Russian Journal of Theriology. Main page    

Russian Journal of Theriology. Main page
Free access to the published articles
Information about online submission, Articles format, Instructions for authors etc
Instructions for reviewers
Subscription and prices
Contacts

Русскоязычный вариант сайта
Chiropteran (Chiroptera; Mammalia) taxonomy in light of modern methods and approaches
Kruskop S.V., Artyushin I.V.
P. 111–128
Bats are the second largest mammalian order with an almost worldwide distribution. Bat taxonomy remained almost unchanged for decades, and the diversity of the order was underestimated. The advent of molecular methods brought change to chiropteran taxonomy. The number of families increased from 17–18 to 21, and the relationships between them were revised, as were the composition of suborders and superfamilies. The number of recognized species and genera went up by almost a third. As a discipline, bat taxonomy has changed much methodologically and conceptually. After its long reign, comparative morphology has faded into the background. It has become clear that characters can diverge and converge in related species, masking true phylogenetic relationships. Not writing morphology off entirely, it does necessitate resorting to finer structures or multivariate data analysis. Karyology is of limited use in bat taxonomy, but methods such as FISH add to the understanding of relationships between suprageneric taxa. Mitochondrial DNA sequences are easy to obtain, and their analysis yields well-supported phylogenetic trees, but reticular processes and other factors may mask taxon boundaries. To resolve the uncertainty, nuclear markers are used, and their number and choice depends on taxon characteristics. Overall, building a consistent chiropteran system calls for an integration of all mentioned approaches.

DOI: 10.15298/rusjtheriol.20.2.01

References

  • Agnarsson I., Zambrana-Torrelio C.M., Flores-Saldana N.P. & May-Collado L.J. 2011. A time-calibrated specieslevel phylogeny of bats (Chiroptera, Mammalia) // PLoS Currents Vol.3. P.RRN1212.
  • Akanni W.A., Wilkinson M., Creevey C.J., Foster P.G. & Pisani D. 2015. Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics // Royal Society Open Science. Vol.2. No.8. P.140436.
  • Almeida F.C., Giannini N.P. & Simmons N.B. 2016. The evolutionary history of the African fruit bats (Chiroptera: Pteropodidae) // Acta Chiropterologica. Vol.18. No.1. P.73–108.
  • Almeida F.C., Giannini N.P., DeSalle R. & Simmons N.B. 2011. Evolutionary relationships of the Old World fruit bats (Chiroptera, Pteropodidae): another star phylogeny? // BMC Evolutionary Biology. Vol.11. P.1–17.
  • Almeida F.C., Giannini N.P., Simmons N.B. & Helgen K.M. 2014. Each flying fox on its own branch: A phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae) // Molecular Phylogenetics and Evolution. Vol.77. P.83–95.
  • Almeida F.C., Simmons N.B. & Giannini N.P. 2020. A species-level phylogeny of Old World fruit bats with a new higher-level classification of the family Pteropodidae // American Museum Novitates. No.3950. P.1–24.
  • Álvarez Y., Juste J., Tabares E., Garrido-Pertierra A., Ibáñez C. & Bautista J.M. 1999. Molecular phylogeny and morphological homoplasy in fruitbats // Molecular Biology and Evolution. Vol.16. P.1061–1067.
  • Amador L.I., Moyers Arévalo R.L., Almeida F.C., Catalano S.A. & Giannini N.P. 2018. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix // Journal of Mammalian Evolution. Vol.25. P.37–70.
  • Ammerman L.K., Lee D.N., & Tipps T.M. 2012. First molecular phylogenetic insights into the evolution of free–tailed bats in the subfamily Molossinae (Molossidae, Chiroptera) // Journal of Mammalogy. Vol.93. No.1. P.12–28.
  • Andriollo T., Ashrafi S., Arlettaz R. & Ruedi M. 2018. Porous barriers? Assessment of gene flow within and among sympatric long-eared bat species // Ecology and Evolution. Vol.8. No.24. P.12841–12854.
  • Ao L., Mao X., Nei W., Gu X., Feng Q., Wang J., Su W., Wang Y., Volleth M. & Yang F. 2007. Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting // Chromosome Research. Vol.15. P.257–267.
  • Appleton B.R., McKenzie J.A. & Christidis L. 2004. Molecular systematics and biogeography of the bentwing bat complex Miniopterus schreibersii (Kuhl, 1817) (Chiroptera: Vespertilionidae) // Molecular Phylogenetics and Evolution. Vol.31. No.2. P.431–439.
  • Arita H.T., Vargas-Baron J. & Villalobos F. 2014. Latitudinal gradients of genus richness and endemism and the diversification of New World bats // Ecography. Vol.37. P.1024–1033.
  • Avise J.C. & Liu J.-X. 2011. On the temporal inconsistencies of Linnean taxonomic ranks // Biological Journal of the Linnean Society. Vol.102. P.707–714.
  • Bailey S.E., Mao X., Struebig M., Tsagkogeorga G., Csorba G., Heaney L.R., Sedlock J., Stanley W., Rouillard J.-M. & Rossiter S.J. 2016. The use of museum samples for largescale sequence capture: a study of congeneric horseshoe bats (family Rhinolophidae) // Biological Journal of the Linnean Society. Vol.117. No.1. P.58–70.
  • Baker R.J. 1973. Comparative cytogenetics of the New World leaf-nosed bats (Phyllostomatidae) // Periodicum Biologorum. Vol.75. No.1. P.37–45.
  • Baker R.J. 1979. Karyology // Baker R.J., Jones J.K. & Carter D.C. (eds.). Biology of Bats of the New World Family Phyllostomatidae. Part 3. Lubbock: Texas Tech Press. P.107–155.
  • Baker R.J. & Bickham J.W. 1980. Karyotypic evolution in bats: evidence of extensive and conservative chromosomal evolution in closely related taxa // Systematic Biology. Vol.29. No.3. P.239–253.
  • Baker R.J. & Bradley R.D. 2006. Speciation in mammals and the genetic species concept // Journal of Mammalogy. Vol.87. No.4. P.643–662.
  • Baker R.J., Hoofer S.R., Porter C.A. & Van Den Bussche R.A. 2003. Diversification among New World leafnosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence // Occasional Papers, Museum of Texas Tech University. No.230. P.1–32.
  • Baker R.J., Solari S., Cirranello A. & Simmons N.B. 2016. Higher level classification of phyllostomid bats with a summary of DNA synapomorphies // Acta Chiropterologica. Vol.18. No.1. P.1–38.
  • Benathar T.C.M., Nagamachi C.Y., Rodrigues L.R.R., O’Brien P.C.M., Ferguson-Smith M.A., Yang F. & Pieczarka J.C. 2019. Karyotype, evolution and phylogenetic reconstruction in Micronycterinae bats with implications for the ancestral karyotype of Phyllostomidae // BMC Evolutionary Biology. Vol.19. P.e98.
  • Benda P., Gazaryan S. & Vallo P. 2016. On the distribution and taxonomy of bats of the Myotis mystacinus morphogroup from the Caucasus region (Chiroptera: Vespertilionidae) // Turkish Journal of Zoology. Vol.40. P.842–863.
  • Bergmans W. 1997. Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera) 5: The genera Lissonycteris Andersen, 1912, Myonycteris Matschie, 1899 and Megaloglossus Pagenstecher, 1885; General remarks and conclusions; Annex: key to all species // Beaufortia. Vol.47. No.2. P.11–90.
  • Bickham J.W., McBee K. & Schlitter D.A. 1986. Chromosomal variation among seven species of Myotis (Chiroptera, Vespertilionidae) // Journal of Mammalogy. Vol.67. No.4. P.746–750.
