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Geographic distribution and ecological niche divergence 
of the Palaearctic petrophilous pikas (Ochotona, Lagomorpha, 

Mammalia) of the subgenus Pika

Andrey A. Lissovsky*, Georgiy Shakula & Ekaterina V. Obolenskaya

ABSTRACT. The comparison of species distribution models and hyperspaces of ecological predictors was 
carried out in four species of petrophilous pikas of the subgenus Pika: Ochotona alpina, O. turuchanensis, 
O. hyperborea and O. mantchurica. All tests show signifi cant differences between species, indicating good 
niche divergence. One of the species, O. hyperborea, lives in sympatry with two other species: O. alpina 
and O. turuchanensis; this is most likely due to different ecological preferences. The important role of 
geographical barriers in realising the potential distribution of these four species is demonstrated. The oc-
currence of O. hyperborea in China is reported for the fi rst time.
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Географическое распределение и дивергенция экологических 
ниш у палеарктических петрофильных пищух (Ochotona, 

Lagomorpha, Mammalia) подрода Pika

А.А. Лисовский*, Г.В. Шакула, Е.В. Оболенская

РЕЗЮМЕ. Сравнение экологических моделей и гиперпространств экологических факторов про-
ведено для четырёх видов петрофильных пищух подрода Pika: Ochotona alpina, O. turuchanensis, 
O. hyperborea и O. mantchurica. Все тесты показали значимые различия между видами, что свиде-
тельствует о хорошей дивергенции экологических ниш. Один из видов, O. hyperborea, живет в сим-
патрии с двумя другими видами: O. alpina и O. turuchanensis; скорее всего, это возможно, благода-
ря разным экологическим предпочтениям. Показана важная роль географических барьеров в реали-
зации потенциальных ареалов этих четырёх видов. Впервые сообщается об обитании O. hyperborea 
в Китае.
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Introduction

The subgenus Pika comprises 11 species of pikas 
that occupy stony habitats in Asia and North America 
(Lissovsky et al., 2007, 2016; Lissovsky, 2014). Six of 
these species, namely Ochotona alpina (Pallas, 1773), 
O. turuchanensis Naumov, 1934, O. hyperborea (Pal-
las, 1811), O. mantchurica Thomas, 1909, O. coreana 
Allen et Andrews, 1913, O. hoffmanni Formozov, Yak-

hontov et Dmitriev, 1996 are obligate rock-dwellers, 
living in the cavities under large rocks mainly in the 
talus and are distributed in Asia. At fi rst sight, the habi-
tats of these 6 species are very similar, however there 
has never been a detailed study of the habitats.

Ochotona alpina and O. turuchanensis are sister 
species, their distribution is allopatric (Lissovsky et 
al., 2007). The remaining 4 species form the second 
group of sisters (phylogenetic position of the less stud-
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ied O. coreana is ambiguous) with allopatric ranges. 
One of the species from this group, O. hyperborea, has 
the largest distribution among pikas — it lives from the 
Ural Mountains to the Kamchatka Peninsula and from 
the Arctic Ocean coast to Mongolia. Ochotona hyper-
borea is sympatric with O. alpina and O. turuchanensis 
in the south and in the north of its distribution respec-
tively. In sympatry zones, two species may live closely 
together in the same patch of stony ground, although 
more often the habitats of two species are somewhat 
separated by altitude or stone size (Formozov, 1986; 
Formozov & Yakhontov, 2003). The Manchurian pika 
O. mantchurica is distributed in the Manchurian region 
and is separated from O. hyperborea by the Amur Riv-
er. The other two pikas, O. coreana and O. hoffmanni, 
have very small, isolated distribution ranges, limited 
by a mountain and a mountain range respectively. In 
summary, most petrophilous pikas of the subgenus 
Pika have isolated ranges, except for O. hyperborea, 
which is sympatric with distant relatives: O. alpina and 
O. turuchanensis.

According to the traditional point of view, speciation 
leads to the divergence of ecological niches. Treating 
the ecological niche according to Hutchinson (1957), 
we can measure niche divergence. Complete overlap of 
clouds of measured ecological preferences can be in-
terpreted as niche identity. Increasing of the distances 
between the clouds, as well as decreasing of the clouds 
overlap should refl ect the process of niche divergence. 
Such an approach can be tested in the subgenus Pika, 
where we have a set of species with different genetic 
divergence and similar ecological preferences.

Materials and methods

The initial dataset of species occurrences was ob-
tained from the website https://rusmam.ru and from 
museum labels. Petrophilous pikas inhabit sparsely 
distributed colonies, frequently situated at distances of 
tens of kilometres from one another. The majority of 
these settlements are located in remote mountainous re-
gions, distant from human infrastructure. It is therefore 
unlikely that a comprehensive dataset on the pikas un-
der discussion will be collected in the near future. A to-
tal of 663 occurrence points of O. hyperborea, 42 of O. 
mantchurica, 109 of O. alpina and 121 of O. turucha-
nensis were gathered. The distribution areas of O. hoff-
manni and O. coreana are so limited (approximately 
the fi rst few thousand square kilometres) that they were 
not subjected to analysis. The data exhibited an irregu-
lar spatial distribution, with notable local aggregations, 
primarily attributable to the pikas' colonial habits and 
the limited number of accessible sites for data collec-
tion. The data underwent two fi ltering processes. The 
initial stage of the process involved the selection of one 
data point was selected for each square measuring 50 
× 50 kilometres. This procedure allowed removing of 
closely situated points. Nevertheless, aggregations at a 
larger scale (corresponding to regions with better hu-
man infrastructure) were not removed. To address this, 

the number of occurrence points within larger squares, 
measuring 280 × 280 kilometres (arbitrarily selected 
value), was examined. Outlier values (too many oc-
currences within a square) were corrected by random 
selection of the number of points corresponding to the 
upper quartile (0.75) threshold (Tab. 1).

In order to investigate spatial heterogeneity of study 
efforts, we selected species that can be detected using 
the same methods as pikas (visually and with snap trap) 
and live wider than pikas. Thus this data set included 
the occurrence points of all pikas, as well as those of 
the chipmunk (Eutamias sibiricus (Laxmann, 1769)) 
and red-backed vole (Craseomys rufocanus (Sundevall, 
1846)).

