeneous Jukes and Cantor
(1969) to General-Time-Reversible models for four (Lanave et al., 1984; Tavaré,
1986) and five states (McGuire et al., 2001; Wheeler, 2006), are simplifications
of the most general process through symmetry requirements (e.g. transversions
equal). All of the named models other than GTR (e.g. JC69) are special cases
where analytical solutions are known (as opposed to computationally determin-
ing eigenvalues and applying Eq. 11.11). The hierarchy of simplifications for four
states is illustrated in Swofford et al. (1996) (Fig. 11.4).

11.4.2 Rate Variation

In addition to models of character transformation, there are also distributional
models of character change rates. These are most frequently used in the analysis
of molecular sequence data where aligned nucleotide characters are analyzed as

3 substitution types
(transversions, 2 transition classes)

3 substitution types
(transitions, 2 transversion
classes)

2 substitution types
(transitions vs. transversions)

2 substitution types
(transitions vs. transversions)

Single substitution type

Single substitution typeEqual base frequencies

Equal base frequencies

Equal base
frequencies

GTR

JC

TrN

HKY85
F84

F81

SYM

K3ST

K2P

Figure 11.4: Swofford et al. (1996) relationships among DNA substitution like-
lihood models from the least parameterized JC69 to the most, GTR.
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Figure 11.5: The gamma distribution with shape parameter α = k, β = θ.

a block. Positions vary in their observed levels of variation (hence, evolutionary
rates), and this is accommodated by adding variation to the global rates of
change used to calculate tree likelihoods.

The two most common are the fraction of invariant sites (Hasegawa et al.,
1985) and discrete-gamma distribution (Yang, 1994a). The notion behind the use
of an invariant sites parameter (usually referred to by I) is that one frequently
observes many invariant positions with sequence data and accounting for this
class of positions with a global rate is undesirable. Hence, a parameter is added
to account for the fraction of sites available for substitution.

The gamma distribution (used in its computable discrete form), adds addi-
tional classes of positional rates based on a shape parameter α. The distribution
(Eq. 11.12, Fig. 11.5) has a mean of α/β and variance of α/β2, but we usually
set β = α for a mean of 1.

g(x;α, β) =
βαxα−1e−βx

Γ(α)
(11.12)

The user specifies a number of rate classes (often in concert with invariant sites)
and estimates α such that the tree likelihood is maximized. It is important to
note that all rate classes are applied to each position, as opposed to a single
class to a given position. For n taxa, m characters (e.g. aligned nucleotide sites),
s states, and r rate classes, the overall memory consumption will be O(nmsr).
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11.4.3 Calculating p(D|T, θ)

For a single character (x) on a tree, the likelihood of internal vertex i (Li)
with descendant vertices j and k would be the sum of the probability between
xi and each state in each descendant (given the edge parameter t; Fig. 11.6)
multiplied by its respective likelihood and summed over all states. The character
likelihoods are multiplied over the entire data set to determine the tree likelihood
(Eq. 11.13).

Li(x) =
states∑

i

⎡
⎣

⎛
⎝∑

xj

pxi,xj
(tj)Lj(xj)

⎞
⎠ ×

(∑
xk

pxi,xk
(tk)Lk(xk)

)⎤
⎦ (11.13)

When edge weights are not known (as in nearly all real data situations), they
must be estimated. This can be done in several ways, but all rely on calculation
of the marginal likelihood (holding all other parameters constant) of a given
edge assuming a variety of weights (t parameter) and choosing the optimal value
(Fig. 11.7). Often Brent’s Method (Brent, 1973) or Newton–Raphson (Ypma,
1995) is used to estimate the edge parameters.

υ i

υ j υk

tk
t j

Figure 11.6: Labeled subtree for likelihood calculations.

pi

0

1.0

t i

0 1.0 10.0

branch length estimate

0.5

Figure 11.7: Estimate of edge weight parameter t by maximizing the probability
of transformation along the edge, pi.
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The determination of the MAL of a tree is a heuristic procedure due to the
large number of parameter estimations involved. As with parsimony optimiza-
tion (Chapter 10), the tree is traversed setting median states recursively. This
recursion is initialized with the likelihood of leaf states at 1 (no need to sum
to one for likelihood) and all other leaf states 0. The likelihood is calculated
via a post-order tree traversal from the tips to the root multiplied by the prior
probabilities of the states themselves (Eq. 11.14).

LT (x) =
states∏
i=1

πi

∏
∀u,v∈E

Lu,v (11.14)

Given that these values can be quite small, it is often convenient to speak of
log or − log likelihood values2. The following example assumes that the edge
parameters are known. If this is not so (which is usually the case), such a
single post-order traversal will not be sufficient to determine the tree likelihood.
An iterative edge refinement procedure will be required to optimize the edge
parameters (Felsenstein, 1981).

An Example

Consider a single nucleotide character analyzed under the JC69 model (Fig. 11.9).
If we fix all the edge probabilities, μt = 0.1, we can calculate the likelihood of the
topology given the analytical probabilities in Equation 11.15.

Pij(t) =

⎧⎨
⎩

1
4 + 3

4e−μt i = j

1
4 − 1

4e−μt i �= j
(11.15)

Hence, the edge probabilities are given in Equation 11.16.

Pij(t) =

⎧⎨
⎩

0.929 i = j

0.0238 i �= j
(11.16)

A subtree example with leaf states (A and C) and edge parameters 0.1 is shown
in Figure 11.8.

The overall likelihood for the tree in Figure 11.9 is 1.76 × 10−6 or, in familiar
−log (base e) units, 13.25.

11.4.4 Links Between Likelihood and Parsimony

Typical likelihood analyses employ several homogeneity conditions. Usually the
same edge parameter is applied to all characters (although it may vary over

2The finite precision of computers can cause problems for likelihood calculations (floating
point error) due to the large number of operations required when evaluating trees. Alternate
implementations of the same algorithm may well generate likelihoods that differ non-trivially.
Extreme care must be taken to avoid this problem.
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L(x = A)  =  [0.929 ⋅ 1.0] × [0.0238 ⋅ 1.0] = 0.0221

L(x = C)  =  [0.0238 ⋅ 1.0] × [0.929 ⋅ 1.0] = 0.0221

L(x = G)  =  [0.0238 ⋅ 1.0] × [0.0238 ⋅ 1.0] = 0.000566

L(x = T)  =  [0.0238 ⋅ 1.0] × [0.0238 ⋅ 1.0] = 0.000566

Total L(x)  =  0.0453

Figure 11.8: Labeled subtree with likelihood calculations.
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Figure 11.9: An example likelihood calculation under JC69 model with all edge
parameters set to 0.1.
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edges), and the same model as well. Under these conditions, MAL will frequently
lead to results at variance with parsimony. As mentioned earlier, Farris (1973a)
employed a simple model to show that parsimony and EPL would choose the
same optimal tree. Such connections are not limited to this scenario.

Nicholas Goldman

Goldman (1990) discussed a number of scenarios involving likelihood, parsi-
mony, and compatibility. Goldman showed that when edge weights are constant
over the tree, likelihood and parsimony will converge. More recently, Tuffley

Chistopher Tuffley

and Steel (1997) discussed the No-Common-Mechanism (NCM) model, where
each character has a potentially unique rate that may vary among edges as well
(hence the name). The rate for each character on each edge is optimized (either
zero, or infinite) to maximize the likelihood. Under a Neyman (1971) type model
with r states, the overall likelihood of the tree can be determined as a function
of the number and distribution of parsimony changes on the tree (Eq. 11.17),
with ri, the number of states exhibited by character i, χi, the parsimonious
vertex states assignments for character i, and −l(χi, T), the parsimony length
of assignment χ for character i on tree T.

LT (X) =
kcharacters∏

i=1

r
−l(χi,T )−1
i (11.17)

For the tree and leaf states of Figure 11.9, the likelihood would be 3−(2+1) =
0.037. It is often said that this model leads to equivalent results between parsi-
mony and likelihood, but this will only occur when the number of states of each
character (ri) is a constant over the data set. In this way, NCM can be viewed
as a likelihood-based character weighting scheme in parsimony analyses.

11.4.5 A Note on Missing Data

Missing data are not, in principle, a problem for likelihood analyses. Leaf state
vectors can be set to 1.0 for each of the observed (in the case of polymorphism)
or implied (all states = 1.0) states in the case of entirely missing observations.
Implementations, however, may differ in the treatment of these unknown ob-
servations. Currently, implementations treat missing data in this manner. Ob-
viously, this can have an effect on analyses. This issue can become all the more
pernicious when coupled with the practice of treating indels or “gap” charac-
ters as missing values (as opposed to a 5th state). Though clearly suboptimal
(and unnecessary, as shown later), such a treatment of indels is common and
problematic.

11.5 Dynamic-Homology Characters

As with parsimony, maximum likelihood can be applied to the analysis of
dynamic-homology characters. With sequence (nucleotide and amino-acid) and
higher order characters (e.g. gene rearrangement), two general approaches have
been taken in the construction of stochastic models. The first uses a simple
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extension of 4-state nucleotide or 20-state amino-acid models to include “gaps”
as a 5th or 21st state (Wheeler, 2006). These models treat indels as atomic
events, emphasize simplicity and make little attempt to model reality per se.
The second approach makes an explicit attempt to model the process of se-
quence change including indel events (Thorne et al., 1991, 1992), resulting in
more complex scenarios.

In general, models describing the process of gene rearrangement are not
attempts to describe the mechanisms of genomic change as much as descriptive
statements of the frequency and patterns of change (e.g. Larget et al., 2004).

11.5.1 Sequence Characters

In order to perform a dynamic homology analysis (Tree Alignment Problem;
Chapter 10) of multiple leaf sequences related by a tree, several components are
required. First, a model must be specified allowing both element substitution
and insertion–deletion (indel). Second, a procedure needs to be identified to
calculate the likelihood “distance” between any pair of sequences. And third,
a method of creating sequence medians (vertex or HTU sequences) must be
described.

Models

n + 1 State Models—A simple expansion of sequence substitution models to
include an extra state for “gaps” representing indels (such as the r-state model
of Neyman, 1971) has been used by McGuire et al. (2001) in their Bayesian
analysis of pre-aligned sequences and the ML Direct Optimization (ML–DO) of
Wheeler (2006).

In the symmetrical (rij = rji, R of Tavaré, 1986) general 5-state case there
are five state frequencies to be specified (A, C, G, T, -), although they must
sum to 1, and 10 transition rates among the states (Fig. 11.10). As with the
GTR model of sequence substitution above, there are a broad variety of special
case models that can be constructed by enforcing various additional symmetry
conditions (such as JC69+Gaps, Eq. 11.18; Wheeler, 2006).

Pij(t) =

⎧⎨
⎩

1
5 + 4

5e−μt i = j

1
5 − 1

5e−μt i �= j
(11.18)

Considering the example alignment of 11.19 under the model in Equation 11.18
with an edge weight (branch length) of 0.1 (μt), p(I, II) = (0.01903)3(0.9239)2 =
5.882 × 10−6.

Sequence I AC-GT (11.19)

Sequence II AGC-T
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Figure 11.10: A general, symmetrical, 5-state model (states A, C, G, T, ‘-’).

These models have the virtue of simplicity and ease of calculation, hence
can be applied to real data sets with multiple loci and empirically interesting
(>100) numbers of taxa (Whiting et al., 2006).

Birth–Death Model—The Thorne et al. (1991) and Thorne et al. (1992)
models (TKF91 and TKF92), treat the insertion–deletion process in an alter-
nate fashion. There are two components to the calculation of the probability of
transforming one sequence into another: the probability of an alignment (α as
in 11.19) given a set of insertions, deletions, and matches and model [p(α|α′, θ)];
and the probability of a specific pattern of indels and matches given a model
[p(α′|θ)]. The method couples a birth–death process (parameters λ—insertion
or birth rate; μ—deletion or death rate) with standard four-nucleotide substi-
tution models.

Both TKF91 and TKF92 model the indel process in the same way, trans-
forming one sequence into another (the model is symmetrical). There are three
sorts of events. The first is an insertion (not leading) in the first sequence to
yield the second (p). The second transformation type is a deletion (p′), and
the third, a leading insertion, takes place before the left-most residue (p′′). The
probabilities of these structural events are as in Equation 11.20, with λ birth
rate (insertion), μ death rate (deletion), n > 0 indel size, and time t.

pn(t) = e−μt [1 − λβ(t)] [λβ(t)]n−1 (11.20)

p′n(t) =
[
1 − e−μt − μβ(t)

]
[1 − λβ(t)] [λβ(t)]n−1

p′′n(t) = [1 − λβ(t)] [λβ(t)]n−1

with

β(t) =
1 − e(λ−μ)t

μ − λe(λ−μ)t

The substitution process follows standard models with state frequencies deter-
mining the probability of inserting a specific sequence.
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11.5.2 Calculating ML Pairwise Alignment

Both the above models can be optimized for two sequences by versions of the
familiar dynamic programming procedure used for pairwise sequence alignment
(Sect. 8.4). Here, we discuss the algorithm for the n + 1 state model. The recur-
sions are more complex for TKF92, but they follow the same basic outline (see
Thorne et al., 1992 for specifics).

Dynamic Programming

In order to calculate the probability of transforming one sequence into an-
other (or a pairwise alignment; as with parsimony the cost is identical for two
sequences), three elements are required: the sequences, the transformational
model, and a time parameter to mark the differentiation between the sequences
[p(I, II|θ, τ)]. Dynamic programming will optimize the likelihood for a given t,
but as with edge weight/branch length optimization, the procedure must be
repeated, varying or estimating t until the likelihood is optimized (Eq. 11.21).

p(I, II|θ) = max
t

p(I, II|θ) (11.21)

Since t is chosen to maximize the pairwise probability, the method will yield
an MRL.

It is often convenient to work with the negative logarithm of likelihood and
probability values as opposed to their absolute values and, in this case, it allows
an elegantmodification of theNeedleman andWunsch (1970) algorithm (Alg. 8.1).
Based on model and time, the conditional probability of an indel or element match
can be calculated a priori. In the scenario above (JC69+Gaps with t = 0.1), the
probability of an indel is 1

5 − 1
5e−0.1 = 0.01903, an element mismatch (substitu-

tion) is the same 1
5 − 1

5e−0.1 = 0.01903, while an element match 1
5 + 4

5e−0.1 =
0.9239. Using the logarithms of these values, the multiplicative probabilities of a
scenario can be optimized as additive sums [log(p(xi) · p(xj)) → log p(xi) +
log p(xj)] by treating them as match, mismatch, and indel costs.

Although the log transform probabilities can be used as edit costs (i.e.
cost[i][j] = log p(Ii, IIj |θ, t)), the core recursion requires a modification. The
probability of inter-transforming (or aligning) two sequences is the sum of the
probabilities of all potential transformation (or alignment) scenarios between the
two. As we know (Eq. 8.6; Slowinski, 1998), there are a large number of these
to calculate. The Needleman–Wunsch algorithm can accomplish this when the
central alignment recursion is changed to a sum as opposed to the minimum
of three paths. This sum is taken among the probabilities (not log probabili-
ties) of the three options (element insertion, deletion, and match) at each cell
(Eq. 11.22) (cost[i][j] is the − log transformed likelihood).

cost[i][j] = log(e−(cost[i−1][j−1]+σi,j) (11.22)

+ e−(cost[i−1][j]+σindel)

+ e−(cost[i][j−1]+σindel))
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For sequences of lengths n and m, p(I, II|θ, t) = e−cost[n][m]. The traceback di-
agonal marks the maximum likelihood path as before. The complete matrix
(in loge units) is shown in Figure 11.11 resulting in a p(I, II|θ = JC69+Gaps,
t = 0.1) = 0.0007849. If one were to calculate the probability directly from the
four aligned positions the value would be 0.019032 · 0.85352 = 0.0002638, con-
siderably lower than that yielded by the algorithm. This is because the specific
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Figure 11.11: Likelihood alignment of two sequences (ACGT and AGCT) under
the JC69+Gaps (5-state Neyman) model with a time parameter (μt) of 0.1 (loge

units).
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alignment produced is only one of many alignment scenarios that contribute
to the total probability of transformation between the sequences. This partic-
ular alignment has the highest probability of all possible alignments, hence is
termed the dominant likelihood alignment (in the terminology of Thorne et al.,
1991). We can search directly for this by choosing the maximum probability
choice (insertion, deletion, or element match) in Eq. 11.22 as opposed to the
sum (Fig. 11.12). The probability produced in this way jibes precisely with that
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Figure 11.12: Dominant likelihood alignment of two sequences (ACGT and
AGCT) under the JC69+Gaps (5-state Neyman) model with a time param-
eter (μt) of 0.1 (loge units).
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expected (e−8.082 = 0.0003091). In this case, both procedures yielded the same
alignment, but this need not be the case in general.

The distinction between dominant and total likelihood is an important one.
A single alignment may be “best” in a likelihood context, but may contain a
very small fraction of the total likelihood (in this case 33%). In the context of
likelihood forms discussed above, the dominant likelihood is akin to an MPL
object, and the total likelihood score MAL. When sequence change is analyzed
on a tree, these distinctions have downstream ramifications in the identification
of ML trees, and character change maps on those trees.

11.5.3 ML Multiple Alignment

As with parsimony, there are relatively direct extensions of pairwise alignment
to multiple sequence alignment (MSA). The approach of Wheeler (2006) was
to create an implied alignment (Wheeler, 2003a) using the maximum likelihood
form of Direct Optimization (Wheeler, 1996). In this ML–TAP approach, me-
dians (and tree topologies) are chosen to optimize likelihood under a variety
of models from a 5-state Neyman scenario to an enhanced GTR+Gaps model.
The relative performance of parsimony and ML implied alignments was tested
by Whiting et al. (2006), showing (comfortingly) that ML MSA were superior
for ML (by 10% log likelihood units) while those based on parsimony were supe-
rior for parsimony analysis (by 30%; manual alignments were distant finishers;
Table 11.1).

MSA methods based on the TKY92 model (Thorne et al., 1992), such as
Fleissner et al. (2005) and Redelings and Suchard (2005), make use of Bayesian
Hidden Markov Models and are discussed briefly above and in Chapter 12 in
more detail.

11.5.4 Maximum Likelihood Tree Alignment Problem

Although it is as yet unstudied, given the NP–hard nature of the parsimony
version of the TAP, the ML variant is likely to be extremely challenging if
not NP–hard itself. As with parsimony heuristics to the TAP, we can generate
several heuristic ML–TAP procedures. Unfortunately, almost nothing is known
about the quality of these solutions (boundedness).

ClustalX Manual DO–MP DO–ML
Mixed Model Likelihood 61,489.630 55,329.945 51,611.928 50,496.073
Single Model Likelihood 61,548.268 55,858.397 51,554.225 51,014.655
Parsimony Tree Length 15,154 20,341 11,483 11,702

Table 11.1: Performance of ClustalX (Higgins and Sharp, 1988), Manual, DO–
MP, and DO–ML multiple sequence alignment (Whiting et al., 2006). DO im-
plied alignment runs were created using Wheeler et al. (2005) and ML scores
by Huelsenbeck and Ronquist (2003).
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Medians and Edges

As with parsimony heuristics to the TAP, the identification of median sequences
is crucial to the quality of the solution. ML–TAP has the added factor of edge or
branch time. As mentioned above for the two sequence case, the probability of
the alignment is dependent on the time parameter that is identified numerically
through repeated (or estimated) likelihood optimizations.

Sections 10.9.2, 10.9.3, and 10.9.4 identified sequence medians in ways that
are directly applicable to ML. The algorithm for determining sequence medi-
ans using Direct Optimization (Alg. 10.7; DO, Wheeler, 1996) can be applied
largely without modification. Two issues merit attention. The first is the use
of dominant or total likelihood for tree likelihood values and medians. Total
likelihood will reflect more of the probability of alternate medians, but un-
less these medians are of optimal (in this case highest probability) cost, they
will not be reflected in the median sequences. Dominant likelihood calculations
maintain a more consistent approach in that the tree likelihoods are directly
traceable to these specific sequences. When the total likelihood is used, this
connection can be lost (Wheeler, 2006). The second issue centers around the
median determination and time parameter. The time parameter interacts with
the median identification process, not only to determine the probability of an
ancestor–descendant transformation, but the ancestral sequences (= medians)
themselves. When edge times are estimated to optimize likelihood scores, the
medians themselves are likely to change, creating additional time complexity
in the process. This is especially prominent when using iterative improvement
methods (Sankoff and Cedergren, 1983; Wheeler, 2003b, 2006). With iterative
improvement, there are three edges incident on a vertex which require simulta-
neous optimization in addition to the 3-dimensional median calculation.

Lifted, Fixed-States, and Search-Based (Sect. 10.9.3) procedures deal with
a fixed pool of medians, hence that component of time complexity is reduced.
Edge iteration is still an issue in two ways. First, the pairwise probability of
transformation between states is time dependent. This can be either held con-
stant over all state pairs, or be optimized (in a fashion akin to Tuffley and
Steel, 1997) uniquely for each sequence pair. Secondly, edge times can be ap-
plied while a tree is optimized (using a single time) or using optimized times
from the pairwise sequence comparisons.

The issue of dominant and total likelihood also enters in this class of heuris-
tics through the summing (as in average likelihood) over all potential sequence
medians, or the identification of the most likely medians (MPL) and determining
tree likelihood on that basis.

Wheeler (2006) discussed the above ML–TAP heuristics in the context of a
5-state model, although they could be applied to other models. Fleissner et al.
(2005) developed a heuristic ML–TAP procedure specifically for the TKF92
model. In their approach, simulated annealing (Sect. 14.7) is used in two ways al-
ternately. The first is to optimize the analytical parameters (substitution model
parameters, indel birth and death values, fragment length), and the second to
optimize the alignment patterns of indels (h, α′ of Thorne et al., 1991) and tree
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topology. The method initializes with a Neighbor-Joining (Saitou and Nei, 1987)
tree and performs NNI (Sect. 14.3.2) to break out of local topological minima.
The parameter and topology/indel pattern optimizations proceed alternately
until improvements are no longer found. Due to the complexity of the TKF92
model and the simulated annealing approach, the method does not scale well
and can only be used on a handful (<20) of sequences of moderate (< 500bp)
length.

11.5.5 Genomic Rearrangement

As with all stochastic procedures, the root of likelihood-based reconstruction
of genomic rearrangement data is the model. Currently, models are descriptive,
that is, distributions of gene rearrangements are chosen and fit to empirical
patterns, not based on any first principles analysis of the biological mechanism
of inversion or transposition (an exception exists in the Birth–Death model of
gene family evolution of Zhang and Gu, 2004).

p(k, λ) =
λke−λ

k!
(11.23)

The basic descriptive model was set out by Nadeau and Taylor (1984), grounded
in the empirical observation of the distribution of chromosomal rearrangements
between humans and mice (Fig. 11.13). They posited a Poisson distribution
(Eq. 11.23) of rearrangement events (k) on the genome and along a tree edge
at average rate λ. This was expanded by Wang and Warnow (2001, 2005)
to create corrected distances for use in distance-based phylogenetic analysis
(Chapter 9).
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Figure 11.13: Mouse—Human rearrangements as illustrated by Nadeau and
Taylor (1984).
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Figure 11.14: Genomic rearrangement locus dot-plot scenarios of Dalevi and
Eriksen (2008): (a) = “Whirl,” (b) = “X-model,” (c) = “Fat X-model,” (d) =
“Zipper,” and (e) = “Cloud.” See Plate 11.14 for the color Figure.

Empirical Models

Dalevi and Eriksen (2008) presented a series of corrected distance estimates for
five rearrangement scenarios named according to patterns on pairwise dot-plots
(Fig. 11.14).

(a) “Whirl”—caused by an overrepresentation of uniformly distributed rever-
sals across the genomes.
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(b) “X-model”—due to a preponderance of reversals symmetrically distributed
around the origins and terminations of replication.

(c) “Fat X-model”—explained by symmetrically distributed reversals with en-
hanced variation in their position with respect to the origins and termi-
nations of replication.

(d) “Zipper”—thought to result from a large amount of short reversals (up to
5% of the genome) distributed uniformly over the genome.

(e) “Cloud”—as rearrangements accrue, the gene order becomes randomized
loosing the previous patterns into a “cloud.”

In general, these descriptions of rearrangement patterns are not used to
reconstruct trees directly, but to estimate overall dissimilarity for distance anal-
ysis.

11.5.6 Phylogenetic Networks

As with parsimony (Sect. 10.14), horizontal gene transfer and hybridization can
be explained by networks and in an analogous fashion (Strimmer and Moulton,
2000). Jin et al. (2006) proposed no biological model of horizontal gene transfer
or hybridization, but two methods to calculate the likelihood of the network. In
the same way that the parsimony score of a network is calculated by summing
the minimum tree costs consistent with the network (Eq. 10.9) for each block of
characters, likelihoods can be multiplied over the best likelihood tree for each
character block. A second option would be to sum the likelihoods of all tree
scenarios consistent with the network (Fig. 11.15; Eq. 11.24).

N = (V,E) (11.24)

Lall
N (S|N, θ) =

∑
T∈N

(p(T) · L(S|T, θ))

Lbest
N (S|N, θ) = max

T∈N
(p(T) · L(S|T, θ))

It is unclear which, if either, procedure is appropriate. The first method assumes
all blocks are independent. This may or may not be reasonable given that the
recognition of blocks is dependent on their relative positions and behavior. The
second model has the advantage of including alternate scenarios, weighted by
their likelihoods, but allows for multiple histories for all blocks.

11.6 Hypothesis Testing

11.6.1 Likelihood Ratios

Often, it is desirable to know whether a difference between two likelihood val-
ues is “significant.” As odd as such a concept may seem within the rationale of
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Figure 11.15: Phylogenetic tree (above) and network (below).

likelihood, given a few simple assumptions, such statements can be made (DeG-
root and Schervish, 2006). The basic idea is that if the likelihood functions are
well-behaved, twice the difference in the log of the ML value is distributed as χ2

(Eq. 11.25). When the hypotheses to be compared are simple estimates of pa-
rameters (such as a branch length or comparison of two trees), this distribution
will have one degree of freedom.

2ΔlT,T ′ = 2 log(lT /lT ′) = 2(log lT − log lT ′) (11.25)

Likelihood ratio tests are used to determine whether edge weights (time parame-
ter) are greater than 0 and should be collapsed, or whether one of two competing
and nearly optimal hypotheses is superior. The confidence value is (given the
single degree of freedom) 1.9207 log likelihood units, or a likelihood ratio of
6.826. If two tree likelihoods are differ by at least this value, their difference is
statistically significant (Felsenstein, 2004).

Branch Collapsing

The likelihood ratio can also be used to test if an edge probability (ML branch
length) is significantly greater than zero. The likelihood of a tree with an edge
constrained to have μt = 0 can be determined and compared to the likelihood
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of the tree optimized for the time parameter of that edge. As above (Eq. 11.25),
the likelihood ratio can be tested via χ-squared with a single degree of freedom.

11.6.2 Parameters and Fit

As with all statistical fitting operations, increasing the number of parameters
will increase the fit and decrease the error. In general, if the addition of a param-
eter results in a large increase in fit (here likelihood), we accept that parameter.
The problem comes as more and more parameters are added and the increases in
quality of solution (in terms of error) are less dramatic, leading to overparame-
terization and loss of predictivity (Fig. 11.16). An analysis of molecular sequence
data using the JC69 model is based on zero parameters (everything is equal and
nothing specified)3. The same data modeled using GTR would no doubt yield a
better likelihood score using its eight parameters (five rate and three frequency).
This might be further improved with invariant sites and discrete-gamma rate
parameters. When should this stop? How can overparameterization be avoided?

There are two commonly used statistics to decide this. The first is the ratio of
the likelihoods of solutions with different parameterization—the likelihood ratio
test above. In the case of testing models, Equation 11.25 is distributed as χ2

p′−p

where p and p′ are the number of parameters in the models to be compared.
Large sequence data sets nearly invariably choose the most complex models

(GTR+I+Γ)4 under this criterion, motivating the use of the alternate Akaike
Information Criterion (AIC; Akaike, 1974). In the AIC, the test statistic is
calculated as −2 log lT + 2p where p is the number of parameters used in the
likelihood calculation for a tree T, lT . An extra parameter is favored if it improves
the likelihood by one log unit.

A third criterion, Bayesian Information Criterion (BIC), penalizes extra pa-
rameters more harshly with a term that depends on the data size n (Schwaz,
1978).

Figure 11.16: Data with various polynomial curves fitted to them.

3Even for JC69 there are other parameters in an analysis—one for each edge of the tree
for example—but this is constant among models analyzing the same data set, hence plays no
role in the marginal complexity of one model over another.

4The use of invariant sites simultaneously with Γ classes is problematic, since the param-
eters are not independent.
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TN93+I+Γ 5441.4600 78 11045.5888 0.5221 0.52210.0000

Model l K AICc w Cum(w)Δ AICc

TIM+I+Γ 5441.3765 79 11047.5965 0.1913 0.71342.0077
HKY85+I+Γ 5443.6729 77 11047.8422 0.1692 0.88262.2534
K81uf+I+Γ 5443.5566 78 11049.7821 0.0641 0.94684.1934
GTR+I+Γ 5440.9150 81 11051.0301 0.0344 0.98115.4413
TVM+I+Γ 5442.7393 80 11052.4991 0.0165 0.99766.9103
TN93+Γ 5448.6792 77 11057.8549 0.0011 0.998812.2661
HKY85+Γ 5450.5068 76 11059.3402 0.0005 0.999313.7514
TIM+Γ 5448.6577 78 11059.9843 0.0004 0.999714.3955
K81uf+Γ 5450.4883 77 11061.4730 0.0002 0.999915.8843
GTR+Γ 5448.0298 80 11063.0802 0.0001 1.000017.4914
TVM+Γ 5449.6685 79 11064.1804 0.0000 1.000018.5917
TN93+I 5470.7568 77 11102.0102 0.0000 1.000056.4214
TIM+I 5470.7417 78 11104.1522 0.0000 1.000058.5635
GTR+I 5470.3452 80 11107.7110 0.0000 1.000062.1223
HKY85+I 5476.8496 76 11112.0257 0.0000 1.000066.4370
K81uf+I 5476.8208 77 11114.1381 0.0000 1.000068.5493
TVM+I 5476.1650 79 11117.1736 0.0000 1.000071.5849
F81+I+Γ 5769.1118 76 11696.5501 0.0000 1.0000650.9614
F81+Γ 5782.0566 75 11720.2721 0.0000 1.0000674.6834
F81+I 5807.4927 75 11771.1442 0.0000 1.0000725.5554
GTR 5805.0576 79 11774.9588 0.0000 1.0000729.3700
TVM 5808.4727 78 11779.6141 0.0000 1.0000734.0254
TIM 5810.4102 77 11781.3168 0.0000 1.0000735.7280
TN93 5813.4780 76 11785.2825 0.0000 1.0000739.6938
K81uf 5813.5190 76 11785.3646 0.0000 1.0000739.7758
HKY85 5816.5894 75 11789.3375 0.0000 1.0000743.7488
SYM+I+Γ 5861.0859 78 11884.8407 0.0000 1.0000839.2520
TVMef+I+Γ 5867.6128 77 11895.7221 0.0000 1.0000850.1333
SYM+Γ 5876.7803 77 11914.0570 0.0000 1.0000868.4683
TVMef+Γ 5884.4272 76 11927.1810 0.0000 1.0000881.5922
TIMef+I+Γ 5885.0684 76 11928.4632 0.0000 1.0000882.8745
K81+I+Γ 5893.7642 75 11943.6872 0.0000 1.0000898.0984
TN93ef+I+Γ 5897.7529 75 11951.6647 0.0000 1.0000906.0759
TIMef+Γ 5899.2588 75 11954.6764 0.0000 1.0000909.0877
K80+I+Γ 5906.2329 74 11966.4593 0.0000 1.0000920.8706
K81+Γ 5908.7876 74 11971.5687 0.0000 1.0000925.9800
TN93ef+Γ 5911.5659 74 11977.1254 0.0000 1.0000931.5366
SYM+Γ 5908.7021 77 11977.9008 0.0000 1.0000932.3120
TVMef+I 5917.6128 76 11993.5521 0.0000 1.0000947.9633
K80+Γ 5920.9038 73 11993.6382 0.0000 1.0000948.0494
TIMef+I 5928.9629 75 12014.0846 0.0000 1.0000968.4959
K81+I 5938.0137 74 12030.0209 0.0000 1.0000984.4321
TN93ef+I 5940.7383 74 12035.4701 0.0000 1.0000989.8813
K80+I 5949.5186 73 12050.8677 0.0000 1.00001005.2789
F81 6088.2227 74 12330.4388 0.0000 1.00001284.8501
JC69+I+Γ 6101.2656 73 12354.3618 0.0000 1.00001308.7730
JC69+Γ 6114.8408 72 12379.3515 0.0000 1.00001333.7628
JC69+I 6142.1719 72 12434.0137 0.0000 1.00001388.4249
SYM 6170.8916 76 12500.1097 0.0000 1.00001454.5209
TVMef 6190.3394 75 12536.8375 0.0000 1.00001491.2488
TIMef 6194.5806 74 12543.1547 0.0000 1.00001497.5659
TN93ef 6210.6353 73 12573.1011 0.0000 1.00001527.5123
K81 6214.1152 73 12580.0610 0.0000 1.00001534.4723
K80 6230.2100 72 12610.0898 0.0000 1.00001564.5011
JC69 6411.5161 71 12970.5438 0.0000 1.00001924.9551

Figure 11.17: Model test (Posada and Buckley, 2004) based on mitochondrial
data of Sota and Vogler (2001). l is the log likelihood, K the number of param-
eters, AICl the Akaike Information Criterion, DeltaAICl the difference in AICl

with the next “best,” w the Akaike weights, and Cum(w) the cumulative Akaike
weights.
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BIC = −2 log lT + p log n (11.26)

These tests are implemented in Posada and Crandall (1998) and well summa-
rized in Posada and Buckley (2004). An example of a test of a broad variety of
models in an empirical context is given by Posada and Buckley (2004) in their
reanalysis of Sota and Vogler (2001) (Fig. 11.17).

