Russian Journal of Theriology. Main page    

Russian Journal of Theriology. Главная страница
Доступ к статьям
Электронная подача статей, правила для авторов и тп
Вход для рецензентов
Здесь можно подписаться на новостную рассылку RJT
Контактная информация

English version

Multiple mating by females and multiple paternity in rodents: а cross-species comparative analysis
Gromov V.S.
P. 57-72
The present review provides a compilation of the published data on the phenomena of multiple mating by females and multiple paternity in their litters in 48 rodent species with different mating systems, reproductive strategies, and social structures. Multi-male mating is common in female rodents, but this is one of the unsolved problems of behavioral ecology so far. Proposed explanations of multi-male mating assume the potential fitness benefits to females that include fertility assurance by reducing genetic incompatibility, increased genetic diversity of offspring and litter size, postcopulatory sexual selection through sperm competition, an increase in uncertainty of paternity and thus reduction in the probability of infanticide, as well as enhanced access to resources. Multiple paternity is also thought to increase offspring genetic diversity and the effective population size. Different genetic markers have been employed to document multiple paternity including DNA fingerprinting and microsatellites. The results of studies conducted on the above rodent species are discussed and analyzed to check whether the predictions of the above hypotheses about the potential benefits of fitness for females in general or in some particular cases are justified.

DOI: 10.15298/rusjtheriol.23.1.07

Литература

  • Agrell J., Wolff J.O. & Ylönen H. 1998. Counter-strategies to infanticide in mammals: Costs and consequences // Oikos. Vol.83. P.507–517.
  • Ågren G. 1990. Sperm competition, pregnancy initiation and litter size: influence of the amount of copulatory behaviour in Mongolian gerbils, Meriones unguiculatus // Animal Behaviour. Vol.40. P.417–427.
  • Ågren G., Zhou Q. & Zhong W. 1989. Ecology and social behaviour of Mongolian gerbils, Meriones unguiculatus, at Xilinhot, Inner Mongolia, China // Animal Behaviour. Vol.37. P.11–27.
  • Andersson M. 1994. Sexual selection. Princeton: Princeton University Press. 584 p.
  • Armitage K.B. 1962. Social behaviour of a colony of the yellow-bellied marmot (Marmota flaviventris) // Animal Behaviour. Vol.10. P.319–331.
  • Armitage K.B. 1986. Marmot polygyny revisited: determinants of male and female reproductive strategies // Rubenstein D.I. & Wrangham R.W. (eds.). Ecological aspects of social evolution: birds and mammals. Princeton: Princeton University Press. P.303–331.
  • Baker R.J., Makova K.D. & Chesser R.K. 1999. Microsatellites indicate a high frequency of multiple paternity in Apodemus (Rodentia) // Molecular Ecology. Vol.8. P.107–111.
  • Barash D.P. 1973. Social variety in the yellow-bellied marmot (Marmota flaviventris) // Animal Behaviour. Vol.21. P.579–584.
  • Barnett S.A. 1958. An analysis of social behaviour in wild rats // Proceedings of Royal Society (Lond.) Ser.B. Vol.130. P.107–152.
  • Bartmann S. & Gerlach G. 2001. Multiple paternity and similar variance in reproductive success of male and female wood mice (Apodemus sylvaticus) housed in an enclosure // Ethology. Vol.107. P.889–899.
  • Bateman A.J. 1948. Intra-sexual selection in Drosophila // Heredity. Vol.2. P.349–368.
  • Baxter B.D., Mendez-Harclerode F.M., Fulhorst C.F. & Bradley R.D. 2009. A molecular examination of relatedness, multiple paternity, and cohabitation of the southern plains woodrat (Neotoma micropus) // Journal of Mammalogy. Vol.90. P.819–831.
  • Bergeron P., Reale D., Humphries M.M. & Garant D. 2011. Evidence of multiple paternity and mate selection for inbreeding avoidance in wild eastern chipmunks // Journal of Evolutionary Biology. Vol.24. P.1685–1694.
  • Berteaux D., Bêty J., Rengifo E. & Bergeron J.M. 1999. Multiple paternity in meadow voles (Microtus pennsylvanicus): investigating the role of the female // Behavioral Ecology and Sociobiology. Vol.45. P.283–291.
  • Birdsall D.A. & Nash D. 1973. Occurrence of successful multiple insemination of females in natural populations of deer mice (Peromyscus maniculatus) // Evolution. Vol.27. P.106–110.
  • Birkhead T.R. & Møller A.P. 1998. Sperm competition and sexual selection. San Diego and London: Academic Press. 826 p.
  • Birkhead T.R. & Pizzari T. 2002. Postcopulatory sexual selection // Nature Reviews: Genetics. Vol.3. P.262–273.
  • Birkhead, T.R., Møller, A.P. & Sutherland W.J. 1993. Why do females make it so difficult for males to fertilize their eggs? // Journal of Theoretical Biology. Vol.161. P.51–60.
  • Boellstorff D.E., Owings D.H., Penedo M.C.T. & Hersek M.J. 1994. Reproductive behaviour and multiple paternity of California ground squirrels // Animal Behaviour. Vol.47. P.1057–1064.
  • Boonstra R., Xia X. & Pavone L. 1993. Mating system of the meadow vole, Microtus pennsylvanicus // Behavioral Ecology. Vol.4. P.83–89.