The spatial frame of the analysis comprised a grid 
of 2 km resolution in Mollweide equidistant projection. 
A total of 58 environmental variables were employed 
in the analysis. The CHELSA "bioclimatic" variables, 
chelsa_gsl, chelsa_gsp, chelsa_gst, chelsa_scd, chelsa_
swe (Karger et al., 2017; Brun et al., 2022), altitude, 
slopes inclination, global river density (Hengl, 2019; 
Ouellet Dallaire et al., 2019), percentage of the forest 
cover (Global forest watch, 2024) and 42 MODIS gen-
eralised average monthly data layers (comprising six 
months of 2004 data across seven spectral bands; http://
glcf.umiacs.umd.edu/data) were employed as model 
predictors.

We used the ENMeval 2.0.3 R package (Muscarella 
et al., 2014; Kass et al., 2021) to build Maxent mod-
els with the ''maxent.jar'' algorithm. The modelling pro-
cess was iterative. Each step involved the evaluation 
of a set of models with different parameters. The vary-
ing parameters were: regularisation multiplier ranging 
from 0.75 to 3, three combinations of feature classes 
(L, LQ and LQH, where L = linear, Q = quadratic and 
H = hinge) (Warren & Seifert, 2011; Merow et al., 2013) 
and a set of coeffi cients infl uencing the background sam-
ple selection (Merow et al., 2013; Guillera-Arroita et al., 
2015). The background sample is the critical unit in the 
analysis. We selected background points with a probabil-
ity proportional to the level of sampling effort in the area. 
The background sample was restricted to a certain buf-
fer area around the occurrence points (600 km) in order 
to exclude territories with defi nitely different ecological 
conditions. The expansion of the range of predictor vari-
ation results in the generalization of models (Lissovsky 
et al., 2020). The probability of selection was changed 
in the provisional 'distribution area' of the species — a 
buffer of 30–120 km, depending on the species (the buf-
fer size was selected in order to ensure that the set of 
buffers accurately refl ects the distribution). The degree 
of this reduction (0.1–1) as well as the diameter of the 
buffer (200–5000 metres corresponding to selection of 1 
raster cell or one or two cell layers around it) around the 
occurrence points during the background sample selec-
tion (selection of some surrounding points also in case of 
larger buffers) varied and the optimal value was chosen 
in each analysis. The training sample was excluded from 
the background sample. Optimality was assessed using 
the corrected Akaike's information criterion.
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The fi rst step was calculated with all environmental 
predictors included. The second step was carried out 
on the basis of those predictors whose permutation im-
portance was above 5% in the fi rst step. Environmental 
predictors were included in the analysis as is, without 
removing of multicollinearity, since Maxent algorithm 
address such issues (Elith et al., 2011).

The general concept of comparing models is con-
sistent with the methodology proposed by Warren et 
al. (2010) and Brown & Carnaval (2019). Terms used 
below follow these two papers. The methods are im-
plemented in R package “humboldt” (Brown & Car-
naval, 2019), but the package functions are not fl ex-
ible enough (for example, one cannot compare models 
with different parameters or use geographic projections 
other than longitude/latitude), so we use our own code 
(Appendix).

The concept was to evaluate the similarity be-
tween two models (evaluated using Schoener’s D) with 
100 models, calculated on the basis of randomly select-
ed samples of the same size and the same model param-
eters, taken from the united sample. The 'background 
test' calculates a comparative array as the similarity be-
tween one of the species and a randomly selected sam-
ple around the occurrence points of the second species. 
This process can be described as searching for habitats 
that are suitable for one species in areas where the other 
species is present.

Two comparative analyses were conducted. The ini-
tial comparative analysis was conducted in geographi-
cal or G-space. In this instance, a comparison was con-
ducted between rasters obtained following a MaxEnt 
analysis. Thus, an investigation was conducted to as-
certain the degree of similarity in the spatial distribu-
tion of suitable habitats. It was not feasible to conduct 
a direct comparison of the models, given the signifi cant 
discrepancy in the spatial extent of the species ranges. 
Therefore, we examined the degree of similarity in 

sympatry or parapatry zones, limiting the spatial extent 
of our analysis to a rectangle circumscribed around the 
occurrence points of the species with the more limited 
distribution, with a 60-kilometre buffer. In the case of 
allopatric but closely distributed O. alpina and O. tu-
ruchanensis, both species distributions were included 
in the extent of the analysis.

The second analysis was carried out within the 
space of environmental predictors, or E-space. In this 
instance, the sets of environmental data correspond-
ing to the occurrence points were processed. These 
sets were subjected to factor analysis, with the objec-
tive of maximizing inter-species differences. The fi rst 
two axes (which explained the greatest interspecies 
differences) of the factor analysis were transformed 
into a rectangle raster comprising seven columns and 
six rows, with the number of occurrence points serving 
as the raster values. Consequently, the comparison of 
these rasters indicated the degree of similarity between 
the distributions of occurrence points in the space of 
predictor values.

Results

The distribution models of all four species appear 
to be accurate (Figs. 1–4). The high AUC values (Tab. 
1) indicate a strong correspondence between the mod-
els and the occurrence points. The suitable habitats in 
the models of three species (O. mantchurica, O. tu-
ruchanensis and O. alpina) do not overlap in terms of 
Figs. 2–4, therefore comparison of O. mantchurica 
with O. alpina and O. turuchanensis in geographical 
space was not conducted (Tab. 2).

The northern pika model is the most expansive, en-
compassing the ranges of all other species. To provide 
further detail, the range of the northern pika covers the 
Altai Mountains, where only the O. alpina is found; 
the Great Khingan Mountains and part of the Lesser 

Table 1. Parameters of fi nal optimal models for four pika species.

n points AUC Regularisation 
multiplier R

Features Parameters N

O. alpina 37 0.98 3 linear + quadratic + 
hinge

22

O. turuchanensis 22 0.89 0.75 linear + quadratic 8
O. hyperborea 117 0.87 3 linear + quadratic 23
O. mantchurica 19 0.98 0.75 linear + quadratic 8

Table 2. Similarity (Schoener’s D) of four pika species calculated on the basis of environmental predictors, measured in oc-
currence points (E-space, below diagonal) / species distribution models (G-space, above diagonal). All values signifi cantly 
(< 0.05) differ from the sample, calculated on the basis of randomly selected data.