11.7 Exercises

1. What is the probability of transformation between the aligned sequences
ACGT and AGCT under the JC69 model with time parameters μt =
{0.1, 0.2, 0.5, 1.0}?

2. What is the probability of transformation between the aligned sequences
ACGT
AGCT , ACG−T

A−GCT , and A−CGT
AGC−T under a 5-state Neyman model with time

parameters μt = {0.1, 0.2, 0.5, 1.0}?
3. What were the maximum likelihood estimators of the time parameter in

the previous two exercises? If the four given time parameter values were
the only ones possible, what would the integrated likelihoods be? What
fraction of the integrated likelihoods were the maximum values?

4. Using a Neyman model for binary characters, what would the likelihoods
be for the two cladograms in Fig. 11.18 where all time parameters (μt)
were 0.1? 0.2?

5. Under the No-Common-Mechanism model, what are the likelihoods for
the cladograms in exercise 4?

6. Two systematists argue the question “ML using No-Common-Mechanism
and parsimony will yield the same tree for this data set,” one taking the
affirmative and one the negative, who is correct? Why?

1 0 1 0

0

1 1 0 0

0

Figure 11.18: Example cladograms.
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7. Using a Neyman model for sequence characters, and sequences ACGT and
AGCT with time parameter μt = 0.2, determine the maximum likelihood
alignment of the two sequences. What are the values of the “total” and
“dominant” likelihoods? What fraction of the total likelihood is the dom-
inant? Give an example of a non-dominant likelihood alignment (and its
likelihood) included in the total likelihood calculation.



Chapter 12

Optimality
Criteria−Posterior
Probability

Bayesian argumentation and methods have a long history in systematics. Ed-
wards (1970) discussed tree priors in order to construct Bayesian estimators
of phylogeny. Farris (1973a) based his likelihood analysis of parsimony on an
initial Bayesian framework, and his (1977) criticism of Dollo’s law was also
based in Bayesian formalism. Felsenstein (2004) cites work by Gomberg in 1968
on Bayesian analysis in phylogeny. Harper (1979) contrasted his Bayesian ap-
proach to phylogenetic systematics with the reasoning of Popper. Smouse and
Li (1987) assumed flat priors (for three competing topologies), justifying a like-
lihood analysis of primate mtDNA restriction patterns. Wheeler (1991) used
explicit Bayesian methods with empirical topology priors (and loss function) to
justify data combination (total evidence sensu Kluge, 1989).

Thomas Bayes
(1702–1761)

Although these methods sought to maximize posterior probability, they
lacked numerical techniques to integrate over nuisance parameters (Sect. 11.2.1)
and non-uniform prior distributions of tree topologies (Wheeler, 1991 excepted)
allowing a fully Bayesian analysis. The introduction of Monte Carlo Markov
Chains (Metropolis and Ulam, 1949; Metropolis et al., 1953; Hastings, 1970) by
Yang and Rannala (1997) made Bayesian phylogenetics tractable and its recent
popularity is due to this advance.

12.1 Bayes in Systematics

The sine qua non of Bayesian analysis (Sect. 6.1.5) is the prior distribution of the
parameter(s) to be estimated. In the case of systematics, the prior of paramount

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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interest is tree topology. By Bayes’ (1763) theorem, the phylogeny problem
is recast as finding the topology (T ∈ τ) with maximum posterior probability
(Eq. 12.1) given the data (D) and nuisance parameters

p(T |D, θ, tT ) =
p(T ) · p(D|T, θ, tT )∑

Tj∈τ pTj · p(D|Tj , θ, tT )
(12.1)

(with data D, tree T, θ all aspects of the substitution model, and tT the edge
weights for T). Integration over the nuisance parameters (or a portion of them
such as edge parameters) can be performed to remove that element of condi-
tionality (Eq. 12.2).

p(T |D) =
∫ ∫

p(θ)p(T |θ)p(tT |θ, T )p(D|θ, T, tT )dtT dθ∑
Tj∈τ

∫ ∫
p(θ)p(Tj |θ)p(tTj

|θ, Tj)p(D|θ, Tj , tTj
)dtTj

dθ
(12.2)

This is often interpreted as the probability that the topology is “true” given
the data, model, and edge probabilities. This view is not necessary and poste-
rior probability can be viewed as an optimality criterion in the same vein as
parsimony and likelihood. The denominator, marginal probability of the data
D, requires summation over all trees for all weighted combinations of edge and
model parameters. Clearly, this will be nearly impossible for non-trivial data
sets. Luckily enough, it is a constant for a given analysis, hence it is sufficient
to maximize the numerator. MCMC algorithms (below) also make use of this,
determining acceptance ratios based on this numerator alone.

The tree with maximum a posteriori probability has been acronymed the MAP
tree (Rannala and Yang, 1996) and is the Bayesian optimality criterion for trees.
This is distinguished from other trees produced by Bayesian analysis such as 95%
credibility (that set of trees with ≥ 95% posterior probability) or based on the
posterior probabilities of clades summed over multiple trees (Mau et al., 1999).
These have been termed “Topology–Bayes” (= MAP) and “Clade–Bayes” trees
(Wheeler and Pickett, 2008) to make the distinction emphatic.

12.2 Priors

Ideally, distribution information would be available for all parameters in an
analysis, but this is rarely, if ever, the case. The three prior distributions of
greatest concern are those of the tree topologies, evolutionary model and edge
weights (branch lengths).

12.2.1 Trees

Distributions of trees can have multiple components, two of these are topology
and edge weights. These are usually treated separately, but birth–death models
can yield distributions of both. In these models, lineages split yielding new
lineages (birth) and go extinct (death), reducing the number (although the
original Yule (1925) process modeled only birth). Since these occur with specified
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rates, not only are tree shapes determined, but the weights (= time lengths)
of all the edges (Raup et al., 1973). Rannala and Yang (1996) used such a
model in their initial work. Most frequently, tree priors are modeled as topology
distributions with edge weights treated separately (see below).

There are three sorts of prior distributions we can place on trees: uniform,
non-uniform, and empirical.

Uniform—In a uniform distribution of trees, all trees have equal probabil-
ity. If we have rooted trees with four leaves, there are 15 possible topologies,
and each has a probability of 1

15 . Since all topologies have, a priori, the same
probability, this distribution is often referred to as a “flat” or ignorance dis-
tribution. Additionally, this distribution makes no mechanistic assumptions as
to origination (speciation) or loss (extinction) of leaf taxa. Hence, the uniform
distribution is thought to mirror our expectations, in the absence of data to
describe ignorance in an appropriate manner. From the perspective of phyloge-
netic reconstruction, this would seem to be the most reasonable prior on trees,
given that all trees are, in principle, equally possible. However, simulation stud-
ies often employ a Yule-type process to model lineage diversification. Analysis
of trees generated in this way may be more reasonably treated with Yule-based
priors.

Non-uniform—A second type of tree distribution is non-uniform in that not
all trees possess the same a priori probability, but are thought by some (e.g.
Rannala and Yang, 1996) to be appropriate ignorance priors. The most common
example of this is the Yule (1925) distribution. As opposed to the uniform dis-
tribution, which is created by adding leaves with uniform probability in turn to
all edges, the Yule distribution is created by adding leaves only to pendant edges
(those incident on leaves) with uniform probability. This leads to quite different
distributions on tree shapes (Fig. 12.1) with the balanced tree ((1,2)(3,4)) hav-
ing probability 2

6 for Yule and 3
15 for uniform. The motivation behind the Yule

process is a model of diversification. Only pendant lineages can split to create
new leaves sister to existing ones. New leaves are never added to internal edges
(since they become extinct upon splitting). This model has been augmented
(Hey model) by birth–death parameters for lineages (Raup et al., 1973; Hey,
1992; Moores et al., 2007), which does not affect the distribution of trees, but
can place a distribution on edge weights (Fig. 12.2).

Empirical—These distributions are based on prior information. Although a
staple of applied Bayesian statistics (Martiz and Lwin, 1989), empirical methods
have not found much traction in systematics. In principle, data combination
could lead to a form of empirical priors if there are pre-existing data bearing
on a problem (Wheeler, 1991). Other than exemplar cases (e.g. Wheeler and
Pickett, 2008), this approach has been little used.

12.2.2 Nuisance Parameters

Although a terrible term (even topology can be a “nuisance” term in some
situations), distributions on nuisance parameters are required to determine the
posterior probability for a tree. There are two standard components, the edge
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Figure 12.1: A Yule (upper) and uniform (lower) distribution of trees with four
leaf taxa.

weights (t) and the substitution model (θ, although all nuisance parameters are
sometimes referred to by θ).

Edges/Branches—Edge weight distributions are strange beasts. In the first
place, which edges do they refer to? The edges of a particular tree? Those of all
trees for a particular data set? Those of all data sets with the same leaf set size
(since one would expect edges to be half as long if the leaf set were doubled)? All
problems of all sizes? Are these edge weights determined by evolutionary change
alone, or does sampling play a role? These factors make general statements about
edges problematic.

Edge priors have been dealt with in several ways. Initially, edge transforma-
tion probabilities were constrained to be clocklike (Rannala and Yang, 1996),
but this undesirable restriction has been removed and a variety of models are
now available. Two general distributions of edge weights are in general use:
uniform (Sect. 6.1.3) and exponential (Sect. 6.1.3) (Huelsenbeck and Ronquist,
2003), although other, more complex priors have been proposed (Kishino et al.,
2001; Thorne et al., 1998). In the uniform distribution, the probabilities of edge
weights (up to a constant value) are equal, whereas the exponential distribu-
tion (Eq. 12.3, Fig. 12.3) has a greater probability for shorter branches than for
longer (see Chapter 6).

∀x ≥ 0; p(x) = λe−λx (12.3)

In general, uniform edge parameter distributions will have a higher probability of
longer branches and higher clade posterior probabilities (Yang, 2006), a property
thought undesirable by some (Huelsenbeck and Ronquist, 2003). The use of
the exponential distribution is somewhat arbitrary other than for modeling the
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2 4 6 12 3 10 21 15 11 16 8 5 19 13 9 14 22 7 18 20 17 1

Figure 12.2: Stochastic origination and extinction from Raup et al. (1973) show-
ing 22 lineages evolving over 115 time intervals from bottom to top.
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Figure 12.3: The exponential distribution.

wait time between Poisson-distributed lineage splitting events. Of course, this
justification would assume we know all splitting events, which we cannot know
due to extinction of unobserved lineages.

In my opinion, this reflects an unreasonable interpretation of the significance
of branch lengths as statements of evolutionary process as opposed to one where
taxonomic sampling plays a major role. Given that samples of extant taxa are
nearly always incomplete, and knowledge of extinct taxa extremely limited if
not entirely absent, the uniform edge weight distribution seems at least equally
plausible as a statement of prior information. Edge weights are as much state-
ments of sampling as of evolutionary process.

A further complication comes in the use of a single parameter for all edges.
Some will be larger than others, and almost all (in the course of an analysis)
will be “wrong.” For this reason, Yang and Rannala (2005) suggested an empir-
ical Bayes’ method where edge parameters are likelihood estimates determined
uniquely for each edge on each tree with the data at hand. Given that these
data are not “prior” in any way, strict Bayesians may howl, but this process
(though potentially time-consuming) seems a powerful and reasonable means to
establish appropriate edge parameters.

No matter which distributions of edge weights are used, the objective is the
same, to determine the posterior probability of the tree conditioned solely on
the substitution model.

Substitution Models—Ideally, we would employ a distribution of substitu-
tion models in order to integrate out this nuisance parameter and determine
p(T |D) directly. This cannot (at present) be done completely (although Hid-
den Markov Models—HMM—approach this “model of models”). Typically, the
General-Time-Reversible (GTR) model (Lanave et al., 1984; Tavaré, 1986) is
used whereby the potential parameter values encompass the variety of simpler
models with specific symmetry conditions (e.g. JC69). A distribution on the
parameters of this model should contain a variety of other models. Typically, a
Dirichlet distribution (Sect. 6.1.3) is used to accomplish this. At least for those
models reducible from GTR, this is a reasonable procedure.
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12.3 Techniques

Since, in general, we are not concerned with the actual value of p(T |D), and the
denominator of Equation 12.1 is a constant for any particular data set, we can
restrict ourselves to maximizing p(T ) · p(D|T ). This reduces to maximizing the
product of the tree prior and the tree likelihood with the nuisance parameters
integrated out (MIL). In general, analyses use a flat (= uninformative) prior
for tree topologies, hence the Bayesian analysis boils down to a search for trees
with high MIL (Chapter 11). This could be accomplished via a variety of stan-
dard tree-search techniques (Chapter 14) such as exhaustive tree enumeration
(Rannala and Yang, 1996) or heuristic branch-swapping (Wheeler and Pickett,
2008). These tried and true methods should yield useful MAP trees—if supplied
with integrated likelihoods for the trees themselves. Without this information,
however, these techniques are less directly applicable, and other approaches are
more commonly employed.

Bruce Rannala

Ziheng Yang

12.3.1 Markov Chain Monte Carlo

Typically, the problem of determining the posterior probability of a tree requires
knowledge of the tree prior, the distribution of model parameters and of edge
weights. Even if the priors are not an issue (e.g. flat, as above), there are many
parameters to integrate away. For example, a GTR-model analysis for 100 taxa
has at least 205 parameters. Numerical integration in such high dimensionality
will be extremely time consuming.

Markov Chain Monte Carlo (MCMC) techniques based on the Metropolis–
Hastings algorithm of simulated annealing offer an alternate means of deter-
mining the relative posterior probabilities (based on the numerator of Eq. 12.2)
of competing trees. This technique (Sect. 14.7) has general use in complex op-
timization problems and has been adapted for use in tree-searching (Goloboff,
1999a, as “Tree-Drifting”).

12.3.2 Metropolis–Hastings Algorithm

As discussed in Chapter 14, the Metropolis–Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970) has been used to allow a search to escape local op-
tima by accepting suboptimal solutions in the hope of later finding more global
solutions. In the context of Bayesian estimation in systematics, the objective is
a stable population of trees where trees are represented in proportion to their
posterior probability. The Metropolis–Hastings transition probabilities between
pairs of trees are determined by the ratio of their posteriors (Eq. 12.2). Since
they share the same denominator, this ratio is based solely on the numerator
of Equation 12.2. This saves us from dependency on the difficult to calculate
marginal data probability.

This is accomplished via a series of proposed changes to the current tree
(including the edge parameter vector and substitution model). If we define the

π(T ) = p(θ)p(T |θ)p(tT |θ, T )p(D|θ, T, tT ) (12.4)
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acceptance ratio based on the relative quality of solutions (Eqs. 12.5 and 12.6)
after a change from T to T∗.

α = min
(

1,
π(T ∗)
π(T )

)
(12.5)

The probability of accepting a solution (a tree in this case) T∗ is 1 if T∗ is “bet-
ter” (higher posterior probability) than T. A worse solution will be accepted
with probability f(α) > 0 depending on the “temperature” of the system. If the
temperature is relatively high, suboptimal solutions are more likely to be ac-
cepted. If the system is too hot, any solution will be accepted, and the procedure
becomes a random walk about the solution space. If the temperature is too low,
only better solutions are accepted with the familiar problems of local optima.
The sequence of states forms a Markov “chain” that will never (on its own)
terminate. The method should converge on the posterior probability as long
as two conditions are met: 1) the transition system allows all states to transi-
tion into all other states, and 2) the chain is aperiodic. These conditions are
easily met.

As an example, consider a coin. A sequence of tosses (yielding three heads
and seven tails) constitutes D. The coin may be fair (state 0; prior probability
0.5), biased towards tails (state 1; prior probability 0.25), or biased towards
heads (state 2; prior probability 0.25). These are the three “states” whose pos-
terior probabilities we want to estimate (Fig. 12.4). The transition probabilities
between the states will be:

α0→1 =
p(biased T) · r(D|biased T)

p(fair) · r(D|fair)
=

0.25 · 0.00209
0.5 · 0.000977

= 1.070 → 1

α1→0 = 0.935

α0→2 =
p(biased H) · r(D|biased H)

p(fair) · r(D|fair)
=

0.25 · 0.0000257
0.5 · 0.000977

= 0.0132

α2→0 = 76.0 → 1

α1→2 =
p(biased H) · r(D|biased H)
p(biased T) · r(D|biased T)

=
0.25 · 0.0000257
0.25 · 0.000209

= 0.123

α2→1 = 8.13 → 1 (12.6)

After some large number of probabilistic transitions, the relative number of
visited states should settle down on the posterior probabilities of p(fair) = 0.480,
p(biased T) = 0.514, and p(biased H) = 0.00631.

The Metropolis–Hastings algorithm for identifying the maximum posterior
probability tree would follow the general procedure:

1. Choose an initial tree (T), edge weight vector (t), substitution model (θ).

2. Propose a new tree (T∗).

Propose new t

Propose new θ
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3. Evaluate α for T and T∗.

If α ≥ 1 accept T∗

If α < 1 accept T∗ with probability depending on “temperature”

4. Save resulting tree and parameters each kth iteration.

5. Repeat steps 2 through 4 n times.

State 0
Fair

State 1
Biased-T

State 2
Biased-H

1.0

0.935

1.0

0.0132 1.0

0.123

Figure 12.4: Metropolis–Hastings acceptance ratios for three states of a coin:
fair, biased-Heads, and biased-Tails. Acceptance ratios of Equation 12.6.

A new tree may be proposed with new edge and model parameters, or nuisance
parameters may undergo their own proposal process (step 2).

There are three flavors of the Metropolis–Hastings algorithm in common use:
1) Single component, 2) Gibbs sampler, and 3) Metropolis-coupled MCMC or
MC3. MC3 or Bayesian MCMC is the most frequently employed strategy.

12.3.3 Single Component

The single component Metropolis–Hastings procedure operates as above for a
single parameter, but when there are multiple parameters to be estimated, cycles
through them individually. Each parameter undergoes a proposal and transition
process, while all others are held constant. The order of parameter evaluation
may be deterministic, randomized, or probabilistic. This method can perform
poorly if there are correlated parameters, where independent changes will find
joint optimization with lower probability.
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12.3.4 Gibbs Sampler

The Gibbs sampler uses the parameter conditional distribution with respect to
all others to define the transition conditions (Gelman and Gelman, 1984). Each
parameter is treated in turn as with the Single component above. The Gibbs
sampler requires analytical information about these distributions that may be
difficult to determine. This form of sampling was used by Jensen and Hein (2005)
in their determination of sequence medians and multiple alignments under the
TKF91 model (Thorne et al., 1991).

12.3.5 Bayesian MC3

The MC3 algorithm (Geyer, 1991) generalizes the MCMC procedure by running
multiple (m) chains in parallel, each for n iterations. Chain π0 is the cold chain
(in terms of Metropolis–Hastings temperature), and the others are successively
hotter (Fig. 12.5). Typically, the heating is incremental through the chains 1 to
m − 1 (Eq. 12.7).

πj(T ) ∝ π0(T )
1

1+λ(j−2) , λ > 0 (12.7)

Chain 0
"Cold"

Chain 1
"Hot"

Chain 2
"Hotter"

Chain 3
"Hottest"

"Burn in"

Stationary
Distribution

Exchange between
chains

Figure 12.5: MC3 process with four chains from “Cold” to “Hottest.” The initial
period of transitions far from stationarity is discarded as the “burn in” period.
Only the results of the stationary phase “cold” chain are used for the calculation
of posterior probabilities. Tree space traversal and chain mixing are represented
by the jagged chain lines.
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Only the cold chain converges to the estimated parameter—the others are for
mixing between chains to improve solutions (Yang, 2006). These chains (i and
j) exchange values periodically according to a second Metropolis–Hastings ac-
ceptance ratio (Eq. 12.8).

α = min
(

1,
πi(Tj)πj(Ti)
πi(Ti)πj(Tj)

)
(12.8)

The motivation is that the hot chains allow the movements between solution
peaks, while the cold chains find the local minima in their neighborhood. Peri-
odic mixing between chains allows solutions separated by large probability gaps
to enter the cold chain. Such gaps may impair the ability of MC3 to find valid
stationary solutions (Yang, 2006). The end result of the MC3 should be that
each tree is represented in the stationary pool in proportion to its posterior
probability in the cold chain.

Evaluating MC3

Even with exchanges between m chains and after n iterations it can be difficult
to determine whether the chain has converged on the distribution of the desired
parameter reaching stationarity or is still changing (the “burn in” period).

There are several strategies for evaluating whether stationarity has been
reached:

• Run the algorithm without data. The posterior distribution should con-
verge on the (known) prior.

• Repeat the process multiple times. The results of independent runs should
converge on the same estimates of posteriors.

• Examine the distribution of estimated parameters over the progress of the
runs. All parameters should have settled down to their final estimates.

No matter what strategy is employed, great care should be taken to ensure that
stationarity has been reached. The validity of the estimates depends on it.

12.3.6 Summary of Posterior

There are three commonly used methods of summarizing Bayesian analysis of
tree topologies. The first is the straightforward (but somewhat uncommon) pre-
sentation of the MAP tree as one would present an ML or parsimony result
(Rannala and Yang, 1996). The second is to present the minimal set of trees
(or their consensus) with total posterior probability of 95% (or some other)
level of Bayesian credibility (Rannala and Yang, 1996; Mau et al., 1999). By
far the most common method is to present the majority consensus of the trees
in the stationary pool. Each clade with > 50% posterior probability is pre-
sented on a consensus tree labeled by these clade posteriors (Fig. 12.7). This
summary method was first presented by Mau et al. (1999) and is implemented
in the program MrBayes (Huelsenbeck and Ronquist, 2003). It is important
to note that the contributions of a given clade posterior probability will likely
come from multiple, incompatible, tree topologies (Fig. 12.6). Combining such
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Figure 12.6: Two edges that are quite different ((V, V ′) on left and right), yet
define identical splits (= clades if rooted on either side of the split) that would
be summed to determine the posterior clade probability.
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Figure 12.7: A Clade–Bayesian tree (sensu Wheeler and Pickett, 2008) of arthro-
pod anatomical data (Wheeler and Pickett, 2008).

disparate objects is certainly questionable; are left and right eV,V ′ of Figure 12.6
equivalent? The posterior probabilities were determined for whole trees; the jus-
tification of their use on subtrees is unclear. Furthermore, any comparison of
their lengths (time parameter) would seem to be invalid since the other nodes
to which they are connected differ1.

1This information could be gathered by resampling a fixed MAP tree (Yang, 2006).
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A tree constructed from the posterior probability of clades may differ from
the MAP tree (Wheeler and Pickett, 2008) and have other less desirable prop-
erties (most prominently clade size bias—see below).

12.4 Topologies and Clades

Kurt Pickett
(1972–2011)

Although a uniform tree prior distribution has no effect on the choice of MAP
tree, the distribution of individual clades (by size) forced by this distribution is
not uniform. Hence, the clade posteriors can give a strong prior bias (clade c of
size m in a tree with n leaves; Eq. 12.9).

pr(cm) =
(
∏m

i=2 2i − 3) · (∏n
i=m+1 2i − 2m − 1

)
∏n

i=2 2i − 3
(12.9)

Pickett and Randle (2005) first pointed this out in an empirical and experimental
manner and Steel and Pickett (2006) later proved the impossibility of creating
uniform clade priors (Fig. 12.8). The influence of these priors can be severe
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Figure 12.8: Pickett and Randle (2005) relationship between clade prior and
clade size under a uniform topology prior.
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(a factor of 1013 for groups of 2 and 25 in a tree of 50 taxa) and makes the
interpretation of clade posteriors difficult even as a support measure. Goloboff
and Pol (2005) presented an example where this effect results in a taxon with
entirely missing values placed specifically (with 55% posterior clade probability)
and other clades supported from 52 to 96% even though all placements of the
all-missing taxon have equal posterior probability (Fig. 12.9). Yang (2006) based
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Figure 12.9: A completely uninformative taxon (A) placed near the center of a
tree (posterior clade probabilities > 50% determined by MrBayes) of completely
informative taxa (Goloboff and Pol, 2005). The numbers on the branches are
posterior clade probabilities (determined by MrBayes; Huelsenbeck and Ron-
quist, 2003), the numbers above are the groups frequencies in the set of most
parsimonious trees, and the numbers below bootstrap frequencies (determined
by PAUP*; Swofford, 2002).
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Figure 12.10: Example from Goloboff and Pol (2005) recast by Yang (2006)
showing a distant taxon a from a series of easily placed taxa b − s. The edge
parameter leading to a is 10 (basically randomized), whereas all the others
are 0.2. For n taxa, the posterior probability of incorrect clade (b, c) will be
(2n − 7)/(2n − 5).

an example on Goloboff and Pol (2005) showing support for groups that are not
present on the “true” tree approaching 1 (Fig. 12.10).

12.5 Optimality versus Support

Clearly, MAP is a well defined measure of optimality. Consistent analysis of
systematic data can follow such a path as well as parsimony or likelihood.
The posterior probabilities of clades cannot. There is no way for such sum-
maries to participate in hypothesis testing, and they have clearly pathological
behaviors in several simple cases. At best, clade posteriors offer a measure of
the support of groups. However, even that utility awaits statistical justification
(Yang, 2006).

12.6 Dynamic Homology

In moving from static to dynamic homology characters (in a stochastic frame-
work), it is convenient to use mathematical descriptors that are more flexible
and general than traditional Markov processes. In the cases of sequences, we can
model indels with a simple n + 1 Markov model but, in general, this requires
knowledge of the positions of these indels a priori such as in the case of the
analysis of multiple sequence alignments. When the locations of sequence gaps
are unknown, such simple models may be insufficient. Hidden Markov Models
present a useful mechanism in such complex scenarios.
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12.6.1 Hidden Markov Models

A standard Markov chain employs a single transition model (state) that is re-
peatedly applied, generating observations. Hidden Markov Models (HMM) add
an extra layer of complexity in that the chain contains multiple states (= Markov
transition matrices) each of which emits an observation. The sequence of obser-
vations is the result not only of the randomized emission of an observation by
a state, but also the randomized order of the states themselves. Normally, only
the sequence of observations is known, hence the chain of states is “hidden.”
As with standard Markov processes, the generation of observations is “memo-
ryless,” depending only on the preceding state. When an HMM is run, there is
first a sequence of states and second a sequence of emitted observations (Fig.
12.11). HMMs are broadly applicable and are used in diverse fields including
speech recognition, ecology, and even financial market analysis.

The myriad relationships among the states (transitions) and between states
and observations (emissions) can be summarized by a “trellis” diagram
(Fig. 12.12).

State0 State1 State2

Initial Emission Transition

Observation0
Observation1 Observation2

Emission Transition Emission

Figure 12.11: An HMM chain of events consisting of a start (State0) and sub-
sequent states (Statei), emissions from states (Observationi), and transitions
between states.
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Figure 12.12: A trellis diagram of an HMM with three states and three possible
emission states, showing transitions between states (tij) and emissions between
states and observations (eij).
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If we define a sequence of n states as π = π0, π1, . . . , πn−1, a set of k se-
quence elements s = {s0, s1, . . . , sk−1}, the sequence of observations as x =
x0, x1, . . . , xn−1 (each one drawn from s), transition probabilities between states
i and j as tij , and emission probability of element sj by state πi as eij , the prob-
ability of the sequence with initial state π0 will be (Eq. 12.10):

p(x, π|t, e) = p(π0)eπ0,x0 ·
n−1∏
i=1

tπi−1,πi
eπi,xi

(12.10)

12.6.2 An Example

Consider the case of a sequence of coin tosses. Each toss could be made with
either a fair coin (p(H) = p(T ) = 0.5) or one biased strongly towards heads
(p(H) = 0.9, p(T ) = 0.1). Furthermore, the biased coin is substituted for the
fair coin with probability = 0.2 after a toss, and fair for biased with proba-
bility 0.6 (Fig. 12.13). Suppose the tosser makes 20 tosses and the sequence
THTHHTTTHHHHHHHHHHTT results.

If only the fair coin were tossed, the probability of the sequence would
be 0.520 (ln pr = −13.86); if only the biased coin were used, ln pr = −17.49
(0.913 · 0.17). The maximum likelihood estimation of coin type would then be
that the (single) coin was fair with a likelihood ratio of 37.7.

HMM analysis allows more nuanced scenarios to be evaluated. The single fair
and single biased coin probabilities require additional factors. The first is the
probability of the starting states (here 0.5) and the 19 transitions after the first
toss, in each case fair following fair, or biased following biased. The probability
of the all fair case becomes 0.5 · 0.520 · 0.819 for a ln pr = −18.79. For the all
biased scenario, we have 0.5 · 0.913 · 0.17 · 0.419 for a ln pr = −35.59. We are not,
however, limited to these two scenarios. We can also evaluate sequences where

Fair Biased

TailsHeads

0.5 0.5 0.9 0.1

0.2

0.6
0.8 0.4

Figure 12.13: A trellis diagram of the parameters of a coin toss experiment with
two coins, one fair and one foul.
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coins were switched from fair to biased and vice-versa. Consider (fair coin =
F, biased = B) sequences FFFFFFFFBBBBBBBBBBBB (one transition from
fair to biased) and FFFFFFFFBBBBBBBBBBFF (two transitions, one in each
direction):

one transition 0.5 · 0.58 · 0.910 · 0.12 · 0.87 · 0.2 · 0.411 = e−25.15

two transitions 0.5 · 0.58 · 0.910 · 0.52 · 0.88 · 0.2 · 0.49 · 0.6 = e−20.83

This example can easily be extended to a more complex case by adding
a third coin (1

6 state transitions among them) biased strongly towards tails
(Fig. 12.14). This would result in an additional scenario being evaluated where
the coin state (biased head → H; biased tail → T) exactly matched the observa-
tions with six state transitions (Table 12.1). Based on the maximum probabil-
ity scenario (three coins), we can re-evaluate the state transition probabilities
noting that there were zero transitions between fair and the two biased coins
(Fig. 12.15). If we do this, the (ln) probability of the three coin scenario jumps
to −14.39 and would account for over 85% of the posterior decoding (relative
probability given the restricted set of scenarios).

Fair BiasedH

TailsHeads

0.66 0.66

BiasedT

0.66

0.17

0.17

0.17

0.17

0.17

0.17

0.5
0.5

0.1

0.9 0.1
0.9

Figure 12.14: A three coin trellis diagram.

Scenario ln pr Posterior Decoding
Three coins (six transitions) −16.27 91.65 %
No transitions (fair coin) −18.79 7.374 %
Two transitions (two coins) −20.83 0.9589 %
One transition (two coins) −25.15 0.0001275 %
No transitions (biased coin) −35.59 0.0000000037289 %

Table 12.1: HMM coin toss scenarios.
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Figure 12.15: A three coin trellis diagram revised to reflect observed transitions.