  • Booth W., Montgomery W.I. & Prodoehl P.A. 2007. Polyandry by wood mice in natural populations // Journal of Zoology. Vol.273. P.176–182.
  • Borkowska A., Borowski Z. & Krysiuk K. 2009. Multiple paternity in free-living root voles (Microtus oeconomus) // Behavioural Processes. Vol.82. P.211–213.
  • Bradbury J.W. & Vehrencamp S.L. 1977. Social organization and foraging in emballonurid bats. III Mating systems // Behavioral Ecology and Sociobiology. Vol.2. P.1–17.
  • Bronson F.H. 1979. The reproductive ecology of the house mouse // Quarterly Review of Biology Vol.54. P.265–299.
  • Brotherton P.N.M. & Komers P.E. 2003. Mate guarding and the evolution of social monogamy in mammals // Reichard U.H. & Boesch C. (eds.). Monogamy mating strategies and partnerships in birds, humans and other mammals. Cambridge: Cambridge University Press. P.42–58.
  • Brown R.Z. 1953. Social behavior, reproduction, and populations changes in the house mouse (Mus musculus L.) // Ecological Monographs. Vol.23. P.217–240.
  • Bryja J. & Stopka P. 2005. Facultative promiscuity in a presumably monogamous mouse Apodemus microps // Acta Theriologica. Vol.50. P.189–196.
  • Bryja J., Patzenhauerova H., Albrecht T., Mosansky L., Stanko M., Stanko M. & Stopka P. 2008. Varying levels of female promiscuity in four Apodemus mice species // Behavioral Ecology and Sociobiology. Vol.63. P.251–260.
  • Bujalska G. & Saitoh T. 2000. Territoriality and its consequences // Polish Journal of Ecology. Vol.48. (Suppl). P.37–49.
  • Burton C. 2002. Microsatellite analysis of multiple paternity and male reproductive success in the promiscuous snowshoe hare // Canadian Journal of Zoology. Vol.80. P.1948–1956.
  • Calhoun J.B. 1963. The ecology and sociology of the Norway rat (Public Health Service Publication no. 1008). Washington: Department of Health, Education and Welfare. 288 p.
  • Carroll L.S., Meagher S., Morrison L., Penn D.J. & Potts W.K. 2004. Fitness effects of a selfish gene (the Mus t complex) are revealed in an ecological context // Evolution. Vol.58. P.1318–1328.
  • Carter C.S. & Getz L.L. 1993. Monogamy and the prairie vole // Scientific American. Vol.268. P.100–110.
  • Chesser R.K. 1983. Genetic variability within and among populations of the black-tailed prairie dog // Evolution. Vol.37. P.320–331.
  • Chesser R.K. & Baker R.J. 1996. Effective sizes and dynamics of uniparentally and diparentally inherited genes // Genetics. Vol.144. P.1225–1235.
  • Clutton-Brock T.H. 1989. Mammalian mating systems // Proceedings of Royal Society (Lond.) Ser.B. Vol.236. P.339–372.
  • Coda J.A., Priotto J.W. & Steinmann A.R. 2011. Behavioral counter-strategies against infanticide in corn mouse females, Calomys musculinus // Mastozoología Neotropical. Vol.18. P.207–215.
  • Cohas A., Yoccoz N.G., Da Silva A., Goossens B. & Allainé D. 2006. Extra-pair paternity in the monogamous alpine marmot (Marmota marmota): the roles of social setting and female mate choice // Behavioral Ecology and Sociobiology. Vol.59. P.597–605.
  • Cohas A., Yoccoz N.G. & Allainé D. 2007. Extra-pair paternity in alpine marmots, Marmota marmota: genetic quality and genetic diversity effects // Behavioral Ecology and Sociobiology. Vol.61. P.1081–1092.
  • Colegrave N., Kotiaho J.S. & Tomkins J.L. 2002. Mate choice or polyandry: reconciling genetic compatibility and good genes sexual selection // Evolutionary Ecology Research. Vol.4. P.911–917.
  • Corbet G.B.& Southern H.N.(eds.). 1977. The handbook of British mammals, 2nd Ed. Oxford: Blackwell. 520 p.
  • Cotton S., Small J. & Pomiankowski A. 2006. Sexual selection and condition-dependent mate preferences // Current Biology. Vol.16. P.R755–R765.
  • Coulon J., Graziani L., Allainé D., Bel M.C. & Pouderoux S. 1995. Infanticide in the alpine marmot (Marmota marmota) // Ethology Ecology and Evolution. Vol.7. P.191–194.
  • Crean A.J. & Marshall D.J. 2009. Coping with environmental uncertainly: dynamic bet hedging as a maternal effect // Philosophical Transactions of the Royal Society (Lond.) Ser.B. Biological Sciences. Vol.364. P.1087–1096.
  • Daley J.G. 1992. Population reductions and genetic variability in black-tailed prairie dogs // Journal of Wildlife Management. Vol.56. P.212–220.
  • Daly M. 1978. The cost of mating // American Naturalist. Vol.112. P.771–774.
  • Davies N.B, Hartley I.R., Hatchwell B.J. & Langmore N.E. 1996. Female control of copulations to maximize male help: a comparison of polygynandrous alpine accentors, Prunella collaris, and dunnocks, P. modularis // Animal Behaviour. Vol.51. P.27–47.
  • Dean M.D., Ardlie K.G. & Nachman M.W. 2006. The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus) // Molecular Ecology. Vol.15. P.4141–4151.