  • Bilgin R., Gurun K., Maraci O., Furman A., Hulva P., Çoraman E., Lucan R.K., Bartonicka T. & Horacek I. 2012. Syntopic occurrence in Turkey supports separate species status for Miniopterus schreibersii schreibersii and M. schreibersii pallidus (Mammalia: Chiroptera) // Acta Chiropterologica. Vol.14. No.2. P.279–290.
  • Borisenko A.V., Kruskop S.V. & Ivanova N.V. 2008. A new mouse-eared bat (Mammalia: Chiroptera: Vespertilionidae) from Vietnam // Russian Journal of Theriology. Vol.7. No.2. P.57–69.
  • Bradley R.D. & Baker R.J. 2001. A test of the genetic species concept: cytochrome-b sequences and mammals // Journal of Mammalogy. Vol.82. No.4. P.960–973.
  • Bragg J.G., Potter S., Bi K. & Moritz C. 2015. Exon capture phylogenomics: efficacy across scales of divergence // Molecular Ecology Resources. Vol.16. No.5. P.1059–1068.
  • Camacho J., Heyde A., Bhullar B.-A.S., Haelewaters D., Simmons N.B. & Abzhanov A. 2019. Peramorphosis, an evolutionary developmental mechanism in Neotropical bat skull diversity // Developmental Dynamics. Vol.248. P.1129–1143.
  • Caraballo D.A., Montani M.E., Martnez L.M., Antoniazzi L.R., Sambrana T.C., Fernandez C., Cisterna D.M., Beltron F.J. & Colombo V.C. 2020. Heterogeneous taxonomic resolution of cytochrome b gene identification of bats from Argentina: Implications for field studies // PLoS ONE. Vol.15. No.12. P.e0244750.
  • Castañeda-Rico S., León-Paniagua L., Edwards C.W. & Maldonado J.E. 2020. Ancient DNA from museum specimens and next generation sequencing help resolve the controversial evolutionary history of the critically endangered Puebla deer mouse // Frontiers in Ecology and Evolution. Vol.8. P.e94.
  • Centeno-Cuadros A., Razgour O., García-Mudarra J.L., Mingo-Casas P., Sandonís V., Redondo A., Ibáñez C., de Paz O., Martinez-Alós S., Suarez G.P., Echevarría J.E. & Juste J. 2019. Comparative phylogeography and asymmetric hybridization between cryptic bat species // Journal of Zoological Systematics and Evolutionary Research. Vol.57. No.4. P.1004–1018.
  • Cirranello A., Simmons N.B., Solari S. & Baker R.J. 2016. Morphological diagnoses of higher-level phyllostomid taxa (Chiroptera: Phyllostomidae) // Acta Chiropterologica. Vol.18. No.1. P.39–71.
  • Çoraman E., Dundarova H., Dietz C. & Mayer F. 2020. Patterns of mtDNA introgression suggest population replacement in Palaearctic whiskered bat species // Royal Society Open Science. Vol.7. No.6. P.e191805.
  • Csorba G. & Lee L.-L. 1999. A new species of vespertilionid bat from Taiwan and a revision of the taxonomic status of Arielulus and Thainycteris (Chiroptera: Vespertilionidae) // Journal of Zoology. Vol.248. P.361–367.
  • Czaplewski N., Person J., Boyd C. & Emry R. 2019. A new species of bat (Chiroptera: Vespertilionidae) from the early Oligocene global cooling period, Brule Formation, North
  • Dakota, USA // Palaeovertebrata. Vol.42. No.2. P.e2. Dávalos L.M. & Russell A.L. 2014. Sex-biased dispersal produces high error rates in mitochondrial distance-based and tree-based species delimitation // Journal of Mammalogy. Vol.95. No.4. P.781–791.
  • Dávalos L.M., Velazco P.M., Warsi O.M., Smits P.D. & Simmons N.B. 2014. Integrating incomplete fossils by isolating conflicting signal in saturated and non-independent morphological characters // Systematic Biology. Vol.63. No.4. P.582–600.
  • De Queiroz K. 2007. Species concepts and species delimitation // Systematic Biology. Vol.56. No.6. P.879–886.
  • Demos T.C., Webala P.W., Peterhans J.C.K., Goodman S.M., Bartonjo M. & Patterson B.D. 2019. Molecular phylogenetics of slit-faced bats (Chiroptera: Nycteridae) reveal deeply divergent African lineages // Journal of Zoological Systematics and Evolutionary Research. Vol.57. No.4. P.1019–1038.
  • Dietz C., Gazaryan A., Papov G., Dundarova H. & Mayer F. 2016. Myotis hajastanicus is a local vicariant of a widespread species rather than a critically endangered endemic of the Sevan lake basin (Armenia) // Mammalian Biology. Vol.81. P.518–522.
  • Dobson G.E. 1875. Conspectus of the suborders, families and genera of Chiroptera arranged according to their natural affinities // Annals and Magazine of Natural History. Vol.16. No.4. P.345–357.
  • Dool S.E. 2020. Conservation genetic studies in bats // Ortega J. & Maldonado J. (eds.). Conservation Genetics in Mammals. Cham: Springer. P.29–62.
  • Edwards S.V. 2009. Is a new and general theory of molecular systematics emerging? // Evolution. Vol.63. No.1. P.1–19.
  • Eick G.N., Jacobs D.S. & Matthee C.A. 2005. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera) // Molecular Biology and Evolution. Vol.22. No.9. P.1869–1886.
  • Eiting T.P. & Gunnell G.F. 2009. Global completeness of the bat fossil record // Journal of Mammalian Evolution. Vol.16. P.151–173.
  • Ellegren H. 2004. Microsatellites: simple sequences with complex evolution // Nature Reviews Genetics. Vol.5. No.6. P.435–445.
  • Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S. & Mitchell S.E. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species // PLoS ONE. Vol.6. No.5. P.e19379.
  • Elworth R.A.L., Ogilvie H.A., Zhu J. & Nakhleh L. 2019. Advances in computational methods for phylogenetic networks in the presence of hybridization // Warnow T. (ed.). Bioinformatics and Phylogenetics. Computational Biology, Vol.29. Cham: Springer International Publishing. P.317–360.
  • Evin A., Baylac M., Ruedi M., Mucedda M. & Pons J.-M. 2008. Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): a geometric morphometric appraisal // Biological Journal of the Linnean Society. Vol.95. No.3. P.529–538.
  • Fedyk S. & Ruprecht A.L. 1983. Chromosomes of some species of vespertilionid bats. II. Evolutionary relationships of plecotine bats // Acta Theriologica. Vol.28. No.10. P.171–182.
  • Foley N.M., Goodman S.M., Whelan C.V., Puechmaille S.J. & Teeling E. 2017. Towards navigating the Minotaur’s labyrinth: cryptic diversity and taxonomic revision within the speciose genus Hipposideros (Hipposideridae) // Acta Chiropterologica. Vol.19. No.1. P.1–18.
  • Foley N.M., Thong V.D., Soisook P., Goodman S.M., Armstrong K.N., Jacobs D.S., Puechmaille S.J. & Teeling E.C. 2015. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats // Molecular Biology and Evolution. Vol.32. P.313–333.
  • Freeman P.W. 2000. Macroevolution in Microchiroptera: recoupling morphology and ecology with phylogeny // Evolutionary Ecology Research. Vol.2. No.3. P.317–335.
  • Gager Y., Tarland E., Lieckfeldt D., Ménage M., BoteroCastro F., Rossiter S.J., Kraus R.H.S., Ludwig A. & Dechmann D.K.N. 2016. The value of molecular vs. morphometric and acoustic information for species identification using sympatric molossid bats // PLoS ONE. Vol.11. No.3. P.e0150780.