12.6.3 Three Questions—Three Algorithms

Generally, we are presented with a Markov process with unknown parameters.
There are three questions we might ask of the system: 1) given model parame-
ters, what is the sequence of hidden states? 2) given model parameters, what is
the probability of the observed sequence? and 3) given the output sequence, what
are the parameters? These questions are addressed by the Viterbi, Forward–
Backward, and Baum–Welch algorithms.

Viterbi Algorithm

Andrew Viterbi

The Viterbi (1967) algorithm is a dynamic programing procedure to determine
the highest probability path of states π∗ from an observed sequence x given
transition probabilities t, and emission probabilities e (Eq. 12.11).

π∗ = argmax
π

p(x, π|t, e) (12.11)

Recalling Equation 12.10, the central recursion is derived from the observation
that the highest probability path ending in state vj at position i with observation
xi will be the probability of the total path to position i − 1 multiplied by the
transition probability between the states in positions i − 1 and i, multiplied
by the emission probability of xi given state vj maximized over the states in
position i − 1 (Eq. 12.12).

p(vj,i) = evj ,xi
· argmax

k states

[
p(vk, i − 1) · tvk,i−1,vj

]
(12.12)
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Algorithm 12.1: Viterbi Algorithm
Data: Input sequence observations x of length n and states v (size k)
Data: Initial probabilities of states p(v), emission probabilities eab of

states (a) and elements (b) in x, transition probabilities between
states tab (a → b).

Result: The probability of the optimal sequence of states π∗. The
sequence itself can be determined by a traceback on direction.

Initialize first row of prob matrix;
for i = 0 to k − 1 do

prob [0, i] ← p(vi) · ei,x0 ;
end
Update remainder of matrices prob and direction;
for i = 1 to n − 1 do

for j = 0 to k − 1 do
prevprob ← 0;
for l = 0 to k − 1 do

if tvl,vj
· prob [i − 1, l] > prevprob then

prevprob ← tvl,vj
· prob [i − 1, l];

direction [i, j] ← l;

end
prob [i, j] ← evj ,xi

· prevprob;
end

end
return argmaxk prob [n − 1] [k]

The algorithm (Alg. 12.1) proceeds by initialization, recursion, and traceback,
as with other dynamic programming procedures such as the Needleman–Wunsch
algorithm for string matching (Alg. 8.1).

1. Establish a matrix of n path position columns and k state rows.

2. Initialize the first column with the initial probabilities of the states mul-
tiplied by its emission probability of observation x0.

3. Apply Equation 12.12 to each successive column keeping for each state in
each column a pointer to the state in the previous column that yielded
the highest probability (k in Eq. 12.12).

4. The maximum value in column n − 1 is the probability of the maximum
probability path π∗.

5. Traceback beginning with the maximum value in column n − 1 to pro-
duce π∗.
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As with other probabilistic algorithms, it is often convenient to work with log-
arithms of probabilities to avoid awkwardly small numbers.

The time complexity of this algorithm for k states and n observations is
O(k2n), but since in general k � n, the algorithm is in essence linear with n.

Forward−Backward Algorithm

The Viterbi algorithm found the single sequence of states with maximum prob-
ability, but there are an exponential number of paths (in the three coin 20 toss
example there are 320), each with some non-zero probability. As with proba-
bilistic sequence alignment, we may want to know what the total probability of
a sequence of observations is given all possible state paths. This is done via a
simple modification of the Viterbi algorithm where the maximization over states
in the previous position (Eq. 12.12) is summed (Eq. 12.13)

pF (vj,i) = evj ,xi
·
∑

k

[
pF (vk, i − 1) · tvk,i−1,vj

]
(12.13)

resulting in the Forward algorithm.
In order to determine the posterior probability that a particular observation

xi was emitted from state πi = k, we need to determine the probability of πi = k
given the sequence from i to the beginning and end of the entire sequence. The
Forward algorithm yields the former and, surprisingly enough, the Backward
algorithm provides the latter.

The Backward algorithm is identical to the Forward except that it begins at
the end of the sequence (i = n) and moves forward (Eq. 12.14).

pB(vj,i) = evj ,xi
·
∑

k

[
pB(vk, i + 1) · tvk,i+1,vj

]
(12.14)

The posterior probability of a state in position i given observations x is then
determined from the product of the Forward and Backward probabilities condi-
tioned on the total probability from the Forward algorithm (Eq. 12.15, Alg. 12.2).

pPP (πi = vk|x) =
pF (vj,i) · pB(vj,i)

P(x)
(12.15)

Baum−Welch Algorithm

If the paths are known, or we have a training sequence of observations to fit,
transition and emission probabilities can be estimated as simple proportions of
particular events to the total number. These will be the maximum likelihood
estimators for these parameters given the training sequence.

Lloyd R. Welch If the state paths for the training sequences are unavailable or unknown,
such a direct method cannot be used alone, but can be used in concert with
an iterative refinement of parameter estimation (Baum et al., 1970). Initial
values are set, the Forward and Backward algorithms are performed on the
training sequences, and then the transition and emission frequencies estimates
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Algorithm 12.2: Forward–Backward Algorithm
Data: Input sequence observations x of length n and states v (size k)
Data: Initial probabilities of states p(v), emission probabilities eab of

states (a) and elements (b) in x, transition probabilities between
states tab (a → b).

Result: Matrix of the posterior probability of each state (pPP ) in v at
each position πi in the sequence determined by Eq. 12.15.

Determine Forward probabilities;
Initialize first row of forward, pF , matrix;
for i = 0 to k − 1 do

pF [0, i] ← p(vi) · ei,x0 ;
end
Update remainder of matrix pF ;
for i = 1 to n − 1 do

for j = 0 to k − 1 do
sumprob ← 0;
for l = 0 to k − 1 do

sumprob ← sumprob +
(
tvl,vj

· pF [i − 1, l] · evj ,xi

)
;

end
pF [i, j] ← sumprob;

end
end
TotalProb ← argmaxk pF [n − 1] [k];
Determine Backward probabilities;
Initialize last row of forward, pB, matrix;
for i = 0 to k − 1 do

pB [n − 1, i] ← p(vi) · ei,xn−1 ;
end
Update remainder of matrix pB ;
for i = n − 2 to 0 do

for j = 0 to k − 1 do
sumprob ← 0;
for l = 0 to k − 1 do

sumprob ← sumprob +
(
tvl,vj

· pB [i + 1, l] · evj ,xi

)
;

end
pB [i, j] ← sumprob;

end
end
Determine Posterior probabilities;
for i = 0 to n − 1 do

for j = 0 to k − 1 do
pPP [i, j] ← pF [i,j]·pB [i,j]

TotalProb ;
end

end
return pPP
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from each of these sequences are tallied and used to calculate new parameter
values. These values are used on the training sequences repeatedly, each time
tallying transitions and emissions and re-estimating parameters until further
improvements in the probabilities of training sequences cease.

1. Set initial parameters.

2. For each training sequence:

Calculate pF(x) and pB(x).

Tally state transitions and emissions implied by pF(x) and pB(x).

3. Re-estimate model parameters based on the even tallies of the training
sequences.

4. Determine p(x) based on the new parameters.

5. Repeat 2–4 until improvements in p(x) are below a predetermined
threshold.

12.6.4 HMM Alignment

Pairwise HMM alignment—As with sequence of coin tosses, HMM can be used
to align sequences through maximizing the probability of the alignment given
element matches (substitution or identity), insertions, and deletions. A trellis di-
agram is constructed (Fig. 12.16) with all of these events and their probabilities
(match = 1 − 2δ, insertion = deletion = δ, and affine insertion = affine dele-
tion = ε). The Viterbi algorithm is also used here to determine the maximum

δ

δ

1 − 2δ
1− ∋

∋

∋

1− ∋

Match
(i,j)

Insertion
(i-l,j )

Insertion
(i,j-l )

Figure 12.16: A trellis diagram for pairwise alignment with match probability =
1 − 2δ, insertion = deletion = δ, and affine insertion = affine deletion = ε.
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probability alignment with the recurrence vM for match between the two se-
quences (X and Y ), vI for insertion and vD for deletion:

vM
i,j = pxi,yj

· max

⎧⎪⎨
⎪⎩

(1 − 2δ)vM
i−1,j−1

(1 − ε)vI
i−1,j−1

(1 − ε)vD
i−1,j−1

(12.16)

vI
i,j = qxi

· max

{
δvM

i−1,j

εvI
i−1,j

(12.17)

vD
i,j = qyi

· max

{
δvM

i,j−1

εvD
i,j−1

(12.18)

When this recursion is examined in its additive log-transformed form, δ is the
opening and ε the extension or affine gap cost of the Gotoh (1982) algorithm
discussed in Chapter 8. The same dynamic programming procedure can be used
for HMM alignment as for standard string alignment given that the probabilities
are log transformed.

Also, as with the coin toss example above, the posterior probability of a
given match or indel position can be determined using the Forward–Backward
algorithms. The Baum–Welch procedure can be used to estimate the alignment
parameters δ and ε.

Multiple HMM Alignment—Pairwise alignment can be extended to multiple
sequence alignment (MSA) in a straightforward manner via the use of Profile
HMM. A profile HMM (Krogh et al., 1994) is the model of a group of aligned se-
quences that can be used (via the Viterbi or dynamic programming approaches)
to align groups of sequences.

Anders KroghThe profile HMM is built up in segments. A trusted alignment(s) (usually
human-derived or edited) is used as the basis for determining the emission and
transition probabilities. First, ungapped regions are examined. Each aligned
position, or “block” of multiple positions, is used to create the match emission
probabilities. These may vary over the length of the sequence, yielding more spe-
cific probability statements (position specific score matrix—PSSM) than those
that are constant over the entire length of the sequences. Insertions are modeled
as the state I, allowing transitions from the match state Mi. I can transition
back to the succeeding match state, Mi+1, or to itself (insertion length <1).
This sort of model corresponds to an affine gap model. Deletions are somewhat
different beasts, since a single deletion could, in principle, lead to any other
downstream sequence element, necessitating large numbers (order n2) of transi-
tions. To handle this more cleanly, the “dummy” state D is added analogously
to the insertion, with the limitation that these states can only transition back to
match states or to the succeeding dummy state. With these three elements, the
profile HMM is complete (Fig. 12.17). As with the PSSM, insertion and dummy
(deletion) transitions and emission probabilities can vary over the length of the
sequence, giving classes of sequences specific profiles. Of course, the alignments
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Figure 12.17: A trellis diagram for profile HMM with match, insertion, and
“dummy” states for repeated deletions (Krogh et al., 1994).

used to construct and train the HMMs (e.g. BAli-Base, Thompson et al., 2005)
will have pervasive influence on their use in subsequent analysis.

Profile HMMs are used a great deal in the identification of gene families and
functional motifs. They can also be used as any HMM in the pairwise procedure
above to create HMM-based MSAs (Hughey and Krogh, 1996). The operation
follows the same general path as the progressive alignment of profile alignments
discussed in Chapter 8.

12.6.5 Bayesian Tree Alignment

The basic operation of the TAP (Chapter 8, Sect. 10.9) in a Bayesian context
comes down to the posterior probabilities of edges. A profile HMM can be used
to align any pair of sequences, such as the ancestor and descendent vertices of
an edge. With a suitable sequence change model (such as TKF91), the profiles
can be constructed and emission and transition probabilities determined as a
function of the usual parameters (edge weight and substitution model). An
additional complexity in Bayesian evaluation of trees comes in the treatment of
vertex medians. The posterior probability of the entire tree cannot be dependent
on specific, optimal, median sequence assignments, but must integrate over all
such medians (or approximate via MCMC or some other sampler) to determine
the overall posterior of the tree. This (among other factors) adds a great deal of
time complexity to Bayesian TAP analysis. Fleissner et al. (2005) cite this as the
motivation for their approach of using only the MAP estimates of parameters. In
avoiding the integration component of Bayesian TAP, they are able to decrease
execution time vastly. This approach is out of step with the majority of Bayesian
TAP procedures (see below), but does have enhanced scalability to recommend
it. The relationship between MAP values based on maximizing parameters, and
those by integration is, however, unclear.

12.6.6 Implementations

The complete General Tree Alignment Problem (GTAP) in the Bayesian frame-
work is extremely onerous. Implementations rely on at times severe restrictions
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on the analysis with respect to the dimensionality of the problem (progressive
HMM) to fixing edge parameters to employing single distance-based tree topolo-
gies. A few of these implementations are discussed below.

Kimmen Sjölander

Holmes and Bruno (2001) directly extended the profile HMM of Krogh et al.
(1994) onto a tree of n leaves with 2n − 1 emission states (Figs. 12.18 and 12.19)
in their software HANDEL.

SATCHMO (Edgar and Sjölander, 2003) adds a tree component to profile
HMMs by recreating the (Feng and Doolittle, 1987) progressive algorithm but
based on HMMs as opposed to string alignment cost. SATCHMO determines
the pairwise probability between pairs of sequences (and profile HMMs), joining
the closest pair at each turn and creating new profiles. This is in essence UP-
GMA (Sect. 9.5.1) using HMM probabilities as a similarity measure. SATCHMO
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Y

Figure 12.18: The basic median diagram of Holmes and Bruno (2001) with time
parameters for the edges to be used in the TKF (Thorne et al., 1991) model.
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also provides information on the “alignability” of subtree alignments by affinity
scores.

Löytynoja and Milinkovitch (2003), in ProAlign, made a number of simpli-
fying assumptions to create a rapid HMM approach directly as MSA. ProAlign
is also a progressive alignment approach using HMMs. ProAlign, however, uses
a relatively simple 5-state (A,C, G, T, and gap) Neyman (1971) model with
Neighbor-Joining (Saitou and Nei, 1987) edge time parameters.

In an alternate approach, Lunter et al. (2005) developed a MCMC method
for a fully Bayesian (topology as well as edges and substitution parameters) TAP
procedure. The BEAST software produces a MAP tree based on the TKF91 se-
quence substitution model. As with other Bayesian methods, BEAST calculates
the posterior probabilities of aligned positions in their MSA output (Fig. 12.20).

Gerton Lunter BaliPhy (Redelings and Suchard, 2005) takes an approach similar to BEAST
in using MCMC for Bayesian joint estimation of tree and MSA. BaliPhy (like all
other procedures) makes simplifying assumptions, in this case the indel model
is constant over all edges (TKY91). BaliPhy also employs Metropolis–Hastings
chain mixing to improve results. The overall approach is very time consuming
however, requiring hundreds of hours (pc-level computer) to analyze 12 protein
sequences of length 400.

12.7 Rearrangement

The Bayesian analysis of genomic rearrangements is in the earliest stages. Ge-
nomic rearrangement models (Sect. 10.13.2) are varied, complex, and at present
not very biological. The identification of realistic scenarios of rearrangement

0

1

Figure 12.20: Posterior decodings of aligned positions from Lunter et al. (2005).
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are elusive, and statistical models of their properties even more distant. Larget
et al. (2004, 2005) have produced BADGER to take the mainly parsimony-based
rearrangement distance methods and describe them in a Bayesian framework.

Mark Suchard

Brent Larget

BADGER uses an MC3 approach based on Poisson priors and random per-
mutations of locus synteny to establish likelihoods and posterior probabilities
of rearrangement scenarios. This approach is a descriptive one, not based in
any particularly supported view of genomic rearrangement, but has the virtue
of practical execution times of days for nearly 100 metazoan mitochondrial
genomes of 40 or so loci.

12.8 Criticisms of Bayesian Methods

Criticisms of Bayesian methods (above and beyond those of likelihood) center
on prior probabilities. Not only are the specific shape and distributional details
at issue, but also their fundamental existence. If we take the case of time pa-
rameters on edges of trees, what is meant by a prior distribution on edges? Is
it a prior on that edge? Is it specific to that tree or clade? Or is the prior more
general, describing the distribution of edges over the entire tree, or all trees? As
mentioned above, simply by increasing the number of taxa, the expected edge
time parameter is reduced. Is there a single model—or multiple, perhaps one for
each tree (to maximize MAP)? These questions apply equally well to all manner
of other distributional assumptions.

The specific distributions themselves can carry awkward baggage as well.
The uniform distribution is often used to describe ignorance, or lack of pref-
erence among outcomes. Yet this distribution must be arbitrarily bounded, or
probabilities of all scenarios go to zero. Other distributions may be used, but
what is their justification in the absence of empirical knowledge? In historical
science, there is no frequentist experience to draw on. All events are unique.
The very notion of a distribution in such a situation is highly problematic.
Bayesian methods draw their strength from the integration of information over
alternate scenarios. If, however, there is only one scenario—one history, is such
an integration valid?

Perhaps systematics is uniquely difficult in the Bayesian framework. The con-
flation of natural law and analytical procedure makes any statistical statement
at least as much about inferential method as nature. Do our models describe
events—or our ability to perceive them?

12.9 Exercises

1. If we have a tree T with n leaves and follow a Yule process, how many
trees are derivable from T with n + 1 leaves? If we were to follow a uniform
model, how many trees are derivable?

2. We observe the sequence of coin tosses: HHTTTHHHHHHHHTT, and are
told that one of three possible coins was used: a fair coin (pH = pT = 0.5),



268 Optimality Criteria−Posterior Probability

a coin biased towards heads (pH = 0.8), or one biased towards tails (pT =
0.8), and that these three coins had the prior probabilities of 0.5 for the
fair coin and 0.25 for each of the biased coins. What are the expected
transition probabilities (temperature aside) in a Markov Chain among
these three states? What are the expected frequencies of the three states
after a long chain?

3. If the prior distribution of tree topologies with 10 leaves is uniform, what
is the prior probability of a clade with 2 leaves? 5 leaves? 8 leaves?

4. For the three coins in exercise 2, if the probability of the same coin being
used in successive tosses is 0.5 and the probability of switching to each of
the other two is 0.25 (the initial coin choice follows the prior), draw the
trellis diagram for this Hidden Markov Model.

If only a single coin were used, determine the probabilities of the coin
toss sequence for the fair and two biased coins.

If the sequence of coins used were FFFFFHHHHHHHHTT (F=fair,
H = biased towards heads, and T = biased towards tails), determine the
probability of the coin toss sequence.

5. Given the HMM trellis of 12.14, and the coin toss result HHTTTHHHH-
HHHHTT, assuming the three coin states have equal initial probability,
determine the maximum probability state path (Viterbi) and the proba-
bilities of each state at each position (Forward–Backward).

6. Draw a general (no numbers) profile HMM trellis diagram for a sequence
model with sites that follow GTR (no indels), sites that follow 5-State
Neyman (A, C, G, T + gaps), and sites that are invariant (no indels
either).



Chapter 13

Comparison of Optimality
Criteria

As discussed in the four previous chapters, there is a diversity of methods to
reconstruct phylogenetic trees from comparative data. In general, most forms
of such comparative data (e.g. qualitative anatomical features, DNA sequences)
are amenable to analysis by any of the currently applied methods. In this chap-
ter, the relative merits of the methods are discussed, as are three bases used
to distinguish among the approaches: epistemology, statistical behavior, and
performance.

The approaches discussed here are of four general types: distance analysis,
parsimony, or minimization, maximum likelihood, and posterior probability. The
term “posterior probability” is used in this chapter to refer to the Bayesian
approaches that maximize the posterior probability of trees (MAP or Topology–
Bayes), as opposed to their component parts (clade posteriors or Clade–Bayes).
As discussed in Chapter 12, clade-based posteriors do not offer an optimality
value per se, hence are not directly comparable to the methods discussed in
this chapter.

There is no single answer to “what is the best method?” in same way there
is no single answer to “what is the best tree?” A criterion must be specified in
both cases. Given an optimality criterion, we can rank competing hypotheses
and identify the best tree or trees (at least of those we have found). The same
procedure applies to methods, a criterion must be proposed in order to choose
a method; and the criterion justified.

13.1 Distance and Character Methods

Before discussing the main points of comparison among methods, a general dis-
tinction needs to be made between methods that rely on overall dissimilarity

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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(or similarity) and those that directly operate on individual character obser-
vations (e.g. anatomical features, molecular sequence data). Distance methods
(Chapter 9) operate on the degree of pairwise difference between taxa. The
distances may be raw, scaled, or normalized transforms of dissimilarity. When
trees are constructed from these data, by whatever criterion, no attempt is
(or can be) made to identify medians at tree vertices. No hypothetical ances-
tral state reconstructions are proposed, no global homology statements erected,
and no distinction between primitive and derived similarity made. In contrast,
character-based methods are alike in that they make explicit statements about
median ancestral reconstructions. The edges of trees then represent the transfor-
mations between ancestral and descendent states (assuming the tree is directed
or rooted).

With parsimony, the differences between these node states are summed,
yielding the parsimony score. Likelihood multiplies the probabilities of the same
edge transformations given a model and time parameter. Bayesian methods also
do this, integrating over the distribution of model and time parameters.

Whatever other admirable mathematical qualities distance analysis may
have, it does not yield the specific events that are reconstructed to have oc-
curred on tree edges. The reconstruction of edge events forms much of the basis
for discussion in the comparative biology literature. Biologists are interested
in, and largely motivated by, the desire to discover patterns and understand
the general and specific nature of these events. The entirety of historical evo-
lutionary change is contained in these edge transformations. Of course, charac-
ter events can be reconstructed ex post facto on a distance tree, but by what
means? This brings us back to character-based methods. Furthermore, since
the distance criterion differs from those of the character methods, any distance
tree result is unlikely to be optimal for the character-mapping criterion, again
returning us to character-based analysis ab initio. For this reason, most biol-
ogists concerned with tree-based analysis of variation employ character-based
methods1.

13.2 Epistemology

One of the earliest and most fundamental distinctions among systematic meth-
ods was made on the basis of epistemology. That is, how do we “know” things,
how are scientific hypotheses proposed and tested, and what is the relation-
ship between observation and inference? A fundamental distinction has been
made between a deductive (or more precisely hypothetico-deductive) process
and the inductive approach embodied in statistical estimation procedures as
applied to systematic problems (see Chapter 4 for general discussion of modes
of inference).

1There are several biological areas that contain counter examples including the medical
analysis of human pathogens and evolutionary studies of non-eukaryotic organisms. These
cases are presumably due more to tradition than any view of the superiority of the method.
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13.2.1 Ockham’s Razor and Popperian Argumentation

Platnick and Gaffney (1977), Gaffney (1979), Farris (1983), and Kluge (1997)
among others, have proposed and defended the proposition that tree reconstruc-
tion based on the minimization principle of parsimony (i.e. Ockham’s Razor) is
not only desirable on its own merits, but is also the method that conforms most
closely with the ideas elucidated by Popper (1959, 1963, 1972, 1983). The prin-
ciple of minimal causative explanation has great power and elegance on its own.
For a method that makes no specific process claims, parsimony has been re-
markably successful in providing a means to understand the enormous diversity
of biological pattern that confronts us. The minimization approach of parsimony
offers a specific method to achieve the base-line goal of choosing genealogical
explanations of variation, and of identifying non-conforming observations that
require additional modes of causality. More than the mere desire to avoid epicy-
cles, parsimony became a basis for hypothesis testing through the union of the
ideas of Ockham and Popper.

Popper (following Hume, 1748) emphasized that inductive methods could
never be satisfactory, since proof would require an exhaustive examination of
cases. In place of this verification procedure, Popper proposed that hypotheses
should be tested by searching for contradictory or falsifying observations since,
in principle, a single falsification would reject the hypothesis. This was not only
absolute but efficient.

As discussed in Chapter 4, this hypothetico-deductive approach is not ap-
plied näıvely (since all non-trivial systematic hypotheses are likely to be falsified
by at least one observation), but such that the hypothesis that is “least” falsi-
fied is most favored (Lakatos, 1970). This application of falsification creates the
link with Ockham’s razor, justifying and underpinning the use of parsimony in
systematic analysis (Farris, 1983). Any parsimony suboptimal result, as gener-
ated by a method based on an alternate criterion, breaks this connection with
falsification and the hypothetico-deductive method. Furthermore, the greater
the number of observations brought to bear on the problem, the greater the
number of opportunities to falsify the hypothesis, and the more severely it has
been tested (Eq. 4.3).

Imray Lakatos
(1922–1974)

The complement of Popper’s falsification is explanatory power. Cladograms
and trees “explain” variation through genealogical inheritance from ancestor to
descendant. Observed variation that is consistent with a given tree explana-
tion will have an overall minimal number of changes (cost), with non-minimal
changes (homoplasies) not as well explained by that tree as they would be by
another. The tree that minimizes the number of ad hoc homoplastic changes
over the data set best explains the variation in terms of genealogy. As Farris
(1983) pointed out, not only does the most parsimonious tree explain the vari-
ation, but does so without the requirement of other complex aspects required
by statistical explanation, such as overarching process models and the parame-
ters associated with edge lengths. Parsimonious trees have maximal explanatory
power with regard to observed variation, and they do this without the accessory
explanatory elements of other methods (e.g. model and tree parameters).
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13.2.2 Parsimony and the Evolutionary Process

When discussing the merits of parsimony as a phylogenetic procedure, it is im-
portant to keep clear the distinction between parsimony as an inferential proce-
dure and parsimony as a model of evolution. As a philosophical basis for testing
hypotheses, parsimony does not assume that evolution occurs parsimoniously. In
fact, all non-trivial data sets exhibit non-parsimonious (i.e. homoplastic) events.
Neither, in this context, does parsimony assume that homoplasy is rare, or that
rates of evolution are fast or slow (Farris, 1983; Sober, 1988, 2004) (but see
below). The epistemological basis of parsimony as a process of discovery and
hypothesis testing in science is general and useful. As stated by Wiley (1975),
systematic analysis “must be done under the rules of parsimony, not because
nature is parsimonious, but because only parsimonious hypotheses can be de-
fended by the investigator without resorting to authoritarianism or apriorism.”

Kluge (e.g. Kluge, 2005) has taken a different tack in that he has proposed
that the simple model of evolution as descent with modification (in essence,
a minimal evolutionary assumption that offspring resemble their parents more
than non-parents, but not exactly) leads to parsimony as an evaluation prin-
ciple. Again, such a statement makes no assertion of rates of change; rather
it is perhaps related to the “evolutionary path” model of Farris (1973a) (Sec-
tion 11.3.1).

13.2.3 Induction and Statistical Estimation

One of the strongest criticisms of statistical approaches in systematics is derived
from the fact that systematics is a historical science. The events whose expla-
nation are sought are unique to time and place. They are historical singulars
(Kluge, 1998). As such, notions of “average” behavior inherent in probabilistic
models is problematic. If each character observation is a unique object, it cannot
be a random sample drawn from a parameterized distribution expressed as a
model of change (e.g. GTR+I+Γ). Interestingly, when characters (and edges)
are treated as having uncorrelated evolutionary rates (No-Common-Mechanism;
Tuffley and Steel, 1997), parsimony and likelihood become exactly concordant in
tree choice. This appears to express neatly an important difference not necessar-
ily between statistical and minimization-based methods, but between treating
character changes as a class as opposed to historical individuals.

By this rationale, parsimonious trees have explanatory power in minimizing
ad hoc hypotheses, and increased observation will increase the severity of test,
but would not reduce any measure of “sampling error,” since there is no sample
distribution that is measured.

13.2.4 Hypothesis Testing and Optimality Criteria

Much of the argumentation and philosophical constructs surrounding hypothe-
sis testing in systematics were developed in the context of parsimony. However,
Popper (1959) himself defined support, severity of test, and corroboration in



13.3 Statistical Behavior 273

terms of likelihood functions involving the probabilities of evidence (data) given
a hypothesis and background knowledge. He was explicit in saying his probabil-
ity was defined as “relative frequency” and the probability of the evidence given
a hypothesis, “Fisher’s likelihood function.” Popper’s optimal hypothesis is that
which maximizes p(e|h, b), the probability of the data given the hypothesis and
background knowledge—in short the likelihood.

As discussed in Section 4.1.7, at least in my opinion, hypothetico-deductive
inference can proceed via a falsification step based on any objective (and tran-
sitive) optimality function. As long as hypotheses can be competed in a mathe-
matically objective manner, hypotheses can be tested, and non-optimal solutions
falsified. The key question is the appropriateness of the chosen function.

13.3 Statistical Behavior

There is a large literature concerning the statistical properties of systematic
methods, centered on the estimation behavior of various optimality criteria.
When contrasting approaches to phylogenetic reconstruction are treated as al-
ternate estimators, their behavior is most often discussed in light of three as-
pects: consistency, efficiency, and robustness. There are many cases of provable
results, as well as demonstrations on contrived or simulated data. One of the
most pressing issues that faces systematists is whether the conditions under
which these results are generated or proven apply to the empirical cases en-
countered in the course of research.

13.3.1 Probability

Before diving into the hurly-burly, it is worth revisiting the ideas embodied
by the concept of probability and their application to historical science. As dis-
cussed more fully in Chapter 6, there are alternate interpretations of probability.
In the context of the arguments discussed here, probability can have a logical
or degree of belief interpretation or, alternately, it may signify truth statements
about the natural world akin to the frequency of repeated events. In the first
case, probabilities reflect relative confidence in an outcome. A statement such
as “this coin has an 80% chance of being fair” would be an example of the
first interpretation. The coin is either fair or not; the probability attached is
similar to a betting or odds ratio often used in Bayesian analysis (DeGroot
and Schervish, 2006). By contrast, in the second case, probabilities imply a
statement about what is ontologically “real.” “This coin has an 80% chance of
yielding heads on a given toss,” offers a property of the coin and a statement
regarding physical reality.

Historical science does not easily permit a frequentist interpretation. What is
to be our course of action if presented with the question, “What is the probability
that Octavian and Caesar Augustus were the same person?” Such a situation
cannot be re-run or repeated in any way. Either he was or he wasn’t. Any
notion of probability is necessarily limited to our degree of belief, based on the
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analysis of empirical data. Such is the case when presented with a phylogenetic
statement, “are groups A and B sister taxa?” They either are or are not, and
probabilistic hypothesis testing would yield a value allowing us to assess the
relative degree of support of these two hypotheses—but not their reality. In
short, probability statements about unique historical events do not describe
nature, but rather our understanding of it2.

This restricted, and perhaps non-consensus, interpretation of probability,
however, has absolutely no effect on the formal analysis of probabilities or sta-
tistical properties of estimators (as long as the probabilities follow the basic
axioms, Sect. 6.1.1). What this interpretation does do is proscribe our ability to
make statements that are “true.” We cannot say whether a given set of histori-
cal statements (i.e. a tree) is true, but we can say we have a relative degree of
belief based on empirical observation and an optimality criterion.

13.3.2 Consistency

A concept central to the literature concerning the comparison of methods is the
concept of statistical consistency. Informally, consistency is the behavior of an
estimator θ̂ of a parameter θ where, as the sample size (n) grows, the difference
between θ̂ and θ becomes arbitrarily small (Eq. 13.1). If the estimator exactly
converges to the parameter value,

lim
n→∞|θ̂ − θ| < ε (13.1)

it is said to be strongly consistent (Eq. 13.2).

lim
n→∞|θ̂ − θ| = 0 (13.2)

In the context here, θ̂ would be the reconstructed tree (or graph) and θ the
“true” tree. The question posed to optimality criteria is whether optimality
criteria are or are not consistent, and under what conditions.

This line of reasoning was first raised by Felsenstein (1978) (Sect. 11.1.1)
when he illustrated a situation where parsimony was guaranteed to favor an
incorrect tree (inconsistent), while a likelihood analysis would not. His first case
was perhaps overly simple and unrealistic, but was followed by a large series of
analyses of more complex models in various situations. Discussions have dealt
both with the question of whether a particular method is consistent and also
with whether consistency is a useful quality by which to judge methods.

Assumptions

Felsenstein first demonstrated that parsimony could be inconsistent under con-
ditions of unequal branches and a simple evolutionary model and asserted that
likelihood in the context of tree reconstruction should be consistent based on
the condition of Wald (1949).

Abraham Wald
(1902–1950)

2A classic example of this form of analysis concerning the authorship of The Federalist
papers is found in Mosteller and Wallace (1984).
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Wald proved that maximum likelihood estimators would be consistent given
several conditions3. Many of these same assumptions are found in later consis-
tency proofs. The most important of these conditions are: 1) that the observa-
tions (data) are independent, 2) that they are identically distributed random
variables, and 3) that the number of parameters to be estimated is finite, while
the number of observations increases without bound. Each of these assumptions
is potentially problematic in the situations posed by systematic analysis.