O. alpina O. turuchanensis O. hyperborea O. mantchurica
O. alpina — 0.17 0.68 —
O. turuchanensis 0.03 — 0.65 —
O. hyperborea 0.26 0.3 — 0.61
O. mantchurica 0.03 0.06 0.15 —
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Fig. 1. The geographical pattern of distribution of suitable habitats for the northern pika Ochotona hyperborea. Known oc-
currences are shown with dots. The three grades of grey scale refl ect three diapasons of relative suitability: maximum training 
sensitivity plus specifi city threshold–0.75 (light); 0.75–0.9 (medium); 0.9–1 (dark). The Zhangguangcai Ling Mountains are 
indicated with an asterisk.

Fig. 2. The geographical pattern of distribution of suitable habitats for the Manchurian pika Ochotona mantchurica. Known 
occurrences are shown with dots. The three grades of grey scale refl ect three diapasons of relative suitability: maximum training 
sensitivity plus specifi city threshold–0.75 (light); 0.75–0.9 (medium); 0.9–1 (dark).
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Fig. 3. The geographical pattern of distribution of suitable habitats for the Altai pika Ochotona alpina. Known occurrences are 
shown with dots. The three grades of grey scale refl ect three diapasons of relative suitability: maximum training sensitivity plus 
specifi city threshold–0.75 (light); 0.75–0.9 (medium); 0.9–1 (dark).

Fig. 4. The geographical pattern of distribution of suitable habitats for the Turukhan pika Ochotona turuchanensis. Known oc-
currences are shown with dots. The three grades of grey scale refl ect three diapasons of relative suitability: maximum training 
sensitivity plus specifi city threshold–0.75 (light); 0.75–0.9 (medium); 0.9–1 (dark).



A.A. Lissovsky et al. 119

Khingan Mountains, where only the O. mantchurica 
is found; the Ermana Range, which is the distribution 
range of the O. hoffmanni and the Changbaishan Moun-
tains, which is the distribution range of the O. coreana.

In contrast, the distribution model of O. turucha-
nensis appears to be additive to that of O. hyperborea. 
The Turukhan pika’s suitable habitats encompass Mid-
dle Siberia, specifi cally the interfl uve of the Yenisei and 
Lena Rivers, the upper and middle Lena Basin, and the 
interfl uve of the Lena and Aldan Rivers, where north-
ern pika habitats are either absent or scarce.

The distribution model of O. mantchurica is rela-
tively local in comparison to the two previous species, 
and broadly aligns with the actual distribution of the 
species. However, it also encompasses the Ermana 
Range (the distribution range of O. hoffmanni) and the 
Khentei-Chikoy Highlands (which are inhabited by 
O. hyperborea). Suitable habitats of O. mantchurica do 
not extend to the Changbaishan Mountains.

The distribution model of O. alpina is also relative-
ly local, covering the species' actual distribution range. 
However, there is a discrepancy between the model and 
the actual distribution, with the Khamar-Daban Range 
being an exception. This mountain range is separated 
from the main distribution of O. alpina by a band of 
unsuitable habitats.

The predicted potential distribution of all four spe-
cies indicates the presence of suitable habitat in remote, 
uninhabited areas. The species Ochotona alpina and 
O. hyperborea exhibit suitable habitats in the Tibetan 
region and its surrounding areas. Models of the same 
species have potentially suitable regions in the Scandi-
navian mountains (not shown in the Figures), the Tian 
Shan Mts, and the isolated mountains of the Tarbagatai 
and Saur to the north of them. A substantial proportion 
of the suitable habitats for O. turuchanensis are situated 
in the north-east of Eurasia and in the Ural Mountains.

In the context of environmental variables, the de-
gree of intersection between species pairs is lower than 
in G-space (Tab. 2). The values of inter-species similar-
ity are marginally higher when comparing O. hyper-
borea with O. alpina and O. turuchanensis, which is 
to be expected given that these pairs of species are par-
tially sympatric. All background tests conducted on the 
pairs of species yielded insignifi cant results.

Discussion

Petrophilous pikas are found in stony habitats that 
exhibit considerable similarity in different sites across 
Asia. Talus formations can vary considerably in terms 
of the size and type of stone comprising them, as well 
as in relation to factors such as depth, slope exposi-
tion and inclination, the presence or absence of water 
sources, and the extent of projective cover afforded 
by vegetation. Such parameters frequently depend on 
the geological structure of the mountains in question. 
In light of the considerable diversity of habitats within 
each species, it is diffi cult to formulate any provisional 
hypotheses regarding the similarities or differences in 

ecological preferences between different species. Our 
investigation provides a potential basis for formulating 
such a hypothesis.

Our results demonstrate that all four pika species 
exhibit considerable niche divergence. This assertion 
is supported by the minimal overlap observed between 
species in the ecological predictor space (Tab. 2), cou-
pled with the lack of statistical signifi cance in the back-
ground tests (Tab. 2). The analysis of shared E-space 
recommended by Brown & Carnaval (2019) is not ap-
plicable in this case due to the absence or limited extent 
of this shared space.

The degree of similarity between distribution mod-
els in geographical space (maps of suitable habitats) 
in areas of species sympatry or distribution junction is 
also low (Tab. 2). Furthermore, in areas where two or 
more species coexist or are potentially capable of co-
existing, the predicted spatial distribution of each pair 
of species is not identical. A straightforward compari-
son of the distribution of O. hyperborea and O. man-
tchurica in Manchuria, O. alpina and O. hyperborea 
in the Altai and Sayan Mountains, for instance, reveals 
notable discrepancies. It is well documented that O. hy-
perborea occupies different habitats than O. alpina and 
O. turuchanensis in sympatric zones (Formozov, 1986; 
Formozov & Yakhontov, 2003). However, the segrega-
tion of habitats between two species can be caused not 
only by different ecological preferences, but also by a 
shift in individual choice due to interspecies competi-
tion. The results demonstrate that different ecological 
preferences may be a signifi cant factor in determining 
the potential for sympatry.