  • Garbino G.S.T., Lim B.K. & Tavares V.C. 2020. Systematics of big-eyed bats, genus Chiroderma Peters, 1860 (Chiroptera: Phyllostomidae) // Zootaxa. Vol.4846. No.1. P.1–93.
  • Giménez A.L., Giannini N.P. & Almeida F.C. 2019. Mitochondrial genetic differentiation and phylogenetic relationships of three Eptesicus (Histiotus) species in a contact zone in Patagonia // Mastozoologa Neotropical. Vol.26. No.2. P.349–358.
  • Gomes A.J.B., Nagamachi C.Y., Rodrigues L.R.R., Benathar T.C.M., Ribas T.F.A., O’Brien P.C.M., Yang F., Ferguson-Smith M.A. & Pieczarka J.C. 2016. Chromosomal phylogeny of vampyressine bats (Chiroptera, Phyllostomidae) with description of two new sex chromosome systems // BMC Evolutionary Biology. Vol.16. P.e119.
  • Gomes A.J.B., Nagamachi C.Y., Rodrigues L.R.R., Ferguson-Smith M.A., Yang F., O’Brien P.C.M. & Pieczarka J.C. 2018. Chromosomal evolution and phylogeny in the Nullicauda group (Chiroptera, Phyllostomidae): evidence from multidirectional chromosome painting // BMC Evolutionary Biology. Vol.18. P.e62.
  • Gomes A.J.B., Rodrigues L.R.R., Rissino J.D., Nagamachi C.Y. & Pieczarka J.C. 2010. Biogeographical karyotypic variation of Rhinophylla fischerae (Chiroptera: Phyllostomidae) suggests the occurrence of cryptic species // Comparative Cytogenetics. Vol.4. P.9–85.
  • Goodman S.M., Puechmaille S.J., Friedli-Weyeneth N., Gerlach J., Ruedi M., Schoeman M.C., Stanley W.T. & Teeling E.C. 2012. Phylogeny of the Emballonurini (Emballonuridae) with descriptions of a new genus and species from Madagascar // Journal of Mammalogy. Vol.93. No.6. P.1440–1455.
  • Gorobeyko U., Kartavtseva I., Sheremetyeva I., Kazakov D. & Guskov V. 2020. DNA-barcoding and a new data about the karyotype of Myotis petax (Chiroptera, Vespertilionidae) in the Russian Far East // Comparative Cytogenetics. Vol.14. P.483–500.
  • Görföl T., Estok P. & Csorba G. 2013. The subspecies of Myotis montivagus — taxonomic revision and species limits (Mammalia: Chiroptera: Vespertilionidae) // Acta Zoologica Academiae Scientiarum Hungaricae. Vol.59. No.1. P.41–59.
  • Graphodatsky A., Ferguson-Smith M.A. & Stanyon R. 2012. A short introduction to cytogenetic studies in mammals with reference to the present volume // Cytogenetic and Genome Research. Vol.137. No.2–4. P.83–96.
  • Gregorin R. & Cirranello A. 2016. Phylogeny of Molossidae Gervais (Mammalia: Chiroptera) inferred by morphological data // Cladistics. Vol.32. P.2–35.
  • Gunnell G.F. & Simmons N.B. 2005. Fossil evidence and the origin of bats // Journal of Mammalian Evolution. Vol.12. P.209–246.
  • Gunnell G.F., Jacobs B.F., Herendeen P.S., Head J.J., Kowalski E., Msuya C.P., Mizabwa F.A., Harrison T., Hebersetzer J. & Storch G. 2005. Oldest placental mammal from sub-Saharan Africa: Eocene microbat from Tanzania — evidence for early evolution of sophisticated echolocation // Palaeontologia Electronica. Vol.5. P.1–10.
  • Gunnell G.F., Simmons N.B. & Seiffert E.R. 2014. New Myzopodidae (Chiroptera) from the Late Paleogene of Egypt: emended family diagnosis and biogeographic origins of Noctilionoidea // PLoS ONE. Vol.9. No.2. P.e86712.
  • Gunnell G.F., Simons E.L. & Seiffert E.R. 2008. New bats (Mammalia: Chiroptera) from the late Eocene and early Oligocene, Fayum Depression, Egypt // Journal of Vertebrate Paleontology. Vol.28. P.1–11.
  • Gunnell G.F., Smith R. & Smith T. 2017. 33 million year old Myotis (Chiroptera, Vespertilionidae) and the rapid global radiation of modern bats // PLoS ONE. Vol.12. No.3. P.e0172621.
  • Habersetzer J., Schlosser-Sturm E., Storch G. & Sigé B. 2012. Shoulder joint and inner ear of Tachypteron franzeni, an emballonurid bat from the Middle Eocene of Messel // Gunnell G.F. & Simmons N.B. (eds.). Evolutionary History of Bats: Fossils, molecules and Morphology. Cambridge: Cambridge University Press. P.67–104.
  • Hand S.J., Sigé B., Archer M. & Black K.H. 2016. An evening bat (Chiroptera: Vespertilionidae) from the late Early Eocene of France, with comments on the antiquity of modern bats // Palaeovertebrata. Vol.40. No.2. P.e2.
  • Hassanin A., Colombo R., Tungaluna G.-C., Merle M., Tu V.T., Görföl T., Akawa P., Csorba G., Kearney T., Monadjem A. & Ing R. 2017. Multilocus phylogeny and species delimitation within the genus Glauconycteris (Chiroptera, Vespertilionidae), with the description of a new bat species from the Tshopo Province of the Democratic Republic of the Congo // Journal of Zoological Systematics and Evolutionary Research. Vol.56. P.1–22.
  • Hassanin A., Bonillo C., Tshikung D., Pongombo Shongo C., Pourrut X., Kadjo B., Nakouné E., Tu V.T., Prié V. & Goodman S.M. 2020. Phylogeny of African fruit bats (Chiroptera, Pteropodidae) based on complete mitochondrial genomes // Journal of Zoological Systematics and Evolutionary Research. Vol.58. No.4. P.1395–1410.
  • Hawkins J.A., Kaczmarek M.E., Müller M.A., Drosten C., Press W.H. & Sawyer S.L. 2019. A metaanalysis of bat phylogenetics and positive selection based on genomes and transcriptomes from 18 species // Proceedings of the National Academy of Sciences of the USA. Vol.116. No.23. P.11351–11360.
  • Hedrick B.P. & Dumont E. 2018. Putting the leaf-nosed bats in context: A geometric morphometric analysis of three of the largest families of bats // Journal of Mammalogy. Vol.99. No.5. P.1042–1054.
  • Hedrick B.P., Mutumi G.L., Munteanu V.D., Sadier A., Davies K.T.J., Rossiter S.J., Sears K.E., Dávalos L.M. & Dumont E. 2020. Morphological diversification under high integration in a hyper diverse mammal clade // Journal of Mammalian Evolution. Vol.27. P.563–575.
  • Heller K.-G. & Volleth M. 1984. Taxonomic position of “Pipistrellus societatis” Hill, 1972 and the karyological characteristics of the genus Eptesicus (Chiroptera: Vespertilionidae) // Journal of Zoological Systematics and Evolutionary Research. Vol.22. P.65–77.
  • Hill J.E. 1974. A new family, genus and species of bat (Mammalia; Chiroptera) from Thailand // Bulletin of the British Museum (Natural History), Zoo1ogy. Vol.27. P.301–336.