The independence assumption is entirely appropriate for the sorts of stan-
dard examples of statistical reasoning such as drawing balls from an urn or toss-
ing a coin. In these cases, individual observations have no effect on the chance
of another event or its interpretation. If we take DNA sequence data as an ex-
ample set of observations for discussion, empirical studies in no way match this
description. Empirical sequence observations are not randomly drawn from the
genome, one at a time. Almost all phylogenetic analyses of sequence data draw
their observations from a restricted segment of the genome (a locus or loci) de-
fined by a common metabolic purpose (e.g. cytochrome oxidases) and adjacency
on a chromosome. Furthermore, sequences are typically identified in a specific
region or locus and all nucleotides between two biochemically defined positions
(often primers) determined. These are not random samples of the genome in
any way, but are observations from a highly localized, functionally related re-
gion. Multi-locus studies certainly improve on this, but even large collections of
loci provided by EST analysis (e.g. Dunn et al., 2008, Hejnöl et al., 2009) are
limited to the relatively small fraction of the genome (10−3 or less, if 10−1 of
the transcriptome) that are expressed as proteins.

A second difficulty with the independence assumption is found in all com-
parative data. Even when entire genomes are sampled, these sequences have
been in the same historical “bottle” so to speak, for their entire history. We are
forced by necessity to treat comparative observations of anatomy and sequence
as if they were independent, but their shared history shows this operational
assumption to be false.

A third problem with the independence assumption is derived from the
length-variable nature of many loci used in molecular systematics studies. The
“observations” used in systematic analyses are often aligned positions. These
are constructed from raw observation and are, in fact, highly inferential objects.
When sequences of an organism are determined, it is without reference to se-
quences in other organisms. The raw sequences undergo an analytical process
to determine which nucleotide sequence elements in one organism correspond to
those in another. Alignment and optimization of length-variable sequences infer
sequence correspondences via the optimization of a function based on param-
eters for the transformations between sequences (e.g. transition, transversions,
insertion, and deletions) and an optimality criterion (e.g. Sum-of-Pairs distance,
Sect. 8.5). The correspondences between any given pair of sequence elements is

3Wald also applied his statistical acumen in the British Air Ministry during the Second
World War urging the counter-intuitive path of armoring locations on bombers that did not
have bullet holes. This was because the damage was only found on bombers that came back,
not those that suffered fatal damage and left no record—an extreme case of survivor bias.



276 Comparison of Optimality Criteria

highly dependent on those elements adjacent to them and in the remainder of
the sequences. Hence, comparative sequence data are highly interdependent and
obviously do not satisfy the definition of independence.

The identical distribution assumption likewise presents difficulties. Most
analyses of consistency assume a single evolutionary stochastic model for se-
quence change. This may include variable rates among the aligned positions (if
such exist) and tree edges, but a unitary model is assumed. Even within a sin-
gle locus, there are well-described varying dynamics due to the metabolic role
various components of products of the locus play. Obvious examples include the
“stem” and “loop” regions of structural RNAs and transmembrane regions of
cytochrome oxidases. More complex models can, of course, be constructed, but
this entails the problems associated with estimating additional parameters with
limited data.

The final assumption concerns limit behavior as the input data increase
without bound. The data presented by biological problems are finite, and in
many cases, relatively small. If a stochastic model is to be applied to a single
locus (much less to a subregion), sequence data sizes will be limited to hundreds
to low thousands of base-pairs. It is unclear if these sample sizes are sufficient
to ensure asymptotic behavior. An entire transcriptome might constitute 104

loci, but it would be difficult to justify a single stochastic model for such a
set of metabolically diverse genomic components. Entire genomes vary from
thousands of base-pairs in viruses to billions in vertebrates, setting a hard limit
on sample size, and as with transcriptome analysis, a single model is unlikely
to be satisfactory.

The assumption violations discussed above do not impede the use of sta-
tistical methods as optimality criteria for the relative ranking of hypotheses,
but they do bring into question the application of consistency of estimators in
real-world systematic analysis.

Distances

As mentioned earlier (Chapter 9), one of the more vexing aspects of distance
analysis is negative branches. These appear in analysis using a variety of branch-
length estimation procedures including least-squares (Fitch and Margoliash,
1967), greatest-lower-bound (Farris, 1972), and Neighbor-Joining (Saitou and
Nei, 1987). The analytical meaning of such edges with respect to the methods is
clear—the reconstruction assumptions are violated. Biologically, of course, they
are meaningless. They also have clear implications for the behavior of these edge
lengths as estimators of amount of evolution. Since there can be no such thing
as “negative” evolution, the minimum value for any branch length must be zero.
These estimators, then, must be inconsistent.

The tree topology itself, nonetheless, could still be consistently estimated
through minimization of the sum of these branch lengths. Gascuel et al. (2001)
examined this issue and showed that for the most “reliable” method of branch
length estimation, generalized-least-squares, as well as for the widely used
weighted-least-squares, Minimum Evolution (ME) tree reconstruction was not
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Figure 13.1: The example of Huson and Steel (2004) showing the underlying
data (left) perfectly compatible with the tree 12|34, the distance matrix derived
from the data (center), and the perfectly additive tree 14|23 (right).

generally consistent (even under a variety of methods employed to avoid negative
branches).

Huson and Steel (2004) examined more general conditions and found that
there were cases where the underlying character data were homoplasy-free on
one tree, but when transformed into (uncorrected) distances were still perfectly
treelike and clocklike, yet on a different tree. The distances are compatible, ad-
ditive, and entirely misleading (Fig. 13.1). This is a mathematical instantiation
of the problems presented by plesiomorphic and autapomorphic characters that
Hennig described.

In addition to this result, Huson and Steel (2004) show a similar result using
stochastic models, where the inconsistent result would be unsuspected because
the distances appear perfectly tree like. This effect can also occur when distances
are transformed by an incorrect model. In a similar vein, Steel (2009) showed
that distance-based reconstruction can be inconsistent when rate variation is
modeled by the gamma distribution, but the shape parameter unknown.

Parsimony

Felsenstein (1978) showed that parsimony (under a specific 2-state model) was
inconsistent in cases where there was a short central edge connected to two long
and two short pendant edges (Fig. 13.2, p1 = p3 and p2 = p4 = p5). Under these
conditions, the random match similarity of the terminals with long branches
(p1 and p3) overwhelmed the parsimony signal of the short central branch (p5).
Most of the conditions under which parsimony has been shown to be inconsistent
center on this phenomenon.

Penny et al. (1991) generalized Felsenstein’s four-taxon case to arbitrary edge
probabilities. With ωi = (1 − 2pi) of Fig. 13.2, parsimony will be consistent if
and only if

ω5 < min
(

ω1ω2 + ω3ω4

ω1ω3 + ω2ω4
,
ω1ω2 + ω3ω4

ω1ω4 + ω2ω3

)
(13.3)

These conditions will always be met if change is clocklike and also apply to
distance methods.

A more general case, unlimited in number of states or taxa, was analyzed
by Steel (2000). Under the Neyman (1971) model, Steel proved that when over-
all transformation rates are low and fairly similar among branches, parsimony
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Figure 13.2: The example of Penny et al. (1991) with terminal taxa t1···4 and
probabilities of change along edges p1···5.

would be consistent. More precisely, for edge probabilities pi (over the entire
edge as in Felsenstein, 1978 not instantaneous) on a tree T = (V,E), two re-
lations must hold (Eq. 13.5) as the sufficient condition for parsimony to be
consistent.

for
psum =

∑
∀e∈E pe

pmin = min∀e∈E pe (13.4)

parsimony is statistically consistent if:

psum < 1

pmin ≥ p2
sum

1−psum
(13.5)

Equation 13.5 suggests that as a tree becomes larger, parsimony will have an in-
creasingly difficult time maintaining consistency (with mean μt = 0.1, the limit
would be about 12 taxa for binary data and 22 for 4-state). However, Steel and
Penny (2004) have shown that if the (non-additive) state set (r) is sufficiently
large (r ≥ 4nk, for n taxa and k characters), the parsimony and maximum av-
erage likelihood tree are identical, hence parsimony would be consistent.

Lastly, several model-based “corrected” forms of parsimony (Steel et al.,
1993; Penny et al., 1996) have been shown to be consistent. Of course, the
generating model of the sequences and tree must be the same as that used in
the correction.

Likelihood

In discussing the consistency of maximum likelihood tree reconstruction, it is
important to keep clear the distinctions among the various flavors of likelihood
that have been applied to systematic problems (Chapter 11). The strengths and
weaknesses of likelihood methods stem from the model upon which the analysis
is based. A rigid requirement for likelihood methods to be consistent is that the
model used for reconstruction is the same as that which generated the tree in the
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first place. In general, likelihood will be inconsistent otherwise. This could be as
simple a case as where a single incorrect model is chosen, or where the reconstruc-
tion assumes a single model, and the “true” scenario was based on two—even
if they were generated by the same tree (Chang, 1996). To ensure consistency,
the likelihood model must accurately depict the reality of historical change. This
model must be correct for all the lineages/edges (ancestral as well as extant) over
the entire time and environmental conditions suffered by the taxa since their root
origin. Of course, as with all historical phenomena, this information is unavail-
able, hence consistency can never be assured for any empirical analysis. Simu-
lation offers some means of examining performance in light of “true” trees, but
simulations are human constructs, limited, as nature is not, by our imagination.

Maximum Average Likelihood (MAL)—As mentioned above, Felsenstein
(1978) cited Wald (1949) in his assertion that MAL was consistent. One of
the key points in Wald’s proof is that the parameters to be estimated must
be finite, not growing with the data size. As long as unique parameters are not
estimated for each observation (e.g. an aligned nucleotide sequence position),
this condition should hold. Several likelihood models violate this condition (e.g.
No-Common-Mechanism or NCM, Tuffley and Steel, 1997), hence, do not meet
the condition Wald described (although some NCM methods are still consistent
[Steel, 2011b]).

Using a common mechanism model as described by Felsenstein (1981), Yang
(1994a) proved that MAL was consistent in the estimation of tree topology. The
estimation of edge parameters and other aspects of the full model was shown
also to be consistently estimated under MAL by Chang (1996).

Steel (2011b) investigated the properties of several NCM models showing
that subtle differences between models and reconstruction methods resulted in
variants which were (NCM-N4

4 using linear invariants, NCM with a molecu-
lar clock, NCM-N∞) and were not (NCM-Nr<1, other than NCM-N4 earlier)
consistent.

Most-Parsimonious Likelihood (MPL—also referred to as ancestral maxi-
mum likelihood)—In this form of likelihood, the node assignments are made
based on the single most likely state as opposed to the averaging of node assign-
ments over all possible states (Sect. 11.3.1; Barry and Hartigan, 1987). Mossel
et al. (2009) show that MPL has a “shrinkage” problem with respect to short
edges on a tree, implying that MPL is not statistically consistent. This result
is supported by the proof (Steel and Penny, 2004) that when taxon sampling
densities are high enough, the MPL result is the parsimony result.

Evolutionary Path Likelihood (EPL)—The Farris (1973a) form of likelihood
specifies not only the tree topology and node state reconstructions, but each
intermediate conditions along each edge (Sect. 11.3.1). Given that Farris proved
that the EPL tree is precisely the parsimony tree under very general evolution-
ary condition (e.g. no rate restrictions), EPL would have all the strengths and
weaknesses of parsimony, including inconsistency in the circumstances described
above.

4NCM-Ni signifies the No-Common-Mechanism model with i character states.
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Maximum Integrated Likelihood (MIL)—This form of likelihood can be em-
ployed when prior distributions on model and edge parameters are known
(Sect. 11.2.1). In essence, MIL is a Bayesian analysis where the prior distri-
bution on trees is uniform. As a special case of the general Bayesian framework,
MIL has been shown to be consistent, given, of course, appropriate priors and
model (Steel, 2011a).

Bayesian Posterior Probability

Given the derivation of Bayesian methods in likelihood approaches, it was ini-
tially thought that the approach of maximizing posterior probability of trees5

would be statistically consistent. This was thrown into doubt in the situation
where data were evenly supportive of multiple topologies yet a specific tree was
favored among those that should have been equal (Yang and Rannala, 2005;
Lewis et al., 2005; Kolaczkowski and Thornton, 2009). This “Star Paradox”
was thought to suffer from long-branch-attraction type problems, rendering the
method inconsistent. The method was later proven to be asymptotically consis-
tent by Steel (2011a), and the previous instances likely due to finite data.

Does Consistency Matter?

As mentioned above, Felsenstein (1978) first urged the importance of statistical
consistency in systematic analysis. Certainly, the idea of a procedure that is
guaranteed to converge to the “true” result would seem to be desirable, and
one that did not would be undesirable. This sentiment has been expressed by
many statisticians (Fisher, 1950; Neyman, 1952; Kendall and Stuart, 1973) as
the only reasonable course for estimators. Others, however, did not feel this way.
Edwards (1972) stated that asymptotic behavior was irrelevant, and that the
only operation that mattered was the relative ranking of hypotheses.

Traditionally, researchers who favor ML have emphasized the centrality of
consistency, while those more interested in parsimony have downplayed its im-
portance. Either way, the relevance of consistency in real world analysis is un-
clear for two reasons. The first concerns the requirement of a match between
generating (“true”) model and that used during ML reconstruction. The second
reason is finite data size.

Models used currently in systematic ML analysis are clearly simplifications
of the myriad forces molding the evolution of creatures in time and space. This
simplification makes analysis tractable, and is even desirable to a certain ex-
tent, since any tree can be made to match the data perfectly by sufficient ma-
nipulation of a large enough collection of parameters (the solution becomes
non-identifiable, violating one of Wald’s assumptions; Steel et al., 1994; Yang
et al., 1995). Nonetheless, this invalidates the applicability of proven consistency
results to any empirical analysis. A stark example of this invalidation is the
use of stochastic models that ignore insertions and deletions in length-variable

5As opposed to that of clades.
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sequences. An analysis that treats gaps as missing data of necessity does not
model the “real” process completely. In many cases, very slight differences in
models and analytical assumptions can have large effects. As stated by Steel
(2011b) when discussing varieties of NCM models,

This brings into question the robustness of any consistency results to
even slight model misspecification and suggests that other statistical
considerations (e.g. bias, efficiency) may override consistency issues.

A second issue, as discussed above, is the finite data available to research
(e.g. even whole genomes are finite, if large). Asymptotic behavior is irrelevant
if available data are insufficient to show it, and finite-sample analysis need not
reflect large-sample behavior (Kim, 1998). An example of this may be the “Star
Paradox” (above) of Bayesian methods identified in finite cases (Kolaczkowski
and Thornton, 2009) but shown not to exist asymptotically (Steel, 2011a).

The real-world inapplicability of consistency proofs does not impugn like-
lihood methods in any way; it simply signifies that consistency is not a basis
to favor likelihood over other methods (e.g. parsimony). Likelihood remains a
competitive and defensible optimality criterion for use in hypothesis testing. As
Sober (1988) wrote,

Likelihood describes which hypotheses are best supported by the
evidence. When the evidence is misleading, the best-supported hy-
pothesis will be a false one. A rule of inference that correctly conveys
the evidential meaning of observations ought to point to a falsehood
when the evidence is misleading. When it does so, it correctly cap-
tures what the evidence is saying. (italics original)

13.3.3 Efficiency

Informally, efficiency is the amount of data required by an estimator to produce
a value very close to the actual parameter. A more efficient estimator will require
fewer data to generate a specific quality of result than one that is less efficient.
Likelihood methods are often asymptotically efficient (Yang, 1997), meaning
that they will produce good estimates, given enough data.

In an environment of finite data sets, efficiency can be an important issue. An
inefficient method may return inferior results on a finite data set when asymp-
totically it would be superior. Gaut and Lewis (1995) and Yang (1996, 1997)
present cases where likelihood reconstruction with the correct model (under
simulation) is out-performed by both likelihood with “incorrect” models and
parsimony.

An extreme case of this has been shown to occur by Steel and Penny (2000),
where parsimony requires only 16 residues to reconstruct a tree correctly with
0.99 probability, whereas maximum average likelihood could require 1010. This
is not to say that parsimony methods are uniformly or generally more efficient
than likelihood or Bayesian methods. However, efficiency is clearly an important
factor to consider in real-world analysis of finite data.
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13.3.4 Robustness

Robustness refers to the performance of an estimator when faced with violations
of its assumptions (distribution, independence, etc.). In the context of system-
atic analysis, the main issue is model violation. Given that phylogeny estimation
exists in an environment of finite data and unknown (and likely complex) gen-
erating models, methods overly sensitive to violations of their assumptions will
be unsatisfying tools when faced with real data.

Steel (2011b) examined the conditions for consistency among a set of NCM
models and found that relatively slight alterations of conditions had marked
effects on results (whether the model was consistent or not). Yang (1997) demon-
strated similar effects for more typical common-mechanism models, discon-
certingly finding “wrong” models outperforming the right. As classified by
Sanderson and Kim (2000), likelihood (and Bayesian) methods are paramet-
ric, in that they rely on stochastic models based on a specific set of parameters.
They contrast this with non-parametric phylogeny reconstruction methods such
as parsimony. Parametric methods will always have more power, but be inti-
mately connected to the assumptions of their models and will be perturbed
more easily than non-parametric methods that operate well over a broad area
of distribution and parameter space. An example of this fragility is shown in
simulations by Kolaczkowski and Thornton (2004, 2009) (and potentially real
data by Pickett et al., 2005), where parsimony performed significantly better
than likelihood under conditions of heterotachy over edges (Fig. 13.3).

Sanderson and Kim (2000) state that parsimony is a robust estimation tech-
nique well suited to situations where “true” models are unknown. They also dis-
cuss the computational burden of likelihood estimation being so much greater
than that for parsimony (in general, NCM, of course, is an exception with low
complexity of calculation), and that parsimony tree space will always be better
explored than that of likelihood. Hence, although given enough time, likelihood
may perform better, time, like data availability, is finite.

As mentioned earlier, transcriptome data sets present on the order of 104

expressed loci, each with its own metabolic role. The task of constructing mod-
els able to deal with the varying evolutionary dynamics and history of such a
collection of sources of information, while avoiding non-identifiability, is daunt-
ing. Most likely, the simple models we use today will be inadequately robust
to deal with such genome scale diversity. It may be that only non-parametric
systematic analysis will be sufficiently robust to handle such problems.

13.4 Performance

An additional, and perhaps utilitarian, means of comparing methods is their
performance on real and simulated data sets. Unfortunately, when dealing with
actual problems and data, we cannot know the true (in the historical sense)
patterns and processes that resulted in the diversity we now see. On the other
hand, analysis based on real-world data is subject to all the effects and defects
our methods seek to understand. This would include (but is not limited to)
evolutionary processes varying over time, space, and taxon, and finite,
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Figure 13.3: Results of Kolaczkowski and Thornton (2004) showing the superior
performance of parsimony over likelihood and Bayesian methods under a condi-
tion of heterotachy. ML = maximum likelihood, BMCMC = Bayesian MCMC,
and MP = parsimony. See Plate 13.3 for the color Figure.

incomplete data due to inherent limitations on data quantity, extinction, and
technical difficulties. Simulated data, on the other hand, do not share these
problems. Conclusions based on simulations, however, are bound ineluctably to
the conscious and unconscious assumptions, opinions, views, and experiences of
their creators—but they are known6. Replicate analyses can be performed, an-
cestors observed, extinction and sampling precisely determined. Empirical data
are the real thing, but they are uncontrolled. Simulated data are controllable,
but synthetic.

Due to this distinction, performance comparisons of phylogenetic methods
can argue at cross purposes, and several important factors are only amenable
to one or the other form of examination.

13.4.1 Long-Branch Attraction

Since Felsenstein’s initial case, Long-Branch Attraction (LBA) has been promi-
nent in comparison of methods, most usually in criticisms of parsimony. LBA
is an expression of a lack of statistical consistency in the asymptotic case. As

6A biological “simulation” was undertaken by Hillis et al. (1992) with mutagenized T7
bacteriophage. Unfortunately (or not), all methods performed perfectly, including the consen-
sually pathological UPGMA.
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has been shown, distance and common-mechanism average likelihood methods
can also be inconsistent in fairly simple cases of either incorrect or insufficient
stochastic models (Chang, 1996).

Performance of methods in real-world situations will always be based on
finite data, and many studies have addressed this reality via simulation. Typ-
ically, a small set of sequences (4–10 or so, compact enough to be analyzed
easily) are evolved via some model under a variety of branch length scenarios
(e.g. Swofford et al., 2001) and then subjected to analysis via a set of methods.
The result is compared to the “true” history of the simulation.

Simulations have repeatedly shown LBA for parsimony (e.g. Swofford et al.,
2001; Pol and Siddall, 2001), but this phenomenon is not limited to parsimony.
Pol and Siddall (2001) showed in a 10-taxon case with 1kb of simulated, aligned
sequence data that likelihood was prone to this problem as well (Fig. 13.4).
This result holds regardless of whether likelihood analysis is performed using
an incorrect or correct (generating) model. Additionally, likelihood also suffers
from a Long-Branch Repulsion (a true long branch is not recovered—named the
“Farris Zone,” Siddall, 1998, or the Anti or Inverse Felsenstein Zone) not found
in parsimony analyses. Parsimony outperforms likelihood in this context as the
probability of change on the short branches approaches zero and the sequences
on the longer edges approach randomization. With k sites, the probability of
parsimony reconstructing the tree correctly approaches 1 − ( 3

4 )k while that for
likelihood will be no more than 2

3 (Steel and Penny, 2000).
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Figure 13.4: Figure of Pol and Siddall (2001) showing the failure of both par-
simony and likelihood to identify the correct tree as branches show increasing
differences in length.
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As mentioned above, a similar case of parsimony outperforming both likeli-
hood and Bayesian methods with simulated varying rates of change is shown by
Kolaczkowski and Thornton (2004). This was observed with even a small frac-
tion of characters suffering heterotachy. Kolaczkowski and Thornton (2009) later
showed that LBA could also occur in Bayesian analyses under similar conditions.
Simulations have shown that parsimony can also be hindered by heterotachy,
but not as severely as statistical methods (Philippe et al., 2005).

So what are we to do about LBA? All methods can, under some conditions,
exhibit this behavior. However, the only way to recognize the phenomenon is by
knowing the actual history of a group. Yet, we cannot know this history for real
data. What if, as the data would suggest, a “long” branch merely denoted well-
supported sister taxa? If, for example, a pair of Panorpa species were included
in an analysis of insect orders (Wheeler et al., 2001), the edge joining these
taxa would show a great deal of change—a long branch. Should we doubt such
a grouping?

13.4.2 Congruence

In my mind, one of the most powerful tests of any phylogenetic hypothesis is
congruence. Whether that congruence is among characters of a single analysis
or between multiple data partitions, we expect that alternate sources of infor-
mation should agree about phylogenetic conclusions (assuming a single history,
horizontal and reticulate evolution aside). In this way, data and methods are
predictive (or more precisely retrodictive), in that they anticipate new obser-
vations. Comparison with “known” phylogenies is really an extreme form of
congruence where the comparison is between a result and the previous body of
evidence supporting a phylogeny.

As far as I am aware, there are very few explicit comparisons of optimality
criteria based on the congruence behavior of real data (Wheeler, 2006). This may
be due to the dearth of methods available for the statistical analysis of qualita-
tive data in the past, but with the implementations of Neyman (1971) and NCM
(Tuffley and Steel, 1997), this problem would seem to have been ameliorated.
Given the ability to measure congruence irrespective of the true relationships,
this procedure should be a powerful measure of the behavior of methods7.

13.5 Convergence

As discussed above and in previous chapters, several instances have been shown
to lead to convergent results between parsimony and other methods, most com-
monly likelihood. Farris (1973a) with EPL was the first to show that likelihood
(that version at least) and parsimony would rank topologies in exactly the same
way when intermediate ancestors were reconstructed. Goldman (1990) showed
this convergence when change probabilities were invariant over edges. Later, the

7As long as the methods are label invariant, as opposed to something akin to alphabetical
order, which would be perfectly—if trivially—congruent.
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common edge rate parameter was relaxed and NCM provided a third general
case of convergence in optimality among methods. To this has been added the
case where the number of character states is large (Steel and Penny, 2004), and,
for MPL, when taxon sampling densities are sufficiently great.

One of the implications of method convergence is that potentially we can
identify and evaluate their underlying assumptions. Statements such as “since
parsimony is statistically consistent in scenario A, parsimony assumes the con-
ditions of A,” is clearly misguided (Sober, 2004, 2005). As Sober points out, the
best that can be done is to say that “since parsimony and likelihood converge
in situation A, those conditions not assumed by likelihood in that scenario are
also not assumed by parsimony.” This reasoning serves to rule out assumptions,
but is unable to rule them in, or to identify necessary and sufficient conditions
for desirable behavior.

It is difficult to know if continued mathematical analysis of methods will
find increasingly general cases where methods converge. It is possible that more
complex and realistic models (in the vein of NCM) will identify new areas where
methods choose the same optimal tree hypothesis, or they may dissolve into
non-identifiability. Whether there is some shore of unification or not, areas of
intersection among methods reveal a great deal about them, their strengths and
weaknesses, and thus allow us to evaluate empirical results with greater clarity
and precision.

13.6 Can We Argue Optimality Criteria?

How are we to choose an optimality criterion? Neither epistemology nor asymp-
totic consistency offer unfailing guidance. All optimality criteria can participate
in hypothetico-deductive hypothesis testing, and all methods are subject to
inconsistent behavior asymptotically. The empirical reality of finite character
data and imperfect taxon samples reduces the impact of stochastically ideal
asymptotic behaviors, leaving us to assay performance in absence of known or
repeatable phenomena.

Another confounding effect is the computational complexity of systematic
problems. Optimality-based tree reconstruction is, in general, an NP–hard prob-
lem. As such, we are not likely ever to have a (if there is only one) known, guar-
anteed optimal solution to tree reconstruction problems. Given that we cannot,
for non-trivial problems, determine optimal solutions, and these would be re-
quired to satisfy at least the strong form of statistical consistency, it is unclear
if consistency could ever apply to an empirical case.

One choice might be the syncretistic escape of employing multiple methods.
Of course, if there is complete agreement, there is no issue. When optimality
criteria disagree, however, which is the most common situation (at least for
larger data sets), what to do? Alternate optimality criteria have different moti-
vations and epistemological underpinnings (Giribet et al., 2002). An average or
consensus of such varied objects is a difficult path, especially since the criteria
are supporting alternate hypotheses (or the problem wouldn’t exist).
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Optimality criteria are analytical assumptions used to interpret historically
unique events. As such, they cannot be tested empirically for accuracy in the
sense of propinquity to truth. We simply cannot know this. Methods can be
tested for precision in the guise of congruence, and this may help distinguish
among criteria in a useful and intuitive manner. However, at the core, optimality
criteria are assumptions that require support and justification when employed.
Alternate assumptions lead to alternate results. Only by justifying our assump-
tions can we support our conclusions.

13.7 Exercises

1. Under what conditions would distance analysis be appropriate to analyze
underlying character data?

2. Could Popper’s ideas of support, corroboration, and severity of test be
defined in terms other than Fisher’s likelihood?

3. Would it be reasonable to limit the phylogenetic methods employed to
those cases or those conditions, where methods converge?

4. Consider a data set comprised of anatomical data for a group of taxa
composed of both living and extinct taxa, and complete genomic sequences
for the extant taxa. How do the strengths and weaknesses of different
methods apply to this case? Which optimality criterion is best suited to
analyze these data and why?
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Trees



Chapter 14

Tree Searching

As is well-known (Foulds and Graham, 1982; Day, 1987; Roch, 2006), the search
for “best” trees is an NP–hard problem. The number of possible trees is exponen-
tially large (Eq. 2.1), hence, other than for trivial data sets, systematic analysis
requires the use of heuristic tree search procedures. The discussion here is, for
the most part, general to optimality criteria. Any objective criterion can be ap-
plied to a given tree to yield a cost or optimality value. This chapter is limited
to the various exact and heuristic procedures used to explore tree space and
identify “best” solutions.

A corollary of the exponential number of possible trees is that the set of op-
timal trees can be exponentially large as well. A search procedure must not only
seek to find an optimal solution, but the complete (or at least representative)
set of optimal solutions.

14.1 Exact Solutions

Although not generally employed, exact solution techniques can be comfort-
ing and, at times, useful. Exact solutions can be identified when leaf numbers
are small, and the understanding of exact techniques can inform the design of
heuristic procedures and the inference of their effectiveness. Two exact solu-
tion procedures are in common use: simple enumeration and the more efficient
Branch-and-Bound.

14.1.1 Explicit Enumeration

Explicit enumeration is a brute force method of simply evaluating all possible tree
topologies for a given set of taxa. This operation becomes tiresome quickly and
is rarely employed for anything other than analytical purposes (Algs. 14.1 and
14.2, Fig. 14.1). This is due to the combinatorially large number of trees. Näıvely

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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Algorithm 14.1: ExplicitEnumeration
Data: Input data of leaf taxa (L0, L1, . . . , Ln−1) and observations (m)

for each leaf taxon
Data: Element character cost matrix σ of pairwise distances between all

observations (as in Chapter 8)
Result: Set of BestTrees, |BestTrees| ≥ 1, trees of optimal cost
Initial tree of three leaves
T ← (L0(L1, L2));
MinCost ← ∞;
Initial tree cost set to maximum
BestTrees ← ∅;
Set of optimal trees is initially empty
RecurseAllTrees(T,L,m, σ, 3) [Alg. 14.2];
return BestTrees

Algorithm 14.2: RecurseAllTrees
Data: Tree T = (V,E)
Data: L of Algorithm 14.1
Data: m of Algorithm 14.1
Data: σ of Algorithm 14.1
Data: i
Add each leaf taxon in turn
while i ≤ |L| do

Each edge on tree of i leaves
for j = 0 to 2i − 4 do

Add leaf taxon i to edge j
T ′ ← maketree(T, j);
All leaf taxa not yet in tree
if i < |L| then

Add leaf taxon i to edge j
RecurseAllTrees(T ′, L, m, σ, i + 1)

else
Determine cost of tree, lower is better
T ′

cost ← getcost(T ′, L, m, σ);
if T ′

cost < MinCost then
MinCost ← T ′

cost;
BestTrees ← {T ′};

else if T ′
cost = MinCost then

BestTrees ← BestTrees ∪ {T ′};
end

end
end

end
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Figure 14.1: Explicit enumeration and evaluation of all trees.

plodding through space evaluating every possibility will be tractable only for a
relatively small number of taxa (usually topping out at 15 or so taxa).

In the algorithmic descriptions of this chapter, the cost function of a tree,
getcost(), is left undefined in order to be general with respect to optimality
criterion.

14.1.2 Implicit Enumeration—Branch-and-Bound

The Branch-and-Bound algorithm (Algs. 14.3 and 14.4; Fig. 14.2) (Land and Doig,
1960; Hendy and Penny, 1982) seeks to reduce the number of trees examined by
taking advantage of the fact that partial trees can only become more costly with
the addition of more leaf taxa (assuming distances are metric and all leaves
unique). If a partial tree cost is already equal to or greater than a complete tree,
that entire line of trees generated by adding more taxa to that subtree, must be
more costly than the current best tree known (the bound) and can be excluded
from further examination. In general, the method can reduce the number of ex-
plicitly enumerated trees greatly (hence the term “implicit enumeration”), but
not with a guaranteed time performance. Individual data sets may have signifi-
cant or marginal reductions in numbers of trees examined. This is due to the fact
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Algorithm 14.3: Branch-and-Bound Tree Search
Data: Input data of unique leaf taxa (L0, L1, . . . , Ln − 1) and

observations (m) for each leaf taxon
Data: Element character cost matrix σ of pairwise distances between all

observations
Data: Initial cost of a complete tree as Bound
Result: Set of BestTrees, |BestTrees| ≥ 1 trees, of optimal cost
Initial tree of three leaves
T ← (L0(L1, L2));
MinCost ← ∞;
Initial tree cost set to maximum
Set of optimal trees is initially empty
BestTrees ← ∅;
BoundRecurse(T,L,m, σ, 3, Bound) [Alg. 14.4];
return BestTrees

Algorithm 14.4: BoundRecurse
Data: Tree T = (V,E) of Algorithm 14.3
Data: L of Algorithm 14.3
Data: m of Algorithm 14.3
Data: σ of Algorithm 14.3
Data: Bound of Algorithm 14.3
Add each leaf taxon in turn
while i ≤ |L| do

Each edge on tree of i leaves
for j = 0 to 2i − 4 do

Add leaf taxon i to edge j
T ′ ← maketree(T, j);
Determine cost of partial or complete tree
T ′

cost ← getcost(T ′, L,m, σ);
All leaf taxa not yet in tree
if i < |L| then

Cost of partial tree less than current best tree
if T ′

cost < Bound then
Go on with search
BoundRecurse(T ′, L, m, σ, i + 1, Bound);

end
else

if T ′
cost < Bound then
Improve Bound
Bound ← T ′

cost;
BestTrees ← {T ′};

else if T ′
cost = Bound then

BestTrees ← BestTrees ∪ {T ′};
end

end
end

end
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Figure 14.2: Branch-and-Bound implicit enumeration and evaluation of all trees.
In this example, the initial bound from a full tree was able to exclude 77 of 105
possible trees.

that for Branch-and-Bound techniques to yield large time improvements, a large
fraction of subtrees must have high cost, and that cannot be ensured. Further-
more, in the worst case, more trees (partial as well as complete) can be evaluated
than for an explicit search, but that is a low probability event.