  • DeFries J.C. & McClearn G.E. 1970. Social dominance and Darwinian fitness in the laboratory mouse // American Naturalist. Vol.104. P.408–411.
  • Dewsbury D.A. 1982. Ejaculate cost and male choice // The American Naturalist. Vol.119. P.601–610.
  • Dewsbury D.A. 1984. Sperm competition in muroid rodents // Smith R.L. (ed.). Sperm competition and the evolution of animal mating systems. New York: Academic Press. P.547–571.
  • Dobson F.S., Abebe A., Correia H.E., Kasumo C., Zinner B., 2018. Multiple paternity and number of offspring in mammals // Proceedings of Royal Society (Lond.) Ser.B. Vol.285. P.20182042.
  • Ebensperger L.A. 1998. Strategies and counterstrategies to infanticide in mammals // Biological Reviews of the Cambridge Philosophical Society. Vol.73. P.321–346.
  • Eberhard W.G. 1996. Female control: Sexual selection by cryptic female choice. Princeton: Princeton Univ. Press. 346 p.
  • Egid K. & Brown J.L. 1989. The major histocompatibility complex and female mating preferences in mice // Animal Behaviour. Vol.38. P.548–550.
  • Ehman K.D. & Scott M.E. 2004. Microsatellite analysis reveals that female mice are indiscriminate when choosing infected or dominant males in an arena setting // Parasitology. Vol.129. P.723–731.
  • Emlen S.T. & Oring L.W. 1977. Ecology, sexual selection, and the evolution of mating systems // Science. Vol.197. P.215–223.
  • Evans R.L. & Dewsbury D.A. 1978. Copulatory behavior of prairie voles (Microtus ochrogaster) in a two-male situation // Behavioral Biology. Vol.24. P.498–508.
  • Evans J.P. & Magurran A.E. 2000. Multiple benefits to multiple mating in guppies // Proceedings of the National Academy of Sciences (USA). Vol.97. P.10074–10076.
  • Ewer R.F. 1971. The biology and behaviour of a free-living population of black rats (Rattus rattus) // Animal Behaviour Monographs. Vol.4. P.127–174.
  • Farentinos R.C. 1980. Sexual solicitation of subordinate males by female tassel-eared squirrels (Sciurus aberti) // Journal of Mammalogy. Vol.61. P.337–341.
  • Firman R.C. 2014. Female fitness, sperm traits and patterns of paternity in an Australian polyandrous mouse // Behavioral Ecology and Sociobiology. Vol.68. P.283–290.
  • Firman R.C. & Simmons L.W. 2008a. Polyandry facilitates postcopulatory inbreeding avoidance in house mice // Evolution. Vol.62. P.603–611.
  • Firman R.C. & Simmons L.W. 2008b. The frequency of multiple paternity predicts variation in testes size among island populations of house mice // Journal of Evolutionary Biology Vol.21. P.1524–1533.
  • Foltz D.W. 1981. Genetic evidence for long-term monogamy in a small rodent, Peromyscus polionotus // American Naturalist. Vol.117. P.665–675.
  • Foltz D.W. & Schwagmeyer P.L. 1989. Sperm competition in the thirteen-lined ground squirrel: Differential fertilization success under field conditions // American Naturalist. Vol.133. P.257–265.
  • Fox C.W. & Rauter C.M. 2003. Bet-hedging and the evolution of multiple mating // Evolution and Ecology Research. Vol.5. P.273–286.
  • Getz L.L., McGuire B., Hofmann J., Pizzuto T. & Frase B. 1990. Social organization and mating system of the prairie vole, Microtus ochrogaster // Tamarin R.H., Ostfeld R.S., Pugh S.R. & Bujalska G. (eds.). Social systems and population cycles in voles. Basel: Birkhauser-Verlag. P.69–80.
  • Ginsberg J.R. & Huck U.W. 1989. Sperm competition in mammals // Trends in Ecology and Evolution. Vol.4. P.74–79.
  • Gomendio M. & Roldan E.R.S. 1993. Mechanisms of sperm competition: linking physiology and behavioural ecology // Trends in Ecology and Evolution. Vol.8. P.95–100.
  • Goossens B., Graziani L., Waits L.P., Farand E., Magnolon S., Coulon J., Bel M-C., Taberlet P. &, Allainé D. 1998. Extra-pair paternity in the monogamous Alpine marmot revealed by nuclear DNA microsatellite analysis // Behavioral Ecology and Sociobiology. Vol.43. P.281–288.
  • Gray E.M. 1997. Female red-winged blackbirds accrue material benefits from copulating with extra-pair males // Animal Behaviour. Vol.53. P.625–639.
  • Gray G.D., Kenney A.M. & Dewsbury D.A. 1977. Adaptive significance of the copulatory behavior pattern of male meadow voles (Microtus pennsylvanicus) in relation to induction of ovulation and implantation in females // Journal of Comparative Physiology. Vol.91. P.1308–1319.
  • Griffith S.C., Owens I.P.F. & Thuman K.A. 2002. Extra pair paternity in birds: a review of interspecific variation and adaptive function // Molecular Ecology. Vol.11. P.2195–2212.
  • Gromov V.S. 2008. [The spatial-and-ethological population structure in rodents.] Moscow: KMK Press. 582 p. [In Russian]
  • Gromov V.S. 2017. The spatial-and-ethological population structure, cooperation, and the evolution of sociality in rodents // Behaviour. Vol.154. P.609–649.