The dataset comprises two pairs of species that are 
closely related. The fi rst pair is that of O. alpina and 
O. turuchanensis, while the second consists of O. hy-
perborea and O. mantchurica. It can be proposed that 
the degree of similarity observed within these pairs is 
less pronounced than that observed between members 
of different pairs (Tab. 2). Turukhan pika occupies the 
most distinct niche in both E- and G-space. It occupies 
habitats and ecological space that are unsuitable for 
other species (Fig. 4, Tab. 2), and exhibits the lowest 
degree of similarity to O. alpina. We hypothesise that 
the marked divergence of the ecological niches of this 
pair of sister species is a result of the recent process of 
speciation. It is likely that the shift in the ecological 
niche of O. turuchanensis led to the expansion of its 
range to the north, resulting in the separation of its dis-
tribution. The second pair did not require a signifi cant 
alteration in its ecological preferences, as the distribu-
tion of O. hyperborea and O. mantchurica is separated 
by the Amur River. It seems plausible to suggest that 
the primary driver of speciation in this pair of species 
was the isolation of the Manchurian portion of their dis-
tribution range.

Particular issues. Our analysis indicates several 
new issues in the distribution of Pika species that had 
been never discussed before. First of all, we can say that 
potential distribution of all four species under discus-
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sion is not realised in full. Every species has some areas 
that can be settled, if our models are true, but some bar-
riers prevent the invasion of these areas. Leaving aside 
the remote areas, such as Tibet or Tian Shan, there are 
some areas adjacent to the main range in all cases.

In the case of O. alpina, the unsettled patch in ques-
tion is the Khamar-Daban Range. The mountain range 
is geographically isolated from the East Sayan Moun-
tains, which are inhabited by this species of pika, by the 
wide valley of the Irkut River. It is currently unknown 
whether O. alpina ever crossed the Irkut River valley in 
the past. However, our analysis indicates that this was 
a feasible possibility.

The potential distribution of the Turukhan pika is 
the least realised. The Ural Mountains offer suitable 
habitats for this species, which is isolated from the 
main distribution range by a considerable distance. The 
Ural Mountains are inhabited by O. hyperborea, and 
the genetic distance between the Ural population and 
that of the Putorana Plateau is minimal (Lissovsky et 
al., 2021). It can therefore be concluded that the north-
ern pika has recently reached the Ural (at least, the last 
time). It remains unclear whether suitable habitats for 
the Turukhan pika existed along the route from the Put-
orana to the west at the time in question, or whether 
O. turuchanensis was absent in the Putorana region at 
the time the route to the west was opened. In any case, 
the Turukhan pika is currently absent in the Urals.

The O. turuchanensis model displays a consider-
able proportion of suitable habitats to the east of the 
Lena River, an area where the species has never been 
registered, with the exception of the upper part of the 
Lena basin. It is hypothesised that additional attention 
needs to be paid to the area of the Lena and Aldan Riv-
ers interfl uve. Only a few individuals from this vast 
area have been the subject of study (Lissovsky, 2003; 
Lissovsky et al., 2021), with identifi cation based solely 
on morphology. Nevertheless, the region in question is 
suitable for O. turuchanensis but presents a low suit-
ability rating for O. hyperborea.

The distribution of suitable habitats for O. hyper-
borea displays a number of distinct areas, which are 
discussed in further detail below. The fi rst area is the 
Altai Mountains, where the northern pika is currently 
absent. It can be hypothesised that the Yenisei River 
acts as an effective barrier in this instance. The colo-
nisation of Altai from the south of the Yenisei (through 
Tuva) is unlikely due to the disjunction of suitable hab-
itats. Altai was inhabited by O. hyperborea during the 
Pleistocene (Lissovsky & Serdyuk, 2004), indicating 
that the barrier of the Yenisei is not absolute.

The second location is the Changbaishan Plateau, 
as defi ned by the broader geographical context. The 
O. hyperborea model encompasses the entire Plateau, 
including the Changbaishan Mountain, which is the 
sole location where O. coreana has been found. Addi-
tionally, a region of suitable habitat is present within the 
Zhangguangcai Ling Mountains, situated between the 
Songhua and Mudanjiang Rivers. No information was 
available regarding the presence of pikas in this area. 

A recent publication (Zhang et al., 2020) described 
the mitogenome of a pika from this location. The au-
thors incorrectly identifi ed the specimen as O. coreana, 
however, the mitogenome (GenBank ID MT017929) 
belongs to O. hyperborea. Therefore, our distribution 
model is confi rmed to be accurate in this location. The 
specimen with mitogenome MT017929 represents the 
fi rst record of O. hyperborea in China. This is the fi rst 
evidence to indicate that the distribution ranges of 
O. mantchurica and O. coreana are separated by the 
territory inhabited by O. hyperborea. Furthermore, 
we can now conclude that the distribution ranges of 
O. mantchurica and O. hyperborea are separated by the 
Amur and Songhe Rivers.

The potential distribution of O. mantchurica in-
cludes not only the southern bank of the Amur (and 
Shilka) River, but also the northern bank and the 
Khentei-Chikoy Highlands, where the species is ab-
sent. Therefore, the absence of Manchurian pikas to the 
north and east of the current distribution is not a conse-
quence of the absence of suitable habitats.

It can be concluded that the implementation of eco-
logical models that predict potential distribution is of 
signifi cant importance in demonstrating the infl uence 
of geographical barriers on the distribution of Pika 
pikas. All four species have uninhabited territories in 
close proximity to the main range, but separated by 
river valleys. In all cases, these territories are occupied 
by another species. Thus, the Altai region is suitable for 
O. hyperborea and is currently inhabited by O. alpina. 
Conversely, the Khamar-Daban Range is suitable for 
O. alpina and is currently inhabited by O. hyperborea. 
The eastern bank of the Lena River is suitable for 
O. turuchanensis and is currently inhabited by O. hyper-
borea. Both banks of the Amur River are suitable for O. 
hyperborea and O. mantchurica, but the river serves as a 
natural barrier, dividing the distribution of these two spe-
cies. It is evident that rivers act as barriers to the distribu-
tion of these species. Nevertheless, it is not yet possible 
to determine whether the rivers themselves act as barri-
ers or whether the presence of different species prevents 
pikas from penetrating the territory over the rivers.
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Appendix. R-code of our calculations.