  • Hoffmann F.G., Hoofer S.R. & Baker R.J. 2008. Molecular dating of the diversification of Phyllostominae bats based on nuclear and mitochondrial DNA sequences // Molecular Phylogenetics and Evolution. Vol.49. No.2. P.653–658.
  • Hollar L.J. & Springer M.S. 1997. Old World fruit bat phylogeny: evidence for convergent evolution and an endemic African clade // Proceedings of the National Academy of Science of the USA. Vol.94. P.5716–5721.
  • Hood C.S., Schlitter D.A., Georgudaki J.I., Yenbutra S. & Baker R.J. 1988. Chromosomal studies of bats (Mammalia: Chiroptera) from Thailand // Annals of Carnegie Museum. Vol.57. P.99–109.
  • Hoofer S.R. & Van den Bussche R.A. 2001. Phylogenetic relationships of plecotine bats and allies based on mitochondrial ribosomal sequences // Journal of Mammalogy. Vol.82. No.1. P.131–137.
  • Hoofer S.R. & Van den Bussche R.A. 2003. Molecular phylogenetics of the chiropteran family Vespertilionidae // Acta Chiropterologica. Vol.5. Suppl.1. P.1–63.
  • Hoofer S.R., Reeder S.A., Hansen E.W. & Van Den Bussche R.A. 2003. Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera) // Journal of Mammalogy. Vol.84. No.3. P.809–821.
  • Horaček I. & Hanak V. 1986. Generic status of Pipistrellus savii and comments on classification of the genus Pipistrellus (Chiroptera, Vespertilionidae) // Myotis. Vol.23–24. P.9–16.
  • Horáček I., Fejfar O. & Hulva P. 2006. A new genus of vespertilionid bat from early Miocene of Jebel Zelten, Libya, with comments on Scotophilus and early history of vespertilionid bats (Chiroptera) // Lynx. Vol.37. P.131–150.
  • Huang C., Yu W., Xu Z., Qiu Y., Chen M., Qiu B., Motokawa M., Harada M., Li Y. & Wu Y. 2014. A cryptic species of the Tylonycteris pachypus complex (Chiroptera: Vespertilionidae) and its population genetic structure in southern China and nearby regions // International Journal of Biological Sciences. Vol.10. No.2. P.200–211.
  • Huang J., Liu Y., Zhu T. & Yang Z. 2020. The asymptotic behavior of bootstrap support values in molecular phylogenetics // Systematic Biology. Vol.70. No.4. P.774–785.
  • Hulva P. & Horáček I. 2002. Craseonycteris thonglongyai (Chiroptera: Craseonycteridae) is a rhinolophoid: molecular evidence from cytochrome b // Acta Chiropterologica. Vol.4. No.2. P.107–120.
  • Hulva P., Horáček I. & Benda P. 2007. Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera) // BMC Evolutionary Biology. Vol.7. P.165.
  • Hulva P., Fornůsková A., Chudárková A., Evin A., Allegrini B., Benda P. & Bryja J. 2010. Mechanisms of radiation in a bat group from the genus Pipistrellus inferred by phylogeography, demography and population genetics // Molecular Ecology. Vol.19. No.24. P.5417–5431.
  • Hutcheon J.M. & Kirsch J.A.W. 2004. Camping in a different tree: results of molecular systematic studies of bats using DNA-DNA hybridization // Journal of Mammalian Evolution. Vol.11. No.1. P.17–47.
  • Hutcheon J.M. & Kirsch J.A.W. 2006. A moveable face: deconstructing the Microchiroptera and a new classification of extant bats // Acta Chiropterologica. Vol.8. No.1. P.1–10.
  • Hutterer R., Decher J., Monadjem A. & Astrin J. 2019. A new genus and species of vesper bat from West Africa, with notes on Hypsugo, Neoromicia, and Pipistrellus (Chiroptera: Vespertilionidae) // Acta Chiropterologica. Vol.21. No.1. P.1–22.
  • Igea J., Juste J. & Castresana J. 2010. Novel intron markers to study the phylogeny of closely related mammalian species // BMC Evolutionary Biology. Vol.10. No.1. P.e369.
  • Ivanova N.V., Clare E.L. & Borisenko A.V. 2012. DNA barcoding in mammals // Kress W.J. & Erickson D.L. (eds.). DNA Barcodes: Methods and Protocols. Methods in Molecular Biology. Vol.858. Humana Press. P.153–182.
  • Jacobs D.S., Eick G.N., Schoeman M.C. & Matthee C.A. 2006. Cryptic species in an insectivorous bat, Scotophilus dinganii // Journal of Mammalogy. Vol.87. No.1. P.161–170.
  • Jarrín–V P. & Kunz T.H. 2011. A new species of Sturnira (Chiroptera: Phyllostomidae) from the Choco forest of Ecuador // Zootaxa. Vol.2755. No.1. P.1–35.
  • Jones G. & Teeling E.C. 2006. The evolution of echolocation in bats // Trends in Ecology and Evolution. Vol.21. No.3. P.149–156.
  • Juste J., Álvarez Y., Tabarés E., Garrido-Pertierra A., Ibáñez C. & Bautista J.M. 1999. Phylogeography of African fruit bats (Megachiroptera) // Molecular Phylogenetics and Evolution. Vol.13. P.596–604.
  • Kawai K., Nikaido M., Harada M., Matsumura S., Lin L. K., Wu Y., Hasegawa M. & Okada N. 2003. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences // Molecular Phylogenetics and Evolution. Vol.28. No.2. P.297–307.
  • Kearney T.C., Volleth M., Contrafatto G. & Taylor P.J. 2002. Systematic implications of chromosome GTG-band and bacula morphology for southern African Eptesicus and Pipistrellus and several other species of Vespertilioninae (Chiroptera: Vespertilionidae) // Acta Chiropterologica. Vol.4. No.1. P.55–76.
  • Khan F.A.A., Solari S., Swier V.J., Larsen P.A., Abdullah M. & Baker R.J. 2010. Systematics of Malaysian woolly bats (Vespertilionidae: Kerivoula) inferred from mitochondrial, nuclear, karyotypic, and morphological data // Journal of Mammalogy. Vol.91. No.5. P.1058–1072.
  • Kirsch J.A.W., Flannery T.F., Springer M.S. & Lapointe F.-J. 1995. Phylogeny of the Pteropodidae (Mammalia: Chiroptera) based on DNA hybridisation, with evidence for bat monophyly // Australian Journal of Zoology. Vol.43. No.4. P.395–428.
  • Koopman K.F. 1984. Bats // Anderson S. & Jones Jr. J.K. (eds.). Orders and Families of Recent Mammals of the World. New York: Wiley-Interscience. P.145–186.
  • Koopman K.F. 1993. Order Chiroptera // Wilson D.E. & Reeder D.M. (eds.). Mammal Species of the World, a Taxonomic and Geographic Reference. Second edition. Washington: Smithsonian Institution Press. P.137–241.
  • Koopman K.F. 1994. Chiroptera: Systematics, VIII. Mammalia, part 60. New York: Walter de Gruyter. 217 p.
  • Koubínová D., Irwin N., Hulva P., Koubek P. & Zima J. 2013. Hidden diversity in Senegalese bats and associated findings in the systematics of the family Vespertilionidae // Frontiers in Zoology. Vol.10. P.e48.
  • Ksepka D.T., Parham J.F., Allman J.F., Benton M.J., Carrano M.T., Cranston K.A., Donoghue P.C.J., Head J.J., Hermsen E.J., Irmis R.B., Joyce W.G., Kohli M., Lamm K.D., Leehr D., Patané J.L., Polly P.D., Phillips M.J., Smith N.A., Smith N.D., Van Tuinen M., Ware J.L. & Warnock R.C.M. 2015. The fossil calibration database — a new resource for divergence dating // Systematic Biology. Vol.64. No.5. P.853–859.