  • Gromov V.S. 2022. Ecology and social behaviour of the Mongolian gerbil: A generalised review // Behaviour. V.159. P.403–441.
  • Gromov V.S. 2023. Ecology and social behavior of the social vole, Microtus socialis: A generalized review // Current Zoology. Vol.69. P.775–783.
  • Gryczyńska-Siemiątkowska A., Gortat T., Kozakiewicz A., Rutkowski R., Pomorski J. & Kozakiewicz M. 2008. Multiple paternity in a wild population of the yellow-necked mouse Apodemus flavicollis // Acta Theriologica. Vol.53. P.251–258.
  • Haig D. & Bergstrom C.T. 1995. Multiple mating, sperm competition and meiotic drive // Journal of Evolutionary Biology. Vol.8. P.265–282.
  • Hanken J. & Sherman P.W. 1981. Multiple paternity in Belding’s ground squirrels // Science. Vol.212. P.351–353.
  • Harcourt A.H., Harvey P.H., Larson S.G. & Short R.V. 1981. Testis weight, body weight and breeding system in primates // Nature. Vol.293. P.55–57.
  • Hare J.F., Todd G. & Untereiner W.A. 2004. Multiple mating results in multiple paternity in Richardson’s ground squirrels, Spermophilus richardsonii // Canadian Field Naturalist. Vol.118. P.90–94.
  • Hauber M.E. & Lacey E.A. 2005. Bateman’s principle in cooperatively breeding vertebrates: the effects of non-breeding alloparents on variability of female and male reproductive success // Integrative and Comparative Biology. Vol.45. P.903–914.
  • Haynie M.L., van den Bussche R.A., Hoogland J.L. & Gilbert D.A. 2003. Parentage, multiple paternity, and reproductive success in Gunnison’s and Utah prairie dogs // Journal of Mammalogy. Vol.84. P.1244–1253.
  • Head M.L., Hunt J., Jennions M.D. & Brooks R. 2005. The indirect benefits of mating with attractive males outweigh the direct costs // PLoS Biology. Vol.3. P.e33.
  • Hoogland J.L. 1981. The evolution of coloniality in white-tailed and black-tailed prairie dogs (Sciuridae: Cynomys leucurus and C. ludovicianus) // Ecology. Vol.62. P.252–272.
  • Hoogland J.L. 1995. The black-tailed prairie dog: social life of a burrowing mammal. Chicago, Illinois: University of Chicago Press. 484 p.
  • Hoogland J.L. 1998. Why do female Gunnison’s prairie dogs copulate with more than one male? // Animal Behaviour. Vol.55. P.351–359.
  • Hoogland J.L. 2001. Black-tailed, Gunnison’s and Utah prairie dogs reproduce slowly // Journal of Mammalogy. Vol.82. P.917–927.
  • Hoogland J.L. 2007. Alarm calling, multiple mating, and infanticide among black-tailed, Gunnison’s, and Utah prairie dogs // Wolff J.O. & Sherman P.W. (eds.). Rodent societies. Chicago, Illinois: University of Chicago Press. P.438–450.
  • Hoogland J.L. 2013. Why do female prairie dogs copulate with more than one male? Insights from long-term research // Journal of Mammalogy. Vol.94. P.731–744.
  • Hooker S. & Innes J. 1995. Ranging behaviour of forest-dwelling ship rats, Rattus rattus, and effects of poisoning with brodifacoum // New Zealand Journal of Zoology. Vol.22. P.291–304.
  • Hosken D.J. & Blankenhorn W.U. 1999. Female multiple mating, inbreeding avoidance and fitness: its not only the magnitude of costs and benefits that count // Behavioral Ecology. Vol.10. P.462–464.
  • Hrdy S.B. 1977. Infanticide as a primate reproductive strategy // American Scientist. Vol.65. P.40–49.
  • Huck U.W., Tonias B.A. & Lisk R.D. 1989. The effectiveness of competitive male inseminations in golden hamsters, Mesocricetus auratus, depends on an interaction of mating order, time delay between males, and the time of mating relative to ovulation // Animal Behaviour. Vol.37. P.674–680.
  • Humphries M.M. & Boutin S. 2000. The determinants of optimal litter size in free-ranging red squirrels // Ecology. Vol.81. P.2867–2877.
  • Hunter F.M., Petrie M., Otronen M., Birkhead T.R. & Møller A.P. 1993. Why do females copulate repeatedly with one male? // Trends in Ecology and Evolution. Vol.8. P.21–26.
  • Huo Y., Wan X., Wolff J.O., Wang G., Thomas S., Iglay R.B., Leopold B.D. & Liu W. 2010. Multiple paternities increase genetic diversity of offspring in Brandt
  • Huxley J.S. 1938. Darwin’s theory of sexual selection and the data subsumed by it, in the light of recent research // American Naturalist. Vol.72. P.416–433.
  • Jarne P. & Lagoda P. 1996. Microsatellites, from molecules to populations and back // Trends in Ecology and Evolution. Vol.11. P.424–429.
  • Jennions M.D. & Petrie M. 2000. Why do females mate multiply? A review of the genetic benefits // Biological Reviews. Vol.75. P.21–64.
  • Jones A.G. 2009. On the intensity of selection, the Bateman gradient and the maximum intensity of sexual selection // Evolution. Vol.63. P.1673–1684.