14.2 Heuristic Solutions

In absence of exact and complete solutions, we must rely on heuristic procedures.
These methods explore solution space, searching for (but not guaranteeing)
exact solutions. Various methods have been designed with different objectives
and situations in mind. No one approach is likely to perform best (in time or
quality of solution) for all data sets or all problems. For this reason, systematists
use combinations of heuristic procedures when attacking real-world problems.

14.2.1 Local versus Global Optima

The central challenge faced by approximate solutions is the identification of
global versus local solutions. If we use the metaphor of a landscape to represent
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Figure 14.3: Local and global optima represented as peaks in a landscape.

the optimization challenge faced by tree searching, there are peaks and val-
leys of tree costs (Fig. 14.3). There can be great relief on the landscape in-
volving lesser and greater peaks with one or more highest peaks representing
areas (i.e. groups of trees) of optimal cost. Separating high points in the space
are valleys of higher cost (lower optimality). The trick of heuristic solutions is
avoiding being trapped in local, lesser peaks and navigating a path to global
optima.

The tried and true techniques of Wagner addition and Branch-Swapping
combined in trajectory search are effective at exploring a neighborhood of so-
lutions and finding local optima. Other methods, involving randomization, per-
turbation, recombination, and suboptimal trajectories, have been designed to
escape local optima while striving for global solutions.
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14.3 Trajectory Search

A trajectory (local) search for an optimal solution comprises two parts. The first
step is the identification of a rough solution within a specific neighborhood of
potential solutions. The second step is the refinement of the initial solution to
identify the “best” cost solution within the neighborhood. Until the advent of
the Ratchet (Nixon, 1999), phylogenetic reconstruction in systematics consisted
solely of one or more trajectory searches involving the construction of an initial
solution (usually via the Wagner algorithm, below) and tree refinement via
branch-swapping.

14.3.1 Wagner Algorithm

The Wagner algorithm is a procedure to add leaf taxa sequentially to a growing
tree via a “greedy” (always choosing the immediately best option) procedure
(Farris, 1970). The method is named after Wagner (1961) who used a character-
based ground-plan analysis in his studies of fern relationships.

J. Steven Farris As employed today, the Wagner algorithm (Alg. 14.5; Fig. 14.4) begins with
three leaf taxa and adds each remaining leaf in turn to the existing tree by

Algorithm 14.5: WagnerBuild
Data: Input data of leaf taxa (L0, L1, . . . , Ln − 1) and observations (m)

for each leaf taxon
Data: Element character cost matrix σ of pairwise distances between all

observations
Result: Single tree, BestTree of local optimal cost
Initial tree of three leaves
BestTree ← (L0(L1, L2)) Add each leaf taxon in turn
for i = 3 to |L| − 1 do

Initial tree cost reset to maximum;
MinCost ← ∞;
T ← BestTree;
Each edge on tree of i leaves
for j = 0 to 2i − 4 do

Add leaf taxon i to edge j
T ′ ← maketree(T, j);
Determine cost of tree, lower = better
T ′

cost ← getcost(T ′, L, m, σ);
if T ′

cost < MinCost then
MinCost ← T ′

cost;
BestTree ← T ′;

end
end

end
return BestTree
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Figure 14.4: Initial tree construction procedure via the Wagner algorithm
(Farris, 1970).

creating a new vertex and edge to the new leaf. Since there are 2n − 3 edges for
a tree with n leaves, the number of operations required to build a complete tree
is O(n2).

Variations

The basic Wagner algorithm (Alg. 14.5) builds a single tree, adding taxa in
arbitrary order (but optimal position). There are two variations that are of-
ten added to the basic algorithm. The first is in the order of taxon addition
(“addition sequence”). The taxa may be added in random order (see below),
or in attempts to minimize the distance between the existing partial tree and
the incoming leaf taxon. Such a leaf might be chosen in an attempt to min-
imize the overall solution cost. An additional loop could be added, between
the i and j loops of Algorithm 14.5, to choose the leaf to be added. This
would add time complexity to the procedure resulting in an O(n3) operation
(Farris, 1970).

A second common variation comes in expanding the BestTree returned to
a set of “best” trees. In this case, trees that were less than or equal to the
current minimum cost would be kept and built upon in later steps. The multiple
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trees might aid in overcoming some of the greediness of the algorithm and find
better solutions. This too would incur time-complexity cost (a constant factor
determined by the number of trees maintained) in keeping multiple builds going
simultaneously, and ensuring only unique trees were produced.

Experience has shown that random addition sequences (RAS; used multiply
with refinement—below) is the most useful Wagner Build procedure. Rather
than trying to generate particularly optimal trees at this stage (with higher
time complexity), the random-order builds offer a useful spread of initial trees
for later refinement procedures in quadratic time.

14.3.2 Branch-Swapping Refinement

The most common form of tree search refinement is known as Branch-Swapping.
This is because the basic procedure removes branches (vertices and their sub-
trees or splits) from trees and adds them back to the remaining subtree edges
(save where the original break took place). There are three flavors of branch-
swapping in common use that are referred to (in order of increasingly large
explored neighborhoods) as Nearest-Neighbor-Interchange (NNI), Subtree-
Pruning and Regrafting (SPR), and Tree-Bisection and Regrafting (TBR).

David Swofford

Michael Steel

These tree manipulations have been present in implementations as far back
as PHYSYS (Mickevich and Farris, 1980) and early versions of PAUP
(Swofford, 1990; and earlier) but were not explicitly documented. The discussion
here is based on the formalism of Semple and Steel (2003).

Nearest-Neighbor-Interchange

Nearest-Neighbor-Interchange (NNI) (Camin and Sokal, 1965; Robinson, 1971)
performs the most limited set of tree rearrangements. If we have a tree (T =
(V,E)) with internal (i.e. non-pendant) edge e = {u, v} and an adjacent edge
e′ = v, v′, NNI is accomplished by first removing e and creating two partitions
(subtrees) of T, then adding a new edge e′′ = {u, v′′} where v′′ is a new vertex
created on an edge incident on v′, {v′′, v′} and contracting all vertices of degree
two (Fig. 14.5; Alg. 14.6). NNI produces 2(n − 3) rearrangements on a given
tree (two per tree partition). Sankoff et al. (1994) expanded the number of
rearrangements in NNI to a fixed number > 2 for each edge deletion in their
“window” approach (the “window” is defined around the original position of the
pruned edge). Since the window is a constant value (they tested out to 8) the
cost of the “window” approach is still linear in size of leaf set, but with a larger
constant factor. Unsurprisingly, with a larger neighborhood, this approach was
more effective than simple NNI.

Subtree Pruning and Regrafting

Subtree Pruning and Regrafting (SPR) expands the number of potential
rearrangements of a given tree by enlarging the number of edges for re-addition
(regrafting) of T0 by T1 (of Alg. 14.6). Instead of restricting the re-addition edges
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above, partitioned tree center, and rearranged trees below.

to those incident on v′, all edges in T0 are available (Fig. 14.6, Alg. 14.7).
With the added target edges, the neighborhood of SPR rearrangement trees is
expanded over that of NNI by a factor of 2n − 7 for a total of 2(n − 3)(2n − 7)
(Allen and Steel, 2001).

Tree-Bisection and Regrafting

Tree-Bisection and Regrafting (TBR; Swofford, 1990) or “Branch-Breaking”
Farris, 1988) further enlarges the rearrangement neighborhood by allowing new
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Algorithm 14.6: NearestNeighborInterchange
Data: Input tree T = (V,E) of |L| > 3 leaf (L ⊂ V) taxa
Result: Set of Nearest-Neighbor-Interchange trees (NNITrees)
NNITrees ← ∅;
Each edge in turn
for i = 0 to |L| − 3 do

Internal edge ei = {u, v};
Adjacent edge e′i = {v′, v};
Delete edge and split tree
T0 ← T \ ei; subtree without u
T1 ← T \ ei \ T0; remaining subtree from u
Each edge incident on v′ in T0 other than e′

for ej = {u′, v′} ∈ E0 incident on v′ and ej 	= e′i do
v′′ ← new vertex on ej between u′ and v′;
Reconnect T1 to T0 via edge {u, v′′}
Create new edges
e′′ ← {u, v′′};
e′j ← {u′, v′′};
e′′j ← {v′′, v′};
T ′ ← T0;
NNITrees ← NNITrees ∪ {T ′};

end
end
return NNITrees

edges to be created between all edges in the two tree partitions (Fig. 14.7,
Alg. 14.8). TBR tests the “rerooting” of T1 as it is added to T0 by creating new
nodes on each of the edges of T1 and adding them to each edge in T0. Although
the exact number of tree rearrangements depends on the tree shape, the addi-
tional edge regraft options (2 · |T1| − 3) make the overall operation O(n3).

Enhanced and expanded TBR-type rearrangements are possible with k-
partitions of the original tree instead of the two specified in TBR. These would
expand the neighborhood of rearranged trees but at considerable cost. For k
partitions of the original tree, there would be O(n3(k−1)) rearrangements. This
was implemented in Goloboff (1999b).

The various edge locations available for regrafting between tree partitions
(as referred to in Algs. 14.6 to 14.8) are summarized in Figure 14.8.

14.3.3 Swapping as Distance

The size of the rearrangement neighborhoods defines a metric distance between
trees. These metrics are often used to measure the dissimilarity of trees in
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Algorithm 14.7: SubTreePruningandRegrafting
Data: Input tree T = (V, E) of |L| > 3 leaf (L ⊂ V) taxa
Result: Return set of Sub-Tree Pruning and Regrafting Trees, SPR

neighborhood (SPRTrees)
SPRTrees ← ∅;
Each edge in turn
for i = 0 to 2 · |L| − 4 do

Edge ei = {u, v};
Delete edge and split tree
T0 ← T \ ei; subtree without u
T1 ← T \ ei \ T0; remaining subtree from u
Each edge in T0;
for ej = {u′, v′} ∈ E0 and ej 	= ei do

v′′ ← new vertex on ej between u′ and v′;
Reconnect T1 to T0 via edge {u, v′′}
Create new edges
e′′ ← {u, v′′};
e′j ← {u′, v′′};
e′′j ← {v′′, v′};
T ′ ← T0;
SPRTrees ← SPRTrees ∪ {T ′};

end
end
return SPRTrees

terms of the number and type of rearrangements required to “edit” one tree
into another. Unfortunately, each of NNI (Krivánek, 1986), SPR (Bordewich
and Semple, 2005), and TBR (Allen and Steel, 2001) distances are NP–hard
calculations. There are useful heuristic algorithms (e.g. Bonet et al., 2006;
Goloboff, 2008; Bordewich et al., 2007), but exact minimum distances are likely
to be unknown.

14.3.4 Depth-First versus Breadth-First Searching

As defined above, both SPR and TBR branch-swapping are Depth-First search
procedures. That is, each subtree (defined by a deletion of a particular edge)
is added back to each possible alternate edge before the next edge-defined sub-
tree is examined. Since the addition points cover adding back the subtree at all
distances (in terms of number edges) from its original position, this is termed
Depth-First. An alternative would be to add back subtrees only to edges a
fixed distance (k) from their original location, cycling through all possible sub-
trees before adding each one again to the next further distance. In this way,
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Figure 14.7: Tree-Bisection and Regrafting (TBR) rearrangement. Original tree
above, and rearrangement positions below.

all tree modifications at a fixed distance are examined before moving out to
the next distance (Fig. 14.9). NNI is, in essence, a Breadth-First search limited
to k = 1.

Both approaches, upon completion, will examine the same set of modified
trees, but in a different order. If intermediate improvements are immediately
used as new starting points for continued swapping (abandoning the initial tree,
as opposed to completing all rearrangements of the initial tree), the trajectory
of visited trees can be altered and different heuristic results obtained. For a
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Algorithm 14.8: TreeBisectionandRegrafting
Data: Input tree T = (V, E) of |L| > 3 leaf (L ⊂ V) taxa
Result: Set of Tree Bisection and Regrafting Trees (TBRTrees)
TBRTrees ← ∅;
Each edge in turn
for i = 0 to 2 · |L| − 4 do

Edge ei = {u, v};
Delete edge and split tree T0 ← T \ ei; subtree without u
T1 ← T \ ei \ T0; remaining subtree from u
Each edge in T0;
for ej = {u′, v′} ∈ E0 and ej 	= ei do

v′ ← new vertex between ui and vi of ej ;
Each edge in T1;
for e′′ = {u′′, v′′} ∈ T1 do

Define new ‘root,’ r for T1 (edge to connect to T0)
r ← new vertex between u′′ and v′′;
Add back T1 via edge e′ = {r, v′}
e′ ← {r, v′} in T0;
T ′ ← T0;
TBRTrees ← TBRTrees ∪ {T ′};

end
end

end
return TBRTrees

given depth, breadth-first searches are linear with number of leaves (with con-
stant factor—O(kn)), hence can be very useful for refining large trees, or as a
component in combined search strategies. The “window” approach of Sankoff
et al. (1994) is such an application.

14.4 Randomization

Enrico Fermi
(1901–1954)

The term “Monte Carlo”
optimization based on
randomization techniques
originated with Enrico
Fermi in the Manhattan
Project of WWII.

As mentioned above (Sect. 14.3.1), a useful variation in the basic Wagner algo-
rithm is to add leaf taxa to the growing tree in random order (a “Monte Carlo”
type randomization technique). The idea is that the various randomizations place
the initial solutions in different areas of the optimality landscape (Fig. 14.3), al-
lowing the refinement tree rearrangements to have a better chance of successfully
hill climbing to an optimal solution. The coupling of such a “random addition se-
quence” with TBR refinement has been termed “RAS+TBR” and, with suitable
numbers of repetitions, was the dominant technique of phylogenetic tree searching
until 1999. Increasing the number of RAS+TBR replicates would be performed
until stability of result or exhaustion intervened. This approach was effective for
the size of the data sets then current, but was insufficient for the large molecular
data sets even then beginning to appear (Chase et al., 1993).
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14.5 Perturbation

In general, the RAS+TBR technique is effective for data sets with fewer than
100 taxa. Assuming sufficient randomizations are performed (typically in the
hundreds), investigators achieved stable analytical results (in terms of best cost
found), if not guaranteed optimality. In the 1990s, larger data sets, especially in
botany, were produced with hundreds (Chase et al., 1993) and even thousands
(Soltis et al., 2000) of taxa. These data sets required months of analysis on then
standard hardware and yielded clearly unsatisfactory results (Rice et al., 1997).

Kevin Nixon

The basic problem was that searches were stuck in isolated local optima,
and the Wagner randomizations were insufficient to identify good enough start-
ing points for hill climbing (in the form of branch-swapping) to a stable solu-
tion (there were also implementation shortcomings detailed by Nixon, 1999).
Nixon (1999) proposed a perturbation-based method, the “Parsimony Ratchet”
or more simply the “Ratchet,” that dramatically improved the speed and effec-
tiveness of tree searching. In short, the ratchet is a refinement technique that
alternates hill climbing on a perturbed (reweighted) data set with refinement of
the original data. Multiple cycles of reweighting + branch-swapping and original
weighting + branch-swapping allowed the escape of local optima (“islands” in
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before moving on to the next tree partition, whereas the Breadth-First search
examines reattachments of subtrees at fixed distances from their original point,
each round examining each tree partition in turn before moving on to the next,
more distant reattachment edges.
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Figure 14.10: Ratchet refinement procedure of Nixon (1999).

the parlance of Maddison, 1991) and the identification of more globally optimal
solutions (Fig. 14.10).

The idea behind the reweighting was that the reweighted characters have
a distorted optimality landscape compared to that of the original. Hill climb-
ing on this new surface may form a link between local and more global solu-
tions. This distortion would be in proportion to both the fraction of characters
reweighted and the severity of weight change. Nixon found the best performance
with a relatively low percentage (5–10%) of the characters affected and with a
mere doubling of their weights (other problems may perform better with other
parameters).

The steps of the Ratchet are as follows:

1. Define an initial solution (e.g. via RAS+TBR).

2. Randomly reweight some fraction of characters by some factor (usually
5–10% of characters by 2).

3. Refine using Branch-Swapping (usually TBR).

4. Return weights to their original values.

5. Refine using Branch-Swapping (usually TBR).

6. Repeat 1–5 k times.

Given that the Ratchet still relies on branch-swapping refinement (Alg. 14.9),
it will have the time complexity of the swapping regime (e.g. O(n3) if TBR is
used), with a constant factor for the number of cycles performed (O(kn3)).
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Algorithm 14.9: RatchetRefinement
Created via RAS+TBR or other method
Data: Input tree T = (V, E)
Data: Input data matrix M
Typically all weighted to unity
Data: Input weight regime W
Data: Input number cycles of ratchet cycles to be performed
Data: Input fraction fraction of characters to be reweighted
Data: Input reweight severity factor
Result: Single ratchet refined tree (RatchetTree) if lower cost tree than

input is found, ∅ if not.
RatchetTree ← ∅;
mincost ← Tcost;
Each replicate;
for i = 0 to cycles − 1 do

Randomly perturb data weight set
W′ ← perturb(W, fraction, severity);
Perform TBR branch-swapping on input tree with new weight set
T ′ ← TBR(T, M, W′);
Perform TBR branch-swapping on perturbed tree with original weight
set
T ′′ ← TBR(T ′, M, W);
Check for better tree
if T ′′

cost < mincost then
RatchetTree ← T ′′;
mincost ← T ′′

cost;
end

end
return RatchetTree

The Ratchet had an immediate and significant effect on empirical studies.
The Chase et al. (1993) data set was analyzable in hours, rather than months,
and better (16218 versus 16225 parsimony steps) trees were found. Giribet and
Wheeler (1999) reanalyzed their metazoan data and also found shorter trees
(7032 versus 7028) in greatly reduced time. The method was extended to like-
lihood techniques (Voss, 2003; Wheeler, 2006). Ratcheting is now a standard
component of phylogenetic tree searching.

Several variations of ratchet procedures have been explored centering around
the types of perturbation (Varón et al., 2010, allows perturbing indel and other
parameters as well as character weight) and character selection (complementary
reweighted character sets over pairs of cycles) operations.
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14.6 Sectorial Searches and
Disc-Covering Methods

Sectorial Searches (Goloboff, 1999a; Goloboff et al., 2003) and Disc-Covering
Methods (Huson et al., 1999; Roshan et al., 2004) are both methods that sub-
divide data sets into sectors, analyze these sectors separately, combine the sec-
tors into a complete tree, and refine that complete tree with branch-swapping.
Beneath this surface similarity lie important differences, however, leading to
significant differences in effectiveness and performance.

Pablo Goloboff

14.6.1 Sectorial Searches

Goloboff (1999a) proposed Sectorial Searches (SS) along with a variety of other
methods to address the problem of composite optima in large data sets. These
data sets are large enough (hundreds to thousands of taxa) that subtrees of the
problem had their own optimization challenges and it was very unlikely that
RAS+TBR would be able to achieve optimal arrangement of all the subtrees
simultaneously. Goloboff defined sectors of trees (Fig. 14.11) based on an initial

a b

c

d

e

f

g

Figure 14.11: A tree showing several potential sectors (a–g).
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tree or trees. These sectors could be determined randomly (RSS) or by consensus
among several trees (CSS), focusing in on areas of disagreement among candi-
date solutions. Later (Goloboff et al., 2003), balanced sectors (XSS) were defined
to create similarly sized subunits.

In Goloboff’s procedure, the sectors are used to define a new, reduced data
set based on the root state condition of each sector. This reduced data set is
then searched using some number of RAS+TBR replicates—akin to a Breadth-
First search around edges incident upon sectors. The resulting reduced tree is
then reincorporated into the original tree and adjusted to reflect the relation-
ships among the sectors after the reduced data search. If this overall tree is
different from the original (or sufficiently so; Goloboff advocated requiring mul-
tiple differences), a round of TBR branch-swapping is performed on the entire
tree. If this new tree is superior, it is kept. Multiple rounds of SS may be per-
formed using improved trees as starting points and randomizing sector selection
(Fig. 14.12, Alg. 14.10). Sectorial searches, in concert with Ratchet and other
methods (e.g. simulated annealing, genetic algorithm; see below), have been
extremely effective in searching large data sets (Giribet, 2007).

14.6.2 Disc-Covering Methods

Huson et al. (1999) first proposed DCM for distance matrix analysis. The
method was improved through DCM2 and finds its most recent incarnation
in Rec-I-DCM3 (Roshan et al., 2004). The method is a meta-heuristic, de-
scribed as a “boosting” procedure relying on other methods (such as TNT,

Original
Data Set RAS+TBR Define sectors

create reduced matrix

TBR on
reduced data

"Sector" Tree

TBR
on total data
(if different)

Improved
Complete Tree

Initial Tree

+

Save if better
than initial tree

Cycle k times

Adjusted
Complete Tree

Define sectors
create reduced matrix

Figure 14.12: Sectorial Search refinement procedure of Goloboff (1999a).
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Algorithm 14.10: SectorialSearch
Created via RAS+TBR or other method;
Data: Input tree T = (V,E)
Data: Input data matrix M
Data: Input number SScycles of sectorial searches to be performed
Result: Single sectorial search tree (SSTree) if lower cost tree than input

is found, ∅ if not
SSTree ← ∅;
Each replicate;
for i = 0 to SScycles − 1 do

Define set of sectors in T (either randomly—RSS—or by
consensus—CSS—of several input trees) and create a reduced data
set from M
S ← defineSector(T,M);
Perform RAScycles of RAS+TBR on reduced data set S
TS ← RASTBR(RAScycles, S);
Adjust T to conform to relationships of sectors in TS

T ′ ← makeTree(T, TS);
If there were changes in the overall tree
if T 	= T ′ then

Perform TBR branch-swapping on T ′ and full data
T ′′ ← TBR(T ′,M);
Check for better tree
if T ′′

cost < Tcost then SSTree ← T ′′;
end

end
return SSTree

Goloboff et al., 2003 or POY, Varón et al., 2010) as a “base” method. DCM
methods proceed in four sections:

1. Decompose the data set.

2. Solve subproblems.

3. Merge and reconcile subproblems.

4. Refine the merged tree.

The decomposition component was originally based on distance matrix analysis,
but in Rec-I-DCM3 it is based on an initial tree. In this, it is similar to SS, re-
cursively dividing the tree into smaller pieces that then can be analyzed easily.
Unlike SS, these sectors overlap. The subproblems are analyzed as individual
phylogenetic problems. Roshan et al. (2004) advocated sectors of 1

4 to 1
2 the orig-

inal data set size. The trees resulting from the subproblems are then merged
into a single tree via strict-consensus + random resolution. In the procedure,
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Figure 14.13: Rec-I-DCM3 refinement procedure of Roshan et al. (2004).

overlapping sectors are combined, often resulting in disagreement and irreso-
lution. These polytomies are randomly resolved to create a binary tree, which
is then refined via branch-swapping (e.g. TBR) (Fig. 14.13, Alg. 14.11). Rec-I-
DCM3 has been shown to find improved solutions in reduced time for several
sorts of problems (distances, ML, MP; Roshan, 2004).

The time complexity of SS and DCM will both be determined by the rear-
rangement procedure employed. If TBR, they will be linear in replicates and
cubic in numbers of taxa.

The relative performance of these methods has been examined by Roshan
et al. (2004) and Goloboff and Pol (2007). Goloboff and Pol (2007) point out
a number of differences between SS and Rec-I-DCM3 that explain the perfor-
mance advantages of combined search strategies (including SS), identifying the
randomized polytomy resolution step in Rec-I-DCM3 as the likely source of its
relative shortcoming. The motivation of this difference comes from the types of
sectors defined by the two methods. SS defines non-overlapping sectors, whose
relative placement is searched; Rec-I-DCM3 defines overlapping sectors whose
arrangements are determined by reconciling subtrees with common leaf taxa.
The searching for sector relationships in SS, and consensus-super tree like tech-
nique in Rec-I-DCM3 are the root cause of the difference in the behaviors of
the methods.

14.7 Simulated Annealing

Simulated annealing is a refinement method designed to escape the problems
of greedy algorithms (such as branch-swapping) by allowing tree modifications
that (temporarily) increase the cost of the tree. The method is based on analogy
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Algorithm 14.11: Rec-I-DCM3
Data: Input tree T = (V,E)
Data: Input data matrix M
Result: Return single Rec-I-DCM3 tree (DCMTree) if lower cost tree

than input is found, ∅ if not
DCMTree ← ∅;
mincost ← Tcost;
foundBetter ← true;
while foundBetter = true do

foundBetter ← false;
Define set of data sectors in T by recursive centroid edge
decomposition
S ← defineSectors(T,M);
Analyze subproblems in S
for si ∈ S do

Analyze subproblem si by favored method—e.g. RAS+TBR or
exact if small
TS

i ← methodTree(si);
end
Merge the TS

i trees created from S via strict consensus merge and
randomly resolve polytomies
TS ← mergeTree({⋃i TS

i });
Perform TBR branch-swapping on TS and full data;
T ′ ← TBR(TS ,M);
Check for better tree;
if T ′

cost < mincost then
DCMTree ← T ′;
mincost ← T ′

cost;
foundBetter ← true;

end
end
return DCMTree

to the annealing of metals, where more stable (i.e. lower energy) crystal config-
urations can be achieved by allowing the metal to anneal at moderate tempera-
tures and cooling in a step-wise fashion (Chib and Greenberg, 1995). The basic
procedure is a modification of the Metropolis–Hastings algorithm (Metropolis
et al., 1953) proposed by Kirkpatrick et al. (1983) and Cerny (1985). The basic

Nicholas Metropolis
(1915–1999)

procedure involves establishing analogues to the parameters of metallurgical
annealing. At each iteration, there are two states—s the current state and s′ a
second, candidate state. These states have energies E and E′. The probability
of transitioning from state s to s′ depends on the energy difference between the
states (higher is worse) and the temperature, T (Eq. 14.1).

P(s, s′) = min(1, e(E−E′)/T ) (14.1)



314 Tree Searching

The temperature parameter defines how easily transitions between dissimilar
states can take place. If the temperature value is high, radical changes may
take place, if T is low, transitions to higher energies are rare. As T tends to
0, the algorithm becomes increasingly greedy, eventually only accepting lower
energy (i.e. better) states. In general, for the algorithm to be able to transition
between local optima, P must be > 0 when e′ > e although limiting to 0 when
T → 0. If E′ < E, P must be = 1 (i.e. always accept a better solution). Lundy
(1985) and Dress and Krüger (1987) first applied this approach to phylogenetic
analysis. This formalism is used explicitly in the METRO module of PHYLIP
(Felsenstein, 1993; Salter and Pearl, 2001), and Monte-Carlo-Markov-Chain re-
finements in Bayesian techniques (Yang and Rannala, 1997; Huelsenbeck and
Ronquist, 2003) (Chapter 12).

Goloboff (1999a) modified this idea for parsimony in “Tree-Drifting” (DFT).
DFT is an insertion into TBR swapping by altering the criterion for accepting a
new tree T ′ over an existing T. In TBR, only if T ′

cost < Tcost is T ′ is accepted—a
greedy technique. DFT changes this threshold rule to reflect the degree of cost
difference between the trees and the relative degree of character support for T
and T ′ (Eq. 14.2) with F the number of characters in favor of T ′ and C against.

when (T ′
cost > Tcost)

T ′ is accepted if
[
F − C

F
≤ RAND(0, 99)

F − C + T ′
cost − Tcost

]
(14.2)

F =
if(T i

cost−T ′i
cost)>0∑

i

Ti
cost − T ′i

cost

C =
if(T ′i

cost−T i
cost)>0∑

i

T ′i
cost − Ti

cost

RAND(x, y) = a random integer ∈ [x, y]

After a period of DFT (defined by number of tree changes), a TBR re-
finement is performed and the entire process repeated some number of times
(Alg. 14.12). As with other refinements, the time complexity of DFT would be
linear in the number of DFT replicates and cubic in number of taxa (due to

Algorithm 14.12: TreeDrift
Data: Input tree T = (V, E) with leaves L ⊂ V
Data: Data matrix M of observations
Data: Frequency period of complete TBR branch-swapping
Data: Number cycles of complete DFT cycles
Result: Return Drift refined tree (DFTTree)
DFTTree ← ∅;
Number of repetitions
repetitions ← 0
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Algorithm 14.12: (Continued)

for repetitions ≤ cycles do
repetitions ← repetitions + 1
numTreeChanges ← 0;
Each edge in turn
for i = 0 to 2|L| − 4 do

edge ei = {u, v};
Delete edge and split tree
T0 ← T \ ei; subtree without u
T1 ← T \ ei \ T0; remaining subtree from u
Each edge in T0

for ej = {u′, v′} ∈ E0 and ej 	= ei do
v′ ← new vertex between ui and vi of ej ;
Each edge in T1;
for e′′ = {u′′, v′′} ∈ T1 do

Define new ‘root,’ r for T1

r ← new vertex between u′′ and v′′;
Add back T1 via edge e′ = {r, v′}
e′ ← {r, v′} in T0;
T ′ ← T0;
Determine tree cost
T ′

cost ← treeCost(T, M, σ);
T ′ better than T
if T ′

cost < Tcost then
DFTTree ← T ′;
T ← T ′;

Check threshold to accept equal or worse tree
else

F =
∑if(T i

cost−T ′i
cost)>0

i Ti
cost − T ′i

cost;

C =
∑if(T ′i

cost−T i
cost)>0

i T ′i
cost − Ti

cost;
Uniformly distributed random integer on [0,99]
R ← RAND(0, 99);
if

[
F−C

F ≤ R
F−C+T ′

cost−Tcost

]
then

DFTTree ← T ′;
numTreeChanges ← numTreeChanges + 1;
Do full TBR after period tree changes
if numTreeChanges mod period = 0 then
DFTTree ← TBR(DFTTree, M);

end
end

end
end

end
end
return DFTTree
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TBR scaffold). DFT has been shown to be effective at improving locally opti-
mal trees in large data sets, especially in combination with Sectorial Searches
(Goloboff, 1999a; Giribet, 2007).

14.8 Genetic Algorithm

Genetic (sometimes referred to as “Genetical”) algorithms (GA) simulate the
evolutionary process to optimize complex functions (Holland, 1975; Goldberg
et al., 1989; Sastry et al., 2005). The idea is to model the processes of muta-
tion, recombination, and natural selection to identify solutions and escape local
optima through random aspects of population dynamics. One of the key differ-
ences between GA and other approaches is that it operates on a collection of
solutions simultaneously. One weakness is that it has no direct relationship to an
exact solution (such as branch-swapping, which would, if sufficiently exhaustive,
examine all possible trees).

There are six fundamental components to a GA procedure, which are re-
peatedly cycled (after Initialization) until stability or ennui sets in:

1. Initialization—An initial population of solutions (here trees) is generated.

2. Evaluation—Potential solutions are assigned an objective cost (fitness).

3. Selection—Those solutions with higher fitness (here lower cost) are prefer-
entially replicated such that the more fit they are, the better represented
they are in the population of solutions.

4. Recombination—Components of two or more candidate solutions are com-
bined to create variation and potentially better solutions.

5. Mutation—Modifications are made to individual solutions.

6. Replacement—Those solutions created by selection, recombination, and
mutation replace the existing generation in the population of solutions.

One of the tricks of GA is to balance mutation (which modifies existing trees)
and selection. If the selection is too strong, the solution space will converge
too quickly before finding new optimal solutions. If the mutation rate is too
high, there will be little direction to the process and the search will approach
randomization (as in SA when T is high). If the mutation rate is too low, there
will be insufficient diversity to work with in finding new solutions.