  • Lack J.B. & Van Den Bussche R.A. 2010. Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae // Journal of Mammalogy. Vol.91. No.6. P.1435–1448.
  • Lack J.B., Roehrs Z.P., Stanley C.E., Ruedi M. & Van Den Bussche R.A. 2010. Molecular phylogenetics of Myotis indicate familial-level divergence for the genus Cistugo (Chiroptera) // Journal of Mammalogy. Vol.91. No.4. P.976–992.
  • Lamb J.M., Ralph T.M.C., Naidoo T., Taylor P.J., Ratrimomanarivo F., Stanley W.T. & Goodman S.M. 2011. Toward a molecular phylogeny for the Molossidae (Chiroptera) of the Afro-Malagasy region // Acta Chiropterologica. Vol.13. No.1. P.1–16.
  • Leaché A.D., Harris R.B., Rannala B. & Yang Z. 2013. The influence of gene flow on species tree estimation: a simulation study // Systematic Biology. Vol.63. No.1. P.17–30.
  • Lei M. & Dong D. 2016. Phylogenomic analyses of bat subordinal relationships based on transcriptome data // Scientific Reports. Vol.6. No.1. P.e27726.
  • Li C., Hofreiter M., Straube N., Corrigan S. & Naylor G.J. 2013. Capturing protein-coding genes across highly divergent species // BioTechniques. Vol.54. No.6. P.321–326.
  • Loureiro L.O ., Engs trom M.D . & Lim B.K. 2020. Single nucleotide polymorphisms (SNPs) provide unprecedented resolution of species boundaries, phylogenetic relationships, and genetic diversity in the mastiff bats (Molossus) // Molecular Phylogenetics and Evolution. Vol.143. P.e106690.
  • Maitre E. 2014. Western European middle Eocene to lower Oligocene Chiroptera — systematics, phylogeny and palaeoecology based on new material from the Quercy (France) // Swiss Journal of Palaeontology. Vol.133. P.141–242.
  • Mao X. & Rossiter S.J. 2020. Genome–wide data reveal discordant mitonuclear introgression in the intermediate horseshoe bat (Rhinolophus affinis) // Molecular Phylogenetics and Evolution. Vol.150. P.e106886.
  • Mao X., Tsagkogeorga G., Thong V.D. & Rossiter S.J. 2019. Resolving evolutionary relationships among six closely related taxa of the horseshoe bats (Rhinolophus) with targeted resequencing data // Molecular Phylogenetics and Evolution. Vol.139. P.e106551.
  • Marcus L., Hingst-Zaher E. & Zaher H. 2000. Application of landmark morphometrics to skulls representing the orders of living mammals // Hystrix. Vol.11. No.1. P.27–47.
  • Matveev V.A., Kruskop S.V. & Kramerov D.A. 2005. Revalidation of Myotis petax Hollister, 1912 and its new status in connection with Myotis daubentonii (Kuhl, 1817) (Vespertilionidae, Chiroptera) // Acta Chiropterologica. Vol.7. No.1. P.23–37.
  • Mayer F., Dietz C. & Kiefer A. 2007. Molecular species identification boosts bat diversity // Frontiers in Zoology. Vol.4. No.1. P.e4.
  • McKenna M.C. & Bell S.K. 1997. Classification of Mammals Above the Species Level. New York: Columbia University Press. 631 p.
  • Mein P. & Tupinier Y. 1977. Formule dentaire et position systematique du minioptere (Mammalia, Chiroptera) // Mammalia. Vol.41. No.2. P.207–211.
  • Méndez-Rodrguez A., Juste J., Centeno-Cuadros A., RodrguezGуmez F., Serrato-DazA., Garca-Mudarra J.L., Guevara-Chumacero L.M. & Lуpez-Wilchis R. 2021. Genetic introgression and morphological variation in naked-back bats (Chiroptera: Mormoopidae: Pteronotus species) along their contact zone in Central America // Diversity. Vol.13. No.5. P.194.
  • Menu H. & Sigé B. 1971. Nyctalodontie et myotodontie, importants caractères de grades évolutifs chez les chiroptères entomophages // Comptes Rendus de l’Académie des Sciences Paris. Vol.272. P.1735–1738.
  • Menu H. 1987. Morphotypes dentaires actuels et fossiles des chiropteres // Palaeovertebrata. Vol.17. P.77–150.
  • Meredith R.W., Janečka J., Gatesy J., Ryder O., Fisher C., Teeling E., Goodbla A., Eizirik E., Simao T., Stadler T., Rabosky D., Honeycutt R., Flynn J., Ingram C., Steiner C., Williams T., Robinson T., Burk-Herrick A., Westerman M. & Murphy W. 2011. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification // Science. Vol.334. No.6055. P.521–524.
  • Miller G.S. 1907. The families and genera of bats // Bulletin of the Smithsonian Institution, United States National Museum. Vol.57. P.1–282.
  • Miller-Butterworth C., Murphy W., O’Brien S., Jacobs D., Springer M. & Teeling E. 2007. A family matter: Conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus // Molecular Biology and Evolution. Vol.24. No.7. P.1553–1561.
  • Miller-Butterworth C.M., Eick G., Jacobs D.S., Schoeman M.C. & Harley E.H. 2005. Genetic and phenotypic differences between South African long–fingered bats, with a global miniopterine phylogeny // Journal of Mammalogy. Vol.86. No.6. P.1121–1135.
  • Molloy E.K. & Warnow T. 2017. To include or not to include: the impact of gene filtering on species tree estimation methods // Systematic Biology. Vol.67. No.2. P.285–303.
  • Monadjem A., Demos T.C., Dalton D.L., Webala P.W., Musila S., Kerbis Peterhans J.C. & Patterson B.D. 2021. A revision of pipistrelle-like bats (Mammalia: Chiroptera: Vespertilionidae) in East Africa with the description of new genera and species // Zoological Journal of the Linnean Society. Vol.191. No.4. P.1114–1146.
  • Morales A.E. & Carstens B.C. 2018. Evidence that Myotis lucifugus subspecies are five nonsister species, despite gene flow // Systematic Biology. Vol.67. No.5. P.756–769.
  • Morales A.E., Jackson N.D., Dewey T.A., O’Meara B.C. & Carstens B.C. 2016. Speciation with gene flow in North American Myotis bats // Systematic Biology. Vol.66. No.3. P.440–452.
  • Murray S.W., Campbell P., Kingston T., Zubaid A., Francis C.M. & Kunz T.H. 2012. Molecular phylogeny of hipposiderid bats from Southeast Asia and evidence of cryptic diversity // Molecular Phylogenetics and Evolution. Vol.62. P.597–611.
  • Nachman M.W. 2013. Genomics and museum specimens // Molecular Ecology. Vol.22. P.5966–5968.
  • Nelson-Rees W.A., Kniazeff A.J., Baker R.J. & Patton J.L. 1968. Intraspecific chromosome variation in the bat, Macrotus waterhousii Gray // Journal of Mammalogy. Vol.49. No.4. P.706–712.
  • Nesi N., Tsagkogeorga G., Tsang S., Nicolas V., Lalis A., Scanlon A., Riesle S., Wiantoro S., Hitch A., Juste J., Pinzari C., Bonaccorso F., Todd C., Lim B., Simmons N., McGowen M. & Rossiter S. 2021. Interrogating phylogenetic discordance resolves deep splits in the rapid radiation of Old World fruit bats (Chiroptera: Pteropodidae) // Systematic Biology. doi: 10.1093/sysbio/syab013
  • Nojiri T., Wilson L.A.B., López-Aguirre C., Tu V.T., Kuratani S., Ito K., Higashiyama H., Son N.T., Fukui D., Sadier A., Sears K.E., Endo H., Kamihori S. & Koyabu D. 2021. Embryonic evidence uncovers convergent origins of laryngeal echolocation in bats // Current Biology. Vol.31. No.7. P.1353–1365.