  • Jones A.G., Walker D., Lindstrom K., Kvarnemos C. & Avise J.C. 2001. Surprising similarity of sneaking rates and genetic mating patterns in two populations of sand goby experiencing disparate sexual selection regimes // Molecular Ecology. Vol.10. P.461–469.
  • Jones A.G., Arguello J.R. & Arnold S.J. 2002. Validation of Bateman’s principles: a genetic study of mating patterns and sexual selection in newts // Proceedings of Royal Society (Lond.) Ser.B. Vol.269. P.2533–2539.
  • Karl S.A. 2008. The effect of multiple paternity on the genetically effective size of a population // Molecular Ecology. Vol.17. P.3973–3977.
  • Keil A., Epplen J.T. & Sachser N. 1999. Reproductive success of males in the promiscuous-mating yellow-toothed cavy (Galea musteloides) // Journal of Mammalogy. Vol.80. P.1257–1263.
  • Kenagy G.J. & Trombulak S.C. 1986. Size and function of mammalian testes in relation to body size // Journal of Mammalogy. Vol.67. P.1–22.
  • King C., Winstanley T., Innes J. & Gleeson D. 2014. Multiple paternity and differential male breeding success in wild ship rats (Rattus rattus) // New Zealand Journal of Ecology. Vol.38. P.76–85.
  • Klemme I. & Firman R.C. 2013. Male house mice that have evolved with sperm competition have increased mating duration and paternity success // Animal Behaviour. Vol.85. P.751–758.
  • Klemme I., Eccard J.A. & Ylönen H. 2006. Do female bank voles (Clethrionomys glareolus) mate multiply to improve on previous mates? // Behavioral Ecology and Sociobiology. Vol.60. P.415–421.
  • Klemme I., Ylönen H. & Eccard J.A. 2007a. Reproductive success of male bank voles (Clethrionomys glareolus): the effect of operational sex ratio and body size // Behavioral Ecology and Sociobiology. Vol.61. P.1911–1918.
  • Klemme I., Eccard J.A. & Ylönen H. 2007b. Why do female bank voles, Clethrionomys glareolus, mate multiply? // Animal Behaviour. Vol.73. P.623–628.
  • Kokko H. & Rankin D.J. 2006. Lonely hearts or sex in the city? Density-dependent effects in mating systems // Philosophical Transactions Royal Society (Lond.) Ser.B. Vol.361. P.319–334.
  • Kokko H., JennionsM.D. & Brooks R. 2006. Unifying and testing models of sexual selection // Annual Review of Ecology and Evolution. Vol.37. P.43–66.
  • Kraaijeveld-Smit F.J.L., Ward S.J. & Temple-Smith P.D. 2002. Factors influencing paternity success in Antechinus agilis: last-male sperm precedence, timing of mating, and genetic compatibility // Journal of Evolutionary Biology. Vol.15. P.100–107.
  • Kyle C.J., Karels T.J., Davis C.S., Mebs S., Clark B., Strobeck C. & Hik D.S. 2007. Social structure and facultative mating systems of hoary marmots (Marmota caligata) // Molecular Ecology. Vol.16. P.1245–1255.
  • Lacey E.A., Wieczorek J.R. & Tucker P.K. 1997. Male mating behaviour and patterns of sperm precedence in Arctic ground squirrels // Animal Behaviour. Vol.53. P.767–779.
  • Lane J.E., Boutin S., Gunn M.R., Slate J. & Coltman D.W. 2008. Female multiple mating and paternity in free-ranging North American red squirrels // Animal Behaviour. Vol.75. P.1927–1937.
  • Lewis W.M. 1987. The cost of sex // Stearns S.C. (ed.). The evolution of sex and its consequences. Basel: Birkhäuser. P.33–58.
  • Loman J., Madsen T. & H’akansson T. 1988. Increased fitness from multiple matings, and genetic heterogeneity: a model of a possible mechanism // Oikos. Vol.52. P.69–72.
  • Lombardo M.P. 1998. On the evolution of sexually transmitted diseases in birds // Journal of Avian Biology. Vol.29. P.314–321.
  • Lott D.F. 1984. Intraspecific variation in the social systems of wild vertebrates // Behaviour. Vol.88. P.266–325.
  • Mackintosh J.H. 1970. Territory formation by laboratory mice // Animal Behaviour. Vol.18. P.177–183.
  • Madsen T., Shine R., Loman J. & Hakansson T. 1992. Why do female adders copulate so frequently? // Nature. Vol.355. P.440–441.
  • Magnhagen C. 1991. Predation risk as a cost of reproduction // Trends in Ecology and Evolution. Vol.6. P.183–186.
  • Martin J.G.A., Petelle M.B. & Blumstein D.T. 2014. Environmental, social, morphological, and behavioral constraints on opportunistic multiple paternity // Behavioral Ecology and Sociobiology. Vol.68. P.1531–1538.
  • Maynard-Smith J. 1977. Parental investment: a prospective analysis // Animal Behaviour. Vol.25. P.1–9.
  • Mays H.L.J. & Hill G.E. 2004. Choosing mates: good genes versus genes that are a good fit // Trends in Ecology and Evolution. Vol.19. P.554–559.
  • McAdam A.G., Boutin S., Réale D. & Berteaux D. 2002. Maternal effects and the potential for evolution in a natural population of animals // Evolution. Vol.56. P.846–851.