#G-space
library(dismo)
library(raster)
base_dir <- "/var/www/rusmam/modeling/data/119/"
pdf(fi le = paste(base_dir, 'Rplots.pdf', sep=""))
Nreps            <- 101
csv1.fi le        <- "/var/www/rusmam/modeling/data/120/spe-
cies.csv"
csv2.fi le        <- "/var/www/rusmam/modeling/data/52/spe-
cies.csv"
bias.fi le        <- "/var/www/rusmam/modeling/data/120/bias.
csv"
env.fi le         <- list.fi les(path="/var/www/rusmam/modeling/
coverage/tmp",pattern = ".asc$",full.names = T,include.dirs = 
F)
proj.fi le        <- list.fi les(path="/var/www/rusmam/modeling/
coverage/tmp",pattern = ".asc$",full.names = T,include.dirs = 
F)
buffer1.val      <- c(5000)
buffer2.val      <- c(5000)
Rs1              <- 3
Rs2              <- 0.75
Pred1.fs         <- "LQ"
Pred2.fs         <- "LQ"
range1.buf       <- 120000  
range2.buf       <- 85000
bias1.range      <- 0.1  
bias2.range      <- 1
cut1.buf         <- 600000
cut2.buf         <- 950000
env.proc         <- "predictors"
max.bckg         <- 10000
max.pc           <- 10000
pc.threshold     <- c(0.99995)
NCores           <- 2
dist.threshold   <- 45000
meth.bg          <- 'maxent-like' 
project.res      <- 'no'
control_bckg     <- 'no'
mask_train_sample<- 'yes'
result_type      <- 'cloglog'

prj              <- CRS("+proj=moll +lon_0=30 +x_0=3335846.22854 
+y_0=-336410.83237 +ellps=WGS84 +datum=WGS84 
+units=m +no_defs")
prj_ll           <- CRS("+proj=longlat +ellps=WGS84 
+datum=WGS84 +no_defs")
meth             <- 'maxent.jar'
max.par          <- 0 
num.pc           <- 0 

time_start       <- Sys.time()
csv1.dat         <- read.csv(paste(csv1.fi le, sep=""))
names(csv1.dat)  <- c("sp", "x", "y")
csv2.dat         <- read.csv(paste(csv2.fi le, sep=""))
names(csv2.dat)  <- c("sp", "x", "y")
model1.name      <- csv1.dat[1,1]
model2.name      <- csv2.dat[1,1]
cat("\n****", model1.name, " and ", model2.name," G-Niche 
Equivalency Test****", date(), "\n")
csv1.spp         <- SpatialPoints(cbind(csv1.dat[,2],csv1.
dat[,3]),prj)
csv2.spp         <- SpatialPoints(cbind(csv2.dat[,2],csv2.
dat[,3]),prj)

env.stack        <- lapply(env.fi le,raster) 
env.stack        <- stack(env.stack)
crs(env.stack)   <- prj
one.ras          <- env.stack[[1]]/env.stack[[1]]
if(project.res == 'yes')
{
  proj.stack        <- lapply(proj.fi le,raster) 
  proj.stack        <- stack(proj.stack)
  crs(proj.stack)   <- prj
}

csv.out          <- extract(one.ras, csv1.spp)
csv1.spp         <- csv1.spp[which(csv.out>0)]
csv.out          <- extract(one.ras, csv2.spp)
csv2.spp         <- csv2.spp[which(csv.out>0)]
csv2.ext         <- extent(buffer(csv2.spp, width=60000, 
dissolve=F))
bias.dat         <- read.csv(paste(bias.fi le, sep=""))
bias.spp         <- SpatialPointsDataFrame(cbind(bias.
dat[,2],bias.dat[,3]),as.data.frame(cbind(bias.dat[,1], bias.
dat[,4])),proj4string = prj)

test.dat         <- bias.dat[bias.dat$Species == model1.name,]
test.spp         <- SpatialPoints(cbind(test.dat[,2],test.
dat[,3]),prj)
env.temp         <- one.ras
env.temp[cellFromXY(env.temp, csv1.spp@coords)] <- NA
if (mask_train_sample=="yes") 
{
  test.out       <- extract(env.temp, test.spp)
  test.spp       <- test.spp[which(test.out>0)]
} else {
  test.out       <- extract(one.ras, test.spp)
  test.spp       <- test.spp[which(test.out>0)]
}

bias.buf        <- buffer(bias.spp, width=buffer1.val, dissolve=F)
bias_strict.buf <- buffer(bias.spp[which(bias.spp$V1 == 
model1.name),], width=range1.buf)
distmat         <- pointDistance(csv1.spp@coords, csv1.spp@
coords, type='Euclidean', lonlat = F, allpairs = TRUE)
vec.min.dist    <- apply(distmat, 1, function(x) 
min(x[which(x>0)]))
crop.buf        <- buffer(SpatialPoints(csv1.spp)[which(csv1.
spp@coords[,1]<3000000 | vec.min.dist < 400000)], 
width=cut1.buf)
env.temp        <- env.temp*0.01
env.temp        <- rasterize(crop.buf, env.temp, 1, update = T, 
updateValue = '!NA')
bg.ras          <- rasterize(bias.buf, env.temp, "V1", fun='count', 
update = T, updateValue = '!NA')
bg2.ras         <- rasterize(bias.buf, env.temp, "V1", 
                              fun=function(x,...){length(unique(x))}, 
update = T, updateValue = '!NA')
bg3.ras         <- rasterize(bias_strict.buf, env.temp, fi eld=bias1.
range, update = T, updateValue = '!NA')
bg.ras          <- bg3.ras*log(bg.ras*0.1 + bg2.ras)
bg.ras[which(values(bg.ras)<0)] <- 0
bg.num          <- length(bg.ras[bg.ras > 0])
if (bg.num > max.bckg) bg.num <- max.bckg
bg1             <- as.data.frame(randomPoints(bg.ras, bg.num, 
prob = T, lonlatCorrection = F))
plot(one.ras, main=paste("Background points for species 1"))
plot(bg.ras, add=T)
bg1.spp         <- SpatialPoints(cbind(bg1[,1],bg1[,2]),prj)
plot(bg1.spp, add=T) 
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if(grepl('L', Pred1.fs)==TRUE) { Lf <- 'linear=true' 
} else { Lf <- 'linear=false' }
if(grepl('Q', Pred1.fs)==TRUE) { Qf <- 'quadratic=true' 
} else { Qf <- 'quadratic=false' }
if(grepl('P', Pred1.fs)==TRUE) { Pf <- 'product=true' 
} else { Pf <- 'product=false' }
if(grepl('H', Pred1.fs)==TRUE) { Hf <- 'hinge=true' 
} else { Hf <- 'hinge=false' }
if(grepl('T', Pred1.fs)==TRUE) { Tf <- 'threshold=true' 
} else { Tf <- 'threshold=false' }
Rf <- paste('betamultiplier=', Rs1, sep="")
If <- 'maximumiterations=5000'
args1.max <- c(Lf, Qf, Pf, Hf, Tf, Rf, If)