  • O’Toole B., Simmons N.B. & Hekkala E. 2021. Reconstructing the genomic diversity of a widespread Sub-Saharan bat (Pteropodidae: Eidolon helvum) using archival museum collections // Acta Chiropterologica. Vol.22. No.2. P.227–241.
  • Padial J.M., Miralles A., De la Riva I. & Vences M. 2010. The integrative future of taxonomy // Frontiers in Zoology. Vol.7. No.16. P.1–14.
  • Parlos J.A., Timm R.M., Swier V.J., Zeballos H. & Baker R.J. 2014. Evaluation of the paraphyletic assemblage within Lonchophyllinae, with description of a new tribe and genus // Occasional Papers, Museum of Texas Tech University. No.320. P.1–23.
  • Patterson B.D., Webala P.W., Lavery T.H., Agwanda B.R., Goodman S.M., Kerbis Peterhans J.C. & Demos T.C. 2020. Evolutionary relationships and population genetics of the Afrotropical leaf-nosed bats (Chiroptera, Hipposideridae) // Zookeys. Vol.929. P.117–161.
  • Petri B., von Haeseler A. & Pääbo S. 1996. Extreme sequence heteroplasmy in bat mitochondrial DNA // Biological Chemistry Hoppe-Seyler. Vol.377. No.10. P.661–668.
  • Philippe H., Brinkmann H., Lavrov D.V., Littlewood D.T.J., Manuel M., Wörheide G. & Baurain D. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough // PLoS Biology. Vol.9. No.3. P.e1000602.
  • Porter C.A., Hoofer S.R., Cline C.A., Hoffmann F.G. & Baker R.J. 2007. Molecular phylogenetics of the phyllostomid bat genus Micronycteris with descriptions of two new subgenera // Journal of Mammalogy. Vol.88. No.5. P.1205–1215.
  • Ravel A., Adaci M., Bensalah M., Charruault A.-L., Essid E.M., Ammar H.K., Marzougui W., Mahboubi M., Mebrouk F., Merzeraud G., Vianney-Liaud M., Tabuce R. & Marivaux L. 2016. Origine et radiation initiale des chauves-souris modernes: nouvelles découvertes dans l’Éocène d’Afrique du Nord // Geodiversitas. Vol.38. No.3. P.355–434.
  • Ravel A., Marivaux L., Qi T., Wang Y.-Q. & Beard K.C. 2014. New chiropterans from the middle Eocene of Shanghuang (Jiangsu Province, Coastal China): new insight into the dawn horseshoe bats (Rhinolophidae) in Asia // Zoologica Scripta. Vol.43. No.1. P.1–23.
  • Reardon T.B., McKenzie N.L., Cooper S.J.B., Appleton B., Carthew S., & Adams M. 2014. A molecular and morphological investigation of species boundaries and phylogenetic relationships in Australian free-tailed bats Mormopterus (Chiroptera: Molossidae) // Australian Journal of Zoology. Vol.62. No.2. P.109–136.
  • Reeder D.M., Helgen K.M., Vodzak M.E., Lunde D.P. & Ejotre I. 2013. A new genus for a rare African vespertilionid bat: Insights from South Sudan // Zookeys. Vol.285. P.89–115.
  • Roehrs Z.P., Lack J.B. & Van Den Bussche R.A. 2010. Tribal phylogenetic relationships within Vespertilioninae (Chiroptera: Vespertilionidae) based on mitochondrial and nuclear sequence data // Journal of Mammalogy. Vol.91. No.5. P.1073–1092.
  • Roehrs Z.P., Lack J.B. & Van den Bussche R.A. 2011. A molecular phylogenetic reevaluation of the tribe Nycticeini (Chiroptera: Vespertilionidae) // Acta Chiropterologica. Vol.13. No.1. P.17–31.
  • Romagnoli M.L. & Springer M.S. 2000. Evolutionary relationships among Old World fruitbats (Megachiroptera: Pteropodidae) based on 12S rRNA, tRNA Valine, and 16S rRNA gene sequences // Journal of Mammalian Evolution. Vol.7. No.4. P.259–284.
  • Rosina V.V. & Rummel M. 2012. The bats (Chiroptera, Mammalia) from the Early Miocene of Petersbuch (Bavaria, Southern Germany) // Geobios. Vol.45. No.5. P.463–478.
  • Rosina V.V., Kruskop S.V. & Semenov Y.V. 2019. New late Miocene plecotine bats (Chiroptera, Vespertilionidae: Plecotini) from Gritsev, Ukraine // Palaeovertebrata. Vol.42. No.1. P.1–13.
  • Rossoni D.M., Costa B.M.A., Giannini N.P. & Marroig G. 2019. A multiple peak adaptive landscape based on feeding strategies and roosting ecology shaped the evolution of cranial covariance structure and morphological differentiation in phyllostomid bats // Evolution. Vol.73. P.961–981.
  • Ruedi M. & Mayer F. 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences // Molecular Phylogenetics and Evolution. Vol.21. No.3. P.436–448.
  • Ruedi M., Stadelmann B., Gager Y., Douzery E.J.P., Francis C.M., Lin L.-K., Guillen-Servent A. & Cibois A. 2013. Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera) // Molecular Phylogenetics and Evolution. Vol.69. P.437–449.
  • Ruedi M., Friedli-Weyeneth N., Teeling E.C., Puechmaille S.J. & Goodman S.M. 2012. Biogeography of Old World emballonurine bats (Chiroptera: Emballonuridae) inferred with mitochondrial and nuclear DNA // Molecular Phylogenetics and Evolution. Vol.64. No.1. P.204–211.
  • Schmieder D.A., Benítez H.A., Borissov I.M. & Fruciano C. 2015. Bat species comparisons based on external morphology: a test of traditional versus geometric morphometric approaches // PLoS ONE. Vol.10. No.5. P.e0127043.
  • Sigé B. 1991. Morphologie dentaire lacteale d’un chiroptere de l’Eocene inferieur-moyen d’Europe // Geobios. Vol.13. P.231–236.
  • Sigé B., Mein P., Jousse H. & Aguilar J.-P. 2014. Un nouveau Rhinopomatidae (Chiroptera) du Paléokarst miocène de Baixas (Pyrénées-Orientales, France); apport zoogéographique // Geodiversitas. Vol.36. No.2. P.257–281.
  • Simmons N.B. & Geisler J.B. 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera // Bulletin of the American Museum of Natural History. Vol.235. P.1–182.
  • Simmons N.B. 1995. Bat relationships and the origin of flight // Racey P.A. & Swift S.M. (eds.). Ecology, Evolution, and Behavior of Bats. Symposium of Zoological Society of London. Vol.67. Oxford: Oxford University Press. P.27–43.
  • Simmons N.B. 1998. A reappraisal of interfamilial relationships of bats // Kunz T.H. & Racey P.A. (eds.). Bat Biology and Conservation. Washington: Smithsonian Institution Press. P.3–26.
  • Simmons N.B. 2005. Order Chiroptera // Wilson D.E. & Reeder D.M. (eds.). Mammal Species of the World: a Taxonomic and Geographic Reference. Third edition. Baltimore: Johns Hopkins University Press. P.312–529.