  • McEachern M.B., McElreath R.L., Van Vuren D.H. & Eadie J.M. 2009. Another genetically promiscuous ‘polygynous’ mammal: mating system variation in Neotoma fuscipes // Animal Behaviour. Vol.77. P.449–455.
  • Michener G.R. 1973. Intraspecific aggression and social organization in ground squirrels // Journal of Mammalogy. Vol.54. P.1001–1003.
  • Michener G.R. 1983. Copulatory plugs in Richardson’s ground squirrels // Canadian Journal of Zoology. Vol.62. P.267–270.
  • Michener G.R. & McLean I.G. 1996. Reproductive behaviour and operational sex ratio in Richardson’s ground squirrels // Animal Behaviour. Vol.52. P.743–758.
  • Miller S.D., Russell J.C., MacInnes H.E., Abdelkrim J. & Fewster R.M. 2010. Multiple paternity in wild populations of invasive Rattus species // New Zealand Journal of Ecology. Vol.34. P.360–363.
  • Milligan S.R. 1982. Induced ovulation in mammals // Oxford Reviews of Reproductive Biology. Vol.4. P.1–46.
  • Møller A.P. 1988. Ejaculate quality, testes size and sperm competition in primates // Journal of Human Evolution. Vol.17. P.479–488.
  • Møller A.P. & Birkhead T.R. 1989. Copulation behaviour in mammals: evidence that sperm competition is widespread // Biological Journal of the Linnean Society. Vol.38. P.119–131.
  • Morris P.A. & Morris M.J. 2010. A 13-year population study of the edible dormouse Glis glis in Britain // Acta Theriologica. Vol.55. P.279–288.
  • Moska M., Mucha A., Wierzbicki H. & Nowak B. 2021. Edible dormouse (Glis glis) population study in south-western Poland provides evidence of multiple paternity and communal nesting // Journal of Zoology. Vol.314. P.194–202.
  • Munroe K. & Koprowski J. 2011. Sociality, Bateman’s gradients, and the polygynandrous genetic mating system of round-tailed ground squirrels (Xerospermophilus tereticaudus) // Behavioral Ecology and Sociobiology. Vol.65. P.1811–1824.
  • Murie J.O. 1995. Mating behavior of Columbian ground squirrels. I. Multiple mating by females and multiple paternity // Canadian Journal of Zoology. Vol.73. P.1819–1826.
  • Musolf K., Hoffmann F. & Penn D.J. 2010. Ultrasonic courtship vocalizations in wild house mice, Mus musculus musculus // Animal Behaviour. Vol.79. P.757–764.
  • Naim D.M., Telfer S., Sanderson S., Kemp S.J. & Watts P.C. 2011. Prevalence of multiple mating by female common dormice, Muscardinus avellanarius // Conservation Genetics. Vol.12. P.971–979.
  • Neff B.D. & Pitcher T.E. 2005. Genetic quality and sexual selection: an integrated framework for good genes and compatible genes // Molecular Ecology. Vol.14. P.19–38.
  • Nunney L. 1993. The influence of mating system and overlapping generations on effective population size // Evolution. Vol.47. P.1329–1341.
  • Oakeshott J.G. 1974. Social dominance, aggressiveness and mating success among male house mice (Mus musculus) // Oecologia. Vol.15. P.143–158.
  • Ostfeld R.S. 1990. The ecology of territoriality in small mammals // Trends in Ecology and Evolution. Vol.5. P.411–415.
  • Parker G.A. 1970. Sperm competition and its evolutionary consequences in the insects // Biological Reviews. Vol.45. P.525–567.
  • Pearse D.E. & Anderson E.C. 2009. Multiple paternity increases effective population size // Molecular Ecology. Vol.18. P.3124–3127.
  • Pedersen A.B. & Greives T.J. 2008. The interaction of parasites and resources cause crashes in a wild mouse population // Journal of Animal Ecology. Vol.77. P.370–377.
  • Perrin C., Allainé D. & Le Berre M. 1994. Intrusion de mâles et possibilités d
  • Petrie M. & Kempenaers B. 1998. Extra-pair paternity in birds: explaining variation between species and populations // Trends in Ecology and Evolution. Vol.13. P.52–58.
  • Pilastro A. 1992. Communal nesting between breeding females in a free-living population of fat dormouse (Glis glis L.) // Bollettino di Zoologia. Vol.59. P.63–68.
  • Pilastro A., Missiaglia E. & Marin G. 1994. Costs and benefits of communal breeding in female dormice Glis glis // Bollettino di Zoologia. Vol.61. P.55.
  • Polechova J., Zakova D. & Stopka P. 2004. Multiple paternity in the wood mouse Apodemus sylvaticus (Mammalia: Rodentia) using microsatellite analysis // Acta Societatis Zoologicae Bohemicae. Vol.68. P.109–112.
  • Potts W.K., Manning C.J. & Wakeland E.K. 1991. Mating patterns in seminatural populations of mice influenced by MHC genotype // Nature. Vol.352. P.619–621.
  • Pusey A. & Wolf M. 1996. Inbreeding avoidance in animals // Trends in Ecology and Evolution. Vol.11. P.201–206.
  • Ratkiewicz M. & Borkowska A. 2000. Multiple paternity in the bank vole (Clethrionomys glareolus): field and experimental data // Mammalian Biology. Vol.65. P.6–14.