test.dat         <- bias.dat[bias.dat$Species == model2.name,]
test.spp         <- SpatialPoints(cbind(test.dat[,2],test.
dat[,3]),prj)
env.temp         <- one.ras
env.temp[cellFromXY(env.temp, csv2.spp@coords)] <- NA
if (mask_train_sample=="yes") 
{
  test.out       <- extract(env.temp, test.spp)
  test.spp       <- test.spp[which(test.out>0)]
} else {
  test.out       <- extract(one.ras, test.spp)
  test.spp       <- test.spp[which(test.out>0)]
}

bias.buf        <- buffer(bias.spp, width=buffer2.val, dissolve=F)
bias_strict.buf <- buffer(bias.spp[which(bias.spp$V1 == 
model2.name),], width=range2.buf)
distmat         <- pointDistance(csv2.spp@coords, csv2.spp@
coords, type='Euclidean', lonlat = F, allpairs = TRUE)
vec.min.dist    <- apply(distmat, 1, function(x) 
min(x[which(x>0)]))
crop.buf        <- buffer(SpatialPoints(csv2.spp)[which(csv2.
spp@coords[,1]<3000000 | vec.min.dist < 400000)], 
width=cut2.buf)
env.temp        <- env.temp*0.01
env.temp        <- rasterize(crop.buf, env.temp, 1, update = T, 
updateValue = '!NA')
bg.ras          <- rasterize(bias.buf, env.temp, "V1", fun='count', 
update = T, updateValue = '!NA')
bg2.ras         <- rasterize(bias.buf, env.temp, "V1", 
                             fun=function(x,...){length(unique(x))}, update 
= T, updateValue = '!NA')
bg3.ras         <- rasterize(bias_strict.buf, env.temp, fi eld=bias2.
range, update = T, updateValue = '!NA')
bg.ras          <- bg3.ras*log(bg.ras*0.1 + bg2.ras)
bg.ras[which(values(bg.ras)<0)] <- 0
bg.num          <- length(bg.ras[bg.ras > 0])
if (bg.num > max.bckg) bg.num <- max.bckg
bg2             <- as.data.frame(randomPoints(bg.ras, bg.num, 
prob = T, lonlatCorrection = F))
plot(one.ras, main=paste("Background points for species 2"))
plot(bg.ras, add=T)
bg2.spp         <- SpatialPoints(cbind(bg2[,1],bg2[,2]),prj)
plot(bg2.spp, add=T) 

if(grepl('L', Pred2.fs)==TRUE) { Lf <- 'linear=true' 
} else { Lf <- 'linear=false' }
if(grepl('Q', Pred2.fs)==TRUE) { Qf <- 'quadratic=true' 
} else { Qf <- 'quadratic=false' }
if(grepl('P', Pred2.fs)==TRUE) { Pf <- 'product=true' 
} else { Pf <- 'product=false' }

if(grepl('H', Pred2.fs)==TRUE) { Hf <- 'hinge=true' 
} else { Hf <- 'hinge=false' }
if(grepl('T', Pred2.fs)==TRUE) { Tf <- 'threshold=true' 
} else { Tf <- 'threshold=false' }
Rf <- paste('betamultiplier=', Rs2, sep="")
If <- 'maximumiterations=5000'
args2.max <- c(Lf, Qf, Pf, Hf, Tf, Rf, If)

if(project.res == 'yes')
{
  env.pc           <- proj.stack
} else {
  env.pc           <- env.stack
}
  l1               <- length(csv1.spp)
  l2               <- length(csv2.spp)
  csv.spp          <- bind(csv1.spp, csv2.spp)
  Drandom          <- vector()
for (i in 1:Nreps)
{
  if(i>1) cat("\nIteration ", i-1, "\n")
  modm1            <- maxent(env.stack, csv1.spp@coords, 
a=bg1, args=args1.max)
  modm2            <- maxent(env.stack, csv2.spp@coords, 
a=bg2, args=args2.max)
  result1.ras      <- predict(modm1, env.pc, 
args=c(paste0("outputformat=", result_type)), 
progress='text')
  result2.ras      <- predict(modm2, env.pc, 
args=c(paste0("outputformat=", result_type)), 
progress='text')
  result1.ras      <- crop(result1.ras, csv2.ext)
  result2.ras      <- crop(result2.ras, csv2.ext)
  D                <- nicheOverlap(result1.ras, result2.ras, stat='D', 
mask=FALSE, checkNegatives=FALSE) 
  if(i==1) 
    {D0 <- D
    plot(result1.ras, main=model1.name)
    plot(result2.ras, main=model2.name)
    } else Drandom[i-1] <- D
  x3               <- sample(x = c(1:(l1+l2)), size = l1, replace = 
FALSE)
  csv1.spp         <- csv.spp[x3]
  csv2.spp         <- csv.spp[-x3]
}
  
hist(Drandom, main="D", xlim=c(0,1), include.lowest = 
TRUE, nclass = 10)
abline(v = D0, col = "red", lty = 2)
p.D <- (1-pnorm(D0, mean(Drandom), sd(Drandom), lower.
tail = FALSE))
cat("D-index", D0)
cat("p-value: ", p.D)
write.table(D0, fi le=paste(base_dir, "result", ".csv", sep=""), 
append = FALSE, row.names = F, col.names = "D0", sep = 
",")
write.table(Drandom, fi le=paste(base_dir, "result", ".csv", 
sep=""), append = TRUE, row.names = F, col.names = "Dran-
dom", sep = ",")
write.table(p.D, fi le=paste(base_dir, "result", ".csv", sep=""), 
append = TRUE, row.names = F, col.names = "p-value", sep 
= ",")

time_diff        <- difftime(Sys.time(), time_start, units='mins')
cat ("\nTime elapsed:", round(time_diff,2), "minutes\n")
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#E-space
library(dismo)
library(raster)

