Russian Journal of Theriology. Main page    

Russian Journal of Theriology. Main page
Free access to the published articles
Information about online submission, Articles format, Instructions for authors etc
Instructions for reviewers
Subscription and prices
Contacts

Русскоязычный вариант сайта
Temperature and humidity conditions in underground burrows of the lesser Japanese mole, Mogera imaizumii (Talpidae)
Iwasa M.A., Abe R.
P. 31-39
In burrowing mammals, the temperature and humidity in burrows are important microenvironmental factors for the metabolism. To characterize the temperature and relative humidity inside the burrows of the lesser Japanese mole, Mogera imaizumii, digital loggers were set to record these microenvironmental characteristics in underground burrows and the aboveground air as a control. The current temperature and relative humidity were more stable in underground than in aboveground considering that smaller daily differences in both temperature and relative humidity were recognized only in the burrows. The inside temperatures showed up to 26.1 ± 1.2°C irrespective of over 30°C in the aboveground and the mean inside relative humidity showed constantly values over 100% irrespective of the range from 42.8 ± 11.7% to 84.2 ± 9.0% in aboveground through a year. To avoid a restraint of radiation of body heat by evaporation in higher temperature and humidity, lower temperature as possible above 23°C as considered to be the lower limit of the thermoneutral zone seems to be more appropriate condition for the mole. The current results showing the temperatures around the limit (25.1 ± 0.6–26.1 ± 1.2°C) with over 100% relative humidity seem to fit to the more appropriate environment, at least in summer. The current findings means that the high humidity with lower temperature saves energy expended by increasing the metabolic rate in M. imaizumii and probably also in other burrowing mammals.