Moilanen (1999, 2001) introduced GA to parsimony-based tree searching
with PARSIGAL (although Matsuda, 1996, had used GA for likelihood calcula-
tions on protein sequences) explicitly to escape the local minima in which tra-
jectory searches often found themselves (in multiple sequence alignment, SAGA
Notredame and Higgins, 1996, is based on GA). Moilanen’s GA did not empha-
size mutation, other than through perturbed distance matrix tree reconstruc-
tion in the initialization step, and added limited branch-swapping to improve
the post-recombination trees (Fig. 14.14, Alg. 14.13). The time complexity of
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Algorithm 14.13: GeneticAlgorithmTreeSearch
Data: Input tree T = (V,E)
Data: Data matrix M of observations
Data: Element character cost matrix σ of pairwise distances between all

character states
Data: Number generations of complete GA cycles
Data: Number popSize of trees in each generation
Result: Set of GA refined trees (GATrees)
GATrees ← ∅;
minCost ← ∞;
Create initial population of trees
for i = 0 to i < popSize do

M′ ← perturbMatrix(M);
Generate distance-based tree from perturbed matrix
Ti

0 ← makeTree(M′);
Set initial minimum tree cost based on original matrix
(Ti

0)cost ← getCost(Ti
0,M);

if (Ti
0)cost < minCost then minCost ← (Ti

0)cost;
end
Number of repetitions
for j = 0 to j < generations do

numNextGen ← 0;
for i = 0 to i < popSize do

Perform local (SPR or NNI) refinement
T ′ ← localRefine(Ti

j−1);
Found lower cost tree than initial population
if T ′

cost < minCost then
minCost ← T ′

cost;
TnumNextGen

j ← TnumNextGen
j ∪ T ′;

numNextGen ← numNextGen + 1;
end

end
Perform tree recombination
while numNextGen < popSize do

Choose first parent tree randomly based on cost
P1 ← randFitChoice(Tj−1);
Choose second parent tree randomly based on cost.
P2 ← randFitChoice(Tj−1);
Recombine subtrees from two parents and produce
(TnumNextGen

j , TnumNextGen+1
j ) ← recombine (P1, P2) two

offspring trees placed in population;
numNextGen ← numNextGen + 2;

end
Determine minimum cost over trees in generation j
minCost ← mini

[
(Ti

j)cost

]
;

end
return GATrees
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Figure 14.14: Genetic Algorithm tree search procedure of Moilanen (1999).

Moilanen’s complete GA strategy will depend on the number of generations,
g, the population size, p, and the complexity of the local swapping operations
(SPR) on n taxa, for an overall time complexity of O(gpn2).

Goloboff (1999a) focused on the recombination step of GA (Fig. 14.15)
in defining his Tree-Fusing (TF) procedure. Goloboff modified Moilanen’s ap-
proach to enhance the capabilities of tree recombination to attack the problem
of composite optima in large trees. Goloboff added SPR rearrangement to the re-
combination step (as opposed to after the trees are constructed) to optimize the
placement of the exchanged subtrees. TF has been extremely effective at lower-
ing tree costs—even when presented with clearly suboptimal inputs, TF is able
to improve the result substantially. This approach has been used in large sensi-
tivity analysis (Wheeler, 1995) studies. Combining the results of different param-
eter runs with TF and subsequent TBR (SATF) simultaneously enhanced the
quality of results across parameter space (Wheeler et al., 2004; Giribet, 2007).

14.9 Synthesis and Stopping

As observed by Nixon (1999) and Goloboff (1999a), implemented in TNT
(Goloboff et al., 2003) and POY4 (“search” command; Varón et al., 2010),
and reviewed by Giribet (2007), no one search strategy is likely to be effective
for all data sets, and combinations of procedures have the best opportunity to
result in satisfactory results. Goloboff (1999a) described and tested 11 different
strategies.
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Figure 14.15: Tree recombination (Tree-Fusing) procedure of Moilanen (1999)
and Goloboff (1999a).

A remaining issue is how much is enough? When can an investigator feel
confident that sufficient effort has been expended to ensure a stable result?
Two notions of completion are stability in optimality value, and stability in
tree topology (usually strict consensus of resulting trees). Goloboff (2002) and
Giribet (2001) employed these criteria in “driven” searches (Goloboff et al.,
2003). The motivation is to continue to perform replicates of combined search
strategies until best cost solutions have been found in repeated, randomized
“hits.” Multiple hits on a given tree cost, with additional hits not altering the
strict consensus of their results, is a potential indicator of robust results (perhaps
by progressively doubling the heuristic intensity until results no longer change).
This is, of course, no guarantee of a minimum cost solution (the problem is
NP–hard after all), but it is a useful stopping rule.

14.10 Empirical Examples

Frost et al. (2006) performed an analysis of 522 amphibian and outgroup taxa
based on eight molecular loci and morphology (Fig. 14.16). In order to deal
effectively with such a large tree, they employed a diversity of heuristic tree
search strategies (Fig. 14.17) including random addition sequence Wagner builds
with TBR refinement (RAS+TBR), Genetic Algorithm (Tree-fusing), Simulated
Annealing (Tree-Drifting), and other Tree-Alignment (Chapter 10) heuristics.
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Figure 14.16: Familial level abstract of the 522 taxon amphibian analysis of
Frost et al. (2006). The edge numbers are links to branch information in the
paper.
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Summary of Tree-Searching Methods Combined in Overall Search Strategy
See the text for more detailed explanations and references. Different runs combined multiple

procedures, and all runs included SPR and/or TBR refinement.

Searching method Description of procedure

RAS Random addition sequence Wagner builds

Constrained RAS As above, but constrained to agree with an input group
   inclusion matrix derived from the consensus of topologies
   within 100–150 steps of present optimum

Subset RAS Separate analysis of subsets of 10–20 taxa; resulting
   arrangements used to define starting trees for further analysis
   of complete data set

Tree drifting Tree drifting as programmed in POY, using TBR swapping;
   control factor =  2 (default)

Ratcheting (fragment) Ratcheting as programmed in POY, with 15–35% of DNA
   fragments selected randomly and weighted 2–8 times, saving
   1 minimum-length tree per replicate

Ratcheting (indel, tv, ts) Ratcheting approximated by applying relative indel-
   transversion-transition weights of 311, 131, and 113, saving
   all minimum length trees

Constrained ratcheting (fragment) As above, but beginning with the current optimum input as a
   starting tree and constrained to agree with an input group
   inclusion matrix derived from the consensus of topologies
   within 100–150 steps of present optimum

Tree fusing Standard tree fusing followed by TBR branch swapping, with
   the maximum number of fusing pairs left unconstrained

Manual rearrangement Manual movement of branches of current optimum

Ratcheting (original) of final implied
    alignment

Parsimony ratchet of fixed matrix, as implemented in Winclada

Figure 14.17: Analytical strategies of Frost et al. (2006).

Genes used in the analysis, indicating the number of fragments in which every gene was split for alignment

Gene Fragments Taxa Characters Scope Type Genome

LSU rRNA 11 312–115 Global DNA Nuclear
MatK 1 792 Embryophyta DNA Plastid
NdhF 1 1209 Embryophyta DNA Plastid
RbcL 1 13 043 Embryophyta DNA Plastid
COXI 1 1296 Metazoa PROT Mitoch
COXII 1 437 Metazoa PROT Mitoch
COXIII 1 272 Metazoa PROT Mitoch
CytB 1 337 Chordata PROT Mitoch
NDI 1 349 Metazoa PROT Mitoch
SSU rRNA 6 293–26 Global DNA Nuclear
SSU rRNA 1 464 Hexapoda DNA Mitoch
RNAPII 2 515–203 Fungi/Global PROT Nuclear
LSU rRNA 1

11700–1267
11855

4864
13043

7310
8315
2309

13766
4123

20462–19336
1314

869–333
752 314 Ascomycota DNA Mitoch

Figure 14.18: Molecular data table of Goloboff et al. (2009).
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Figure 14.19: Combined eukaryote analysis tree at 730,435 steps of Goloboff
et al. (2009). The values beneath the taxon names are the number of taxa
included and % placement in agreement with GenBank taxonomy. See Plate
14.19 for the color Figure.
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Goloboff et al. (2009), in the largest empirical analysis to date, created a
data set of 73,060 eukaryotic taxa for 17 loci and morphology (Fig. 14.18). The
analysis relied heavily on Sectorial Searches and Genetical Algorithm (in the
guise of Tree-fusing) after many RAS+TBR starting points for trees based on
individual loci. The final result was a tree of length 730,435 parsimony steps
(Fig. 14.19).

In both the Frost et al. (2006) and Goloboff et al. (2009) cases, it is very un-
likely that any one of these heuristic approaches would have yielded satisfactory
results on their own. Considerable effort was expended in combining multiple
strategies until stable (if not necessarily optimal) results were obtained.

14.11 Exercises

1. When we search for a tree, how good is good enough?

2. Should we strive for exact solutions at the cost of sampling?

3. Write down the NNI neighborhood for the tree (A (B (C (D (E, F))))).

4. Write down the SPR neighborhood for the tree (A (B (C (D (E, F))))).

5. Write down those trees in the TBR neighborhood for the tree (A (B (C
(D (E, F))))) that are not in its SPR neighborhood.

6. If we double the number of taxa in an analysis, how much longer will an
NNI search take? SPR? TBR?

7. As we raise the temperature in a simulated annealing search, what happens
to the acceptance of suboptimal trees?

8. If Pablo Goloboff were a tree, what sort of tree would he be?



Chapter 15

Support

Support means different things to different people. In general, “support” covers
a variety of indices designed to measure confidence in a vertex or clade. There
is a diversity of flavors of support specific to optimality criteria (parsimony,
likelihood, posterior probability) and the aspect that is desired to be quantified.
There can be no single “best” support value given that the goals of different
investigators and support indices vary.

The discussion here covers the use and measure of support in different con-
texts. Although there is a broad variety of support objectives and indices, there
are organizing themes that run through the topic and serve to organize the
principles of support.

The earliest notions of support were derived from edge weights (branch lengths
as number of synapomorphies “supporting” a clade). These informal ideas were
logical in that the edge weight quantified the amount of change (distance, parsi-
mony changes or likelihood), but was thought inadequate since convergent and
parallel change (homoplasy) would be conflated with unique historical change
(synapomorphy). This led to resampling and optimality-based indices.

15.1 Resampling Measures

Resampling is a technique in general use in statistics to replace an unknown
distribution with a known one based on an observed sample. This is done, in
general, in two ways: bootstrapping and jackknifing. In short, bootstrap meth-
ods sample a set of observations to create a new sample of equal size with
replacement, while jackknife methods sample without replacement, effectively
deleting some fraction of the original data.

In systematics, two entities present themselves for resampling—taxa and
characters. In principle, elements in either set could be used as the basis for
jackknife or bootstrap analysis. If we are concerned with the evidentiary basis
for group support, it is logical to focus attention on characters. Given that any

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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modified taxon set would create trees different from the one whose support
is desired, taxon resampling has not played a large role in support indices or
descriptors.

15.1.1 Bootstrap

Bradley Efron

The bootstrap was first described by Efron (1979) (summarized in Efron and
Tibshirani, 1993) to estimate a variety of parameters (mean, variance etc.) of
unknown distributions. The idea is to replace F, an unknown distribution, with
an approximation F̂. If X∗ is a sample drawn from F̂, and X from F, aspects of
F can be approximated by X∗ and F̂.

The central aspect of the bootstrap is the choice of F̂. When the observed
data (sample distribution function) are used, the method is a non-parametric
bootstrap. When F̂ is chosen from a parametric family of distributions (such as
χ2 or Gaussian) the method is a parametric bootstrap. Simulated resampling is
a staple of both techniques. In the non-parametric case, the sample distribu-
tion function (observed data) are used (with replacement) to create simulated
samples. The random sampling is repeated some large number of times and
features of interest calculated from the simulated samples. When parametric
bootstrapping is performed, the sample is used to estimate the parameters of a
specific distribution (e.g. μ and σ of a normal distribution) and the resampling
simulations are drawn from that parameterized distribution. Clearly, parametric
bootstrapping will have more power, but this relies on knowledge of the under-
lying family of distributions. Furthermore, for F̂ to be a good approximation
for F, the observations must be independent and identically distributed (i.i.d),
meaning there can be no dependence among observations (here characters), and
they must follow the same distributional model. In systematics, such informa-
tion is, in general, unknown, hence non-parametric bootstrapping is the usual
method of choice.

Felsenstein (1985) first employed the bootstrap on trees in attempting to
create confidence intervals on vertices. Felsenstein wanted to be able to establish
these vertices (or clades or groups) as statistically significant if their bootstrap
values were ≥ 0.95. The procedure advances in five steps:

1. Determine an optimal tree (To) by a search procedure on observed data
(D) under an optimality criterion.

2. Resample the observed data (columns of aligned matrix) with replacement,
yielding a new data set (D′) with the same number of characters as the
original. Characters will be present zero, one, two or more times.

3. Determine an optimal tree (T ′
o) from D′ using the same search procedure

and optimality criterion as in step 1.

4. Repeat steps 2 and 3 k times adding the generated trees to the set of
bootstrap trees (TB).

5. Construct the tree of all nodes with frequency ≥ 0.50 in TB (majority-rule
consensus).
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Taxon Characters
A 0 0 0 0 0 0 0 0
B 1 0 0 0 0 0 0 0
C 1 1 0 0 0 0 0 0
D 1 1 1 0 0 0 0 0
E 1 1 1 1 0 0 0 0
F 1 1 1 1 1 0 0 0
G 1 1 1 1 1 1 0 0
H 1 1 1 1 1 1 1 0
I 1 1 1 1 1 1 1 1
J 1 1 1 1 1 1 1 1

Table 15.1: Simple data set of 10 taxa (A-J) and 8 binary characters.

This consensus is the bootstrap tree, and the node frequencies are the bootstrap
support values of the clades on the tree. In the simple case of n characters,
r of which support a vertex V (without disagreeing characters), the bootstrap
support of V (VBt) will be:

VBt = 1 −
(
1 − r

n

)n

(15.1)

Consider the data in Table 15.1. A single uncontroverted binary character sup-
ports each node; the most parsimonious tree is the expected pectinate shape
with a cost of eight steps (Fig. 15.1). The bootstrap support values are shown
for each vertex. If we add 80 uninformative characters (autapomorphies), the
bootstrap values decrease to the expected value of 0.634 (on average) (Fig. 15.2).

15.1.2 Criticisms of the Bootstrap

Bootstrap as Confidence Interval

Hillis and Bull (1993) showed that in simulations, bootstrap values did not re-
flect well either the repeatability or accuracy of the reconstruction. As far as
repeatability is concerned, they found the method largely useless due to the
high variance in the bootstrap results. Regarding accuracy (in a simulation con-
text), bootstrap values could either grossly underestimate or overestimate the
actual values. The non-independence of vertices in trees may contribute to this
(as well as violation of independent and identical distribution and random sam-
pling assumptions in empirical comparative data). Furthermore, the bootstrap
tree need not agree with the tree based on the original observations (even in
principle), which can lead to suboptimal, refuted groups seeming to be better
supported than optimal, corroborated groups.

Even though the validity of bootstrap values as statistical tests may have
been refuted both in theory and practice, as a means of assessing support,
bootstrap values remain a popular measure of a form of support.
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Figure 15.1: Most parsimonious tree based on the data in Table 15.1 with boot-
strap frequencies shown (1000 replicates, 10 Wagner builds and TBR for each
replicate using Varón et al. (2008, 2010)).
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Figure 15.2: Most parsimonious tree based on the data in Table 15.1 and 80
uninformative characters with bootstrap frequencies shown (1000 replicates, 10
Wagner builds and TBR for each replicate using Varón et al. (2008, 2010)).
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Effects of Uninformative Characters

From Equation 15.1, it can be seen that the support for a group will depend
on the number of characters whether they are informative or not. Harshman
(1994) pointed out that the bootstrap values could, in principle, depend on the
number of unique and invariant characters in the data set. In fact, for a given
number of informative r, uninformative features would increase n (Eq. 15.1)
thereby decreasing the bootstrap support. Carpenter (1996) showed this effect
to occur in real data as well as in theory.

15.1.3 Jackknife

The jackknife was originally defined (Quenouille, 1949, 1956) as a method that
recalculated aspects of an empirical distribution by sequentially removing a sin-
gle observation, the idea being that the variation in a sample-based parameter
estimation could be reliably assessed in this manner. Later, Tukey (1958) gener-
alized this idea and encouraged broader use by deleting one-half of the empirical
sample. Farris et al. (1996) brought this to systematics by noting that the limit
of Equation 15.1 as n → ∞ is 1 − e−r, leading to the asymptotic convergence
of the bootstrap and jackknife. If a group is supported by one uncontroverted
synapomorphy, among an unboundedly large number of characters, the support
for that group under the bootstrap and jackknife procedures will be identical if
the delete percentage is e−1. Such a resampling procedure under parsimony was
named the “Parsimony Jackknife.”

John Tukey
(1915–2000)

The procedure was originally described and used as a way to generate phylo-
genetic trees based on jackknife support (Lipscomb et al., 1998; Little and Farris,
2003). As opposed to optimality-based procedures, the method was rapid, gen-
erating a tree with support values in a fraction of the time of a conventional
search. As with other non-optimality-based approaches, however, this was even-
tually abandoned in favor of its use as a support measure.

Diana Lipscomb

The jackknife proceeds in five steps:

1. Determine an optimal tree (To) by a search procedure on observed data
(D) under an optimality criterion.

2. Resample the observed data (columns of aligned matrix) generating a new
data set (D′) where each character has the probability e−1 of deletion. This
data set will have, on average, 1 − e−1 characters.

3. Determine an optimal tree (T′
o) from D′ using the same search procedure

and optimality criterion as in step 1.

4. Repeat steps 2 and 3 k times adding the generated trees to the set of
jackknife trees (TJ ).

5. Construct the majority-rule consensus tree of all nodes with frequency
≥ 0.50 in TJ .

As with the bootstrap, the jackknife tree need not agree completely (in unre-
solved or resolved groups) with the original, unsampled tree. Figure 15.3 shows
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Figure 15.3: Most parsimonious tree based on the data in Table 15.1 with jack-
knife frequencies shown (1000 replicates, 10 Wagner builds and TBR for each
replicate using Varón et al. (2008, 2010)).

jackknife frequencies of the data in Table 15.1 at their expected values of
approximately 1 − e−1 or 0.632.

15.1.4 Resampling and Dynamic Homology Characters

Resampling in the context of entirely linked, dependent observations is mean-
ingless. The only way to employ such methods (Wheeler et al., 2006a; Varón
et al., 2008) would be to convert the dynamic characters to a static set (presum-
ably tree-based). The sampling would be entirely conditioned on the underlying
tree, rendering the resulting values inflated for the source tree and unclear for
any others. Guide-tree based MSA heuristics (Chapter 8) suffer this same prob-
lem, if not to the same degree. If loci or entire genetic regions are treated as
characters, resampling can take place at the level of loci or transcriptome (e.g.
EST analysis such as Dunn et al., 2008). This really just bumps the problem
up a level. If entire genome data were considered, all loci would be compo-
nents of a larger dynamic homology problem and resampling, once more, loses
applicability.

15.2 Optimality-Based Measures

As opposed to resampling measures, optimality-based measures are calculated
based on the cost (length, parsimony score, likelihood, posterior probability)
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of trees. Usually, the comparison is between the best tree found and other,
suboptimal trees. The indices commonly used by different optimality criteria
are closely related, even interconvertible in certain circumstances.

15.2.1 Parsimony

K̊are Bremer

The most commonly used optimality-based measure of vertex support (S) under
this optimality criterion is the difference between the cost of the minimal cost
tree (To) without a vertex (v–group or clade) and that with (Eq. 15.2).

SBremer
v = To

v/∈V − To
v∈V (15.2)

This value is determined for each vertex on the tree and is usually referred to
as Bremer (1988) support.

This form of support is difficult to calculate. In principle, the lowest cost tree
overall would be compared to all other trees in order to identify the minimum
cost tree without a particular group. This is obviously an NP–hard problem. In
actual usage, heuristic searches are performed (e.g. based on branch-swapping,
constrained searches, or trees visited during the optimal search) and the support
values generated are upper bounds. Figure 15.4 shows Bremer values of the
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Figure 15.4: Most parsimonious tree based on the data in Table 15.1 with
Bremer values shown (10 Wagner builds and TBR for each constrained ver-
tex using Varón et al. (2008, 2010)). The infinity values are for edges not broken
in heuristic Bremer search.
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data in Table 15.1 at their expected values of 1 (a single synapomorphy at
each vertex).

Several modifications have been made to Bremer values to explore more fully
particular aspects of support desired for different purposes. One of the perceived
shortcomings of this form of support is that it measures only overall support and
makes no allowance for the balance between evidence in favor of and against a
particular clade or vertex. As Goloboff and Farris (2001) point out, two groups,
one with 100 character changes in favor and 95 against, and a second with five
uncontroverted synapomorphies, would have identical Bremer values of five,
yet our intuition might suggest that these are very different situations. Some
have responded to this by employing resampling methods (such as the jackknife
above) to evaluate such situations. Goloboff and Farris (2001) suggested the
Relative Fit Difference (RFD) to deal with this issue.

The RFD examines the number of characters that favor a group (F) and
compares that to the number that support some alternative (C). The standard
Bremer value is their difference, F − C. The RFD normalized this value by
dividing by F (Eq. 15.3), yielding an index (on the optimal tree F ≥ C) varying
from 0 (ambivalent support) to 1 (uncontroverted).

RFDv =
F − C

F
(15.3)

One shortcoming of this measure (and with resampling as well) is that its ex-
tension to dynamic character types is unclear. If there were several dynamic
characters (e.g. multiple loci), F could be defined as the sum of the costs of
all loci that had a lower cost when a vertex was present than when it was not,
and C defined as its complement. With a completely dynamic system such as a
total genome, such distinctions would be impossible to make since there would
be only one character—the genome. Perhaps the difference between costs of a
character on the optimal and other trees could be used in place of F − C, but
this would be time consuming since the determination of F and C would require
NP–hard optimizations.

Grant and Kluge (2007), out of a desire similar to that of Goloboff and Farris
(2001), suggested a normalization of Bremer support based on the difference be-
tween the most costly tree (a complete bush—but the “worst” binary tree might
be a better comparison) and the least (the optimal tree). This they termed the
Relative Explanatory Power (REP) value. Unlike the RFD, the normalization
is not vertex specific; each Bremer value is divided by the same factor. In this
way, REP values, like RFD, can be compared between data sets, but unlike
RFD values have no effect on vertex support within a given tree.

Another modified use of Bremer values was proposed by Baker and DeSalle
(1997) in cases of multiple sources of information in a “total evidence” (Kluge,
1989) analysis. Standard Bremer values would describe the support based on the
entire data set. Baker and DeSalle (1997) calculated the individual contributions
of data sets by determining the Bremer supports of the individual data sources
(partitions) for each vertex on the favored tree. In this way, those nodes that
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Figure 15.5: Partitioned Bremer support for a series of nodes derived from a
collection of molecular loci (Baker and DeSalle, 1997).

had consensual support could be identified and distinguished from those whose
support was based on a minority of data sources (Fig. 15.5).

A Note on Nomenclature

Morris Goodman
(1925–2010)

The notion of support embodied in Bremer support values has been described
several times and given different names. Faith (1991) used “length-difference,”
and Donoghue et al. (1992) suggested “decay index.” Since Bremer (1988) was
published earlier, that name has stuck, but recently Grant and Kluge (2008b)
have pointed out that Goodman et al. (1982) used the same concept as that
of Bremer in their discussion of primate relationships. This they called the
“Strength of Grouping” or SOG value. Based on this seeming priority, Grant
and Kluge (2008b) suggest the index be referred to as Goodman–Bremer.

15.2.2 Likelihood

In the same way that optimal tree costs are compared by their difference in parsi-
mony, optimal tree likelihoods are compared by their ratio in likelihood methods.
The support for a vertex, then (SLR

v ), is the ratio of the likelihoods of the maxi-
mum likelihood tree (To) with a vertex divided by that without (Eq. 15.4).

SLR
v =

To
v∈V

To
v/∈V

(15.4)

Figure 15.6 shows the likelihood ratio values of the data in Table 15.1 at their
expected values of 0.693 (under No-Common-Mechanism model; Tuffley and
Steel, 1997).

Furthermore, as mentioned earlier (Chapter 11), twice the log-transformed
likelihood ratio is distributed approximately as χ2 with a single degree of freedom
(Eq. 15.5).
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2 · (log To
v∈V − log To

v/∈V

) ≈ χ2
1 (15.5)

This implies that a vertex will be “significantly” supported if the log likelihoods
differ by 1.903 or likelihoods by a factor of 6.826. If all n − 2 vertices were to be
tested simultaneously, however, a much stricter criterion would be required due
to multiple testing issues (DeGroot and Schervish, 2006; Kishino and Hasegawa,
1989; Shimodaira and Hasegawa, 1999). Along these lines, Lee and Hugall (2003)
used resampling measures to assign significance values to Partitioned Bremer
Support values (Baker and DeSalle, 1997).

Another form of test, “interior branch test” (Felsenstein, 1981), differs from
the likelihood ratio test (LRT) of tree optimality by examining whether a partic-
ular branch length (μ · t) is greater than zero. This is accomplished by determin-
ing the likelihood of the best tree with the added constraint that that particular
edge has zero length. The same LRT test can be performed on the overall tree
likelihoods with the same critical values and multiple testing caveats. At first,
this was suggested to test whether a branch were “true” or not. Later (Yang,
1994b), it became clear that with sufficient data, every edge on a simulated
“wrong tree” could have significantly non-zero length.
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Figure 15.6: Maximum likelihood tree (− log lik = 11.09) based on the data in
Table 15.1 under No-Common-Mechanism model (Tuffley and Steel, 1997) with
likelihood ratio values shown (10 Wagner builds and TBR for each constrained
vertex using Varón et al. (2008, 2010)). The infinity values are for edges not
broken in heuristic search.
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15.2.3 Bayesian Posterior Probability

Bayesian support measures are, not surprisingly, very similar to those of like-
lihood. Three sorts of support are commonly generated in Bayesian analysis:
“credibility” intervals, Bayes factors, and vertex or clade posterior probabilities.

Credibility

Credibility intervals are the Bayesian version of confidence intervals. They repre-
sent a central fraction (frequently 95%) of the posterior probability distribution.
The idea for this measure would be that some aspect of a tree, such as a vertex,
would or would not be included in those trees which contain 95% (for exam-
ple) of the posterior probability. This is analogous to the confidence interval
interpretation of bootstrap values (Felsenstein, 1981).

The process of such a test would be first to construct the credibility interval,
or in the case of systematics, the minimal set of highest posterior probability
trees (MAP) containing the desired fraction of credibility. If trees with a vertex
are in that interval, they are supported; if not, not1.

There is a significant difficulty with such an approach. The full posterior
probability of hypotheses (trees) are required. This includes the denominator
term of Equation 12.1,

∑
Tj∈τ pTj · p(D|Tj , θ). Typically, this is not calculated

due to the difficulty of the integration over all possible trees. A second problem
can occur in standard statistical problems when the optimal set is multi-modal,
but this is not a problem with trees since trees do not comprise an ordered set.

Bayes Factors and MAP measures

A more common index for Bayesian support is the Bayes factor (Kass and
Raftery, 1995; Lavine and Schervish, 1999). The Bayes factor (B) measures
the ratio of posterior probability to prior probability for a pair of hypotheses
(Eq. 15.6).

B(Tij) =
p(Ti|D)/p(Tj)
p(Ti|D)/p(Tj)

(15.6)

This can be applied in several contexts. First, whether an entire hypothesis
(tree) is superior to another, or second, to examine the effects of the presence
or absence of a group or vertex (Eq. 15.7).

B(Tv) =
p(Tv∈V |D)/p(Tv∈V )
p(Tv/∈V |D)/p(Tv/∈V )

(15.7)

If the priors are flat (p(Ti) = p(Tj),∀i, j), the Bayes factor is identical to the
likelihood ratio. A comparison can also be made that is analogous to the interior

1Such intervals need not be unique and may not even include the MAP tree if its posterior
probability is less than 0.05.
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branch test by comparing posterior probabilities where an edge weight (branch
length) is constrained to zero. One of the issues with this test (as with many
Bayesian tests) is that the prior distribution for branch lengths is unclear. Var-
ious distributions can be used (e.g. uniform, exponential etc.), but it is not
obvious (at least to me) which, if any, are reasonable or model ignorance appro-
priately (see Chapter 12).

Bayes factors also contain an element of subjectivity when it comes to inter-
pretation. Commonly, some hierarchy of comfort with the strength of evidence
is used such as:

• B(Tv) ≥ 100: Tv is supported.

• 100 < B(Tv) ≤ 101/2: Tv is minimally supported.

• 101/2 < B(Tv) ≤ 101: Tv is substantially supported.

• 101 < B(Tv) ≤ 102: Tv is strongly supported.

• 102 < B(Tv): Tv is decisively supported.

Clade Posteriors

These values were first used by Mau et al. (1999) and Larget and Simon (1999)
to summarize the posterior probability of individual vertices. They are created
from the stationary pool of trees, whose frequency is determined by their over-
all posterior probability (Sect. 12.3.6). These are the support measures that are
usually reported as Bayesian support in commonly employed implementations
(Huelsenbeck and Ronquist, 2003). Clade posteriors are summaries over mul-
tiple trees, and their values exhibited by no single tree. As support measures,
clade posteriors are more akin to resampling measures due to their summary
nature and are discussed in that context below. As with resampling measures,
there is no necessity that a tree constructed of those vertices with ≥ 0.50 pos-
terior probability will agree with the MAP tree (Wheeler and Pickett, 2008),
and “wrong” clades may achieve near 1.0 support (Goloboff, 2005; Yang, 2006;
Chapter 12).

15.2.4 Strengths of Optimality-Based Support

One of the main benefits of optimality-based support is that its meaning is clear.
The support value for a given vertex is a function of the best (optimal) tree with
that node, and the best tree without. As such, it is related to the overall objective
of a tree search—the best tree by whatever criterion—and only those vertices
in the best tree are evaluated. Resampling measures (and clade posteriors) may
identify nodes not found in the best tree as more supported than those that are.
This is due in part to the summary aspect of integrating support over a series of
trees which may differ in many fundamental respects, but agree in the presence
of a given vertex. Treating vertices as entities independent of their source trees
seems fundamentally at odds with the hierarchical nature of phylogenetic trees.
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15.3 Parameter-Based Measures

Although often discussed in the context of support, parameter-based support
(sensu Wheeler, 1995; as opposed to a distributional parameter) is more of a
statement of robustness of phylogenetic results to variations in those param-
eters (Wheeler, 1995). As summaries of vertex presence over multiple trees,
they are akin to resampling measures and have no direct relationship to any of
the component “best” trees. Parameter-based trees are also like resampling (or
clade-posterior) trees in that they need not agree completely with the “best”
tree by any particular measure. These depictions convey the breadth of param-
eter choices under which particular groups are supported—usually those on an
optimal tree (Fig. 15.7).

15.4 Comparison of Support Measures—
Optimal and Average

As mentioned above, there is an often bewildering variety of things called “sup-
port.” One immediate question is how do these descriptors relate to each other?
They all measure something, but what? Given the discussions above, we can
define the optimal support of a vertex (Sv) as a function of the costs of the op-
timal tree with a vertex (To

v∈V ) and the optimal tree without (To
v/∈V ) (Eq. 15.8)

(Wheeler, 2010).

Sv = f
(
To

v∈V , To
v/∈V

)
(15.8)

For parsimony this function is their difference (Eq. 15.9),

Sv = To
v/∈V − To

v∈V (15.9)

Figure 15.7: Strict (left) and majority-rule (right) consensus trees over param-
eter space (Prendini et al., 2005).
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for likelihood their ratio (Eq. 15.10),

Sv =
To

v∈V

To
v/∈V

(15.10)

and for Bayes a prior normalized ratio (with p() denoting prior probability;
Eq. 15.11).

Sv =
To

v∈V /p(To
v∈V )

To
v/∈V /p(To

v/∈V )
(15.11)

Furthermore, if we examine the Bremer support of parsimony and the like-
lihood ratio of maximum likelihood under the No-Common-Mechanism (NCM)
model (Tuffley and Steel, 1997), we can identify further links.