base_dir <- "/var/www/rusmam/modeling/data/119/"
pdf(fi le = paste(base_dir, 'Rplots.pdf', sep=""))
Nreps            <- 101
csv2.fi le        <- "/var/www/rusmam/modeling/data/52/species.
csv"
csv1.fi le        <- "/var/www/rusmam/modeling/data/120/species.
csv"
env.fi le         <- list.fi les(path="/var/www/rusmam/modeling/
coverage/rf",pattern = ".asc$",full.names = T,include.dirs = F)
e.dist           <- 10000 #distance for Background Test

rotate.between.groups <- function (X, groups) 
{
  if (is.data.frame(X)) 
    X <- as.matrix(X)
  else if (!is.matrix(X)) 
    stop("'X' must be a matrix or a data frame")
  if (!all(is.fi nite(X))) 
    stop("'X' must contain fi nite values only")
  if (is.na(match('',groups)) == FALSE)
  {
    X1 <- X[-(which(groups == '')),]
  } else {
    X1 <- X
  }
  groups <- factor(groups)
  glev <- levels(groups)
  nlev <- length(glev)
  gsizes <- as.vector(table(groups))
  if (1 %in% gsizes) {
    warning("group with one entry found")
  }
  p <- ncol(X1)
  Gmeans <- matrix(NA, nrow = nlev, ncol = p, dimnames = 
list(glev, colnames(X1)))
  for (i in 1:nlev) {
      Gmeans[i, ] <- apply(X1[which(groups == glev[i]), ], 2, 
mean)
  }
  B <- cov(Gmeans)
  dimnames(B) <- list(colnames(X1), colnames(X1))
  EV <- eigen(B)
  Factor.res <- as.matrix(X) %*% EV$vectors
  RES <- list()
  RES$eigen.values <- round(EV$values, 6)
  RES$factors <- Factor.res
  return(RES)
}

prj              <- CRS("+proj=moll +lon_0=30 +x_0=3335846.22854 
+y_0=-336410.83237 +ellps=WGS84 +datum=WGS84 
+units=m +no_defs")

time_start       <- Sys.time()
csv1.dat         <- read.csv(paste(csv1.fi le, sep=""))
names(csv1.dat)  <- c("sp", "x", "y")
csv2.dat         <- read.csv(paste(csv2.fi le, sep=""))
names(csv2.dat)  <- c("sp", "x", "y")
model1.name      <- csv1.dat[1,1]
model2.name      <- csv2.dat[1,1]
cat("\n****", model1.name, " and ", model2.name," Niche 
Overlap and Niche Divergence Tests****", date(), "\n")

csv1.spp         <- SpatialPoints(cbind(csv1.dat[,2],csv1.
dat[,3]),prj)
csv2.spp         <- SpatialPoints(cbind(csv2.dat[,2],csv2.
dat[,3]),prj)
env.stack        <- lapply(env.fi le,raster) 
env.stack        <- stack(env.stack)
crs(env.stack)   <- prj
one.ras          <- (env.stack[[1]]+env.stack[[2]])/(env.
stack[[1]]+env.stack[[2]])

csv.out          <- extract(one.ras, csv1.spp)
csv1.spp         <- csv1.spp[which(csv.out>0)]
csv.out          <- extract(one.ras, csv2.spp)
csv2.spp         <- csv2.spp[which(csv.out>0)]
csv.spp          <- bind(csv1.spp, csv2.spp)
points.ext       <- extent(buffer(csv.spp, width=1000))
env.stack        <- crop(env.stack, points.ext)
one.ras          <- crop(one.ras, points.ext)

env1.temp        <- one.ras
env1.temp[cellFromXY(env1.temp, csv1.spp@coords)] <- NA
env2.temp        <- one.ras
env2.temp[cellFromXY(env2.temp, csv2.spp@coords)] <- NA

bckg1            <- extract(env1.temp, csv1.spp, cellnumbers=T, 
buffer=e.dist)
bckg2            <- extract(env2.temp, csv2.spp, cellnumbers=T, 
buffer=e.dist)

cat("Preparation is fi nished, start of analysis.\n")
dat1             <- cbind(sp = rep(model1.name, length(csv1.spp)), 
data.frame(extract(env.stack, csv1.spp)))
dat2             <- cbind(sp = rep(model2.name, length(csv2.spp)), 
data.frame(extract(env.stack, csv2.spp)))
dat              <- rbind(dat1, dat2)
dat[,2:ncol(dat)]<- scale(dat[,2:ncol(dat)])

factors          <- rotate.between.groups(dat[,2:ncol(dat)], dat[,1])
plot(x=factors$factors[,1], y=factors$factors[,2], )
points(x=factors$factors[which(dat[,1] == model1.name),1], 
y=factors$factors[which(dat[,1] == model1.name),2], col = 
"blue")
points(x=factors$factors[which(dat[,1] == model2.name),1], 
y=factors$factors[which(dat[,1] == model2.name),2], 
col="red")
legend("bottomright", legend = c(model1.name, model2.name), 
col = c("blue", "red"), pch = c(1, 1))
write.table(cbind(dat[,1],factors$factors[,1:2]), fi le=paste(base_
dir, "result", ".csv", sep=""), append = FALSE, row.names = F, 
col.names = T, sep = ",")
factors$eigen.values
x                <- raster(ncol=7, nrow=6, xmn=mean(factors$factors[,1])-
1.99*sd(factors$factors[,1]), xmx=mean(factors$factors[,1])+
1.99*sd(factors$factors[,1]), ymn=mean(factors$factors[,2])-
1.99*sd(factors$factors[,2]), ymx=mean(factors$factors[,2])+1.
99*sd(factors$factors[,2]))
sp.names         <- dat[,1]
l1               <- nrow(dat1)
l2               <- nrow(dat2)
Drandom          <- vector()
sp1              <- cbind(factors$factors[which(sp.names == model1.
name),1], factors$factors[which(sp.names == model1.name),2])
sp2              <- cbind(factors$factors[which(sp.names == model2.
name),1], factors$factors[which(sp.names == model2.name),2])
for (i in 1:Nreps)
{
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  if(i>1) cat("\nIteration ", i-1, "\n")
sp1.ras          <- rasterize(sp1, x, fun='count')
sp1.ras          <- sp1.ras/sp1.ras@data@max
sp2.ras          <- rasterize(sp2, x, fun='count')
sp2.ras          <- sp2.ras/sp2.ras@data@max
sp1.ras[is.na(sp1.ras[]) & !is.na(sp2.ras[])] <- 0
sp2.ras[is.na(sp2.ras[]) & !is.na(sp1.ras[])] <- 0