  • Raveh S., Heg D., Dobson F.S., Coltman D.W.,Gorrell J.C., Balmer A. & Neuhaus P. 2010. Mating order and reproductive success in male Columbian ground squirrels (Urocitellus columbianus) // Behavioral Ecology. Vol.21. P.537–547.
  • Rayor L.S. 1988. Social organization and space-use in Gunnison
  • Réale D., Berteaux D., McAdam A.G. & Boutin S. 2003. Lifetime selection on parturition date and litter size in a wild American red squirrel population // Evolution. Vol.57. P.2416–2423.
  • Reynolds J.D. 1996. Animal breeding systems // Trends in Ecology and Evolution. Vol.11. P.68–72.
  • Ribble D.O. 1991. The monogamous mating system of Peromyscus californicus as revealed by DNA fingerprinting // Behavioral Ecology and Sociobiology. Vol.29. P.161–166.
  • Robitaille J.A. & Bovet J. 1976. Field observations on the social behavior of the Norway rat, Rattus norvegicus // Biology of Behavior. Vol.1. P.289–308.
  • Sage R.D. 1981. Wild mice // Foster H.L., Small J.D., Fox J.G. (eds.). The Mouse in Biomedical Research. New York: Academic Press. P.39–90.
  • Sakaluk S.K. & Cade W.H. 1980. Female mating frequency and progeny production in singly and doubly mated house and field crickets // Canadian Journal of Zoology. Vol.58. P.404–411.
  • Schulte-Hostedde A., Millar J. & Gibbs H. 2004. Sexual selection and mating patterns in a mammal with female-biased sexual size dimorphism // Behavioral Ecology. V.15. P.351–356.
  • Schwagmeyer P.L. 1986. Effects of multiple mating on reproduction in female thirteen-lined ground squirrels // Animal Behaviour. Vol.34. P.297–298.
  • Schwagmeyer P.L. & Brown C.H. 1983. Factors affecting male-male competition in thirteen-lined ground squirrels // Behavioral Ecology and Sociobiology. Vol.13. P.1–6.
  • Schwagmeyer P.L. & Woontner S.J. 1985. Mating competition in an asocial ground squirrel, Spermophilus tridecemlineatus // Behavioral Ecology and Sociobiology. Vol.17. P.291–296.
  • Schwanz L.E., Sherwin W.B., Ognenovska K. & Lacey E. 2016. Paternity and male mating strategies of a ground squirrel (Ictidomys parvidens) with an extended mating season // Journal of Mammalogy. Vol.97. P.576–588.
  • Sheldon B. 1994. Male phenotype, fertility, and the pursuit of extrapair copulations by female birds // Proceedings of Royal Society (Lond.) Ser.B. Vol.257. P.25–30.
  • Sherman P.W. 1989. Mate guarding as paternity insurance in Idaho ground squirrels // Nature. Vol.338. P.418–420.
  • Shurtliff Q.R., Pearse D.E. & Rogers D.S. 2005. Parentage analysis of the canyon mouse (Peromyscus crinitus): Genetic evidence for multiple paternity // Journal of Mammalogy. Vol.86. P.531–540.
  • Shuster S.M. & Wade M.J. 2003. Mating systems and strategies. Princeton: Princeton University Press. 768 p.
  • Simmons L.W. 2005. The evolution of polyandry: sperm competition, sperm selection, and offspring viability // Annual Review of Evolution, Ecology and Systematics. Vol.36. P.125–146.
  • Solomon N.G. & Keane B. 2007. Reproductive strategies in female rodents // Wolff J.O. & Sherman P.W. (eds.). Rodent societies: An ecological and evolutionary perspective. Chicago: Univ. Chicago Press. P.42–56.
  • Solomon N.G., Keane B., Knoch L.R. & Hogan P.J. 2004. Multiple paternity in socially monogamous prairie voles (Microtus ochrogaster) // Canadian Journal of Zoology. Vol.82. P.1667–1671.
  • Sommaro L., Chiappero M.B., Vera N.S., Coda J.A., Priotto J.W. & Steinmann A.R. 2015. Multiple paternity in a wild population of the corn mouse: Its potential adaptive significance for females // Journal of Mammalogy. Vol.96. P.908–917.
  • Sommer S. 2003. Social and reproductive monogamy in rodents: the case for the Malagasy giant jumping rat (Hypogeomys antimena) // Reichard U.H. & Boesch C. (eds.). Monogamy mating strategies and partnerships in birds, humans and other mammals. Cambridge: Cambridge University Press. P.109–124.
  • Stockley P. 2003. Female multiple mating behaviour, early reproductive failure and litter size variation in mammals // Proceedings of Royal Society (Lond.) Ser.B. Vol.270. P.271–278.
  • Sugg D.W. & Chesser R.K. 1994. Effective population sizes with multiple paternity // Genetics. Vol.137. P.1147–1155.
  • Sugg D.W., Chesser R.K., Dobson F.S. & Hoogland J.L. 1996. Population genetics meets behavioral ecology // Trends in Ecology and Evolution. Vol.11. P.338–342.
  • Szala A. & Shackelford T.K. 2019. Polygynandry // Vonk J. & Shackelford T. (eds.). Encyclopedia of animal cognition and behavior. Cham: Springer. https://doi.org/10.1007/978-3-319-47829-6_1904-1
  • Thonhauser K.E., Raveh S., Hettyey A., Beissmann H. & Penn D.J. 2013. Why do female mice mate with multiple males? // Behavioral Ecology and Sociobiology. Vol.67. P.1961–1970.
