Russian Journal of Theriology. Main page    

Russian Journal of Theriology. Main page
Free access to the published articles
Information about online submission, Articles format, Instructions for authors etc
Instructions for reviewers
Subscription and prices
Contacts

Русскоязычный вариант сайта
Morphological analysis of two Asiatic water shrews (Chimarrogale, Eulipotyphla) from Vietnam
Bui T.H., Motokawa M., Biswas J.K., Abramov A.V., Ly N.T., Vu T.D., Nguyen T.S.
P. 85–96
The patterns of morphometric variation in external body and skull characters of two Asiatic water shrews (Chimarrogale himalayica and C. varennei) from Vietnam were analysed using different indices of variability. A total of 28 specimens were studied. Univariate, multivariate, and allometric analyses were conducted on 21 measurements of 26 skulls, while univariate analysis was conducted on three external measurements of 24 specimens. An external comparison showed that C. himalayica is larger than C. varennei. The mean (M) of skull measurements was used as an independent variable to regress the coefficient of variation (CV) and standard deviation (SD). The CVs did not differ significantly between two species and exhibited an inverse relationship with the M of skull measurements. CV trends of major functional parts of the skull showed that incisor length, brain-case size, postglenoid breadth, and mandible length presented opposing differences between the two species. In addition, C. himalayica had the highest allometric coefficient for the overall skull length, whereas C. varennei had the highest allometric coefficient for the postorbital region. Our study also revealed that the facial musculoskeletal system of C. himalayica is more developed than in C. varennei.