D                <- nicheOverlap(sp1.ras, sp2.ras, stat='D', mask=FALSE, 
checkNegatives=FALSE) 
if(i==1) {
  D0 <- D
  plot(sp1.ras)
  plot(sp2.ras)
  } else { Drandom[i-1] <- D }
x3               <- sample(x = c(1:(l1+l2)), size = l1, replace = 
FALSE)
sp1              <- cbind(factors$factors[x3,1], factors$factors[x3,2])
sp2              <- cbind(factors$factors[-x3,1], factors$factors[-
x3,2])
sp.names[x3]     <- model1.name
sp.names[-x3]    <- model2.name
factors          <- rotate.between.groups(dat[,2:ncol(dat)], sp.names)
}

hist(Drandom, main="Schoener's D", xlim=c(0,1), include.low-
est = TRUE, nclass = 10)
abline(v = D0, col = "red", lty = 2)
p0.D <- 2*(1-pnorm(D0, mean(Drandom), sd(Drandom), lower.
tail = FALSE))
write.table(D0, fi le=paste(base_dir, "result", ".csv", sep=""), ap-
pend = TRUE, row.names = F, col.names = "D0", sep = ",")
write.table(Drandom, fi le=paste(base_dir, "result", ".csv", 
sep=""), append = TRUE, row.names = F, col.names = "Dran-
dom", sep = ",")
write.table(p0.D, fi le=paste(base_dir, "result", ".csv", sep=""), 
append = TRUE, row.names = F, col.names = "p-value", sep = 
",")
cat("D-index", D0)
cat("p-value: ", p0.D)

for (i in 1:(Nreps-1))
{
  if(i>1) cat("\nIteration ", i-1, "of the Background test sp1 (", 
model1.name, ") -> bckg2\n")
  n.list <- vector()
  for (k in 1:l2)
  {
    n <- sample(which(bckg2[[k]][,2]>0), 1, replace = FALSE)
    n.list[k]  <- bckg2[[k]][n,1]
  }
  bckg2.sample     <- cbind(sp = rep(model2.name, l2), data.
frame(extract(env.stack, n.list)))
  dat              <- rbind(dat1, bckg2.sample)
  dat[,2:ncol(dat)]<- scale(dat[,2:ncol(dat)])
  factors          <- rotate.between.groups(dat[,2:ncol(dat)], dat[,1])
  factors$eigen.values
  sp.names         <- dat[,1]
  sp1              <- cbind(factors$factors[which(sp.names == 
model1.name),1], factors$factors[which(sp.names == model1.
name),2])
  sp2              <- cbind(factors$factors[which(sp.names == 
model2.name),1], factors$factors[which(sp.names == model2.
name),2])
  sp1.ras          <- rasterize(sp1, x, fun='count')
  sp1.ras          <- sp1.ras/sp1.ras@data@max

  sp2.ras          <- rasterize(sp2, x, fun='count')
  sp2.ras          <- sp2.ras/sp2.ras@data@max
  sp1.ras[is.na(sp1.ras[]) & !is.na(sp2.ras[])] <- 0
  sp2.ras[is.na(sp2.ras[]) & !is.na(sp1.ras[])] <- 0
  
  Drandom[i-1]     <- nicheOverlap(sp1.ras, sp2.ras, stat='D', 
mask=FALSE, checkNegatives=FALSE) 
}

hist(Drandom, main="Sp1 -> bckg2 Schoener's D", xlim=c(0,1), 
include.lowest = TRUE, nclass = 10)
abline(v = D0, col = "red", lty = 2)
p1.D <- 2*(1-pnorm(D0, mean(Drandom), sd(Drandom), lower.
tail = FALSE))
cat("D-index", D0)
cat("Sp1 (", model1.name, ") -> bckg2 p-value: ", p1.D)

for (i in 1:(Nreps-1))
{
  if(i>1) cat("\nIteration ", i-1, "of the Background test sp2 (", 
model2.name, ") -> bckg1\n")
  n.list <- vector()
  for (k in 1:l1)
  {
    n          <- sample(which(bckg1[[k]][,2]>0), 1, replace = 
FALSE)
    n.list[k]  <- bckg1[[k]][n,1]
  }
  bckg1.sample     <- cbind(sp = rep(model1.name, l1), data.
frame(extract(env.stack, n.list)))
  dat              <- rbind(dat2, bckg1.sample)
  dat[,2:ncol(dat)]<- scale(dat[,2:ncol(dat)])
  factors          <- rotate.between.groups(dat[,2:ncol(dat)], dat[,1])
  factors$eigen.values
  sp.names         <- dat[,1]
  sp1              <- cbind(factors$factors[which(sp.names == 
model1.name),1], factors$factors[which(sp.names == model1.
name),2])
  sp2              <- cbind(factors$factors[which(sp.names == 
model2.name),1], factors$factors[which(sp.names == model2.
name),2])
  sp1.ras          <- rasterize(sp1, x, fun='count')
  sp1.ras          <- sp1.ras/sp1.ras@data@max
  sp2.ras          <- rasterize(sp2, x, fun='count')
  sp2.ras          <- sp2.ras/sp2.ras@data@max
  sp1.ras[is.na(sp1.ras[]) & !is.na(sp2.ras[])] <- 0
  sp2.ras[is.na(sp2.ras[]) & !is.na(sp1.ras[])] <- 0
  
  Drandom[i-1]     <- nicheOverlap(sp1.ras, sp2.ras, stat='D', 
mask=FALSE, checkNegatives=FALSE) 
}

hist(Drandom, main="Sp2 -> bckg1 Schoener's D", xlim=c(0,1), 
include.lowest = TRUE, nclass = 10)
abline(v = D0, col = "red", lty = 2)
p2.D <- 2*(1-pnorm(D0, mean(Drandom), sd(Drandom), lower.
tail = FALSE))
cat("D-index", D0)
cat("\np-value (Equivalency): ", p0.D)
cat("\nSp1 (", model1.name, ") -> bckg2 p-value: ", p1.D)
cat("\nSp2 (", model2.name, ") -> bckg1 p-value: ", p2.D)

time_diff        <- difftime(Sys.time(), time_start, units='mins')
cat ("\nTime elapsed:", round(time_diff,2), "minutes\n")