DOI: 10.15298/rusjtheriol.23.1.04

References

  • Bennett N.C., Aguilar G.H., Jarvis J.U.M. & Faulkes C.G. 1994. Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling within the genus Cryptomys // Oecologia. Vol.97. P.222–227.
  • Bennett N.C., Jarvis J.U.M. & Davies K.C. 1988. Daily and seasonal temperatures in the burrows of African rodent moles // South African Journal of Zoology. Vol.23. P.189–195.
  • Burda H., Šumbera R. & Begall S. 2007. Microclimate in burrows of subterranean rodents – revisited // Begall S., Burda H. & Schelich C. (eds.). Subterranean Rodents, News from Underground. Berlin: Springer. P.21–33.
  • Campbell K.L. & Hochachka P.W. 2000. Thermal biology and metabolism of the American shrew-mole, Neurotrichus gibbsii // Journal of Mammalogy. Vol.81. P.578–585.
  • Campbell K.L., McIntyre I.W. & MacArthur R.A. 1999. Fasting metabolism and thermoregulatory competence of the star-nosed mole, Condylura cristata (Talpidae: Condylurinae) // Comparative Biochemistry and Physiology A. Vol.123. P.293–298.
  • Contreras L.C. & McNab B.K. 1990. Thermoregulation and energetics in subterranean mammals // Nevo E. & Reig O.A. (eds.). Evolution of Subterranean Mammals at the Organismal and Molecular Levels. New York: Wiley-Liss. P.231–250.
  • Feldhamer G.A., Drickamer L.C., Krajewski C., Rachlow J.L. & Stewart K. M. 2020. Mammalogy: Adaptation, Diversity, Ecology. 5th ed. Baltimore: Johns Hopkins Press. 744 p.
  • Frears S.L. 1993. Ecological Energetics of the European Mole (Talpa europaea). PhD Thesis, Faculty of Biological Science, University of Aberdeen, Scotland. 197 p.
  • Gano K.A. & States J.B. 1982. Habitat Requirements and Burrowing Depths of Rodents in Relation to Shallow Waste Burial Sites. Washington: PNL-4140, Pacific Northwest Laboratory, Richland. 27 p.
  • Gorman M.L. & Stone R.D. 1990. The Natural History of Moles. London: Comstock Publishing. 138 p.
  • He K., Shinohara A., Helgen K.M., Springer M.S., Jiang X. L. & Campbell K.L. 2017. Talpid mole phylogeny unites shrew moles and illuminates overlooked cryptic species diversity // Molecular Biology and Evolution. Vol.34. P.78–87.
  • Iwasa M.A. & Tabata M. 2016. Characterization of the temperature conditions of inside narrow rocky outcrops that serve as a habitat for semi-fossorial mammals // Open Journal of Animal Sciences. Vol.6. P.247–258.
  • Iwasa M.A. & Takahashi M. 2021. Soil hardness of burrows related to the usage frequencies of the lesser Japanese mole, Mogera imaizumii (Talpidae) // Russian Journal of Theriology. Vol.20. P.129–135.
  • Japan Meteorological Agency. 2023. General Information on Climate of Japan. Available at https://www.data.jma.go.jp/gmd/cpd/longfcst/en/tourist.html (Accessed in 25 September 2023).
  • Kashimura A., Moteki K., Kitamura Y., Hayashi D., Shimoyokkaichi Y., Shinohara A., Morita T. & Tsuchiya K. 2010. Subterranean spatial utilization of the lesser Japanese mole, Mogera imaizumii (Kuroda, 1957) // Japanese Journal of Environmental Entomology and Zoology. Vol.21. P.155–164.
  • Kay R.F. & Whitford W.G. 1978. The burrow environment of the banner-tailed kangaroo rat, Dipodomys spectabilis, in South-central New Mexico // American Midland Naturalist. Vol.99. P.270–279.
  • Kinlaw A. 1999. A review of burrowing by semi-fossorial vertebrates in arid environments // Journal of Arid Environments. Vol.41. P.127–145.
  • Lovegrove B.G. 1989. The cost of burrowing by the social mole rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber: the role of soil moisture // Physiological Zoology. Vol.62. P.449–469.
  • Lovegrove B.G. & Knight-Eloff A. 1988. Soil and burrow temperatures, and the resource characteristics of the social mole-rat Cryptomys damarensis (Bathyergidae) in the Kalahari desert // Journal of Zoology. Vol.216. P.403–416.
  • Loy A. & Corti M. 1996. Distribution of Talpa europea (Mammalia, Insectivora, Talpidae) in Europe: a biogeographic hypothesis based on morphometric data // Italian Journal of Zoology. Vol.63. P.277–284.
  • Luna F. & Antinuchi C.D. 2007. Energetics and thermoregulation during digging in the rodent tuco-tuco (Ctenomys talarum) // Comparative Biochemistry and Physiology, Part A. Vol.146. P.559–564.
  • McNab B.K. 1966. The metabolism of fossorial rodents: A study of convergence // Ecology. Vol.47. P.712–733.
  • McNab B.K. 1979. The influence of body size on the energetics and distribution of fossorial and burrowing mammals // Ecology. Vol.60. P.1010–1020.
  • Marhold S. & Nagel A. 1995. The energetics of the common mole rat Cryptomys, a subterranean eusocial rodent from Zambia // Journal of Comparative Physiology B. Vol.164. P.636–645.
  • Martin A.J. 2017. The evolutionary advantage of burrowing underground // American Scientist. Vol.105. P.306.
  • Mohyuddin S.G., Khan I., Zada A., Qamar A., Arbab A.A.I., Ma X., Yu Z., Liu X.-X., Yong Y.-H., Ju X.H., Zhang-Ping Y. & Jiang M.Y. 2022. Influence of heat stress on intestinal epithelial barrier function, tight junction protein, and immune and reproductive physiology // BioMed Research International. Vol.2022. P.e8547379.
  • Moore J.A.H. & Roper T.J. 2003. Temperature and humidity in badger Meles meles setts // Mammal Review. Vol.33. P.308–313.
  • Naruse Y. 1963. [Quaternary volcanic ashes in the Kanto Region] // Quaternary Research. Vol.3. P.94–109 [in Japanese with English summary].
  • Nevo E. 1979. Adaptive convergence and divergence of subterranean mammals // Annual Review of Ecology and Systematics // Vol.10. P.269–308.
  • Nevo E. 1999. Mosaic Evolution of Subterranean Mammals: Regression, Progression and Global Convergence. Oxford: Oxford University Press. 512 p.
  • Nevo E. & Reig O.A. (eds.). 1990. Evolution of Subterranean Mammals at the Organismal and Molecular Levels. New York: Alan R. Liss. 422 p.
  • Ohdachi S.D., Ishibashi Y., Iwasa M.A., Fukui D. & Saitoh T. 2015. The Wild Mammals of Japan. 2nd ed. Kyoto: Shoukadoh. 506 p.
  • Oka S., Shimazu M., Unozawa A., Katsurajima S. & Kakimi T. 1979. [Geology of the Fujisawa District (Scale 1:50,000)]. Tsukuba: Geological Survey of Japan [in Japanese].
  • Okrouhlík J., Burda H., Kunc P., Knížková I. & Šumbera R. 2015. Surprisingly low risk of overheating during digging in two subterranean rodents // Physiology & Behavior. Vol.138. P.236–241.
  • Šumbera R., Chitaukali W.N., Elichová M., Kubová J. & Burda H. 2004. Microclimatic stability in burrows of an Afrotropical solitary bathyergid rodent, the silvery mole-rat (Heliophobius argenteocinereus) // Journal of Zoology. Vol.263. P.409–416.
  • Vleck D. 1979. The energy costs of burrowing by the pocket gopher Thommomys bottae // Physiological Zoology. Vol.52. P.122–136.
  • Zelová J., Šumbera R., Sedláček F. & Burda H. 2007. Energetics in the solitary subterranean rodent, the silvery mole-rat, Heliophobius argenteocinereus, and the allometry of RMR in African mole-rats (Bathyergidae) // Comparative Biochemical Physiology A. Vol.147. P.412–419.

Download PDF