DOI: 10.15298/rusjtheriol.22.2.01

References

  • Abd Wahab M.F., Pathmanathan D., Motokawa M., Khan F.A.A. & Omar H. 2020. Taxonomic assessment of the Malayan water shrew Chimarrogale hantu Harrison, 1958 and reclassification to the genus Crossogale // Mammalian Biology. Vol.100. P.399–409.
  • Abdala F., Flores D.A. & Giannini N.P. 2001. Postweaning ontogeny of the skull of Didelphis albiventris // Journal of Mammalogy. Vol.82. P.190–200.
  • Abe H. 2009. A peculiar cusp on the fourth upper premolar of the Japanese water shrew Chimarrogale platycephala // Mammal Study. Vol.34. No.1. P.37–40.
  • Abramov A.V., Bannikova A.A., Lebedev V.S. & Rozhnov V.V. 2017. Revision of Chimarrogale (Lipotyphla: Soricidae) from Vietnam with comments on taxonomy and biogeography of Asiatic water shrews // Zootaxa. Vol.4232. No.2. P.216–230.
  • Ando A., Shiraishi S., Higashibara N. & Uchida T.A. 1989. Relative growth of the skull in the laboratory-reared Smith’s red-backed vole, Eothenomys smithii and so-called “Kage” red-backed vole, E. kageus // Journal of the Faculty of Agriculture, Kyushu University. Vol.33. P.297–304.
  • Arai S., Mori T., Yoshida H. & Shiraishi S. 1985. A note on the Japanese water shrew, Chimarrogale himalayica platycephala, from Kyushu // Journal of the Mammalogical Society of Japan. Vol.10. P.193–203.
  • Biswas J.K. & Motokawa M. 2019. Morphological analysis of static skull variation in the large Japanese field mouse, Apodemus speciosus (Rodentia: Muridae) // Mammal Study. Vol.44. No.1. P.51–63.
  • Biswas J.K., Oshida T. & Motokawa M. 2020. Sexual dimorphism and variability of craniomandibular morphology in the Japanese giant flying squirrel, Petaurista leucogenys (Rodentia: Sciuridae) // Zoologischer Anzeiger. Vol.285. P.1–11.
  • Burgin C.J. & He K. 2018. Family Soricidae // Wilson D.E. & Mittermeier R.A. (eds.). Handbook of the Mammals of the World. Vol.8. Insectivores, Sloths and Colugos. Barcelona: Lynx Edicions. P.332–551.
  • Cardini A. & Polly P.D. 2013. Larger mammals have longer faces because of size-related constraints on skull form // Nature Communications. Vol.4. P.e2458.
  • Churchfield S. & Rychlik L. 2006. Diets and coexistence in Neomys and Sorex shrews in Białowieza Forest, eastern Poland // Journal of Zoology. Vol.269. No.3. P.381–390.
  • Dayan T., Wool D. & Simberloff D. 2002. Variation and covariation of skulls and teeth: modern carnivores and the interpretation of fossil mammals // Paleobiology. Vol.28. No.4. P.508–526.
  • Giannini N.P., Abdala F. & Flores D.A. 2004. Comparative postnatal ontogeny of the skull in Dromiciops gliroides (Marsupialia: Microbiotheriidae) // American Museum Novitates. Vol.3460. P.1–17.
  • Gould S.J. 1966. Allometry and size in ontogeny and phylogeny // Biological Reviews. Vol.41. P.587–640.
  • Hammer Ø., Harper D.A.T. & Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data analysis // Palaeontologia Electronica. Vol.4. No.1. P.1–9.
  • Harrison J.L. 1958. Chimarrogale hantu a new water shrew from the Malay Peninsula, with a note on the genera Chimarrogale and Crossogale (Insectivora, Soricidae) // Annals and Magazine of Natural History. Ser.13. No.1. P.282–290.
  • Hutterer R. 2005. Order Soricomorpha // Wilson D.E. & Reeder D.M. (eds.). Mammals Species of the World. A Taxonomic and Geographic Reference. Third edition. Baltimore: Johns Hopkins University Press. P.220–311.
  • Huxley J.S. & Teissier G. 1936. Terminology of relative growth // Nature. Vol.137. P.780–781.
  • Jenkins P.D., Lunde D. & Moncrieff C. 2009. Descriptions of new species of Crocidura (Soricomorpha: Soricidae) from mainland Southeast Asia, with synopses of previously described species and remarks on biogeography // Bulletin of American Museum of Natural History. Vol.331. P.1–50.
  • Jones G.S. & Mumford R.E. 1971. Chimarrogale from Taiwan // Journal of Mammalogy. Vol.52. No.1. P.228–232.
  • Kilmer J.T. & Rodríguez R.L. 2017. Ordinary least squares regression is indicated for studies of allometry // Journal of Evolutionary Biology. Vol.30. P.4–12.
  • Lande R. 1977. On comparing coefficients of variation // Systematic Zoology. Vol.26. P.214–217.
  • Lin L.K. & Shiraishi S. 1992. Skull growth and variation in the Formosan wood mouse, Apodemus semotus // Journal of Faculty of Agriculture, Kyushu University. Vol.37. P.51–69.
  • Meiri S., Dayan T. & Simberloff D. 2005. Variability and correlations in carnivore crania and dentition // Functional Ecology. Vol.19. P.337–343.
  • Miller E.H., Mahoney S.P., Kennedy M.L. & Kennedy P.K. 2009. Variation, sexual dimorphism, and allometry in molar size of the black bear // Journal of Mammalogy. Vol.90. P.491–503.
  • Motokawa M., Lin L.K. & Motokawa J. 2003. Morphological comparison of Ryukyu mouse Mus caroli (Rodentia: Muridae) populations from Okinawajima and Taiwan // Zoological Studies. Vol.42. No.2. P.258–267.
  • Motokawa M., Harada M., Apin L., Yasuma S., Yuan S.L. & Lin L.K. 2006. Taxonomic study of the water shrews Chimarrogale himalayica and C. platycephala // Acta Theriologica. Vol.51. No.2. P.215–223.
  • Pankakoski E., Väisänen R.A. & Nurmi K. 1987. Variability of muskrat skulls: measurement error, environmental modification and size allometry // Systematic Zoology. Vol.36. P.35–51.
  • Polly P.D. 2008. Variability in mammalian dentitions: size related bias in the coefficient of variation // Biological Journal of the Linnean Society. Vol.64. No.1. P.83–99.
  • Prevosti F.J. & Lamas L. 2006. Variation of cranial and dental measurements and dental correlations in the pampean fox (Dusicyon gymnocercus) // Journal of Zoology. Vol.270. P.636–649.
  • Reiss M.J. 1989. The Allometry of Growth and Reproduction. Cambridge: Cambridge University Press. 182 p.
  • Rychlik L. 1997. Differences in foraging behavior between water shrews: Neomys anomalus and Neomys fodiens // Acta Theriologica. Vol.42. P.351–386.
  • Rychlik L. & Jancewicz E. 2002. Prey size, prey nutrition, and food handling by shrews of different body sizes // Behavioral Ecology. Vol.13. P.216–223.
  • Rychlik L., Ramalhinho F. & Polly P.D. 2006. Response to environmental factors and competition: Skull, mandible and tooth shapes in Polish water shrews (Neomys, Soricidae, Mammalia) // Journal of Zoological Systematics and Evolutionary Research. Vol.44. No.4. P.339–351.
  • Sánchez-Villagra M.R., Segura V., Geiger M., Heck L., Veitschegger K. & Flores D. 2017. On the lack of a universal pattern associated with mammalian domestication: differences in skull growth trajectories across phylogeny // Royal Society Open Science. Vol.4. P.e170876.
  • Sather J.H. 1956. Skull dimensions of the Great Plains muskrat, Ondatra zibethicus cinnamominus // Journal of Mammalogy. Vol.37. P.501–505.
  • Suzuki S., Abe M. & Motokawa M. 2011. Allometric comparison of skulls from two closely related weasels, Mustela itatsi and M. sibirica // Zoological Science. Vol.28. P.676–688.
  • Suzuki S., Abe M. & Motokawa M. 2012. Integrative study on static skull variation in the Japanese weasel (Carnivora: Mustelidae) // Journal of Zoology. Vol.288. P.57–65.
  • Szuma E. 2000. Variation and correlation patterns in the dentition of the red fox from Poland // Annales Zoologici Fennici. Vol.37. P.113–127.
  • Yuan S.L., Jiang X.L., Li Z.J., He K. & Harada M. 2013. A mitochondrial phylogeny and biogeographical scenario for Asiatic water shrews of the genus Chimarrogale: implications for taxonomy and low-latitude migration routes // PLoS ONE. Vol.8. No.10. P.e77156.

Download PDF