Taking the log of the likelihood ratio of Equation 15.10 (Eq. 15.12),

log Sv = log To
v∈V − log To

v/∈V (15.12)

and recall that under NCM the likelihood for a given tree with n characters
with r states and li changes in character i is:

Tc =
n∏
i

r−(li+1)

the log of which would then be:

log Tc =
n∑
i

−(li + 1) log r

rearranged becomes:

log Tc = n − log r

n∑
i

li

noting that
∑n

i li = lp, the parsimony length, and substituting back into
Equation 15.12:

log Sv = log To
v∈V − log To

v/∈V = log r · (lpv/∈V − lpv∈V

)
Hence, the log likelihood ratio is equal to the Bremer support multiplied by
the log of the number of states in the (non-additive) characters. With uniform
topological priors, the Bayes factor will show the same equivalence under NCM.
Bremer support, likelihood ratio, and Bayes factor, then, are closely related as
optimal support measures.

Clade posterior, bootstrap, and jackknife supports are also related, but as
average or expected support measures. Consider a distribution of trees p(T) =
g(T) (e.g. NCM with p(T) = rlp+1). We can define a value vT for each vertex on
each tree (Eq. 15.13).

vT =
{

0 v /∈ V
1 v ∈ V

(15.13)
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The expectation of a vertex is the product of the value and distribution of v
over all trees (Eq. 15.14).

E(v) =
∑

T∈ΩT

vT · g(T) (15.14)
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Figure 15.8: Parsimony (left) and likelihood (right) (under NCM (Tuffley
and Steel, 1997)) analysis of Giribet et al. (2001) arthropod anatomical data
(Wheeler and Pickett, 2008).
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For Bayesian methods, g(T) is the posterior probability of a tree given data
(T|D). Resampling methods yield a distribution of pseudoreplicate data sets,
each of which has a single strict consensus tree (Eq. 15.15).

D′ ← RAND(D)
T ′ = f(D′)

g(Ti) =
1
n

replicates∑
i

1 if Ti = T ′ (15.15)

Resampling methods and vertex posterior probabilities are measuring an ex-
pected or average level of support over all trees. This is still support, but of a
different type than optimal2. Wheeler and Pickett (2008) demonstrated this in
their analysis of arthropod anatomical data (Fig. 15.8). The branch support-
ing chelicerate monophyly had a clade posterior probability of 0.6 (Huelsenbeck
and Ronquist, 2003), while the alternate paraphyly in the parsimony analysis
had a Bremer support of 2, a jackknife support of 0.57, and a log likelihood
ratio/Bayes factor (under uniform tree priors) of 0.25. These are each support
measures, but support alternate groupings of the same taxa under the same
data and models.

15.5 Which to Choose?

There is no all-satisfactory measure of support since there is no consensual
notion of support. Alternate measures based on resampling, relative optimality,
and statistical distributions are all support measures. The key requirement is
to be able to relate the measure to the entity being measured. When we are
concerned with optimal trees, optimality-based measures are most closely linked.

15.6 Exercises

1. Consider the data of Dunn et al. (2008) treating gaps as character states.

Determine a reasonably good tree using parsimony.

Estimate the bootstrap tree using parsimony.

Estimate the bootstrap support values for your “good” tree using
parsimony.

Estimate the delete one-half jackknife tree using parsimony.

Estimate the delete one-half jackknife support values for your “good”
tree using parsimony.

Estimate the delete e−1 jackknife tree using parsimony.

2Clade posterior probabilities as support are also burdened with unavoidable clade size
effects (Sect. 12.3.6).
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Estimate the delete e−1 jackknife support values for your “good” tree
using parsimony.

Estimate the Bayesian clade posterior tree using No-Common-
Mechanism.

Estimate the Goodman–Bremer support for your best tree.

2. Repeat the above treating gaps as missing data.

3. What general conclusions can you draw from the previous two exercises?

4. If the number of character states were given as 21, when gaps were treated
as states, and 20 when gaps were treated as missing data, what would the
likelihood ratios be for the nodes on the two best trees under No-Common-
Mechanism using a Neyman model?

5. If the prior distribution on trees were taken to be uniform, and the universe
of topologies and their likelihoods determined by the Goodman–Bremer
results above (i.e. the n − 3 edges with support values represent the entire
universe of trees), what level of Bayesian credibility is represented by the
best tree(s) under No-Common-Mechanism with gaps treated as states
and missing data? How many trees are required to achieve 95% credibility?
How might you summarize this result?



Chapter 16

Consensus, Congruence,
and Supertrees

The methods discussed here take as input a set of trees and output a single
tree. As commonly used, consensus methods operate on tree sets where each
tree has the same leaf set as opposed to supertree methods, which operate on
trees with different leaf sets. In reality, such consensus methods are a subset
of supertree methods. In all cases, the primary goal is to represent areas of
agreement and disagreement among the input trees and produce a summary
statement in the form of a tree. None of the methods discussed below take
account of the underlying character data directly, but operate solely on the
topologies of their derived trees.

In general, consensus and supertree methods operate on sets of leaf taxa
defined by splits or rooted clades, looking for “common” information. As a
result, there are many shared operations among the procedures as well as subtle
and not so subtle differences.

16.1 Consensus Tree Methods

16.1.1 Motivations

Originally, consensus methods were derived to identify common information
between rival classifications (Adams, 1972). The notion was that inputs would be
rooted trees with identical leaf sets and the consensus should represent generally
shared information. The definition of shared has never been consensual, hence
a variety of techniques have arisen to solve this problem.

16.1.2 Adams I and II

Adams (1972) defined two consensus procedures to operate on rooted trees.
For convenience we can refer to these as Adams I and Adams II. Adams I

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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operates on fully labeled trees (internal vertices as well as leaves). Unlike other
methods, Adams I is ancestor-based, not descendant-based. If a labeled node
M has an ancestor L shared on all input trees, the edge L → M will exist on
the consensus even if M → (A,B) on one tree and M → (C,D) on another. The
method proceeds as follows:

1. Define the vertex set of each input tree Ti as VTi

2. Identify one of the input trees as T0

3. Begin at root

4. Choose vertex X on T0 that has no ancestor or a known ancestor (deter-
mined by a previous iteration)

Define Y = X ∩i VTi

If Y = ∅, discard X

Else, if X has no ancestors in Y, then X is a root of the consensus
(which could be a forest)

Else, define Z to be the set of vertices ancestral to X on all trees.
Connect X to the closest element in Z

5. Return to step 4 until all vertices are connected to an ancestor

The algorithm can be followed using Adams’ example (Fig. 16.1). The Adams I
consensus is rarely, if ever, employed. This is largely due to the fact that equiv-
alent labeled ancestors (with potentially different descendants) are unknowable.

The Adams II consensus operates on rooted trees with unlabeled internal
nodes. In order to construct the consensus, the method examines each progres-
sive split from the root to the leaves, joining the non-empty intersections (least
upper bound or LUB) of the splits in the input trees as sister taxa (Fig. 16.2).

1. Begin at the root vertex of the input trees

2. Define the sets of leaf taxa Ti,j for each tree i and groups j descendent
from the vertex (two if binary, more otherwise) after removing those leaf
taxa that have been placed on the consensus previously

3. Determine the LUB (Fig. 16.2) of each group (j) on each tree (i) with
each on the others

4. For each LUB

If the LUB is empty, ignore

Else, if the LUB had ≤ 2 leaves, place that LUB in the consensus as
a descendant of the vertex

Else, the LUB is a vertex for further analysis. Go to step 2

The algorithm can be followed using the example above (Fig. 16.3). Adams II
trees are also not in broad use in systematic analysis since (as in the example)
groups not present in any of the input trees can be part of the consensus. This
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Figure 16.1: Steps in the Adams (1972) I consensus. Input trees (left as T0)
above, and the consensus below. Note that ancestor (non-leaf vertex) N becomes
a leaf in the consensus and group (H, I,N) is not present in either of the input
trees.
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Figure 16.2: LUB of the Adams (1972) II consensus.
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feature can be useful, however, in identifying “wild card” taxa that have widely
differing positions on input trees with an underlying stable structure (e.g. as
can happen with large amounts of missing data1).

16.1.3 Gareth Nelson

Gareth Nelson

Many of the ideas employed by consensus tree techniques can be traced to
Nelson (1979). Although not an easy paper, and often misunderstood and mis-
interpreted, this work has all the basic elements of consensus methods. Nelson

1At least Darrel Frost says so.
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Figure 16.4: Michener (1977) analysis of allopadine bees based on multiple data
sources (Nelson, 1979).

began with a study of bees by Michener (1977) based on multiple sources of
morphological data (Fig. 16.4).

Nelson defined objects, relations, and operations to formalize consensus.
First off, he defined a component as a subtree or clade with ≥ 2 members (ver-
tex with ≥ 2 descendent leaves). He then defined three relationships possible
among components A and B on alternate trees: exclusion, inclusion, and repli-
cation (Eq. 16.1).

exclusion: A ∩ B = ∅ (16.1)
inclusion: A ∩ B ∈ {A,B}

replication: A = B

Two operations were also defined (Eq. 16.2).

combinability: A ∩ B ∈ {A,B, ∅} (16.2)
non-combinability: A ∩ B /∈ {A,B, ∅}
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Figure 16.5: Nelson I consensus based only on replicated components (Nelson,
1979).

Girded with these definitions, Nelson went on to define two consensus oper-
ations. The first was based on replication alone. We can call this the Nelson I
consensus. The Nelson I consensus of n input trees contains only those identical
(replicated) components (subtrees) present in ≥ 2 input trees (Fig. 16.5). The
second, Nelson II, for lack of a better name, was based on both replicated and
combinable components (Fig. 16.6) giving a “General Cladogram.”

Confusion has surrounded “Nelson” consensus due to Nelson’s definitions
of repeatability in terms of the number of input trees. When only two input
trees are considered, Nelson I is equivalent to the “Strict” consensus (below)
and Nelson II “Semi-Strict” (also below). When applied to more than two in-
put trees, the methodology is unique and possibly contradictory (there can be
conflicting replicated elements). Nelson consensus has been said to be strict,
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Figure 16.6: Nelson II consensus (“General Cladogram”) based on replicated
and combinable components (Nelson, 1979).
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semi-strict, majority-rule (if n = 3), and none of these, due to this factor. The
procedure, like the author, is brilliant, but often confusing. Nonetheless, the
elements and operations Nelson defined are carried through much of the later
consensus literature.

16.1.4 Majority Rule

Margush and McMorris (1981) made more precise the notion of comparison
among multiple trees (consensus n-trees) and advocated a majority-rule ap-
proach. In essence, if components conflicted among trees, those with more than
one-half representation would be present in the consensus tree. They showed
that a tree must exist for such groups. After presenting a clarified algorithm for
Adams II consensus, Margush and McMorris (1981) defined the majority-rule
consensus based on groups of leaf taxa, but it works equally well for splits. In
both cases, those groups components or splits present in more than one-half of
the input trees are present in the consensus (Fig. 16.7). Majority-rule consen-
sus is used often as a summary statistic in Bayesian analysis of clade posterior
probabilities as well as general summaries of cladogram variation. A benefit of
this form of consensus over more restrictive forms (such as strict, below), is that
the resulting consensus cladograms are, in general, more resolved. A drawback
is that there may be nearly as many groups that conflict as agree with the con-
sensus. Various groups may be universally supported, others only marginally so.

16.1.5 Strict

Randall T. SchuhSchuh and Polhemus (1980) (citing Nelson, 1979 in their study of the Lep-
topodomorpha) restricted themselves to universally replicated (sensu Nelson)
elements in describing Strict consensus2. In a rooted context, the consensus tree

A B C D E F D B C A E F A B C D E F

A B C D E F
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{DB}
{DBC}
{DBCA}
{BDCAEF}

{AB}
{ABC}
{ABCD}
{ABCDEF}

{AB}
{ABC}
{ABCD}
{ABCDEF}

Figure 16.7: Majority-rule consensus (below) based on frequently replicated
components in input trees (above) (Margush and McMorris, 1981).

2The name, however, comes from Sokal and Rohlf (1981).
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Figure 16.8: Strict consensus (below) based on universally replicated compo-
nents in input trees (above) (Schuh and Polhemus, 1980).

is constructed from those sets of leaf taxa common to all input trees. When deal-
ing with unrooted input trees, the consensus is based on splits that are common
to all inputs (Fig. 16.8). A strength of strict consensus is that its meaning is
absolutely clear. Any group (or split if unrooted) in the consensus is present in
all the input trees. A potential drawback is that a shift in a single taxon from
one side of a tree to another (in an otherwise stable tree of many taxa) will
result in a completely unresolved consensus, signifying correctly that there are
no shared groups.

16.1.6 Semi-Strict/Combinable Components

The semi-strict consensus (Bremer, 1990) attempts to strike a middle course
between the strict and majority-rule methods. An extension of the Nelson II
method, both universally replicated and universally combinable are included
in the consensus cladogram (Fig. 16.9). Semi-strict trees are often used in bio-
geography and in summarizing competing cladograms where it is thought that
absence of information should play no role in the final result. When the unre-
solved members of the combinable component set are due to character conflict,
the method is less favored.

K̊are Bremer

16.1.7 Minimally Pruned

In cases where “wild-card” taxa present themselves due to missing data or ex-
treme autapomorphy, it can be appealing to use common/minimally pruned
consensus (Gordon, 1980). The motivation comes from the observation that
there can be a small number of taxa that are placed seemingly randomly on a
backbone of well-structured taxa—the most extreme case being a taxon with no



16.1 Consensus Tree Methods 349

A B C D E F D B C A E F

A B C D E F

{AB}
{ABC}

{ABCD}
{ABCDE}

{ABCDEF}

{DB}
{DBC}
{DBCA}
{BDCAEF}

{ABCD}
{ABCDE}

{ABCDEF}

Figure 16.9: Semi-strict consensus (below) based on universally replicated and
combinable components in input trees (above) (Bremer, 1990).

data at all added to a perfect phylogenetic data set. There will be 2n − 5 place-
ments of the all-missing taxon and no shared groups or splits among them. If
that single taxon is pruned, however, absolute agreement is revealed (Fig. 16.10).
Although intuitively appealing, the determination of such a minimally pruned
tree is NP–hard and may be non-unique (multiple equally resolved prunings)
severely limiting its utility3.

A B C D E F A F B C D E A A C F D E

A B C D E F A B C D E F

Figure 16.10: Common-pruned consensus (below) based on removing taxon F
in the input trees (above) and placing it at the basal-most position on the tree
consistent with the input trees (Gordon, 1980).

3An alternative to this would be only those elements and taxa in common, the maximum
agreement subtree MAST (Finden and Gordon, 1985).
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16.1.8 When to Use What?

Not all instances of tree consensus are equal, requiring different applications of
consensus techniques. As pointed out by Nixon and Carpenter (1996a), when
faced with multiple equally optimal trees from a single analysis, only strict con-
sensus appropriately summarizes the implications of the data. Only universally
supported clades are unambiguously reported by a strict consensus approach.
Semi-strict, combinable component consensus trees may still contain groups that
are not required to make the input trees of minimal cost. In principle, the sit-
uation can occur where a group resolved (but not incompatible with others)
in a single output tree among k equally optimal solutions would be present in
the single output consensus. When summarizing results from multiple analy-
ses, however, (especially in biogeography where absence of information is often
thought not to be informative) semi-strict trees have a reasonable place.

James Carpenter Majority-rule consensus is frequently used to create summary trees for re-
sampling measures (bootstrapping, jackknifing) and Bayesian analysis. Param-
eter sensitivity variation can also be presented in this fashion. As long as the
distinctions between optimal and support-based trees are clear, these objects
can be useful summaries of support.

Those methods (e.g. Adams I and II) that produce groups not seen in any
of the input trees are never appropriate summaries of input trees. This seems a
basic point that is followed with near absolute agreement for consensus within
an analysis. Unfortunately, this clarity of reason has not fully carried over to
all areas of systematics and still lives in several commonly used techniques of
supertree analysis.

16.2 Supertrees

16.2.1 Overview

Supertree methods, like those of consensus, take a set of trees as input and pro-
duce a single tree as output. Unlike consensus techniques, supertree inputs can
vary in leaf complement, hence, are a more general approach. While consensus
approaches grew out of the desire to summarize the results of single analyses,
supertrees were initially conceived as ways to combine multiple analyses into
a single result without recourse to data analysis and combination. Specifically,
supertrees had the ability to place taxa that had never appeared together on a
single tree in any previous analysis. Supertrees, then, stand in contrast to “su-
permatrix” approaches of data combination and subsequent analysis. The speed
and avoidance of laborious data examination and time consuming searches on
large data sets recommends the method to many. The divorce of trees from
data-based hypothesis testing has equally discouraged many. This contrast will
be explored after the basic methods of supertree analysis are presented.

16.2.2 The Impossibility of the Reasonable

Michael Steel
Steel et al. (2000) enumerated a set of reasonable behaviors that should be pos-
sessed by supertree methods. They concern the relationships among the input
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trees and the (single) output supertree. The authors showed that no supertree
method could simultaneously meet many of these requirements a salutary, and
perhaps depressing, result.

The first three properties Steel et al. (2000) discussed were:

1. Order of input trees should be irrelevant

2. If leaves are renamed, the result (output supertree) is unchanged other
than the names

3. The output tree displays (contains the relationships of) the input trees
when they are compatible

When dealing with unrooted trees, these properties (P1-P3) cannot be real-
ized simultaneously. Steel et al. (2000) considered the input trees 12|45, 34|16,
and 56|23 and their two parent trees (Fig. 16.11). The two parent trees of Figure
16.11 are the only two candidates for a supertree solution that satisfy P3. If the
names of taxa 2 and 6 and 3 and 5 are exchanged, the input trees are simply
permuted (Fig. 16.12). Though the renaming simply permutes the input trees,
the same cannot be said of the output trees. The output trees are interchanged,
hence, if either had been chosen as the output supertree, it would have been
changed by the renaming—violating P3.

This result holds for unrooted trees, but P1-P3 can be realized for rooted
trees (Semple and Steel, 2000) via a graph method after Aho et al. (1981)
(BUILD below). Furthermore, as can the two additional properties:

• P4 Each leaf that occurs in at least one input tree is present in the
output.

• P5 The output tree can be determined in polynomial time.
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Figure 16.11: Three input trees (above) displayed by the two candidate
supertrees (below) (Steel et al., 2000).
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Figure 16.12: The trees of Figure 16.11 with taxa 2 and 6 and 3 and 5 exchanged
(Steel et al., 2000).

By the same logic of the P1-P3 case above, the authors showed that the
condition:

• P6 If all input trees contain ab|cd, then the output tree must contain ab|cd
cannot be realized simultaneously with P1 and P2. This result also applies
to rooted trees.

The two conditions for the rooted version are:

• P6’ If all input trees contain ab|c, then the output tree must contain ab|c.
• P7 If at least one input tree contains ab|c and no other trees contain ac|b

or bc|a, then the output tree must contain ab|c.
P1–P5 and P6’ can be achieved (e.g. Adams II; Chapter 15), but not P7. This
was shown by the example of four trees of five leaves each, each containing a
single resolved group (ab, bc, cd, de) (Fig. 16.13). A supertree result satisfying
P7 would have to simultaneously contain ab|e, bc|e, cd|a, and de|a, which cannot
occur.

A B C D E A B C D E A B C D E A B C D E

Figure 16.13: Five taxon–four tree case of Steel et al. (2000) showing the im-
possibility of satisfying condition P7.
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16.2.3 Graph-Based Methods

One of the first challenges to graph-based methods is to determine the compat-
ibility of input trees. If they are compatible (there are no contradictory splits
among the input trees) the trees can be combined directly. This problem was
shown to be NP–hard by Steel (1992) in the case of unrooted trees. For rooted
trees, this determination can be made in polynomial time by the BUILD algo-
rithm of Aho et al. (1981), with time complexity O(n2 log n).

BUILD Algorithm

The BUILD algorithm is based on identifying triples, ab|c in trees. At each step,
BUILD creates a graph where the vertices are the total leaf set (S) of all input
trees (T), and the edges connect vertices a and b that have an ab|c relationship
on at least one tree. If the resulting graph has more than one connected com-
ponent, recursively apply the graph step to each component until either there
are fewer than 3 vertices (which are then added to the output tree) or a single
component of three or more vertices is found signifying that the input trees are
not compatible.

1. Set S to leaf set from T (set of input trees).

2. If |S| < 3, connect to output tree C.

3. Else, construct a graph [R,S] of s via ab|c edges (creating an edge for each
derived pair in a triplet).

4. Let S0, . . . , Sk−1 denote connected components of [R,S]. If k = 1, then
STOP and output INCOMPATIBLE.

5. Else, for each i ∈ 0, . . . , k − 1 BUILD (Ti) from pruned T.

If the algorithm completes, the input trees are compatible (Fig. 16.14).

MinCut Algorithm

Semple and Steel (2000) modified the BUILD algorithm to produce a tree even
if the algorithm reaches a non-trivial single connected component (BUILD step
4 above). This is accomplished by noting not only that vertices a and b share an
ab|c relationship on at least one tree, but by enumerating how many input trees
display that triple. If the input trees are incompatible, when step 4 (above) is
reached, the maximum “weight” (in terms of triplets) edge is contracted and
the process continues (Fig. 16.15).

1. Set S to leaf set from T (set of input trees).

2. If |S| < 3, connect to output tree C.

3. Else, construct a graph [R,S] of s via ab|c edges.
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T1 T2 T3

A B C E C B E D A B F D

A

B

C

D

E

F

A B C C B A B F

A

B

C

F

A B C F D E

Input

Cluster via ab|c

Prune

Cluster via ab|c

Output

Figure 16.14: Example BUILD algorithm of Aho et al. (1981).

4. Let S0, . . . , Sk−1 denote connected components of [R,S]. If k = 1, then cre-
ate S \ Emax from ab|c edge weights. Contract Emax and cut all minimum
weight edges.

5. For each i ∈ 0, . . . , k − 1, MinCut (Ti) from pruned T.

In terms of the reasonable conditions enumerated above, MinCut realizes P1–P5
and P6’. The method is not, however, perfect. Like Adams II consensus trees
(above), MinCut can produce groups not present (and not implied) in any of
the input trees, even when the leaf sets are identical (Fig. 16.16).
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Figure 16.15: Example MinCut algorithm of Semple and Steel (2000).
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Figure 16.16: Example of MinCut algorithm showing two input trees and Min-
Cut output displaying two groups (AB and ABCE) neither supported nor im-
plied by the input trees (Goloboff and Pol, 2002).

16.2.4 Strict Consensus Supertree

An alternate treatment of incompatible trees came from Gordon (1986). Gordon
generalized the notion of strict consensus to overlapping, non-identical leaf sets.
The method is straightforward and clear. Groups contradicted among inputs
are not components of the output supertree (Fig. 16.17).

16.2.5 MR-Based

The most commonly used supertree methods are based on matrix representa-
tions of trees. These derive from Farris (1973b) group-inclusion characters where
the descendent leaves of each vertex (subtree) on a rooted tree are assigned “1”
and all others “0” (this can also be done on splits in an unrooted context)
(Fig. 16.18).
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A B C D E A B C D

A B C D E

{AB}
{ABC}

{DE}
{ABCDE}

{AB}
{CD}

{ABCD}

{AB}
{ABCDE}

Figure 16.17: Example Strict Supertree of Gordon (1986).

A B C D E F

I

II

III

Taxon I II III

A 1 1

B 1 1

C 1 0

D 1 0

E 1 0

F 0

1

1

1

0

0

0 0

Figure 16.18: Matrix representation after Farris (1973b).

Matrix Representation of Parsimony

Matrix Representation of Parsimony (Baum, 1992) (MRP), or its variations, is
the most commonly used supertree method. The central idea is to create a series
of characters, one for each vertex on each input tree as above, and treat this
matrix as a standard parsimony data set with binary characters and missing
data (Fig. 16.19).

Although popular, MRP is not without its critics. As pointed out by empir-
ical (e.g. Gatesy et al., 2004) and theoretical analysis (e.g. Goloboff and Pol,
2002; Goloboff, 2005), and even acknowledged by its most devoted adherents
(e.g. Bininda-Emonds et al., 2005), groups not present in any of the inputs can
be produced (Fig. 16.20) as well as groups contradicted by a majority of inputs
(Fig. 16.21). Furthermore, the time complexity of MRP is the same as that for
the original tree search, only with a new character matrix.

To me, these behaviors are so seriously pathological as to be disqualifying.
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A B C D E A B C D

A B C D E

Taxon I II
A 0
B 0
C 1
D 1

1
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Taxon I II III IV V
A 0 1 1
B 0 1 1
C 0 0 0
D 1 0 0
E 1

1
1
1
0
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0
0
1
1
? ?

Taxon I II III
A 0 1
B 0 1
C 0 0
D 1 0
E 1

1
1
1
0
0 0

Figure 16.19: Matrix Representation of Parsimony (Baum, 1992). The two upper
trees and their matrix representations are combined into the lower matrix that
then produces the lower tree after parsimony analysis.
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Figure 16.20: Example of MRP algorithm showing two input trees (T1 and T2),
their MRP matrix and resulting supertrees (1–4 and strict consensus for MRP)
displaying group AB that is not present in either of the input trees (Goloboff
and Pol, 2002).
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Figure 16.21: Example of MRP algorithm showing two input topologies, and
resulting supertree displaying groups (RTVX) and (SUWY) contradicted by 9
of 10 input trees (Goloboff, 2005).

Variations

There are many variations on the MRP theme (14 alternates reviewed in Wilkin-
son et al., 2005; Fig. 16.22). Each has adherents and detractors, and the justi-
fications are generally ad hoc. The problems of novel and contradicted groups
are either likely to or known to occur in all these methods.

• Standard MRP (Baum, 1992).

• Irreversible MRP (Bininda-Emonds and Bryant, 1998).

• Compatibility MRP (Purvis, 1995b).

• Sister-Group MRP (Purvis, 1995a).

• Three-Taxon-Analysis (Nelson and Ladiges, 1994).

• Quartet MRP (Wilkinson et al., 2001).

• Min-Flip (Chen et al., 2003).

16.2.6 Distance-Based Method

Lapointe and Cucumel (1997) took a different, distance-based, approach to the
supertree problem. These authors took each phylogenetic matrix and converted
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Figure 16.22: Example behavior of a variety of supertree methods (Wilkinson
et al., 2005).

it into a distance. An overall average distance (d̄) among |T| datasets was then
created from these values (Eq. 16.3).

d̄ij =
1
|T|

|T |−1∑

k=0

dk
ij (16.3)

The supertree itself is contructed via standard distance techniques such as min-
imum evolution (Chapter 9; Fig. 16.23).
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Figure 16.23: Distance supertree (Lapointe and Cucumel, 1997) based on mar-
supial data.
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16.2.7 Supertrees or Supermatrices?

Supertrees have been proposed as a solution to the problems presented by large,
combined data sets. As such, they are to be compared to total-evidence based
“supermatrix” analyses (Fig. 16.24). Given that analyses can now be performed
on commodity hardware that contain tens of thousands of taxa (Goloboff et al.,
2009) and multiple genetic and morphological data sources, computational effort
can no longer be viewed as a justification4.

A second rationale is that supertrees are agnostic as to the epistemological
basis of the input trees. The source trees may be based on distance, parsimony,
likelihood, or posterior probability—or any combination. This is true, but can
only be viewed as a strength if the investigator has no rationale or preference for
optimality criteria (e.g. would alphabetical order be an acceptable criterion?).
A further implication of this is that supertrees can only be tested against each
other in their ability to minimize an overall tree difference cost. That this is a
legitimate form of hypothesis testing is yet to be justified.

Perhaps the most important distinction between supermatrix and supertree
approaches is the use of observational data (from whatever source). Supermatrix
analysis evaluates hypotheses based on the totality of data. Hypotheses are

Super-Matrix

Super-Tree

Pro Con

Evidence-based

Differential support

Transformational optimality

Hypothesis testing
via observation = homology

Hard work

Missing/Inapplicable data

Need to choose a criterion

Higher time complexity

Disconnected from data

Include groups found in no trees

Lack groups found in all trees

Hypothesis testing

via concordance (at best)

Data quality, non-independence

untested

No data work

Lower time complexity

Combine results
from different optimalities

Figure 16.24: Pros and cons of supertree and supermatrix analyses.

4Furthermore, the simulation study of Kupczok et al. (2010) reported superior results for
supermatrix analysis with respect to supertree methods in recovering the simulated “true”
tree.
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erected and competed via their ability to explain variation in nature. Supertrees
are completely divorced from this idea. Whether a tree is supported by one
character or an entire genome, by decisive or ambiguous data, is completely
irrelevant to the process. Supertrees make no allowance for differential support
or underlying patterns. In doing so, they avoid the hard work in creating large
coherent data matrices, but pay a price in terms of interpretive opacity and data
free results.

The central question is would anyone ever favor a supertree result over one
based on a supermatrix5? Until this question is resolved, it is unclear whether
supertrees are necessary or desirable.

16.3 Exercises

For the first seven exercises below, consider the tree set of Figure 16.25. For the
final two exercises below, consider the tree set of Figure 16.26.

1. Construct the Adams I consensus tree.

2. Construct the Adams II consensus tree.

3. Construct the Nelson I consensus tree.

4. Construct the Nelson II consensus tree.

A B D E

II

III

V

C B D F

I

III

C A F E

III

III
IV

Figure 16.25: Input trees for consensus Exercises 1 to 7.
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I

III

V

A B C D F E

I
II

III

IV V

Figure 16.26: Input trees for supertree Exercises 8 and 9.

5Buerki et al. (2011) evaluated supertree methods based on concordance with the super-
matrix, somewhat undercutting the rationale for the technique.
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5. Construct the Majority Rule consensus tree.

6. Construct the Strict consensus tree.

7. Construct the Semi-Strict consensus tree.

8. Construct the MinCut supertree.

9. Construct the MRP supertree.

10. What is your position in the supermatrix–supertree debate?



Part V

Applications



Chapter 17

Clocks and Rates

Since Zuckerkandl and Pauling (1962, 1965), the dating of phylogenies with
molecular data has been a siren call. At first, the “molecular clock” was em-
braced (by some) and used in simple linear dating based on the regression of
molecular distance and one or more fixed dates based on fossils or vicariant
events. More recently, this has become more sophisticated with the use of mul-
tiple rates and sequence change models. The goal is the same, and perhaps just
as elusive.

Emil Zuckerkandl

17.1 The Molecular Clock

Zuckerkandl and Pauling (1962) examined vertebrate hemoglobin protein se-
quences and noted the approximate constancy of changes in lineages dated with
fossils from the presumed root to observed extant taxa. From this, they proposed
an extrapolation to all molecules and lineages, stating that such molecular ana-
lysis could date events about which we have no fossil information.

Linus Pauling
(1901–1994)

It is possible to evaluate very roughly and tentatively the time that
has elapsed since any of the hemoglobin chains present in a given
species and controlled by non-allelic genes diverged from a common
chain ancestor. ... From paleontological evidence it may be estimated
that the common ancestor of man and horse lived in the Cretaceous
or possibly the Jurassic period, say between 100 and 160 million
years ago. ... the presence of 18 differences between human and horse
α-chains would indicate that each chain had 9 evolutionary effective
mutations in 100 to 160 millions of years. This yields a figure of
11 to 18 million years per amino acid substitution in a chain of
about 150 amino acids, with a medium figure of 14.5 million years.
(Zuckerkandl and Pauling, 1962)1

1More can be found on the development and controversies over attribution in Morgan
(1998).

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.
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Zuckerkandl and Pauling did not go into great detail in their analysis, and later
authors expanded upon this idea to both general molecular calibration and
“neutral” molecular evolution (Kimura, 1983).

17.2 Dating

Before immersing ourselves in rate models and tests, it is worth returning to
the nature of the dating process used to calibrate molecular time analyses.

First, as Hennig (1966) described, if a fossil date is known for a taxon, its
sister taxon must have been present at that time as well. This is due to the simple
logic of lineage splitting. When a lineage splits, two (sister) taxa are created at
the same time, hence have the same age. Furthermore, if two sister lineages
have been dated, the older date applies to both lineages. All age scenarios are
compatible with all trees. The sister-taxon relationships, and hence minimum
taxon age dates, may change, but dating scenarios do not discriminate among
trees. This idea has been developed further into the ghost taxon concept (Norell,
1987, 1992) for estimating paleo-diversity.