  • Thonhauser K.E., Thoβ M., Musolf K., Klaus T. & Penn D.J. 2014a. Multiple paternity in wild house mice (Mus musculus musculus): effects on offspring genetic diversity and body mass // Ecology and Evolution. Vol.4. P.200–209.
  • Thonhauser K.E., Raveh S. & Penn D.J. 2014b. Multiple paternity does not depend on male genetic diversity // Animal Behaviour. Vol.93. P.135–141.
  • Torok J., Michl G. & Garamszegi L.Z. 2003. Repeated inseminations required for natural fertility in a wild bird population // Proceedings of Royal Society (Lond.) Ser.B. Vol.270. P.641–647.
  • Travis S.E. & Slobodchikoff C.N. 1993. Effects of food resource distribution on the social system of Gunnison
  • Travis S.E., Slobodchikoff C.N. & Keim P. 1996. Social assemblages and mating relationships in prairie dogs: a DNA fingerprint analysis // Behavioral Ecology. Vol.7. P.95–100.
  • Tregenza T. & Wedell N. 2002. Polyandrous females avoid costs of inbreeding // Nature. Vol.415. P.71–73.
  • Trivers R.L. 1972. Parental investment and sexual selection // Campbell B. (ed.). Sexual selection and the descent of man. Chicago: Aldine. P.136–179.
  • Uller T. & Olsson M. 2005. Multiple copulations in natural populations of lizards: evidence for the fertility assurance hypothesis // Behaviour. Vol.142. P.45–56.
  • Wakabayashi H. & Saitoh T. 2019. Estimation of multiple male mating frequency using paternity skew: An example from a grey-sided vole (Myodes rufocanus) population // Molecular Ecology Resources. Vol.20. P.444–456.
  • Wakabayashi H., Noda S. & Saitoh T. 2017. Intraspecific variation in the frequency of multiple paternity in the Japanese wood mouse (Apodemus speciosus) // Mammal Study. Vol.42. P.81–88.
  • Waterman J. 1998. Mating tactics of male cape ground squirrels, Xerus inauris: consequences of year-round breeding // Animal Behaviour. Vol.56. P.459–466.
  • Waterman J. 2007. Male mating strategies in rodents // Wolff J.O. & Sherman P.W. (eds.). Rodent Societies: an ecological & evolutionary perspective. Chicago, Illinois: University of Chicago Press. P.27–41.
  • Watson P.J. 1991. Multiple paternity as genetic bet-hedging in female sierra dome spiders, Linyphia litigiosa (Linyphiidae) // Animal Behaviour. Vol.41. P.343–360.
  • Wauters L., Dhondt A.A. & De Vos R. 1990. Factors affecting male mating success in red squirrels (Sciurus vulgaris) // Ethology, Ecology, and Evolution. Vol.2. P.195–204.
  • Weber K., Hoelzl F., Cornils J.S., Smith S., Bieber C., Balint B. & Ruf T. 2018. Multiple paternity in a population of free-living edible dormice (Glis glis) // Mammalian Biology. Vol.93. P.45–50.
  • Wells C.P., Tomalty K.M., Floyd C.H., McElreath M.B., May B.P. & Van Vuren D.H. 2017. Determinants of multiple paternity in a fluctuating population of ground squirrel // Behavioral Ecology and Sociobiology. Vol.71. P.42.
  • Wolff J.O. & Dunlap A.S. 2002. Multi-male mating, probability of conception, and litter size in the prairie vole (Microtus ochrogaster) // Behavioural Processes. Vol.58. P.105–110.
  • Wolff J.O. & Macdonald D.W. 2004. Promiscuous females protect their offspring // Trends in Ecology and Evolution. Vol.19. P.127–134.
  • Wynne-Edwards K.E. & Lisk R.D. 1984. Djungarian hamsters fail to conceive in the presence of multiple males // Animal Behaviour. Vol.32. P.626–628.
  • Xia X. & Millar J.S. 1991. Genetic-evidence of promiscuity in Peromyscus leucopus // Behavioral Ecology and Sociobiology. Vol.28. P.171–178.
  • Yasui Y. 1997. A “good-sperm” model can explain the evolution of costly multiple mating by females // American Naturalist. Vol.149. P.573–584.
  • Yasui Y. 1998. The “genetic benefits” of female multiple mating reconsidered // Trends in Ecology and Evolution. Vol.13. P.246–250.
  • Yasui Y. 2001. Female multiple mating as a genetic bet-hedging strategy when mate choice criteria are unreliable // Ecological Research. Vol.16. P.605–616.
  • Zarrow M.X. & Clark J.H. 1968. Ovulation following vaginal stimulation in a spontaneous ovulator and its implications // Journal of Endocrinology. Vol.40. P.343–352.
  • Zeh J.A. & Zeh D.W. 1996. The evolution of polyandry I: Intragenomic conflict and genetic incompatibility // Proceedings of Royal Society (Lond.) Ser.B. Vol.263. P.1711–1717.
  • Zeh J.A. & Zeh D.W. 1997. The evolution of polyandry II: postcopulatory defenses against genetic incompatibility // Proceedings of Royal Society (Lond.) Ser.B. Vol.264. P.69–75.
  • Zeh J.A. & Zeh D.W. 2001. Reproductive mode and the genetic benefits of polyandry // Animal Behaviour. Vol.61. P.1051–1063.

Скачать PDF