  • Simmons N.B., Seymour K.L., Habersetzer J. & Gunnell G.F. 2008. Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation // Nature. Vol.451. P.818–822.
  • Smith J.D. & Madkour G. 1980. Penial morphology and the question of chiropteran phylogeny // Wilson D.E. & Gardner A.L. (eds.). Proceedings of Fifth International Bat Research Conference. Lubbock: Texas Tech Press. P.347–365.
  • Smith T., Rana R.S., Missiaen P., Rose K.D., Sahni A., Singh H. & Singh L. 2007. High bat (Chiroptera) diversity in the early Eocene of India // Naturwissenschaften. Vol.94. P.1003–1009.
  • Solari S. & Baker J.R. 2006. Mitochondrial DNA sequence, karyotypic, and morphological variation in the Carollia castena species complex (Chiroptera: Phyllostomidae) with description of a new species // Occasional Papers of Texas Tech University Museum. No.254. P.1–16.
  • Solari S., Sotero-Caio C.G. & Baker R.J. 2019. Advances in systematics of bats: towards a consensus on species delimitation and classifications through integrative taxonomy // Journal of Mammalogy. Vol.100. No.3. P.838–851.
  • Sotero-Caio C.G., Baker R.J. & Volleth M. 2017. Chromosomal Evolution in Chiroptera // Genes. Vol.8. No.10. P.272.
  • Spitzenberger F., Strelkov P.P., Winkler H. & Haring E. 2006. A preliminary revision of the genus Plecotus (Chiroptera, Vespertilionidae) based on genetic and morphological results // Zoologica Scripta. Vol.35. No.3. P.187–230.
  • Springer M., Meredith R., Eizirik E., Teeling E. & Murphy W. 2008. Morphology and placental mammal phylogeny // Systematic Biology. Vol.57. P.499–503.
  • Springer M., Teeling E., Madsen O., Stanhope M. & Jong W. 2001. Integrated fossil and molecular data reconstruct bat echolocation // Proceedings of the National Academy of Sciences of the USA. Vol.98. P.6241–6246.
  • Sramek J., Gvozdik V. & Benda P. 2013. Hidden diversity in bent-winged bats (Chiroptera: Miniopteridae) of the Western Palaearctic and adjacent regions: implications for taxonomy // Zoological Journal of the Linnean Society. Vol.167. P.165–190.
  • Storch G., Sigé B. & Habersetzer J. 2002. Tachypteron franzeni n. gen., n. sp., earliest emballonurid bat from the Middle Eocene of Messel (Mammalia, Chiroptera) // Paläontologische Zeitschrift. Vol.76. No.2. P.189–199.
  • Sun K., Feng J., Zhang Z., Xu L. & Liu Y. 2009. Cryptic diversity in Chinese rhinolophids and hipposiderids (Chiroptera: Rhinolophidae and Hipposideridae) // Mammalia. Vol.73. No.2. P.135–141.
  • Sztencel-Jabłonka A., Jones G. & Bogdanowicz W. 2009. Skull morphology of two cryptic bat species: Pipistrellus pipistrellus and P. pygmaeus — a 3D geometric morphometrics approach with landmark reconstruction // Acta Chiropterologica. Vol.11. No.1. P.113–126.
  • Sztencel-Jabłonka A. & Bogdanowicz W. 2012. Population genetics study of common (Pipistrellus pipistrellus) and soprano (Pipistrellus pygmaeus) pipistrelle bats from Central Europe suggests interspecific hybridization // Canadian Journal of Zoology. Vol.90. No.10. P.1251–1260.
  • Tate G.H.H. 1941a. A review of the genus Myotis (Chiroptera) of Eurasia, with special reference to species occuring in the East Indies // Bulletin of the American Museum of Natural History. Vol.78.No.8. P.537–565.
  • Tate G.H.H. 1941b.Areview of the genus Hipposideros with special reference to Indo-Australian species // Bulletin of theAmerican Museum of Natural History. Vol.78. No.5. P.353–393.
  • Tate G.H.H. 1941c. Notes on Vespertilionid bats of the subfamilies Miniopterinae, Murininae, Kerivoulinae, and Nyctophilinae // Bulletin of the American Museum of Natural History. Vol.78. No.9. P.567–597.
  • Tate G.H.H. 1942. Review of the vespertilionine bats, with special attention to genera and species of the Archbold collections // Bulletin of the American Museum of Natural History. Vol.80. No.7. P.221–297.
  • Teeling E.C. 2009. Hear, hear: the convergent evolution of echolocation in bats? // Trends in Ecology and Evolution. Vol.24. No.7. P.351–354.
  • Teeling E.C., Jones G. & Rossiter S.J. 2016. Phylogeny, genes, and hearing: implications for the evolution of echolocation in bats // Fenton M.B., Grinnell A.D. & Popper A.N. (eds.). Bat Bioacoustics. New York: Springer. P.25–54.
  • Teeling E.C., Madsen O., Murphey W.J., Springer M.S. & O’Brien S.J. 2003. Nuclear gene sequences confirm an ancient link between New Zealand short-tailed bat and South American noctilionoid bats // Molecular Phylogenetics and Evolution. Vol.28. P.308–319.
  • Teeling E.C., Madsen O., Van Den Bussche R.A., de Jong W.W., Stanhope M.J. & Springer M.S. 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats // Proceedings of the National Academy of Sciences of the USA. Vol.99. No.3. P.1431–1436.
  • Teeling E.C., Scally M., Kao D.J., Romagnoli M.L., Springer M.S. & Stanhope M.J. 2000. Molecular evidence regarding the origin of echolocation and flight in bats // Nature. Vol.403. P.188–192.
  • Teeling E.C., Springer M.S., Madsen O., Bates P.J.J., O’Brien S.J. & Murphey W.J. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record // Science. Vol.307. P.580–584.
  • Thabah A., Rossiter S.J., Kingston T., Zhang S., Parsons S., Mya K.M., Akbar Z. & Jones G. 2006. Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus s.l. (Chiroptera: Hipposideridae) from the Indo-Malayan region // Biological Journal of the Linnean Society. Vol.88. No.1. P.119–130.
  • Tian L., Liang B., Maeda K., Metzner W. & Zhang S. 2004. Molecular studies on the classification of Miniopterus schreibersii (Chiroptera: Vespertilionidae) inferred from mitochondrial cytochrome b sequences // Folia Zoologica. Vol.53. P.303–311.
  • Tiunov M. P., Kruskop S.V. & Jiang Feng. 2011. A new mouse-eared bat (Mammalia: Chiroptera, Vespertilionidae) from South China // Acta Chiropterologica. Vol.13. No.2. P.271–278.
  • Tu V.T., Cornette R., Utge J. & Hassanin A. 2015. First records of Murina lorelieae (Chiroptera: Vespertilionidae) from Vietnam // Mammalia. Vol.79. No.2. P.201–213.
  • Tu V.T., Görföl T., Csorba G., Arai S., Kikuchi F., Fukui D., Koyabu D., Furey N., Bawm S., Linn K., Alviola P., Hang C., Son N.T., Tuan T. & Hassanin A. 2021. Integrative taxonomy and biogeography of Asian yellow house bats (Vespertilionidae: Scotophilus) in the Indomalayan Region // Journal of Zoological Systematics and Evolutionary Research. Vol.59. No.3. P.772–795.
  • Uchida T.A. &Ando K. 1972. Karyotype of the Eastern barbastelle, Barbastella leucomelas darjelingensis and comments on its phylogenetic position // Scientific Bulletin of Faculty of Agriculture, Kyushu University. No.1–4. P.393–398.