Second, fossil dates yield minimum ages. Fossilization is not a high proba-
bility event, and the chance that this occurred immediately following a splitting
event is impossibly small. Furthermore, the fact that the fossil specimen is rec-
ognizable as a member of a particular lineage implies that enough time has
intervened to allow for the acquisition of apomorphies. Again, unlikely in the
immediate aftermath of a splitting event.

Third, ages are not absolute, precise values. Many dates are relative (stratum-
based), or derived from radiometric dating above and below (not exactly at) the
specimen. Additionally, the dating methods themselves are not without measure-
ment error. These factors are discussed in greater detail below.

Fourth, vicariance-based dates have the same sort of imprecision of radio-
metric dates, compounded by uncertainty in timing and sequence of land-mass
splitting and union. An additional factor is the confounding effect of dispersal.
Vicariance is not the only means to account for taxonomic distributions, and
dispersal may have occurred well after dramatic events (e.g. primates found in
South America and Africa are well supported to have a more recent shared his-
tory than the land masses). Furthermore, lineage splitting could have occurred
well before that of the land mass. In summary, lineages could have split before,
during, or after tectonic change and not necessarily in sync.

17.3 Testing Clocks

17.3.1 Langley–Fitch

The first test of clock like behavior in molecular data was that of Langley and
Fitch (1974). This method treats amino-acids (or other sequence data) as non-
additive (Fitch, 1971) characters. Parsimonious character changes are assigned
to each of the edges of the (given or reconstructed) tree. These values are used to
estimate the edge parameters under a (now standard) Poisson process likelihood



366 Clocks and Rates

10 20 30 40 50 60 70 80 90 100 110 120 130 190 200 210

10

1
1.4

2
0.9

3

5

6

0.6

0.8

1.2

1.2

1.2

0.7

0.7

1.4

1.4

1.4

14

15

1.7

3.2
16

17
1.5

0.9

0.7

0.7
0.8

12
1.9

1.8

1.3

1.5
1.3

11
1.7

9

8

7

2.0

1.0

1.0

0.5

0.8

0.8
10

1.1

13

4

HUMAN

GORILLA

GIBBON

MONKEY

RODENT

RABBIT

DOG

HORSE

DONKEY

PIG

LLAMA

SHEEP

GOAT

COW

KANGAROO

CHICKEN

FROG

FISH

20 30 40 50 60 70 80 90 100 110 120 130 190 200 210

Figure 17.1: Langley and Fitch (1974) “observed” and corrected α and β
hemoglobins, cytochrome c, and fibrinopeptide A edge lengths.

Uncorrected

χ2 (df ) (df ) P<P< χ2

102.7 102.7(62) (62)10−3 10−3

63.0 48.7 0.002(26) (24)10−4

165.7 151.4(88) (86)10−5 10−4

Corrected

Among proteins within legs
(relative rates)

Among legs over proteins
(total rates)

Total

Figure 17.2: Langley and Fitch (1974) test of clocklike behavior of α and β
hemoglobins, cytochrome c, and fibrinopeptide A.

model (Fig. 17.1). The clock test in the model is based on the proportionality
of probabilistic change to “observed” (actually inferred) parsimony changes.
The proportionality of change over the edges of the tree is tested against a χ2

distribution with 2n − 3 degrees of freedom for n taxa (Fig. 17.2).
With this method, Fitch and Langley rejected clocklike behavior among the

vertebrate lineages and among proteins. They did, however, say that the implied
molecular dates correlated well with paleontological dating.

17.3.2 Farris

Farris (1981) tested (and attacked) the clock idea in a more direct and simple
manner. If there were a molecular clock, at least in the strict sense, the distance
data would be ultrametric (or at least additive; Sect. 9.3). Furthermore, if this
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were the case, then UPGMA (Chapter 9) would be the correct and efficient
means to reconstruct phylogenetic trees. Farris then pointed out that ultramet-
ric non-trivial data sets are exceedingly rare (if they exist at all—I for one do
not know of any). Furthermore, corrections to real distance data to account for
unobserved change do not restore ultrametricity or additivity (and may even
increase their violation; see Sect. 9.2.1). More hopeful investigators (e.g. Felsen-
stein, 2004) held out that even though Farris was correct, “minor” violation of
a clock was not enough to falsify the idea.

17.3.3 Felsenstein

Felsenstein (1984) proposed an alternate test of clocks based on the least-squares
fitting of distance data to a tree (see Chapter 9). This method employs a common
strategy of testing alternate tree fit scenarios, one where the clock is enforced via
leaf to root distances being equal (S1), and the second where this constraint is
absent (S0). The unconstrained tree cost cannot be worse than the constrained,
and the test is to see whether there is a significant difference between the two. In
the case of least-squares estimated distances, the test statistic is the difference
in sum of squares between the two trees divided by that of the unconstrained,
S1−S0

S0
. This would be distributed as F with (n − 1, n2 − 3n + 3) degrees of free-

dom (or (n−2)(n−3)
2 in the denominator if distances are averaged between i → j

and i ← j).
An analogous test for likelihood was proposed by Felsenstein (1981). Con-

sider the tree of Figure 17.3. A clock (not absolute in this case, but for sister
taxa) would add the following constraints:

V1 = V2

V4 = V5

V3 = V4 + V7, V5 + V7

V1 + V6, V2 + V6 = V3 + V8, V4 + V7 + V8, V5 + V7 + V8

1

V1

V2

V6

V3
V4

V5

V7

V8

0

8

6 7

2 3

4

5

Figure 17.3: Felsenstein (1984) test of clocklike behavior.
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A likelihood ratio test (−2 · (log likS0 − log likS1)) can then be performed be-
tween the constrained and unconstrained tree with n − 1 degrees of freedom
(the number of free edges that differ between the two scenarios). This test is
less restrictive than that requiring all paths to the root be equal, but will still
nearly always reject a clock with real data (e.g. Bell and Donoghue, 2005).

17.4 Relaxed Clock Models

Even though many would say the molecular clock was dead with Farris (1981),
it lived on until the mid 2000s when statistical methods were developed that
allowed dating without a strict clock. The techniques below each allow variation
in rates over edges to a greater or lesser extent. In order to keep the variance
of internal dating under control, however, there are limits of varying types. At
present, there are a large variety of molecular dating techniques (see Rutschman,
2006 for a review); discussed here are three classes into which most methods fall:
local clocks, rate smoothing, and Bayesian relaxed clock methods.

17.4.1 Local Clocks

If the global clock represents one (rejected) extreme, and each edge having its
own rate the other, local clocks are an intermediate form (Hasegawa et al.,
1989; Yoder and Yang, 2000). In this approach, edges are placed into categories
with a specific rate parameter. The categories may be aspects of their biology
(herbaceous and non-herbaceous plants—Bell and Donoghue, 2005) or groups
(subtrees). The key aspect is that these categories are identified a priori as
constraints on the likelihood analysis. This is also the weak point of the method
in that this identification, especially in absence of a tree, can be problematic.

17.4.2 Rate Smoothing

Rate smoothing methods allow all edges to have unique rate parameters in
principle, but restrict the abruptness of transitions between adjoining edges. The
idea is that there is a correlation in rates between edges: the closer they are, the
more similar they are likely to be. This has been implemented in several ways.

Non-Parametric Rate Smoothing

The first of the rate smoothing techniques, NPRS (Sanderson, 1997), estimates
local rates for each edge (r̂i) and minimizes the transitions between descendent
rates over the tree, W, (Eq. 17.1).

W =
∑

k∈ internal vertices

∑
j is descendent edge of k

|r̂k − r̂i| (17.1)

Michael J. Sanderson Sanderson (2002) pointed out that NPRS is prone to over-fitting rate changes,
leading to high variance time estimates. This leads to the idea of more severely
penalizing changes in rate (below).
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Penalized Likelihood

Penalized likelihood (Sanderson, 2002) combined likelihood and a “roughness”
parameter to penalize rapid rate transitions between edges. In this way, the
method reduces rate variation over NPRS. The penalty, Φ, is determined by the
sum of squares of rate differences between adjacent edges, augmented by the
variance in the rate of the edge and root edge (Eq. 17.2).

Φ =

⎡
⎣ ∑

k∈ internal vertices, not root

(
rk − ranc(k)

)2

⎤
⎦ + Var (rk, rroot) (17.2)

Log Φ multiplied by the smoothing factor (λ) is then subtracted from the log
likelihood of the tree given the rates. This reduces the optimality of the tree
based on the degree of rate variation. This is certainly a penalty, yet the jus-
tification seems to me to be unclear, since rate homogeneity hardly seems the
default expectation and could well be its opposite.

Heuristic Rate Smoothing (HRS)

HRS Yang (2004) contains elements of local clocks as well as NPRS. HRS
examines variation across edges of the tree and across multiple locus-based trees
without a clock constraint. These provide variance estimates, allowing the as-
signment of edges and genes to rate categories as in local clocks. These categories
then are combined in a master tree analysis yielding divergence times.

17.4.3 Bayesian Clock

Bayesian rate methods (Thorne et al., 1998; Kishino et al., 2001; Thorne and
Kishino, 2002) approach edge rate variation in an appropriately Bayesian
manner—with priors. Employing a variety of prior probability distributions on
edge rates (e.g. log-normal, exponential), these methods are able to evaluate
trees with unique rates for each edge. Correlation among rates, as in NPRS,
can be tested after the analysis to form the MAP solution. These methods
rely on MCMC procedures and can be quite time consuming (see below), but
offer freedom from much of the cumbersome and ad hoc machinery of other
methods.

Jeffrey L. Thorne

17.5 Implementations

Three commonly used implementations are discussed briefly here.

17.5.1 r8s

r8s (Sanderson, 2003, 2004) implements the (Langley and Fitch, 1974) NPRS
(Sanderson, 1997) and PL (Sanderson, 2002) methods. The program requires
an input tree as well as at least one fixed date (Fig. 17.4).
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Figure 17.4: r8s (Sanderson, 2003) rate smoothed dating of tree.

17.5.2 MULTIDIVTIME

MULTIDIVTIME is an implementation of the Bayesian rate model and date
determinations. Like BEAST (below) it sets priors on edge rates and uses an
MCMC approach to determining the posterior probabilities of dates and rates
(Thorne et al. (1998); Kishino et al. (2001); Thorne and Kishino (2002)). MUL-
TIDIVTIME operates on a single input tree, but can accommodate multiple
genetic data sets (Fig. 17.5).

17.5.3 BEAST

BEAST (Drummon et al., 2006; Drummon and Rambaut, 2007) is a fully
Bayesian approach to tree estimation (even from unaligned sequences via Thorne
et al., 1992) as well as dating. BEAST uses a Yule prior on tree topology favor-
ing specific tree shapes over others. Given the totality of tasks BEAST attempts
to solve, it can be extremely time consuming (Fig. 17.6).

17.6 Criticisms

Graur and Martin (2004) discuss (in enjoyably forceful language) a selection of
the many shortcomings of dating procedures, most specifically those of Hedges
et al. (1996). They raise four issues with molecular dates:

Daniel Graur 1. Incorrect identification of fossil taxa.

2. Error in age estimation of a particular fossil.
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3. Regression error in dates (especially during extrapolation beyond range of
actual dates).

4. Recycling of estimated dates as observed dates without error.

Each of these general faults is exemplified by Hedges et al. (1996) in a study
of the diversification of birds and mammals. As mentioned above, to assign
a date to a clade, the fossil taxon employed must be a member of it. Graur
and Martin (2004) point out that the central dating point is attached to an
amniote of uncertain affinity. In addition to this, the date attached to the taxon
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Figure 17.5: MULTIDIVTIME (Thorne and Kishino, 2002) Bayesian dating
of tree.
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is unsupported by the cited literature. Other literature has a different date from
that used by Hedges et al. (1996). Furthermore, the date is used as if it were
absolute and without error. As mentioned earlier, fossil dates are often relative,
and even radiometric data are based on an interval containing a specimen and
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are further subject to observational error as are all aspects of experimental
science. These errors are exacerbated by incorrect extrapolation variance in
the use of dating regressions and (perhaps worst of all) estimated dates used
(without error) as if they were observed.

Another salutary case is that of Near et al. (2005), reanalyzed by Parham and
Irmis (2008). Of the 17 literature dates cited in their dating of turtle divergences,
15 of the dates are not even mentioned in the literature cited, and two are used
with a spurious precision of 1 part in 2000 (when authors used words such as
“about” and “approximately” to characterize the dates). This was coupled with
an analysis-free and idiosyncratic placement of a key taxon making their dating
extremely suspect.

There are two sorts of problems with the above examples: those that are
inherent to the methods, and those that come about by misuse, poor scholar-
ship, or over-interpretation of results. Obviously, it is not the fault of methods or
their implementations if they are improperly used, but this still leaves the crucial
factor of error analysis. Although improving, the incorporation of the myriad
sources of experimental, topological, and statistical (i.e. regression) error must
be incorporated into the determination of dates. When they are, errors of mag-
nitude comparable to or even exceeding the estimated dates can be achieved
(Graur and Martin, 2004; Pulquério and Nichols, 2006).

17.7 Molecular Dates?

Recent Bayesian methods have made great progress in allowing edge-specific rate
parameters. This does come at the usual Bayesian price of the necessary prior
distributions. What is a reasonable prior for evolutionary rates on tree edges?
Given our lack of knowledge, sampling, lineage, environmental, and locus specific
(among myriad known and unknown other) effects, the uniform distribution
would seem as appropriate as log-normal or exponential. Such a prior is likely
to lead to large uncertainty in estimated dates, leaving us where we were initially,
with rock solid, if limited, minimum ages based on sister taxon relationships.

The central question remains—can hypotheses be falsified with “molecular”
dates? Are these estimates sufficiently precise to adjudicate between biogeo-
graphic or other scenarios? This does not appear to be the case at present, but
time will tell.

17.8 Exercises

1. Should dates be used in tree construction? What would be the optimality
criterion?

2. How much variation in a date can be allowed and the date still be useful?

3. What are the pros and cons of different prior distributions for edge rate
parameters?



Appendix A

Mathematical Notation

Commonly used mathematical symbols.

A = argmaxx f(x) A is set to the value of x that maximizes f(x).∑b
a f(x) summation of f(x) from x = a to x = b.

∏b
a f(x) product of f(x) from x = a to x = b.

∀x ∈ X for all elements x contained in the set X such as x0, x1

etc.
Xi the ith element in a collection (set or array) of objects

X such as x0, x1 etc.
|X| the size of an object such as the cardinality (number of

elements) of a set or the length of an array.
n! n factorial.

∏i=n
i=2 i or n · (n − 1) · (n − 2) · . . . · 2.

X \ Y the set created by subtracting the elements of set Y from
set X.

|x| absolute value of x.
R+ the set of positive real numbers.
X ⊆ Y X is a subset of or equal to Y.
X � Y X is not a subset of or equal to Y.
X � Y X is a proper subset of Y.
�X� the largest integer ≤ than X.
X ∩ Y intersection of sets X and Y.
X ∪ Y union of sets X and Y.
∅ the empty set.
X ← Y assignment of Y to X.(
x
y

)
binomial expansion of x and y = x!

y!(x−y)! .
log∗ x iterated logarithm. The number of applications of log

until the result is ≤ 1.

Systematics: A Course of Lectures, First Edition. Ward C. Wheeler.
c© 2012 Ward C. Wheeler. Published 2012 by Blackwell Publishing Ltd.



Mathematical Notation 375

Ac complement of set A (S \ A).
A ∴ B A therefore B.
ab|cd unrooted tree ((a, b)(c, d)).
a|bc rooted tree (a(b, c)).
x ∈ (a, b) values x in the interval a < x < b.
x ∈ [a, b] values x in the interval a ≤ x ≤ b.
a ∝ b a is proportional to b.
∃ there exists.
� there does not exist.
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Grundzüger der orgaischen Formen-Wissenschaft, mechanisch begründet
durch die von C. Darwin reformirte Decendenz-Theorie. G. Reimer, Berlin.
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Hennig, W. 1950. Grundzüge einer Theorie der Phylogenetischen Systematik.
Deutcher Zentralverlag, Berlin.

Hennig, W. 1965. Phylogenetic systematics. Ann. Rev. Entomol. 10:97–116.



390 BIBLIOGRAPHY

Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana.

Hey, J. 1992. Using phylogenetic trees to study speciation and extinction. Evo-
lution 46:627–640.

Higgins, D. G. and Sharp, P. M. 1988. Clustal: A package for performing multiple
sequence alignment on a microcomputer. Gene 73:237–244.

Hillis, D. M., Bull, J. J., White, M. E., Badgett, M. R., and Molineux, I. J.
1992. Experimental phylogenetics: Generation of a known phylogeny. Science
255:589–592.

Hillis, D. M. and Bull, J. T. 1993. An empirical test of bootstrapping as a method
for assessing confidence in phylogenetic analysis. Syst. Biol. 42:182–192.

Hirosawa, M., Totoki, Y., Hoshida, M., and Ishikawa, M. 1995. Comprehensive
study on iterative algorithms of multiple sequence alignment. Comput. Appl.
Biosci. 11:13–18.

Hofacker, I. L., Bernhart, S. H. F., and Stadler, P. F. 2004. Alignment of RNA
base pairing probability matrices. Bioinfo. 20:2222–2227.

J. H. Holland (ed.) 1975. Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press, Ann Arbor, Michigan.

Holmes, I. and Bruno, W. J. 2001. Evolutionary HMMs: a Bayesian approach
to multiple alignment. Bioinfo. 17:803–820.

N. Houser, D. D. Roberts, and J. V. Evra (eds.) 1997. Studies in the Logic of
Charles Sanders Peirce. Indiana University Press, Bloomington, IN.

Hromkovic, J. 2004. Theoretical Computer Science, Introduction to Automata,
Computability, Complexity, Algorithmics, Randomization, Communication,
and Cryptography. Springer-Verlag, Berlin.

Huelsenbeck, J. P. and Ronquist, F. 2003. MrBayes: Bayesian inference of
phylogeny, 3.0 edition. Program and documentation available at http://
morphbank.uuse/mrbayes/.

Hughey, R. and Krogh, A. 1996. Hidden Markov models for sequence analysis:
extensions and analysis of the basic method. Comput. Appl. Biosci. 12:95–107.

Hull, D. L. 1976. Are species really individuals? Syst. Zool. 25:174–191.

Hull, D. L. 1978. A matter of individuality. Philosophy of Science 45:335–360.

Hull, D. L. 1988. Science as a Process: An Evolutionary Account of the So-
cial and Conceptual Development of Science. University of Chicago Press,
Chicago.

Hull, D. L. 1997. The ideal species concept–and why we can’t get it, pp. 357–380.
In M. F. Claridge, H. A. Dawah, and M. R. Wilson (eds.), Species: The units
of biodiversity. Chapman and Hall, London.



BIBLIOGRAPHY 391

Hume, D. 1748. An Enquiry concerning Human Understanding, T. Cadell,
London.

Huson, D., Nettles, S., and Warnow, T. 1999. Disk-covering, a fast converging
method for phylogenetic tree reconstruction. J. Comput. Biol. 6:368–386.

Huson, D. H. and Steel, M. 2004. Distances that perfectly mislead. Syst. Biol.
53:327–332.

J. Huxley (ed.) 1940. The new systematics. Oxford University Press, London.
583 pp.

Huxley, J. S. 1959. Grades and clades, pp. 21–22. In A. J. Cain (ed.), Function
and taxonomic importance, number 2. Systematics Association, London.

Huxley, T. H. 1863. The structure and classification of the Mammalia. Hunterian
Lectures. Medical Times and Gazette, Volume 1, pp. 607.

Jardin, N. 1970. The observational and theoretical components of homology: a
study based on the morphology of the dermal skull-roofs of rhipidistian fishes.
Biol. J. Linn. Soc. 1:327–361.

Jensen, J. L. and Hein, J. 2005. Gibbs sampler for statistical multiple alignment.
Statistica Sinica 15:889–907.

Jin, G., Nakhleh, L., Snir, S., and Tuller, T. 2006. Maximum likelihood of
phylogenetic networks. Bioinformatics 22:2604–2611.

Jukes, T. H. and Cantor, C. R. 1969. Evolution of protein molecules, pp. 21–132.
In N. H. Munro (ed.), Mammalian Protein Metabolism. Academic Press,
New York.

Karp, R. 1972. Reducibility among combinatorial problems, pp. 85–104. In
R. Miller (ed.), Complexity of Computer Computation. Plenum Press, New
York.

Kass, R. E. and Raftery, A. E. 1995. Bayes factors. Journal of the American
Statistical Association 90:773–795.

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. 2002. MAFFT: a novel
method for rapid multiple sequence alignment based on fast fourier transform.
Nucl. Acid. Res. 30:3059–3066.

Kendall, M. and Stuart, A. 1973. The advanced theory of statistics, volume
2nd. Haffner, New York, 3rd edition.

Kidd, K. K. and Sgaramella-Zonta, L. A. 1971. Phylogenetic analysis: concepts
and methods. Am. J. Hum. Genet. 23:235–252.

Kim, J. 1998. Large-scale phylogenies and measuring the performance of phy-
logenetic estimators. Syst. Biol. 47:43–60.

Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge Uni-
versity Press, Cambridge.



392 BIBLIOGRAPHY

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. 1983. Optimization by simu-
lated annealing. Science 220:671–680.

Kishino, H. and Hasegawa, M. 1989. Evaluation of the maximum likelihood
estimate of the evolutionary tree topologies from DNA sequence data, and
the branching order in Hominoidea. J. Mol. Evol. 29:170–179.

Kishino, H., Thorne, J. L., and Bruno, W. J. 2001. Performance of divergence
time estimation method under a probablistic model of rate evolution. Mol.
Biol. Evol. 18:352–361.

Kjer, K. M. 2004. Aligned 18S and insect phylogeny. Syst. Biol. 53:506–514.

Kleene, S. C. 1936. General recursive functions of natural numbers. Mathema-
tische Annalen 112:727–742.

Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of
relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38:7–25.

Kluge, A. G. 1997. Testability and the refutation and corroboration of cladistic
hypotheses. Cladistics 13:81–96.

Kluge, A. G. 1998. Sophisticated falsification and research cycles: Consequences
for differential character weighting in phylogenetic systematics. Zoologica
Scripta 26:349–360.

Kluge, A. G. 2005. What is the rationale for ‘Ockham’s razor’ (a.k.a. parsimony)
in phylogenetic analysis, pp. 15–42. In V. Albert (ed.), Parsimony, Phylogeny,
and Genomics. Oxford University Press, Great Britain.

Kluge, A. G. 2009. Explanation and falsification in phylogenetic inference:
Exercises in Popperian philosophy. Acta Biotheoretica 57:171–186.

Knuth, D. 1973. The Art of Computer Programming. Addison-Wesley, Reading,
MA.

Kolaczkowski, B. and Thornton, J. W. 2004. Performance of maximum parsi-
mony and likelihood phylogenetics when evolution is heterogeneous. Nature
431:980–984.

Kolaczkowski, B. and Thornton, J. W. 2009. Long-branch attraction bias and
inconsistency in Bayesian phylogenetics. PLOS One 4:e7891.

Kornet, D. J. 1993. Permanent splits as speciation events: a formal reconstruc-
tion of the internodal species concept. J. Theor. Biol. 164:407–435.
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C. R. Acad. Sci. Paris, Sciences de la vie 323:153–165.

Linnaeus, C. 1753. Species Plantarum. Holmiae, Stockholm.

Linnaeus, C. 1758. Systema Naturae. Holmiae, Stockholm. 10th edition.

Lipscomb, D. L., Farris, J. S., Kallersjo, M., and Theler, A. 1998. Support,
ribosomal sequences and the phylogeny of the eukaryotes. Cladistics 14:
303–338.

Little, A. T. D. P. and Farris, J. S. 2003. The full-length phylogenetic tree from
1551 ribosomal sequences of chitinous fungi, Fungi. Mycological Research
107:901–916.

Liu, K., Nelesen, S., Raghavan, S., Linder, C. R., and Warnow, T. 2009. Barking
up the wrong treelength: The impact of gap penalty on alignment and tree
accuracy. IEEE Trans. Comput. Biol. Bioinf. 6:7–20.
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Pulquério, M. J. and Nichols, R. A. 2006. Dates from the molecular clock: how
wrong can we be? Trends Ecol. Evol. 22:180–184.

Purvis, A. 1995a. A composite estimate of primate phylogeny. Phil. Trans. R.
Soc. Lond. B 348:405–421.

Purvis, A. 1995b. A modification to Baum and Ragan’s method for combining
phylogenetic trees. Syst. Biol. 44:251–255.

Quenouille, M. H. 1949. Approximate tests of correlation in time-series. J. R.
Statist. Soc. B 11:68–84.

Quenouille, M. H. 1956. Notes on bias estimation. Biometrika 43:353–360.

Ramı́rez, M. J. 2007. Homology as a parsimony problem: a dynamic homology
approach for morphological data. Cladistics 23:1–25.

Rannala, B. and Yang, Z. 1996. Probability distribution of molecular evolution-
ary trees: A new method of phylogenetic inference. J. Mol. Evol. 43:304–311.

Raup, D. M., Gould, S. J., Schopf, T. J., and Simberloff, D. S. 1973. Stochastic
models of phylogeny and the evolution of diversity. J. Geol. 81:525–542.

Ray, J. 1686. Historia Plantarum.

Redelings, B. D. and Suchard, M. A. 2005. Joint Bayesian estimation of align-
ment and phylogeny. Syst. Biol. 54:401–418.

Reeder, J. and Giegerich, R. 2005. Consensus shapes: an alternative to the
Sankoff algorithm for RNA consensus structure prediction. Bioinformatics
21:3516–3523.

Regan, C. T. 1926. Organic evolution. Rept. British Assoc. Advmt. Sci.
1925:75–86.

Reidl, R. 1978. Order in living organisms: a systems analysis of evolution. Wiley,
Chichester.



402 BIBLIOGRAPHY

Rieppel, O. C. 1988. Fundamentals of comparative biology. Birkhauser Verlag,
Basel, Boston, Berlin.

Remane, A. 1952. Die Grundlagen des Naturlichen Systems der Vergleichenden
Anatomie und der Phylogenetik. Geest and Portig, Leipzig, Germany.

Rice, K. A., Donoghue, M. J., and Olmstead, R. G. 1997. Analyzing large data
sets: RBCL 500 revisited. Syst. Biol. 46:554–563.

Richards, R. 2005. The aesthetic and morphological foundations of Ernst
Haeckel’s evolutionary project. In M. Kemperink and P. Dassen (eds.), The
Many Faces of Evolution in Europe, 1860–1914. Peeters, Amsterdam.

Robillard, T., Legendre, F., Desutter-Grandcolas, L., and Grandcolas, P. 2006.
Phylogenetic analysis and alignment of behavioral sequences by direct opti-
mization. Cladistics 22:602–633.

Robinson, D. F. 1971. Comparison of labelled trees with valency three. J. Com-
binatorial Theory 11:105–119.

Robinson, D. F. and Foulds, L. R. 1981. Comparison of phylogenetic trees.
Mathematical Biosciences 53:131–147.

Robinson, J. B. 1949. On the Hamiltonian game (a traveling-salesman problem).
Rand Reports pp. 1–10.

Roch, S. 2006. A short proof that phylogenetic tree reconstruction by maximum
likelihood is hard. Computational Biology and Bioinformatics, IEEE/ACM
Transactions on 3:92–94.

Rosa, D. 1918. Ologenesi. R. Bemporad, Florence.

Rosen, D. E. 1978. Vicariant patterns and historical explanation in biogeogra-
phy. Syst. Zool. 27:159–188.

Rosen, D. E. 1979. Fishes from the uplands and intermontane basin of
Guatemala: Revisionary studies and comparative geography. Bull. Am. Mus.
Nat. Hist. 162:267–376.

Roshan, U. 2004. Algorithmic techniques for improving the speed and accuracy
of phylogenetic methods. PhD thesis, The University of Texas at Austin.

Roshan, U., Moret, B., Williams, T., and Warnow, T. 2004. Rec-I-DCM3: A
fast algorithmic technique for reconstructing large phylogenetic tree. In Proc.
IEEE Computer Society Bioinformatics Conference CSB 2004, Stanford U.

Russell, E. S. 1916. Form and Function a Contribution to the History of Animal
Morphology. John Murray, London.

Rutschman, F. 2006. Molecular dating of phylogenetic trees: A brief review of
current methods that estimate divergence times. Diversity Distrib. 12:35–48.



BIBLIOGRAPHY 403

Rzhetsky, A. and Nei, M. 1993. Theoretical foundation of the minimum-
evolution method of phylogenetic inference. Mol. Biol. Evol. 4:406–425.

Saint-Hilaire, E. G. 1818. Philosophie Anatomique. Vol. 1, Des Organes Respi-
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Schröder (1870), 31, 404
Schuh and Brower (2009), 16, 404
Schuh and Polhemus (1980), 347, 348,

404
Schuh et al. (2009), 29, 404
Schulmeister and Wheeler (2004), 45,

118, 404
Schulmeister et al. (2002), 200, 201, 404
Schwaz (1978), 236, 404
Semple and Steel (2000), 351, 353, 355,

404



INDEX 421

Semple and Steel (2003), 32, 38, 50,
298, 404

Shannon (1950), 132, 404
Shimodaira and Hasegawa (1999), 333,

405
Sibley and Ahlquist (1984), 149, 405
Sibley and Ahlquist (1990), 149, 405
Siddall (1998), 284, 405
Simpson (1944), 14, 405
Simpson (1961), 14, 15, 60, 405
Slowinski (1998), 131, 134, 227, 405
Smets and Barkay (2005), 209, 405
Smouse and Li (1987), 240, 405
Sneath and Sokal (1973), 16, 116, 160,

405
Sober (1980), 3, 405
Sober (1988), 272, 281, 405
Sober (2004), 272, 286, 405
Sober (2005), 286, 405
Sokal and Michener (1958), 136, 405
Sokal and Rohlf (1962), 160, 405
Sokal and Rohlf (1981), 347, 405
Sokal and Sneath (1963), 16, 28, 116,

406
Solomonoff (1964), 79, 406
Soltis et al. (2000), 305, 406
Sota and Vogler (2001), 237, 238, 406
Stamos (2003), 62, 406
Steel and Penny (2000), 215–217, 281,

284, 406
Steel and Penny (2004), 278, 279, 286,

406
Steel and Pickett (2006), 252, 406
Steel et al. (1993), 278, 406
Steel et al. (1994), 280, 406
Steel et al. (2000), 350–352, 406
Steel (1992), 174, 353, 406
Steel (2000), 277, 406
Steel (2009), 277, 406
Steel (2011a), 280, 281, 406
Steel (2011b), 279, 281, 282, 406
Stocsits et al. (2009), 144, 407
Strang (2006), 102, 219, 407
Strimmer and Moulton (2000), 234,

407
Suchard and Redelings (2006), 135, 407

Swofford et al. (1996), 219, 407
Swofford et al. (2001), 284, 407
Swofford (1990), 298, 299, 407
Swofford (1993), 187, 407
Swofford (2002), 187, 253, 407
Szalay (1977), 43, 407
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Plate 2.1: Heritability sensu Galton (1889).
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Plate 9.21: Neighbor-Joining tree of H5N1 “Avian” flu virus of WHO/OIE/
FAO H5N1 Evolution Working Group http://www.cdc.gov/eid/content/14/
7/e1-G2.htm.



Plate 10.20: Pseudoscorpion analysis of Murienne et al. (2008). The base tree is
that which minimized incongruence among multiple molecular loci. The “Navajo
rugs” show the presence or absence of each vertex in parameter space.
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Plate 10.21: Implied alignment (Wheeler, 2003a) of five sequences: AA, AA,
AGGG, ATT, and ATTG. The original optimized tree is shown on the upper
left; the implied traces upper right; implied traces with traces extended and gap
characters filled in lower left; and the final implied alignment in the lower right.
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Plate 10.22: Mitochondrial gene order variation in protostome taxa (Boore et al.,
1998).
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Plate 11.14: Genomic rearrangement locus dot-plot scenarios of Dalevi and Erik-
sen (2008): (a) = “Whirl,” (b) = “X-model,” (c) = “Fat X-model,” (d) = “Zip-
per,” and (e) = “Cloud.”
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Plate 13.3: Results of Kolaczkowski and Thornton (2004) showing the superior
performance of parsimony over likelihood and Bayesian methods under a condi-
tion of heterotachy. ML = maximum likelihood, BMCMC = Bayesian MCMC,
and MP = parsimony.
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