  • Vallo P., Guillen-Servent A., Benda P., Pires D.B. & Koubek P. 2008. Variation of mitochondrial DNA in the Hipposideros caffer complex (Chiroptera: Hipposideridae) and its taxonomic implications // Acta Chiropterologica. Vol.10. No.2. P.193–206.
  • Van Den Bussche R.A. & Hoofer S.R. 2001. Evaluating the monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences // Journal of Mammalogy. Vol.82. No.2. P.320–327.
  • Van Den Bussche R.A. & Hoofer S.R. 2004. Phylogenetic relationships among recent Chiropteran families and the importance of choosing appropriate out-group taxa // Journal of Mammalogy. Vol.85. No.2. P.321–330.
  • Van Den Bussche, R.A. & Hoofer S.R. 2000. Further evidence for inclusion of the New Zealand short-tailed bat (Mystacina tuberculata) within Noctilionoidea // Journal of Mammalogy. Vol.73. No.1. P.29–42.
  • Volleth M. & Heller K.G. 2012. Variations on a theme: karyotype comparison in Eurasian Myotis species and implications for phylogeny // Vespertilio. Vol.16. P.329–350.
  • Volleth M. 1985. Chromosomal homologies of the genera Vespertilio, Plecotus and Barbastella (Chiroptera: Vespertilionidae) // Genetica. Vol.66. P.231–236.
  • Volleth M. 1987. Differences in the location of nucleolus organizer regions in European vespertilionid bats // Cytogenetics and Cell Genetics. Vol.44. P.186–197.
  • Volleth M. 1992. Comparative analysis of the banded karyotypes of the European Nyctalus species (Vespertilionidae; Chiroptera) // Horacek I. & Vohralik V. (eds.). Prague Studies in Mammalogy. Prague: Charles University Press. P.221–226.
  • Volleth M. & Heller K.G. 1994. Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis // Zeitschrift für Zoologische Systematik und Evolutionsforschung. Vol.32. P.11–34.
  • Volleth M., Biedermann M., Schorcht W. & Heller K.-G. 2013. Evidence for two karyotypic variants of the lesser horseshoe bat (Rhinolophus hipposideros, Chiroptera, Mammalia) in central Europe // Cytogenetic and Genome Research. Vol.140. P.55–61.
  • Volleth M., Heller K.-G. & Fahr J. 2006. Phylogenetic relationships of three “Nycticeiini” genera (Vespertilionidae, Chiroptera, Mammalia) as revealed by karyological analysis // Mammalian Biology. Vol.71. No.1. P.1–12.
  • Volleth M., Heller K.-G., Pfeiffer R.A. & Hameister H. 2002. A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families // Chromosome Research. Vol.10. No.6. P.477–497.
  • Volleth M., Klett C., Kollak A., Dixkens C., Winter Y., Just W., Vogel W. & Hameister H. 1999. ZOO-FISH analysis in a species of the order Chiroptera: Glossophaga soricina (Phyllostomidae) // Chromosome Research. Vol.7. P.57–64.
  • Volleth M., Loidl J., Mayer F., Yong H.-S., Mueller S. & Heller K.G. 2015. Surprising genetic diversity in Rhinolophus luctus (Chiroptera: Rhinolophidae) from Peninsular Malaysia: description of a new species based on genetic and morphological characters // Acta Chiropterologica. Vol.17. No.1. P.1–20.
  • Volleth M., Müller S., Khan F.A.A., Yong H.-S., Heller K.G., Baker R.J., Ray D.A. & Sotero-Caio C.G. 2019a. Cytogenetic investigations in Emballonuroidea. I. Taphozoinae and Emballonurinae karyotypes evolve at different rates and share no derived chromosomal characters // Acta Chiropterologica. Vol.21. No.2. P.257–269.
  • Volleth M., Müller S., Heller K.-G. & Fahr J. 2019b. Cytogenetic Investigations in Emballonuroidea. II. Chromosome painting in Nycteridae reveals cytogenetic signatures pointing to common ancestry of Nycteris and Emballonura // Acta Chiropterologica. Vol.21. No.2. P.271–281.
  • Volleth M., Son N.T., Wu Y., Li Y., Yu W., Lin L.-K., Arai S., Trifonov V., Liehr T. & Harada M. 2017. Comparative chromosomal studies in Rhinolophus formosae and R. luctus from China and Vietnam: Elevation of R. l. lanosus to species rank // Acta Chiropterologica. Vol.19. No.1. P.41–50.
  • Volleth M., Yang F. & Müller S. 2011. High-resolution chromosome painting reveals the first genetic signature for the chiropteran suborder Pteropodiformes (Mammalia: Chiroptera) // Chromosome Research. Vol.19. No.14. P.507–519.
  • Warner J.W., Patton J.L., Gardner A.L. & Baker R.J. 1974. Karyotypic analyses of twenty-one species of molossid bats (Molossidae: Chiroptera) // Canadian Journal of Genetics and Cytology. Vol.16. P.165–176.
  • Warnock R.C.M., Yang Z. & Donoghue P.C.J. 2017. Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution // Proceedings of the Royal Society, B. Biological Sciences. Vol.284. P.e20170227.
  • Wienberg J. 1995. Chromosome painting in mammals as an approach to comparative genomics // Current Opinion in Genetics & Development. Vol.5. No.6. P.792–797.
  • Wiens J.J. 2009. Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? // Systematic Biology. Vol.58. P.87–99.
  • Wiens J.J., Kuczynski C.A., Townsend T., Reeder T.W., Mulcahy D.G., Sites J.W. 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa // Systematic Biology. Vol.59. P.674–688.
  • Wilson D.E. & Reeder D.M. (eds.). 2005. Mammal Species of the World: a Taxonomic and Geographic Reference. Third edition. Vols.1–2. Baltimore: Johns Hopkins University Press. 2142 p.
  • Wilson D.E. & Mittermeier R.A. (eds.). 2019. Handbook of the Mammals of the World. Vol.9, Bats. Barcelona: Lynx Edicions. 1008 p.
  • Wilson L.A.B., Hand S.J., López-Aguirre C., Archer M., Black K.H., Beck R.M.D., Armstrong K.M. & Wroe S. 2016. Cranial shape variation and phylogenetic relationships of extinct and extant Old World leaf-nosed bats // Alcheringa. Vol.40. No.4. P.509–524.
  • Yuse fovi c h A.P., Art yushi n I. V., Ra spopova A.A., Bannikova A.A. & Kruskop S.V. 2020. An attempt to reconstruct the phylogeny of the Hipposideros leaf-nosed bats based on nuclear gene markers // Doklady Biological Sciences. Vol.493. P.136–140.
  • Zelditch M.L., Swiderski D.L. & Sheets H.D. 2012. Geometric Morphometrics for Biologists: a Primer. Second edition. Amsterdam: Elsevier. 488 p.
  • Ziegler R. 2003. Bats (Chiroptera, Mammalia) from middle Miocene karstic fissure fillings of Petersbuch near Eichstätt, Southern Franconian Alb (Bavaria) // Géobios. Vol.36. P.447–490.
  • Zima J. 1976. Chromosomes of the two species of whiskered bat, Myotis mystacinus and Myotis brandti from Czechoslovakia (Vespertilionidae, Chiroptera) // Vĕstnik Československé Společnosti Zoologické. Vol.40. No.4. P.316–320.
  • Zima J., Volleth M., Horácek I., Cerveny J., Cervena A., Prucha K. & Macholan M. 1992. Comparative karyology of rhinolophid bats (Chiroptera: Rhinolophidae) // Horácek I. & Vohralik V. (eds.). Prague Studies in Mammalogy. Prague: Charles University Press. P.229–236.

Download PDF